
Efficient Hash-Based Signatures

on Embedded Devices

Sebastian Rohde1, Thomas Eisenbarth1, Erik Dahmen2, Johannes Buchmann2,
and Christof Paar1

1 Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany

{rohde,eisenbarth,cpaar}@crypto.rub.de
2 Technische Universität Darmstadt
Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
{dahmen,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Authentication and message integrity are essential building
blocks for protocols of many security related verification processes like
data origin authentication for valid software updates or device authen-
tication. Critical embedded devices - like a brake control unit in a car -
must only accept updates from valid issuers. At the same time it is es-
sential - for security and commercial reasons - to prove the authenticity
of the device to other integrated systems to prevent product counter-
feiting. The most widely used algorithms for digital signatures, RSA and
ECDSA, depend on finite field engines. Many embedded devices are pow-
ered by 8-bit microprocessors. On this platform the finite field engines
either require costly coprocessors, or the implementations become very
large and very slow. Hence the need for better methods is highly visi-
ble. One alternative to RSA and ECDSA is the Merkle signature scheme
which provides digital signatures using hash functions only, without re-
lying on any number theoretic assumptions. In this paper, we present an
implementation of the Merkle signature scheme on an 8-bit micropro-
cessor. Our results prove that the Merkle signature scheme can provide
very good timings and a higher degree of security compared to previous
implementations of RSA and ECDSA, while maintaining a smaller code
size.

Keywords: Embedded security, hash based cryptography, Merkle signa-
ture scheme, digital signatures.

1 Motivation

Digital signatures have become a key technology for making IT infrastructures
secure and for preventing product counterfeiting. Digital signatures provide au-
thenticity, integrity, and support for non-repudiation of data. Digital signatures
are widely used in identification and authentication protocols.



One main application area of digital signatures in embedded devices such as
printer cartridges and all kinds of replacement parts is component authentica-
tion, which helps to prevent product counterfeiting. The need is highly visible,
since the OECD estimates the turnover of piracy products in 2005 in the range
of 600 billion dollars [7]. This corresponds to the gross domestic product of the
Netherlands. Component identification involves signature creation during the
authentication of the component to its communication partner.

Due to the constantly increasing complexity of embedded software and, at
the same time decreasing development times of embedded products, software
updates become more and more common. Therefore a possible scenario involving
signature verification is a software update for a brake control unit or for an
airbag control. Of course it is of high interest that only authorized parties are
able to perform software updates. Hence the update needs to identify itself to the
embedded device or, in other words, it needs to be signed by a trusted authority.

In many of these strongly cost and energy sensitive areas, the computational
power comes in form of a small and cheap 8-bit CPU. Note that 8-bit controllers
have by a wide margin the largest share of the world-wide CPU market. These
small 8-bit microprocessors are constrained in program memory (flash or ROM),
RAM, clock speed, register width, and arithmetic capabilities.

Common signature schemes such as RSA and ECDSA require operations in a
finite field for the signature generation and verification. For efficient implementa-
tions in smart cards, costly coprocessors that implement the field arithmetic are
required. In 1979 Merkle proposed a signature scheme that requires only hash
function evaluations for the signature generation and verification [21]. Since soft-
ware implementations of hash functions are much more efficient than software
implementations of finite field arithmetic, the Merkle signature scheme (MSS)
is a good candidate for implementations on small microprocessors without cryp-
tographic coprocessors. Another benefit of the MSS is the fact that its security
relies only on the cryptographic properties of the used hash function and not on
additional number theoretic assumptions. If the hash function used for the MSS
is found insecure, it can be replaced by a secure one to obtain a new and secure
instance of the MSS.

Our Contribution. In this paper we present an implementation of the Merkle
signature scheme for 8-bit RISC AVR microcontrollers. Our example target plat-
form, the Atmel ATMega 128, offers clock speeds of up to 16MHz, 4KBytes
SRAM, 4KBytes EEPROM and 128KBytes flash memory. Our implementation
is highly scalable and can be configured to provide an ideal tradeoff between
security, execution times, and memory requirements for the specific use case.
We will show that our implementation of the MSS performs excellently when
compared to RSA and ECDSA. Our implementation has a smaller code size
and faster verification times. The signature generation is faster than RSA and
comparable to ECDSA.

For the hash function we use constructions based on the AES block cipher.
Such hash functions have two advantages compared to dedicated hash functions:



(1) they have a small block size which is more suitable for the MSS and (2) they
are more efficient.
Related Work. Gura et al. showed the feasibility of public key cryptography
on constrained 8-bit microcontrollers. Their implementation of RSA-1024 and
RSA-2048 showed that digital signatures are feasible on 8-bit platforms even
without expensive crypto-coprocessors. Further research regarding digital signa-
tures on constrained 8-bit devices has been performed in the field of wireless sen-
sor networks. Liu and Ning published a full ECC engine called TinyECC which
also does not require a coprocessor. They implemented the 160-bit elliptic curve
secp160r1. Merkle Winternitz one time signatures have also been proposed to be
used in wireless sensor networks for signing short messages (< 80 bit) [19]. The
proposed solution, however, uses a public key management that is not applicable
to smart cards. Others [25, 8] show possible use cases for MSS on constrained
devices without making any suggestions regarding the implementation.
Organisation. The paper is organized as follows: Section 2 gives an overview
of the MSS and explains our construction of the hash function. In Section 3 we
will explain the target platform and details about the implementation. Section
4 presents performance results of our implementation and compares it to other
state of the art signature schemes. Section 5 states our conclusion.

2 Preliminaries

In this section we describe the details of the variant of the Merkle signature
scheme [21] we use for our implementation. In summary we use the Winternitz
one-time signature scheme (W-OTS) [10] to sign the data, the ideas for efficient
one-time signature key generation of [4] and the algorithm from [6] for the com-
putation of the authentication paths. We use two different hash functions based
on the AES block cipher, both with 128-bit block length. We use a 256-bit hash
function for the initial hashing (digest creation) of the data to be signed and
a 128-bit hash function for the one-time signature scheme and the Merkle tree.
Details on the construction of these hash functions are described in Section 2.2.

2.1 The Merkle Signature Scheme

We now describe the three algorithms for the key generation, signature gen-
eration, and verification. In the following, let F : {0, 1}∗ → {0, 1}128 and
G : {0, 1}∗ → {0, 1}256 be cryptographic hash functions.

Key Generation. The first step of the key generation is to decide how many
signatures should be generated with this key pair. We choose the parameter
H ≥ 2 to be able to generate 2H signatures. The next step is to generate 2H

W-OTS key pairs. For the W-OTS key generation, we apply the approach of [4]
and use the following forward secure pseudo random number generator.

PRNG : {0, 1}128 → {0, 1}128 × {0, 1}128,Seedin 7→ (Seedout,Rand).



As suggested in [5], we use the hash based PRNG proposed in [12], i.e.

Rand← F (Seedin),Seedout ← (1 + Seedin + Rand) mod 2128.

The MSS private key is an 128-bit seed Seed chosen uniform at random. This
seed is fed to the PRNG to compute the initial seed SeedW-OTS that we use to
generate the first W-OTS signature key:

(Seed,SeedW-OTS) = PRNG(Seed). (1)

Doing so, Seed is updated and can be used to compute the initial seeds for
upcoming W-OTS signature keys. Depending on the Winternitz parameter w,
the W-OTS signature key consists of t = t1 + t2 128-bit strings, where

t1 =

⌈

256

w

⌉

, t2 =

⌈

⌊log2 t1⌋+ 1 + w

w

⌉

.

The W-OTS signature key is the sequence X = (x1, . . . , xt), that consists of t
bit strings each of length 128-bit. It is computed using the PRNG as

(SeedW-OTS, xi) = PRNG(SeedW-OTS) (2)

for i = 1, . . . , t. The W-OTS verification key is Y = F (y1 ‖ . . . ‖ yt), where
yi = F 2

w
−1(xi), i.e. the hash function F is applied 2w − 1 times to xi for

i = 1, . . . , t.

The 2H W-OTS verification keys are the leaves of the Merkle tree. The inner
nodes are computed using the following construction rule: a parent node is the
hash of the concatenation of its left and right children, i.e.

Nodeparent = F (Nodeleft child ‖ Noderight child).

By applying this rule iteratively the root of the Merkle tree, which is also the
MSS public key, is obtained.

Signature Generation. To sign some data, the first step is to compute its 256-
bit digest: d = G(data). The W-OTS signature keys are used sequentially. We
describe the generation of the sth signature, s ∈ {0, . . . , 2H−1}. The sth W-OTS
signature key is computed from the seed Seed as described in Equations (1) and
(2). We always update the seed in the private key and therefore one invocation
of the PRNG suffices to obtain the initial seed SeedW-OTS to compute the
sth W-OTS signature key. The Winternitz signature of d is then computed as
follows: (1) split the binary representation d into t1 blocks b1, . . . , bt1 each of
length w. (2) Consider bi as the integer encoded by this block in binary and
compute c =

∑t1
i=1

(2w − bi). (3) Split the binary representation c into t2 blocks
bt1+1, . . . , bt each of length w. If the bit-length of c or d is no multiple of w
we pad with zeros to the left. The Winternitz signature of d is then given as



σW-OTS(d) = (σ1, . . . , σt), where σi = F bi(xi), for i = 1, . . . , t. The sth MSS
signature of d is given as

σs(d) =
(

s, σW-OTS(d), (a0, . . . , aH−1)
)

.

The sequence (a0, . . . , aH−1) is the authentication path for the sth leaf, i.e. the
sth W-OTS verification key. It is defined as the siblings of all nodes on the path
from the sth leaf to the root of the Merkle tree, see Figure 1. For the computation
of authentication paths we use the BDS algorithm from [6]. This algorithm
is constructed such that the authentication path for the currently used leaf is
already available and the upcoming authentication paths are prepared after the
MSS signature is computed. The BDS algorithm uses a parameter K ≥ 2 which
decides how many nodes close to the root are stored during the initialization to
reduce the computational cost. The initialization of this algorithm, that requires
certain tree nodes to be stored, is done during the MSS key generation.

s

a0

a1

a2

Fig. 1. Example of the Merkle signature scheme for H = 3, s = 3. Dashed nodes denote
the authentication path for the sth leaf. The arrows indicate the path from the sth leaf
to the root.

Signature Verification. The first step of the signature verification is again to
compute the digest of the data that was signed: d = G(data). Then d and its
Winternitz signature are used to compute the sth leaf as follows: Repeat steps
(1)-(3) of the Winternitz signature generation to obtain b1, . . . , bt. The sth leaf
ϕ is computed as

ϕ = F
(

F 2
w
−1−b1(σ1) ‖ . . . ‖ F 2

w
−1−bt(σt)

)

Then the path from the sth leaf to the root and the root itself is recomputed
using the authentication path and the index s:

ϕ =

{

F (ϕ ‖ ah) , if s/2h ≡ 0 mod 2
F (ah ‖ ϕ) , if s/2h ≡ 1 mod 2

for h = 0, . . . ,H − 1. If the computed root matches the signers public key, the
signature is valid.



Time and Memory Requirements. We now estimate the number of evalua-
tions of F required for the key generation, signature generation and verification.
We also estimate the storage requirements of the public and private key and the
signatures.

The MSS key generation requires the computation of 2H leaves or W-OTS
key pairs and 2H − 1 evaluations of F to compute the root. The computation
of one leaf costs t(2w − 1) + 1 evaluations of F and t + 1 calls to the PRNG.
Using that one call to the PRNG costs as much as one evaluation of F , the key
generation in total requires 2H(t2w + 3) − 1 evaluations of F . The public key
requires 128 bits of memory.

For each signature, the BDS algorithm requires at most (H − K)/2 + 1
leaves, 3(H − K − 1)/2 + 1 evaluations of F and H − K calls to the PRNG
to compute upcoming authentication paths. If s is even the BDS algorithm
requires (H − K)/2 + 1 leaves to be computed. One of these leaves is the sth
leaf. Since the Winternitz signature of the data just signed using the sth W-
OTS key is an intermediate value during the computation of the sth leaf, the
generation of this Winternitz signature needs no additional calculations in this
case. If s is odd, the BDS algorithm requires only (H − K)/2 leaves to be
computed and the Winternitz signature of the data must be computed separately.
Since the generation of a Winternitz signature requires less computations than
a leaf, the above cost for the BDS algorithm also represent the total cost for
signing. Hence, the total cost for signing in terms of evaluations of F is at
most t2w(H −K − 2)/2 + (7H − 7K + 3)/2. The BDS algorithm needs to store
3.5H−3K +2K−2 nodes of the Merkle tree and 2(H−K) seeds which we store
as part of the private key. Together with the 128-bit seed used to generate the
signature keys, the size of the private key is given as (5.5H − 5K + 2K − 1) · 128
bits. The size of the signature is given as (t + H) · 128 bits. t · 128 bits for the
Winternitz signature and H · 128 bits for the authentication path.

The signature verification on average requires t(2w − 1)/2 evaluations of F
to compute the sth leaf and H evaluations of F to recompute the path to the
root and the root itself. The signature generation and verification also require
one evaluation of G to compute the initial digest d of the data.

The above formulas show that the Winternitz parameter w provides a time-
memory trade-off of the signature size and the key and signature generation
times. However, the key and signature generation times of the W-OTS keys are
exponential in w, while the signature size decreases only linearly in w. Therefore
w should not be chosen too large. Also the output length of the hash functions
F and G must be chosen carefully since the size of a Winternitz signature lin-
early depends on their product. Our choice of 128 and 256 bit yields moderate
signature sizes and, as we will explain in the following, high practical security.

Security. We now state some remarks concerning the security of the MSS. The
MSS is provably secure against adaptive chosen message attacks, if the used hash
function is collision resistant [9]. However, to forge a MSS signature in practice
the attacker is required to compute preimages and second-preimages. Therefore



the practical security of the MSS currently relies on the preimage and second-
preimage resistance of the used hash function [22]. From a practical point of
view, the 128-bit hash function F we use for the W-OTS and the Merkle tree
provides 128-bit security. Note, that the approach of using the work factor of
the best known attack to draw conclusions about the security of the scheme is
also used to estimate the security of RSA and ECDSA [17]. Collision resistance
is definitely required for the initial hashing of the data to sign. This is why we
use the 256-bit hash function G, which provides 128-bit security against collision
attacks that exploit the birthday paradox.

2.2 Hash Functions

In this section we will present the hash functions that are used in our scheme. We
will also show that single and double block length constructions are the better
choice when used in conjunction with digital signatures. Relatively short input
block lengths and the resulting speed make them better suited for implementa-
tions on constrained devices. Public key and private key sizes are proportionally
dependent on the hash length of F . As stated earlier, a short value of 128 bit
offers adequate security for this scenario while staying within reasonable mem-
ory limits. For our scheme, we used the AES algorithm which is specified with a
block length of 128 bit. Using AES in a double block length construction leads
to a hash length of 256 bit.

Using block ciphers as hash functions in digital signature schemes is also
appealing because one primitive can be used for three applications: encryption,
generation of hashes and digital signatures. In addition block ciphers are much
better known and analyzed than dedicated hash functions.

Single Block Length Construction. The single block length hash in our
scheme is constructed using a Matyas-Meyer-Oseas (MMO) construction [20].
The principle is to iteratively use its definition in a way such that the original
data or the result of the previous round cannot be reconstructed. The MMO
construction is recursively defined as fi+1 = Efi

(Mi)⊕Mi with E being the en-
cryption function, Mi as the current message block and f0 being an initialization
vector (See Figure 2). In a hash signature scheme this variant for constructing
the hash benefits from the fact that the encryption function always uses the
same key (an initialization vector) for the first block.

Double Block Length Construction. For applications such as the initial
digest generation in a signature scheme, collision resistance is needed and the
security of single block length (SBL) constructions is not sufficient. Hirose showed
in [15] how a block cipher with a key length of twice the block length can be
used to construct a double block length (DBL) hash function. Another example
of a double block length scheme is MDC-2 for which a security proof has been
provided in [23] and which is specified in the ISO/IEC 10118-2 standard. The
standard envisions the usage of DES, but there is a variant using AES-128 [24]
(See Figure 3) available.



fi fi+1

Mi

E

Fig. 2. Single block length compression function due to [20]. The output of the block
cipher E is xored with the message block Mi. fi, fi+1, and Mi are each of bit length
128.

g0
i

g1
i

Mi

(A ‖ B)

(C ‖ D)

g0
i+1 = C ‖ B

g1
i+1 = A ‖ D

E

E

Fig. 3. Double block length compression function due to [24]. The outputs of the block
cipher E are xored with the message block Mi and permuted. g0

i , g1
i , g0

i+1g
1
i+1, and Mi

are each of bit length 128.

Comparison to Dedicated Hash Functions. SBL and DBL constructions
are much better suited for hash-based signature schemes than dedicated hash
functions. A hash function with 512 bit (e.g. whirlpool) length would yield a
highly inefficient signature scheme. At the same time it is also interesting to
note that dedicated hash functions are optimized for large amounts of data as
can be seen by the comparatively large block size (512 bit). In hash signature
schemes the input for the hash function has usually the same size as the output
value. This is one of the reasons why dedicated hash functions provide suboptimal
performance for appliances in hash based signature schemes.

In addition large block sizes reduce the speed of implementations on the
AVR microcontroller platform since the state cannot be held completely in the
registers of the processor. In Table 1 we provide a comparison of various hash
functions and their performance. The results for the dedicated hash functions
are taken from [13] and [16].

It can easily be seen that for single block hashing the block cipher based
hash function provides a much better performance. This has various reasons,
on the one hand the block size of 512 bit for dedicated hash functions is not
suited for the memory architecture of microcontrollers and on the other hand
the single block performance is mostly irrelevant for other applications than hash
signatures. For these other applications the cycles/byte column provides a more
realistic overview.



Table 1. Performance of hash function implementations on the AVR platform

bit length per msec per cycles per
Hash function output block block block byte

SHA1 [13] 160 512 3.9 63,000 984
SHA1 [16] 160 512 2.6 41,153 643
SHA256 [16] 256 512 3.4 54,262 847
MD5 [13] 128 512 1.5 23,568 368

AES-SBL 128 128 0.3 4,898 306
AES-DBL 256 128 1.3 20,686 646

3 Implementation Details and Target Platform

Target Platform. Our implementation is designed for 8-bit AVR microcon-
trollers, a popular family of 8-bit RISC microcontrollers. The Atmel AVR pro-
cessors offer clock speeds of up to 16MHz, a few KBytes of SRAM, up to tens of
KBytes of EEPROM and additional flash or mask ROM for program memory.
AVRs are available as general purpose microcontrollers with a wide use in many
embedded applications. Our main target was the Atmel ATMega128 microcon-
troller [3] that is often used for wireless sensor networks. Beside this the AVR
controllers also turn up as smart card processors AT90SCxxx [2].

The devices of the AVR family have 32 general purpose registers of 8-bit
word size. Most of the 130 instructions of the microcontroller are one-cycle.
AVR microcontrollers can be programmed in AVR-assembler and in C.

The implementation of this project is designed to be executable on any AVR
processor providing 4 KBytes SRAM, about 4 KBytes EEPROM and at least
8 KBytes of program memory. However, for platforms that are even more con-
strained in available SRAM, our scheme can also be altered to operate on sys-
tems with much less SRAM. For our implementation the AVR was clocked within
specification limits at 16 MHz. We chose to use assembler for performance criti-
cal routines such as some cryptographic primitives and C to glue these routines
together.

AES Implementation. An efficient AES implementation for the AVR platform
is available at [1]. It is licensed under the GPL. We modified this implementation
to make it even smaller and faster. In this section we describe our modifications
and improvements concerning this AES algorithm.

The RijndaelFurious algorithm is pure assembly code that can be compiled
using the Atmel AVR compiler. Some modifications made it compilable using
the avr-gcc. In addition the decryption functionality has been removed as it is
not needed for hash function constructions. If an AES decryption is needed, it
can be easily added by the cost of a small increase in code size. Furthermore, we
contributed our own implementation of the MixColumns function that is better
in respect to performance and code size.



The used hash function constructions often apply the initialization vector as
the encryption key. For a further speed-up we also implemented an alternative
method with a pre-expanded key. This allows to save many key expansions in
the process of creating one-block hashes.

Memory Management. The Merkle signature scheme is key evolving, which
means that after every signing process a modification of the private key is re-
quired. The private key needs to be stored in nonfluent memory when the power
is lost. Our implementation stores the private key in EEPROM, since the max-
imum amount of erase/write cycles allowed on the flash memory are usually
much more limited than on the EEPROM. Our target platform is specified for
at least 100.000 erase/write cycles [2, 3]. Therefore the maximum value for the
height of the Merkle tree supported by our implementation is H = 16, which
allows 216 = 65.536 signatures to be generated. We store the whole signature
in the SRAM during creation. However, for platforms that are even more con-
strained concerning SRAM our scheme can easily be altered to support signature
generation and verification with much less RAM.

The memory constraints also enforce a very economical way of organizing the
data of the private key. Despite of heavy optimizations, some implementation
details force the actual size of the private key to be slightly larger than the
calculated results from Section 2.1. The main reason is that these formulas count
only the number of hash values that must be stored. For example, the stacks
used by the BDS algorithm were implemented as arrays of fixed size. In addition
to the stack, we need to store the index of the array element that denotes the
top node on the stack. Also the size of the signatures is slightly larger than
estimated, because the index of the signature s must be added as well.

Key Generation. Due to the heavy computations required, the key generation
is not done on the microcontroller but on a standard PC. For the generation of
test data we created a PC version of the project that uses mostly the same code
base. In contrast to the AVR implementation it uses another AES algorithm and
it supports key generation. The key generation is computationally far too costly
to run it on the microcontroller which is why it has been disabled in the AVR
implementation. The speed of the PC version has also been used to verify the
correct behavior of our code by iterating through all possible signatures.

4 Choice of Parameters and Timings

In this section we present the timings of our implementation and the exact mem-
ory requirements for the microcontroller. We also compare these values to im-
plementations of state of the art signature schemes on the same microcontroller
platform. For the height of the Merkle tree we chose H = 16 and H = 10 which
allows 216 and 210 signatures to be generated with one key pair, respectively.
The reason for the choice of H = 16 is, that 216 is near to the maximum number



of allowed write cycles for the EEPROM of the microcontroller [2, 3]. The values
for H = 10 were included to clarify the impact of the tree height on the signature
generation time. For the Winternitz parameter w and the parameter K for the
BDS algorithm, we tested three combinations (w,K) = (2, 2), (2, 4), (4, 4). The
value t that denotes the number of 128-bit strings for the W-OTS signature key
and Winternitz signature are given as t = 133 for w = 2 and t = 67 for w = 4.
Table 2 summarizes the results. spub, spriv, ssig, and sROM denote the memory
requirements for the public key, the private key, and the signature as well as
the code size in bytes, respectively. tverify and tsigning denote the average time in
milliseconds required for verification and signature generation, respectively.

Table 2. Timings and memory requirements of our implementation and comparison
to state of the art signature schemes on the same platform.

Memory in bytes Time in msec
Scheme spub spriv ssig sROM tverify tsigning

Our MSS-128 implementation using H = 16
(w, K) = (2, 2) 16 1440 2350 6500 92 1215
(w, K) = (2, 4) 16 1472 2350 6500 92 1061
(w, K) = (4, 4) 16 1472 1330 6300 132 1637

Our MSS-128 implementation using H = 10
(w, K) = (2, 2) 16 848 2290 6500 89 753
(w, K) = (2, 4) 16 876 2290 6500 89 600
(w, K) = (4, 4) 16 876 1234 6300 129 937

RSA-1024 [14] 131 128 128 7400 215 5495
RSA-2048 [14] 259 256 256 10600 970 41630
ECDSA-160 [11] 40 21 40 43200 423 423
ECDSA-160 [18] 40 21 40 17900 1218 1001

Table 2 shows that our implementation requires the least space for the code
size and the public keys. Please keep in mind that the code size of our implemen-
tation already includes the hash function needed for digest generation (and, of
course, an AES engine). Also the signature verification times are faster than for
RSA and ECDSA. The signature generation time of our implementation is much
faster than the RSA implementations and comparable to the ECDSA implemen-
tations. In case of H = 10 our implementation is even faster than the memory
efficient ECDSA variant from [18]. The main drawbacks of the MSS are the large
memory requirements for the signature and the private key. However, both the
private key and the signature easily fit into the EEPROM and the SRAM of the
Atmel, respectively.

We finally remark that our implementation provides 128 bits of security and
hence offers long term security until the year 2090 [17]. RSA with an 1024-bit
modulus offers comparable symmetric security of only 72 bit, i.e. until the year



2006. The security of 2048-bit RSA is at most 95-bit, i.e. until the year 2040.
ECDSA using 160-bit elliptic curves offers only 80 bit of security, i.e. until the
year 2018. This shows that our implementation is not only very competitive to
currently used schemes, but also offers higher security [17].

5 Conclusion

We presented an implementation of the Merkle signature scheme on a low-cost
8-bit microcontroller platform. Our implementation shows that MSS is a com-
petitive signature scheme compared to commonly used signature schemes such
as RSA and ECDSA. Our implementation features a smaller code size and faster
verification times than efficient implementations of RSA and ECDSA. The sig-
nature generation times are faster than RSA and comparable to ECDSA.

We prove that common 8-bit microcontrollers can provide strong crypto-
graphic services such as digital signatures. Amongst other things this allows to
fight product counterfeiting and to ensure update integrity for embedded devices.
When compared to other implementations that do not rely on a cryptographic
coprocessor, our implementation is even the only one that offers long-term secu-
rity.

Our implementation gives a positive answer to the question whether highly
secure and efficient signature schemes can be implemented on constrained de-
vices.

References

1. Rijndaelfurious implementation, 01 2008. http://point-at-infinity.org/

avraes/.
2. Atmel. Overview of secure avr microcontrollers 8-/16-bit risc cpu, 2007. http:

//www.atmel.com/products/SecureAVR/.
3. Atmel. Specifications of the atmega128 microcontroller, 2007. http://www.atmel.

com/dyn/resources/prod_documents/doc2467.pdf.
4. J. Buchmann, C. Coronado, E. Dahmen, M. Döring, and E. Klintsevich. CMSS

- an improved merkle signature scheme. In R. Barua and T. Lange, editors, IN-
DOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages 349–363.
Springer, 2006.

5. J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle
signatures with virtually unlimited signature capacity. In J. Katz and M. Yung,
editors, ACNS, volume 4521 of Lecture Notes in Computer Science, pages 31–45.
Springer, 2007.

6. J. Buchmann, E. Dahmen, and M. Schneider. Merkle tree traversal revisited.
Manuscript, 2008. http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/
dahmen.html.

7. H. Buchter, S. Buening, A. Rehmsmeier, B. Schoenau, and J. Voswinkel. Ver-
brechen global. Die ZEIT Nr. 27/2007, 28.06.2007.

8. X. Cheng, W. Li, and T. Znati, editors. Wireless Algorithms, Systems, and Appli-
cations, First International Conference, WASA 2006, Xi’an, China, August 15-17,
2006, Proceedings, volume 4138 of Lecture Notes in Computer Science. Springer,
2006.



9. C. Coronado. On the security and the efficiency of the merkle signature scheme.
Cryptology ePrint Archive, Report 2005/192, 2005. http://eprint.iacr.org/.

10. C. Dods, N. P. Smart, and M. Stam. Hash based digital signature schemes. In
N. P. Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer
Science, pages 96–115. Springer, 2005.

11. B. Driessen, A. Poschmann, and C. Paar. Comparison of Innovative Signature
Algorithms for WSNs. In Proceedings of the First ACM Conference on Wireless
Network Security (to appear).

12. Digital signature standard (DSS). FIPS PUB 186-2, 2007. Available at http:

//csrc.nist.gov/publications/fips/.
13. P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Si-

chitiu. Analyzing and modeling encryption overhead for sensor network nodes. In
WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sen-
sor networks and applications, pages 151–159, New York, NY, USA, 2003. ACM.

14. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing elliptic
curve cryptography and rsa on 8-bit cpus. In M. Joye and J.-J. Quisquater, ed-
itors, CHES, volume 3156 of Lecture Notes in Computer Science, pages 119–132.
Springer, 2004.

15. S. Hirose. Some plausible constructions of double-block-length hash functions. In
M. J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science,
pages 210–225. Springer, 2006.

16. D. Labor. Crypto-avr-lib. Available through http://www.das-
labor.org/wiki/Crypto-avr-lib, 01 2008.

17. A. K. Lenstra. Key lengths. Contribution to The Handbook of Information Secu-
rity, 2004. http://cm.bell-labs.com/who/akl/key_lengths.pdf.

18. A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. Technical Report TR-2007-36, North Carolina
State University, Department of Computer Science, November 2007.

19. M. Luk, A. Perrig, and B. Whillock. Seven cardinal properties of sensor network
broadcast authentication. Proceedings of the fourth ACM workshop on Security of
ad hoc and sensor networks, pages 147–156, 2006.

20. A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, 1996.

21. R. C. Merkle. A certified digital signature. In G. Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer, 1989.

22. D. Naor, A. Shenhav, and A. Wool. One-time signatures revisited: Have they
become practical. Cryptology ePrint Archive, Report 2005/442, 2005. http://

eprint.iacr.org/.
23. J. P. Steinberger. The collision intractability of mdc-2 in the ideal-cipher model.

In M. Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer
Science, pages 34–51. Springer, 2007.

24. J. Viega. The AHASH Mode of Operation. Manuscript available from
http://www.cryptobarn.com/, 2004.

25. S. Yu-long, M. Jian-feng, and P. Qing-qi. An Access Control Scheme in Wire-
less Sensor Networks. Network and Parallel Computing Workshops, 2007. NPC
Workshops. IFIP International Conference on, pages 362–367, 2007.


