
892 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

Code Construction and FPGA Implementation
of a Low-Error-Floor Multi-Rate

Low-Density Parity-Check Code Decoder
Lei Yang, Student Member, IEEE, Hui Liu, Senior Member, IEEE, and C.-J. Richard Shi, Fellow, IEEE

Abstract—With the superior error correction capability,
low-density parity-check (LDPC) codes have initiated wide scale
interests in satellite communication, wireless communication, and
storage fields. In the past, various structures of single code-rate
LDPC decoders have been reported. However, to cover a wide
range of service requirements and diverse interference conditions
in wireless applications, LDPC decoders that can operate at both
high and low code rates are desirable. In this paper, a 9-k code
length multi-rate LDPC decoder architecture is presented and
implemented on a Xilinx field-programmable gate array device.
Using pin selection, three operating modes, namely, the irregular
1/2 code mode, the regular 5/8 code mode, and the regular 7/8
code mode, are supported. Furthermore, to suppress the error
floor level, a characterization on the conditions for short cycles
in a LDPC code matrix expanded from a small base matrix is
presented, and a cycle elimination algorithm is developed to detect
and break such short cycles. The effectiveness of the cycle elimina-
tion algorithm has been verified by both simulation and hardware
measurements, which show that the error floor is suppressed to
a much lower level without incurring any performance penalty.
The implemented decoder is tested in an experimental LDPC
orthogonal frequency division multiplexing system and achieves
the superior measured performance of block error rate below
10

7 at signal-to-noise ratio of 1.8 dB.

Index Terms—Block-error rate, channel encoding, cycle elim-
ination, forward error correction (FEC), field-programmable
gate array (FPGA), low-density parity-check (LDPC) codes,
multi-rate, orthogonal frequency division multiplexing (OFDM),
signal-to-noise ratio (SNR), VLSI.

I. INTRODUCTION

RECENTLY, low-density parity-check (LDPC) codes have
attracted an ever increasing amount of attention due to

their superior error correction capacity. It has been shown that
with the block length , it is possible to achieve 0.04 dB from
the Shannon limit at a bit-error rate (BER) of [1]; this
yields significant advantages over other forward error correction
codes including turbo codes. Furthermore, the LDPC decoding
algorithm is inherently parallel and is easy to be implemented.

Manuscript received January 26, 2005; revised July 9, 2005. This work was
supported in part by Defense Advance Research Projects Agencies under Grant
66001-05-1-8918 and in part by the National Scienc Foundation ITR Program
under Grant 0086032. This paper was recommended by Associate Editor
Z. Wang.

The authors are with the Department of Electrical Engineering, University
of Washington, Seattle, WA 98195 USA (e-mail: yanglei@ee.washington.edu;
hliu@ee.washington.edu; shi@ee.washington.edu).

Digital Object Identifier 10.1109/TCSI.2005.862074

Fig. 1. Irregular H-matrix and its corresponding Tanner graph.

Therefore, it can be applied in optical networking, magnetic re-
coding, digital video broadcast satellite (DVB-S) communica-
tions, and other fields [2]–[4].

As illustrated in Fig. 1, an LDPC code is a linear block code
described by a binary sparse parity-check matrix H.
Each row of matrix H corresponds to a parity check and each
column represents a demodulated symbol. The number of de-
modulated symbols is the LDPC code length. The number
of nonzero elements in a row (column) is defined as the row
(column) weight . If all rows and all columns are of
uniform weight, the LDPC code is called a regular code, oth-
erwise an irregular code. The notion of Tanner graph has been
introduced to represent LDPC codes. As illustrated in Fig. 1,
a Tanner graph is a bipartite graph with variable nodes on one
side and check nodes on the other side. Each variable node cor-
responds to a received symbol, each check node corresponds
to a particular set of parity-check constraints, and each edge
corresponds to a nonzero entry in the parity-check matrix. For
example, an irregular LDPC H-matrix and its corresponding
Tanner graph are shown in Fig. 1. A cycle of length is de-
fined as a closed path that traversals a set of variable nodes
and check nodes through edges but without going through the
same edge twice. For example, Fig. 1 contains a length-6 cycle

.
Typically, iterative belief propagation (BP) algorithms are ex-

ploited to decode the LDPC codes. In the decoding process,
messages are exchanged along the graph edges, and computed
at the variable/check nodes. If an LDPC code is well designed,
the messages will converge exponentially to the correct bits after
a finite number of iterations. However, proper operations of the
iterative BP algorithms hinges on the assumption that neighbors
of a node in the Tanner graph are conditionally independent. If

1057-7122/$20.00 © 2006 IEEE

YANG et al.: CODE CONSTRUCTION AND FPGA IMPLEMENTATION OF LOW-ERROR-FLOOR MULTIRATE LDPC CODE DECODER 893

there are too many short cycles in the graph, the above assump-
tion is violated, and the BP algorithms will converge slowly
and even result in wrong decoded results. Hence, how to in-
crease the Tanner graph girth, which is defined as the length
of the shortest cycles, is critically important in the construction
of LDPC codes. Several algorithms, such as bit-filling [5] and
progressive edge-growth (PEG) [6], have been proposed to im-
prove the girth of a Tanner graph. But those algorithms are de-
veloped with no consideration of the decoder VLSI implemen-
tation. Consequently, the resulting LDPC matrix with randomly
located nonzeros elements is hard to be mapped to a hardware
structure.

To design LDPC codes that are amenable to VLSI imple-
mentation, several methods [7]–[10] have been developed to
jointly consider the code design and the hardware implemen-
tation. The basic idea of all these methods is that before con-
structing an parity-check matrix, a small base
matrix is built, in which each nonzero element at the position

is to be expanded to a square permutation matrix
. The square permutation matrix

is an identity matrix whose rows have been cyclically shifted by
a set of amount , where is a function of and . The
resulting matrix is referred to as the expanded matrix.
This LDPC matrix structure can be conveniently converted to a
partially parallel decoder architecture consisting of a structured
array of memory and computation units [7].

The above VLSI-oriented LDPC codes can achieve the gain
performance as good as the random codes. As for the girth per-
formance, [7]–[9] employ different functions to compute the
cyclic shifted value . Those functions can ensure that the
girth of the expanded matrix is no more than that of the base ma-
trix [7], but cannot guarantee the girth of the expanded LDPC
matrix to be improved to a user specified value. In our research,
we observed that short cycles in the base matrix can result in a
collection of the same length cycles in the expanded matrix. Fur-
thermore, we characterize the necessary and sufficient condi-
tions for such scenarios to occur. With this characterization, we
develop a cycle elimination (CE) algorithm. In this algorithm,
short cycles existing in the base matrix are checked first. Then
through setting the cyclically shifted values , those short cy-
cles will not incur the same length cycles in the expanded ma-
trix, thus yielding high girth performance. The cycle elimina-
tion process carries on until the maximum cyclically shifted
value exceeds its upper limit (is the size of a square per-
mutation matrix). With this, even if a base matrix contains po-
tentially many short cycles, the girth of the expanded matrix can
be improved to be cycle-6 free, cycle-8 free, or even cycle-10
free. This is very helpful to suppress the error floor to a much
lower level.

Even if hardware-oriented LDPC codes with high girth per-
formance have been achieved, efficiently mapping them to a
VLSI implementation remains to be challenging. On one hand,
the architecture of LDPC codes is characterized by many par-
allel memories and a lot of long interconnect wires; On the other
hand, various LDPC applications require diverse dominant per-
formances, such as high throughputs, low area, and low power.
Several approaches implement the BP algorithm to hardware in
a way that each variable node is mapped to a variable-node pro-

cessor, each check node is mapped to a check-node processor,
and all the processors are connected through a Tanner graph in-
terconnection network. This architecture gains high parallelism
and high throughputs [11], but is not scalable to LDPC codes
with large code length due to the heavy burden of intercon-
nect wires. The excessive amount of interconnection could lead
to routing congestion, which might exceed the available chip
routing area. To elude this problem, partially parallel architec-
tures compromising between the operating speed and intercon-
nection complexity are introduced, in which a certain number
of variable nodes and check nodes are mapped to one hardware
unit in the time-division multiplexing mode [12]. This approach
eases the routing difficulty but at the expense of decreasing par-
allelism. Furthermore, all the reported implementations up to
now are limited to single-rate LDPC code designs. In practice,
especially for wireless applications, it is highly desirable that a
design scheme could adapt to different coding rates to meet var-
ious service requirements and interference conditions.

In this paper, a multi-rate LDPC architecture is presented.
This architecture is not only suitable for different regular LDPC
coding rates, but also can support irregular LDPC codes. The
proposed architecture is demonstrated by implementing a 9 k
bit, multi-rate LDPC decoder in a Xilinx FPGA device. By con-
figuring two pins of the FPGA device at “00,” “01,” or “10,”
the decoder works on three coding rate modes: 1/2 as irregular
code, 5/8 and 7/8 as regular codes constructed by employing the
CE algorithm to suppress the error floor. The designed decoder
is tested in an LDPC plus orthogonal-frequency-division-mul-
tiplexing (OFDM) system [13] and achieves the superior mea-
sured performance of block error rate below at a signal-to-
noise ratio (SNR) of 1.8 dB without the presence of error floor.

Some primary results of this work have appeared in
[14]–[16]. The rest of this paper is organized as follows.
An overview of the LDPC decoding algorithm is given in
Section II. The proposed cycle elimination algorithm is pre-
sented in Section III. The three rate codes design process and
simulation results are described in Section IV. The architecture
of the multi-rate decoder is presented in Section V. Measure-
ment results of the implemented FPGA device are shown in
Section VI. Concluding remarks are made in Section VII.

II. LDPC DECODING ALGORITHM

For hardware implementation, the BP algorithms are often
re-formulated as the Log-BP algorithms [17], [18], in which
multiplication operations are converted to addition operations
to decrease the computational complexity. In the following,
represents the log-likelihood ratio (LLR) messages exchanged
between variable nodes and check nodes, and stands for in-
trinsic probability for every bit from a demodulator. The LDPC
decoding algorithm can be summarized in the following four
major steps.

1) Initialization
All variables nodes and their outgoing variable mes-

sages are initialized to the values of the intrinsic messages.
The intrinsic message is defined as

(1)

894 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

Here, is the received symbol and is the transmitted
symbol.

2) Check-Node Computation
After the incoming messages are gathered in each

check node from its connected variable nodes in the
Tanner graph, the following check-node computation is
performed:

(2)

Here, is the degree of the check node , repre-
sents the incoming message from neighbor variable node

to check node , and is the outgoing mes-
sage from check node . Function is equal to , and
is expressed in the following equation:

(3)

After the check-node computation, the outgoing messages
are passed to variable nodes along the edges.

3) Variable-Node Computation
The variable-node computation is expressed as follows:

(4)

where is the incoming message from the neighbor
check node to variable node and is the
number of check nodes connected to , and is the
outgoing message from variable node .

4) Check Stop Criterion
When the variable-node computation is finished, the

LLR of every symbol is updated as

(5)

From the updated LLR vector
, a hard decision

result is calculated as

(6)

The calculated hard decision vector is then checked
against the parity check matrix . A case of
means the iterative process has converged to a codeword
and decoding stops. Otherwise, steps 2) and 3) have to
be repeated until or until a fixed number of
iterations is reached.

III. CYCLE ELIMINATION ALGORITHM

A. Idea

Suppose that we already constructed a base matrix shown
in Fig. 2, which is a 6 12 irregular matrix with vari-
able-node degree {2,2,2,2,2,2,3,3,3,3,4,4} and check-node
degree {5,3,6,6,6,6}. If we employ the base matrix expansion

Fig. 2. Base matrix with cycles.

Fig. 3. Illustration of the number of cycles increase after expansion.

method in [7] to construct a large LDPC H-matrix, every 1
at position is expanded to a square permutation
(here) matrix, each of which is an identity matrix
with rows cyclically shifted by a set of amount . The size
of the generated LDPC H-matrix is 2718 5436. It is obvious
that the above matrix expansion is beneficial in terms of error
correction performance because the girth of the expanded
matrix is always larger than or equal to the girth of the base
matrix [7]. However, in order to further improve the girth of the
expanded matrix, we need to study the relationship between the
cycles in the expanded matrix and the cycles in the base matrix.
Two issues arise here.

1) Will the short cycles in a base matrix result in a collection
of same length cycles in the expanded H-matrix?

2) If the answer is yes, then how to eliminate those short
cycles?

The above two questions are answered in the following, which
form the basic idea behind the proposed CE algorithm.

In fact, if there exists a length- cycle (it has 1’s in
the cycle path) in the base matrix, this cycle can result in
length- cycles in the expanded LDPC matrix. For example,
in Fig. 3, the four 5 5 square matrices represent the square
permutation matrices expanded from a length-4 cycle in the
base matrix with cyclically shifted values , ,

, . Clearly, there are five length-4 cycles after
the expansion.

Consider two adjacent 1’s in the same row of a base matrix
located respectively at and . Let their corresponding
permutation matrices to be and , and their respec-
tive shifted values to be and . Then let

to be the (cyclically) shifted-value drop from the
1 at location to the 1 at location . As illustrated in
Fig. 4, the shifted-value drop from the 1 at position (1,1) to its
neighbor at (1,2) is .

Furthermore, for two adjacent 1’s in the same row (column),
we refer to its shifted-value drop as a horizontal (vertical)

YANG et al.: CODE CONSTRUCTION AND FPGA IMPLEMENTATION OF LOW-ERROR-FLOOR MULTIRATE LDPC CODE DECODER 895

Fig. 4. Another illustration of the cycle number increase after expansion.

shifted-value drop. For example, in Fig. 4, along each edge, the
number inside a dotted cycle is a vertical shifted-value drop,
and the number inside a dotted box is a horizontal shifted-value
drop.

Consider a cycle in a base matrix. Let to be the sum
of all the vertical shifted-value drops along the cycle. Similarly,
let to be the sum of all the horizontal shifted-value
drops along the cycle. For example, in Fig. 4, the left picture
and right picture in represent a length-4 cycle and a length-6
cycle in the base matrix. The sum of all the vertical shifted-value
drops for the cycle-4 can be computed as:

. For the cycle 6, we have

. Obviously in this case, if each 1 in the cycle-4/cycle-6
is expanded to a square permutation matrix, length-
4/length-6 cycles will be generated in the expanded matrix.

In general, we have the following result.
Lemma: Any cycle of length in a base matrix will lead to
cycles of length in the expanded matrix, if and only the

sum of all the vertical (horizontal) shifted-value drops along the
cycle is equal to , where .

Proof: We only need to prove the lemma for the vertical
shifted-value drops case, since the horizontal case is symmetric
to the vertical case.

Sufficient Condition (if part): We need to show that if a
length- cycle exists in the permutation matrices expanded
from a length- cycle in the base matrix, the sum of all vertical
shifted-value drops along the cycle (here

).
First, consider a square permutation matrix whose row

cyclically shifted value is , as illustrated in Fig. 5. The 1’s in
the matrix are divided into two parts—the upper-right segment
and lower-left segment. The coordinates of the 1’s are expressed
symbolically as (7), shown at the bottom of the page. It can be
re-written in the following compact form:

(8)

Here, represents the row index, and the notation represents
“or.”

Fig. 5. Square permutation L� L matrix with row cyclically shifted P .

Now consider the expanded matrix consisting of such
permutation matrices
and expanded from a length- cycle in the base matrix,
as shown in Fig. 6. Let their cyclically shifted values to be

and . To form a length-
cycle, the 1’s must come from the different permutation
matrices and the following two conditions must be satisfied.

Condition 1: The 1’s are located in different rows, and
each row contains two 1’s.

In Fig. 6, since the permutation matrices origin from a
length- cycle in the base matrix, the permutation matrices
can be divided into levels, and every level contains two per-
mutation matrices.

To satisfy condition 1, the two 1’s from the level must be
located on the same row . According to (8), the location of the
two 1’s can be expressed as

(9)

(10)

Condition 2: The 1’s are located at different columns,
and each column contains two 1’s.

In Fig. 6, permutation matrices and are expanded
from two 1’s, and the two 1’s are on the same column in the
base matrix. Similarly and , and
and and , are on the same column too.

If two 1’s are randomly selected from and , the
following (11) can guarantee the two 1’s are on the same column
in the expanded matrix:

(11)

Similarly, the following equations are derived to meet condition
2:

(12)

(13)

(14)

's coordinate
when Upper-right segment
when Right-left segment

(7)

896 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

Fig. 6. 1’s from 2g permutation matrices constitute a length-2g cycle.

(15)

(16)

Summarizing all the equations from (11)to (16), we have

(17)

Here, and stands for an integer number between 0 and .
Equation (18) can be derived from (17) as

(18)

That is

(19)

Here, can be any integer number between to .
Equation (19) can be re-written as

(20)

This completes the proof of the “if” part of the lemma.

Necessary Condition (only-if part): We need to prove that
if there are no length- cycles existing in the permutation
matrices, the sum of all vertical shifted value drops along the
cycle (here).

Suppose that we have the freedom to pick a 1 freely from
each permutation matrix in Fig. 6, in the following steps, we will
try to connect them to construct a length- cycle and study in
which condition that the 1’s cannot form a length- cycle.

1) The cycle construction process starts from the leftmost
upper permutation matrix in Fig. 6, and the picked
1 location is , here is the row
index.

2) Next, we need to pick a 1 from , which will be on
the same row as the 1 in . Its location is decided as

.
3) Start from the 1 in , we pick the 1 in , and the

following can ensure that the two 1’s are on the same
column:

(21)

4) Similarly, from the 1 in , we can find the 1 in at
on the same row.

5) From the 1 in , the 1 in are found to be on the
same column, so the following (22) is obtained:

(22)

6) Repeating the above the process, if we try to find the next
1 in the cycle loop, this newly found 1 must be on the same

YANG et al.: CODE CONSTRUCTION AND FPGA IMPLEMENTATION OF LOW-ERROR-FLOOR MULTIRATE LDPC CODE DECODER 897

row or column as the previous one. Therefore, in the th
step, (23) can ensure two 1’s to be on the same column

(23)

7) From the 1 in , we can find the 1 in on the
same column, and derive

(24)

9) Finally, from , we reach the 1 in on the same
row at location .

8) At this stage we obtain all the 1’s as well as their lo-
cations, as seen in Fig. 6, if and only if the last found 1 in

and the first found 1 in are on the same column,
the 1’s can form a length- cycle. Therefore, to have
the 1’s not forming a cycle, the following inequality
must hold:

(25)

Adding the equations from (21)to (25) together, we have the
following result:

(26)

This completes the proof of the “only-if” part of the lemma.

B. CYCLE ELIMINATION ALGORITHM

Based on the Lemma, a constraint
is generated for any cycle detected in the base matrix. Since
each 1 in the base matrix may be contained in many cycles, a
constraint list is generated from all the cycles containing this
1. The purpose of the CE program is to find suitable values
for each 1 in the base matrix that could satisfy all the constraint-
lists.

The pseudo-code of the proposed CE algorithm is depicted in
Listing 1.

LISTING 1. The Cycle Elimination Algorithm
(1) All the of the 1’s in the base matrix are initialized
to 0
(2) Set up a empty constraint-list for every 1 in the base
matrix
(3) Choose column j to be the current column (from column
1 to column)
(4) clear all the 1’s generation marking information in the
base matrix.
(5) //Starting from the 1’s in the current column, find and
mark their first, second, third, fourth generations.
(6) for each nonzero in the current column

(7) Find ’s second offspring set ,
here , and each is marked as the second
generation.
(8) for each in the second generation set

(9) Find ’s offspring set , and
every is marked as the third generation.

(10) for each in the third generation set

(11) Find ’s offspring set , and
every is marked as the fourth generation
(12) end
(13) end
(14) end
(15) // Find the cycles
(15) Check every row and column in the base matrix
(16) if two second generation and
are on the same column, backtrack to their ancestors to
form a cycle-4.
(17) if two third generation and are
on the same row, backtrack to their ancestors to form a
cycle-6.
(18) if two fourth generation and are
on the same column, backtrack to their ancestors to form a
cycle-8.
(19) each found cycle is transformed to a constraint, and
this constraint is added to the constrain-list of the 1’s in
this cycle.
(19) // cycle elimination function ()
(20) for each 1 at position in the found cycle
(21) record its original value
(22) while all the constraints in its constraint-list is not
satisfied
(23)
(24) end while
(25) Check all the current of all the 1’s along the
cycles, choose the one with the smallest and keep this
changed value, others 1’s’ P are restored to their original
values.
(26) end
(27) end

The above pseudo-code is explained in the following.

1) First, the base matrix is initialized. All values are set
to zero and an empty constraint-list is set up for every 1
in the matrix. Since each 1 may be contained in several
cycles, and every cycle will be translated into a cycle con-
straint and stored in the constraint-list.

2) In each iteration of the algorithm, a column is picked from
the base matrix as a current column (from the order of
left to right). This current column divides the base ma-
trix to the left and right parts. All the current-column-re-
lated cycles in the right part of the base matrix will then
be searched and eliminated through setting the cyclically
shifted value in step 3) and step 4).

3) The cycle searching process is illustrated using the cycle-6
in Fig. 4. Starting from at the current column, an
offspring is obtained, the offspring here is defined
as the 1’s on the same row or the same column with the
ancestor 1. From , its offspring is found,
and is called the third generation of . Ex-
ploiting the same idea to , which is also located at
the current column, a second generation offspring
and a third generation offspring are found. Then,

898 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

the marked generation values are checked. If two third
generations and are on the same row, a
cycle-6 is detected and the program backtracks to their
ancestors until all 1’s in the cycle path are found. Be-
cause cycle searching proceeds only in the right part of
the base matrix, all the found cycles are right-side-related
with the current column. In Fig. 4, cycle-4 and cycle-6 are
right-side-related with the current column, which contains
1’s at and .

4) All the cycles right-side-related to the current column are
eliminated by setting the cyclically shifted values of the
1’s in the cycle path. The number of cycles in the base
matrix increases exponentially with the cycle length. The
cyclically shifted value is limited within the ranges

. Furthermore, if a cycle is found, each 1 in the
cycle is checked to see whether its cycle constraints have
been satisfied. If not, its is incremented until all the con-
straints are satisfied. After comparing all the values in
the cycle, the 1 with the minimum value is chosen and
its current value is accepted, while others values are
restored to their original values.

5) The above shifted value setting algorithm in step 4) is very
effective in achieving a slow increase of the value.
However, it can still increase rather quickly (not exponen-
tially) and may exceed its upper limit if the target
girth is too large. For example, in our experiment of a 18

36 base matrix, the average number of cycles for each
element 1 is 1174 if the maximum cycle length is 8. There-
fore, in the CE program, the maximum girth optimization
target supported is 10. The program will automatically de-
tect the cycle-4, cycle-6 and cycle-8 in the base matrix and
eliminate them. If the set value exceeds the upper
limit, the program produces a warning message and the
user may lower the girth target.

IV. LDPC CODES DESIGN

Since the fully parallel LDPC decoding structure has high
hardware complexity [11], while the fully serial decoding struc-
ture can only achieve low throughput, partially parallel decoder
architecture [7] is adopted in our design to achieve a balance be-
tween the speed and silicon complexity. Moreover, the partially
parallel code is VLSI-oriented, and it can be nicely mapped to
the partially parallel decoder structure. The partially parallel de-
coder contains variable-node computation units (VNU) and

check-node computation unit (CNU), which corresponds to
the size of the base matrix . Those VNUs and CNUs
work in parallel, and every VNU and CNU contain time-mul-
tiplexed variable nodes and
check nodes, respectively.

Among the three rate codes implemented: irregular rate 1/2,
regular rate 5/8 and 7/8, the rate 1/2 code is most critical dealing
with the worst transmission situation. Based on previous obser-
vations [19], [20], irregular codes can outperform regular codes
in term of coding gain. Hence, the irregular code is implemented
for rate 1/2. Rates 5/8 and 7/8 are designed as regular structures
to simplify the hardware complexity.

Fig. 7. H-matrix of irregular 1/2 LDPC code.

A. LDPC Code Base Matrix Design

1) Regular Rate 5/8 Code: A regular LDPC structure
is adopted to construct the rate 5/8 code because this struc-
ture can provide a good BER performance for moderate code
lengths. The base matrix size of this structure is .
If every 1 in the base matrix is expanded to an square
permutation matrix, the H-matrix size is [12].
The rate of the regular code is calculated as

(27)

Here, if , should be equal to 8.
The structure of the rate 5/8 H-matrix is expanded from a

24 64 (, and) base matrix. Every square
permutation matrix is 149 149, so the size of the H-matrix is
4768 9536. This code structure can be mapped to hardware
with 64 VNUs and 24 CNUs, each VNU/CNU contains time-
multiplexed variable nodes and check nodes, respectively.
However, the implementation of 64 VNUs and 24 CNUs would
require a heavy hardware cost. So in our architecture, every two
VNUs/CNUs are combined and there are a total of 32 VNUs
and 12 CNUs in the design. Overall, clock cycles
are needed to complete one VNU computation process and one
CNU computation process.

2) Regular Rate 7/8 Code: regular code structure is
used to design the regular rate 7/8 code too. According to (27),

is for case, thus its base matrix size is 72
576 (, and). Every 1 is expanded to an

square permutation matrix, therefore, the size of the
H-matrix is 1224 9792. Similarly, every 24 matrices
are combined to a VNU and CNU, so the hardware contains 24
VNUs and 3 CNUs. In total, clock cycles are
needed to finish one VNU computation process and one CNU
computation process.

3) Irregular Rate 1/2 Code: Irregular LDPC codes do not
outperform regular ones unless their degree distribution is care-
fully designed. The PEG program [6] is employed to determine
the node degree distribution of the base matrix. The designed
variable-node degree distribution is (2, 2, , 2, 3, 3, 7, 7).

The H-matrix of the irregular 1/2 code is shown in Fig. 7. It
contains an 18 36 base matrix. The square permutation matrix
size is 251 251, and the expanded H-matrix size is 4518

YANG et al.: CODE CONSTRUCTION AND FPGA IMPLEMENTATION OF LOW-ERROR-FLOOR MULTIRATE LDPC CODE DECODER 899

TABLE I
CODE DESIGN PARAMETERS

9036. With each of the square permutation matrix mapped to
one VNU/CNU, the hardware contains 36 VNUs and 18 CNUs.

B. Square Permutation Matrix Shifted Value Design

With the above base matrix designed for the three rates, two
different methods are employed to determine the cyclically
shifted value of every square permutation matrix. One is the CE
program described in Section III, the other one is the technique
given by Zhang and Parhi (ZP) [12], in which cyclically shifted
value for the 1 at position is determined from formula

. The detailed parameters of the codes are
listed in Table I.

Seen from Table I, the codes constructed using the ZP method
(ZP-constructed codes) have the average girth lengths 8.0556,
8.25, and 5.9132 for rates 1/2, 5/8, and 7/8, respectively. In con-
trast, the average girths of the codes constructed using the CE
method (CE-constructed codes) can be improved to 10, 10, and
8, respectively. With a SUN Fire V480 server with 4 900 MHz
UltraSparc-III processors, the CE program uses 22.5, 18.7, and
1.13 min to generate the three codes, respectively. It should be
noted that for the regular 7/8 case, due to the large base matrix
size and the small value, the constructed code girth is 8.

C. Simulation Results

According to the Shannon theory, all “random” codes are
“good codes.” Unfortunately, random codes are not easy to im-
plement. Thanks to the work of [7]–[10], we can construct VLSI
implemented LDPC codes as good as the random codes. Similar
to the ZP-constructed codes in [7], the CE-constructed codes are
also pseudo-random codes. Fig. 8 shows the simulation compar-
ison results between the performances of the CE and ZP-con-
structed codes. It is seen that the gain difference between the
two codes is within 0.1 dB.

Note that the error floor problem is not seen in the figure. This
is due to the fact that the error floor normally occurs at a very low
SNR, and a great amount of LDPC blocks and much more sim-
ulation time are needed to reveal the error floor curve. For the
software simulation, it may take several days to obtain a simula-
tion point with BER below . So we will employ hardware
implementation measurements to show that the CE-constructed

Fig. 8. Simulation results of the ZP and CE-constructed codes.

codes exhibit better error floor performance than the ZP-con-
structed codes, which will be shown in Section VI.

V. DECODER ARCHITECTURE

The developed configurable partial parallel decoder architec-
ture is shown in Fig. 9. This architecture is not only suitable for
different rates, but also can be used for both regular and irreg-
ular LDPC codes. At the top level, the architecture follows the
general idea of [12], but has the following key distinct charac-
teristics in comparison to the previous architectures described
in [7]–[10], [12].

• It exploits configurable structures for the VNU block, the
CNU block and the memory banks so different rate LDPC
regular/irregular codes can be fit.

• The min-sum with correction (MSC) algorithm [21] is
adopted to replace the normally applied table-lookup
quantization method to reduce the large performance loss
for irregular codes and high-rate regular codes.

A. Finite-Precision Implementation

A finite word length can impact both the decoding perfor-
mance and the hardware complexity. Let to represent
the quantization scheme, where means that totally bits are
utilized, in which bits are used for the fractional part of the
value. If is kept constant, the precision will be proportional to

, while the dynamic range will be inversely proportional to .
First of all, an efficient way to emulate function

in equation (3) needs to be determined since this function is
performed frequently for every check-node computation. Up to
now, most of the publications on LDPC VLSI implementation
employ look-up tables (LUTs) to quantize . However, the LUT
quantization method suffers from the tradeoff between the dy-
namic range and the precision. For high rate designs and deep
fading channels, the maximum magnitude of input channel mes-
sages may exceed 100. This requires decreasing to achieve a

900 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

Fig. 9. Multirate decoding architecture.

high dynamic range, which unfortunately contaminates the pre-
cision and results in the decoding failure. To solve this problem,
[21] and [22] presented the MSC algorithm to emulate

(28)

The correction term in (28) can be further simplified as

else
(29)

The two equations above describe the MSC algorithm and
elude the problem of computing nonlinear function . There
is no requirement on the precision and thus there exists the
freedom to increase the dynamic range. In our design, is set to
the minimum value 1 to achieve the maximum dynamic range.

To show the MSC performance, both the LUT and MSC
methods are used to simulate the three codes in our design.
Quantization schemes (6:3) and (6:1) are used for LUT and
MSC, respectively. The simulation results are shown in Fig. 10.
As seen from the curves, the LUT method achieves good results
for low-rate regular LDPC codes (for example, regular 5/8
code). But for high-rate regular codes (for example, regular
7/8), there is more than 0.5 dB gain lost. For irregular 1/2 codes,
the LUT method is unable to converge, while other quantization
schemes show even worse results than that of the scheme (6:3).
Fortunately, the MSC algorithm achieves good results for all
the three cases.

Based on the above observation, the MSC method is adopted
to emulate in our design. Through fix point simulations,

Fig. 10. Comparison of LUT and MSC simulation results.

quantization scheme (6:1) of the input LLR data is chosen be-
cause it only has 0.1 dB loss compared to the floating point sim-
ulation result.

B. Check-Node Computation Block

As stated earlier, the MSC algorithm is adopted to improve
the decoder performance. However, since every pair of mes-
sages needs to be performed by the check function, which is
used to realize the functions of (28) and (29), the operation of
MSC would be time consuming. Below we describe a careful
implementation to improve the speed.

YANG et al.: CODE CONSTRUCTION AND FPGA IMPLEMENTATION OF LOW-ERROR-FLOOR MULTIRATE LDPC CODE DECODER 901

Fig. 11. Architecture of a 4-CNU (4CU).

Fig. 12. Architecture of an 8-CNU (8CU) made of two 4CUs.

Considering a check node with degree , it has the following
input-output relationship:

(30)

Every output is equal to the checking result of all the
other input messages in the check node. When imple-
menting the check node in hardware, one natural way to calcu-
late is checking the other inputs one by one. But
this serial operation is time consuming, especially when is a
large number. In this work, a multilayer tree structure is pro-
posed for parallel check-node computation, as shown in Fig. 9.

The first layer of the network contains a set of 4-CNUs
(4CUs). Each 4CU has four input messages and five computed
output messages, as shown in Fig. 11. One of the outputs is
“OUT-ALL,” which is the checking result of all the four input
messages and will be used in the next layer. The 4CU structure
in Fig. 11 contains seven check function operators and four set
of D-flip-flops to delay the input messages.

In the second layer, 4CU sets are connected to a set of 8CUs
or 12CUs. Fig. 12 shows an example of an 8CU made of two
4CU’s. Every 8CU can be easily modified to a 7CU or 6CU
by deleting one or two check function operators. The 8CUs and
12CUs can be further connected to form 24CUs or 36CUs in the
third layer.

The check-node degrees of the irregular 1/2 code are 6 and
7. Each check node is either a 6CU or 7CU, which can be con-
structed using two layers of 4CUs. The regular 5/8 (7/8) has

Fig. 13. Architecture of j = 3 VNU without LUTs.

check nodes of degrees 8 (24) and requires two (three) layers of
4CUs to construct a 8CU (24CU).

C. Variable-Node Computation Block

In our architecture, variable-node computation becomes sim-
pler than that in [12] due to the use of the MSC checking func-
tion operators in CNUs. Therefore, there is no need for lookup
tables and fix-point format conversion (between the sign-magni-
tude and two’s complement). Fig. 13 shows the VNU architec-
ture with node degree 3. The input of this VNU is one intrinsic
message and three check-to-variable messages. The output is
three computed variable-to-check messages and 1-bit hard de-
cision result.

D. Configurable Routers

• VNU Router
In rate 5/8 and 7/8 regular codes, variable-node degree

is uniformly distributed and each VNU is con-
nected to 3 RAMs. However, in irregular codes, every
VNU is associated with different numbers of RAM’s due
to the nonuniform distribution of the variable-node de-
grees. To have different rate code designs co-exist in one
implementation, a VNU router is inserted between the
memory bank and the variable-node computation block
to adapt to different code rates, as shown in Fig. 9. This
VNU router is configured by a ROM. The ROM contains
three arrays corresponding to the three code rates, where
each array describes the node degree distribution of the
current rate design. The values of the arrays are shown as

Rate Array Length

Rate Array Length

Rate Array Length

• Global Router and Reverse Router
In Fig. 9, the global router and reverse router connect

VNUs and CNUs together. There are two message flowing
directions going through the global router and reverse
router: one is from VNUs to CNUs, and another one is
the reverse direction from CNUs to VNUs. Seen from the
figure, four buses are involved in this message exchange:
“from-VNU,” “to-CNU,” “from-CNU” and “to-VNU.” For
each rate mode, two arrays are used to configure how
“from-VNU” is permutated and connected to “to-CNU,”
and how “from-CNU” is permutated and connected to

902 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

“to-VNU.” A total of six arrays that is stored in a configu-
ration ROM are needed to configure the global router and
reverse router to work at three different rate modes.

E. Memory Bank

The RAMs in the memory bank are used to store exchanged
messages between variable nodes and check nodes. Each RAM
is associated with an address generator (AG) to provide reading
and writing addresses. Since each RAM contains one or more

circularly shifted permutation matrices, an address gener-
ator consists of only simple counters starting from an offset ad-
dress during the check-node processing period or starting from
address zero during the variable-node processing period.

VI. FPGA IMPLEMENTATION AND MEASUREMENT RESULTS

Employing the (6:1) quantization scheme and the architec-
ture described in Section IV, a multi-rate LDPC decoder is im-
plemented on a Xilinx Virtex-II XC2V8000 FPGA device. The
design is described in VHDL, synthesized by Synplicity, placed
and routed using Xilinx development tool ISE6.0. It works at
the 100 MHz clock frequency, and has codeword length about 9
kbits. By configuring two pins of the FPGA device at “00,” “10”
or “11,” the decoder can operate at three different code modes:
irregular 1/2 mode, regular 5/8 mode and regular 7/8 mode.

The XC2V8000 FPGA belongs to the Xilinx Virtex-II family,
and is developed for data communication and DSP applica-
tions. The device contains 168 18-kbit dual-port SelectRAM
blocks and 46 592 slices, and possesses the capacity to handle
8-million-gate design. One of the most challenging problems in
the LDPC decoder design is the memory usage since the LDPC
code structure requires a large number of parallel working
memories to store exchanged messages. Therefore, a proper
partition of the memory blocks to fully utilize the FPGA
SelectRAM resources is needed. In our architecture, memory
bank and IRAM (used to store intrinsic messages) are the main
sources of memory usage. The memory bank contains 117
512 7 independent RAM blocks, and every small RAM needs
one independent port for reading/writing, so two of them are
combined to one dual-port RAM’s and occupy a SelectRAM
unit resource in the FPGA. IRAM is a large 4.5K 32 memory,
and takes eight SelectRAM units. Adding the memory resource
used in the data loading, unloading and the interleaver blocks, a
total of 102 SelectRAM units are used. The resource utilization
statistics is shown in Table II.

Another challenge of designing an LDPC decoder is the
routing congestion caused by the complex top-level connec-
tions. In our implementation, this problem is alleviated by
carefully pipelining the data paths between VNU blocks,
routers, and CNU blocks. In addition, the critical path delays
are minimized, and the decoder is able to operate at the 100
MHz clock frequency. At this frequency, the decoder achieves
a maximum throughput of 40 Mbps for regular 5/8 and 7/8
codes when performing maximum 24 decoding iterations. For
the irregular 1/2 LDPC code, more iterations are required for
the codes to converge, so maximum decoding iteration number
is set to 60, and the maximum 15 Mbps throughput has been
achieved.

TABLE II
FPGA RESOURCE USAGE STATISTICS

Fig. 14. Measurement result comparison between CE and ZP-constructed
codes.

The implemented LDPC decoder has been used together with
an OFDM chip to form an OFDM-LDPC system. The measure-
ment results of the ZP-constructed codes and CE-constructed
codes are compared in Fig. 14. In the figure, the block-error
rate verse SNR curves are plotted. Note that the axis is the
block error rate (block length 9 k), and it is approximately
two orders of magnitude higher than the BER. As seen from
Fig. 14, the ZP-constructed regular 5/8 code achieves the good
block error rate performance and does not have the error floor
problem. However, the ZP-constructed irregular 1/2 and reg-
ular 7/8 codes experience the serious error floor problem at the
block error rate of about . The above phenomena can be ex-
plained using the girth histogram shown in Fig. 15. In Fig. 15,
the variable nodes inside one square permutation matrix have
the same girth value. For the ZP-constructed regular 5/8 code,
because it is cycle-4 and cycle-6 free, the error floor can be effi-
ciently removed. As to the ZP-constructed irregular 1/2 code, al-
though it is cycle-4 free and has the average girth of 8.0556, the
error floor problem still occurs at a much high level because ir-
regular codes normally have the worse error floor problem than
regular codes [23]. Moreover, there exists a tradeoff between
the threshold SNR and the error floor BER [24]. In our design,
the performance of the irregular 1/2 code is near the Shannon
limit, making the error floor to appear at a higher level. For the
ZP-constructed regular 7/8 code, its base matrix size is 72

YANG et al.: CODE CONSTRUCTION AND FPGA IMPLEMENTATION OF LOW-ERROR-FLOOR MULTIRATE LDPC CODE DECODER 903

Fig. 15. Girth histogram of the ZP-constructed codes.

576. It contains a lot of length-4 cycles, and those short cycles
are difficult to be eliminated with a very small value 17.

To suppress the error floor in irregular 1/2 and regular 7/8
codes, cycle elimination is used to generate the LDPC H-matrix,
and the average girth values of the three rate codes are improved
to 10, 10, and 8, respectively. This can suppress the error floor to
a much lower level. Furthermore, the decrease of the error floor
does not bring any penalty to the coding gain, and the ZP-con-
structed codes and the CE-constructed codes have the gain dif-
ference within 0.1 dB.

It should be noted that after cycle elimination, the irregular
1/2 code outperforms the regular 1/2 code by approximate 0.5
dB, achieving a block error rate lower than at SNR 1.8
dB. With this superior error correcting ability, the irregular 1/2
mode decoder in our design can be utilized to handle deep fading
channels and the most severe interference conditions. The reg-
ular 5/8 and 7/8 codes enjoy the higher throughput capability,
and can operate at better transmission conditions.

VII. CONCLUSION

This paper presented the construction, architecture and VLSI
implementation of a 9-kbit multi-rate LDPC code decoder. The
implementation used a Xilinx XC2V8000 FPGA device. By
configuring two pins of the FPGA device at “00,” “01” or “10,”
the decoder can work at three different rates: irregular 1/2, reg-
ular 5/8 and regular 7/8. The finite precision effect has been
carefully analyzed, and the best quantization scheme that fit for
three rates has been developed to improve the decoder perfor-
mance.

To suppress the error floor for the irregular 1/2 code and reg-
ular 7/8 code, a cycle elimination (CE) algorithm has been de-
veloped. By carefully setting the cyclically shifted value for all
the square permutation matrices, the CE algorithm attempts to

eliminate the short cycles in an LDPC matrix. Both the simula-
tion and measurement results showed that the error floor of the
LDPC codes constructed with cycle elimination has been sig-
nificantly lowered without incurring the SNR threshold penalty.

The principle of the CE algorithm is to find and eliminate
the short cycles existing in the LDPC base matrix. However, it
has been pointed out that short cycles are not the main cause
of the error floor problem [20], [25]. Therefore, the future work
include the generalization of the CE algorithm to find and elim-
inate the so-called stopping sets, instead of short cycles.

ACKNOWLEDGMENT

The authors thank Dr. Z. Wang, Oregon State University, Cor-
vallis, for several helpful discussions, and the anonymous re-
viewers for their constructive comments.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correction coding and decoding,” in Proc. Int. Conf. Commun.,
Geneva, Switzerland, May 1993, pp. 1064–1070.

[2] T. Richardson and R. Urbanke, “The renaissance of Gallager’s low-den-
sity parity-check codes,” IEEE Commun. Mag., pp. 126–131, Aug. 2003.

[3] E. Yeo, B. Nikolic, and V. Anantharam, “Iterative decoder architectures,”
IEEE Commun. Mag., pp. 132–140, Aug. 2003.

[4] P. Urard, E. Yeo, and B. Gupta et al., “A 135 Mb/s DVB-S2 compliant
CODEC based on 64 800 b LDPC and BCH codes,” in Proc. IEEE Int.
Solid-State Circuits Conf., Jan. 2005, pp. 547–548.

[5] J. Campello, D. S. Modha, and S. Rajagopalan, “Designing LDPC codes
using bit-filling,” in Proc. Int. Conf. Commun., Helsinki, Finland, 2001,
pp. 55–59.

[6] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth
tanner graphs,” in Proc. IEEE Global Telecomm. Conf., vol. 2, Nov.
2001, pp. 995–1001.

[7] H. Zhang and T. Zhang, “Design of VLSI implementation-oriented
LDPC codes,” in Proc. IEEE Veh. Technol. Conf., vol. 1, 2003, pp.
670–673.

[8] D. E. Hocevar, “LDPC code construction with flexible hardware imple-
mentation,” in Proc. Int. Conf. Commun., 2003, pp. 2708–2712.

[9] A. Delvarathinam, E. Kim, and G. Choi, “Low-density parity-check de-
coder architecture for high throughput optical fiber channels,” in Proc.
Int. Conf. Comp. Design, 2003, pp. 520–525.

[10] E. Boutillon, J. Castura, and F. R. Kschischang, “Decoder-first code de-
sign,” in Proc, Int. Symp. Turbo Codes Related Topics, Brest, France,
Sep. 2001, pp. 459–462.

[11] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” IEEE J. Solid-State Circuits,
vol. 37, no. 3, pp. 404–412, Mar. 2002.

[12] T. Zhang and K. K. Parhi, “VLSI implementation-oriented (3,k)-regular
low-density parity-check codes,” in Proc. IEEE Worksh. Signal Process.
Syst., Sep. 2001, pp. 25–36.

[13] G. Xing, M. Shen, and H. Liu et al., “An LDPC-based Terrestrial Multi-
media Broadcasting (TMB) system: design, implementation and experi-
mental results,” Acoust., Speech, Signal Process., vol. 4, pp. 17–21, May
2004.

[14] L. Yang, M. Shen, H. Liu, and C.-J. R. Shi, “An FPGA implementation
of low-density parity-check code decoder with multi-rate capability,” in
Proc. Asia South Pacific Design Automation Conf., Shanghai, China,
Jan. 2005, pp. 760–763.

[15] L. Yang, H. Liu, and C.-J. R. Shi, “Cycle elimination method to construct
VLSI oriented LDPC codes,” in Proc. IEEE Veh. Technol. Conf., Dallas,
TX, Sep. 2005, pp. 522–526.

[16] L. Yang, H. Liu, and C.-J. R. Shi, “VLSI implementation of low-error-
floor and capacity-approaching performance low-density parity-check
codes with multi-rate capacity,” in Proc. IEEE Global Telecomm. Conf.,
St. Louis, MO, Nov. 2005, pp. 1261–1266.

[17] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[18] M. Chiani, A. Conti, and A. Ventura, “Evaluation of low-density parity-
check codes over block fading channels,” in Proc. Int. Conf. Commun.,
2000, pp. 1183–1187.

904 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

[19] D. J. C. Mackay, S. T. Wilson, and M. C. Davey, “Comparison of con-
structions of irregular Gallager codes,” IEEE Trans. Comm., vol. 47, pp.
1449–1454, Oct. 1999.

[20] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of ir-
regular LDPC codes with low error floors,” in Proc. Int. Conf. Commun.,
vol. 5, May 2003, pp. 3125–3129.

[21] A. Anastasopoulos, “A comparison between the sum-product and the
min-sum iterative detection algorithms based on density evolution,” in
Proc. IEEE Global Telecomm. Conf., vol. 2, Nov. 2001, pp. 25–29.

[22] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Efficient implementation
of the sum-product algorithm for decoding LDPC codes,” in Proc. IEEE
Global Telecomm. Conf., vol. 2, Nov. 2001, pp. 1036–1036.

[23] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of ir-
regular LDPC codes with low error floors,” in Proc. Int. Conf. Commun.,
vol. 5, May 2003, pp. 3125–3129.

[24] T. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, pp. 619–637, Feb. 2001.

[25] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Allerton
Conf. Commun. Contr. Comput., Oct. 2003, pp. 1426–1435.

Lei Yang received the B.S. degree from HuaZhong
University of Science and Technology, Wuhan,
China, in 1998, and the M.S. degree from Ts-
ingHua University, Beijing, China, in 2001. He is
currently working toward the Ph.D. degree in the
Mixed-Signal CAD Lab, Electrical Engineering
Department, University of Washington, Seattle.

During his M.S. study, he did a lot of work on RF
filter design, field–programmable gate arrays, and
digital application-specific integrated circuit (ASIC)
designs. Currently, his research interests are in the

field of VLSI implementation and communication systems such as low-den-
sity-parity-check and orthogonal frequency division multiplexing design and
chip realization, and mixed-signal VLSI and analog IC design automation.

Hui Liu (S’92–M’92–S’93–M’95–SM’04) received
the B.S. degree from Fudan University, Shanghai,
China, in 1988, the M.S. degree from Portland State
University, Portland, OR, in 1992, and the Ph.D.
degree from the University of Texas at Austin, in
1995, all in electrical engineering.

He held the position of Assistant Professor in the
Department of Electrical Engineering at University
of Virginia from September 1995 to July 1998. He
was the Chief Scientist at Cwill Telecommunications,
Inc., and was one of the principal designers of the

UMTS TD-SCDMA 3G standard. In 2000, he founded Broadstorm Inc. and pi-
oneered the development of the world first OFDMA-based mobile broad-band
network. He is currently an Associate Professor in the Department of Electrical
Engineering, University of Washington, Seattle. His research interests include
broad-band wireless networks, array signal processing, digital signal processing
and VLSI applications, and multimedia signal processing. He has published
more than 40 journal articles and has twelve awarded or pending patents. He
is the author of two textbooks: OFDM-Based Broad-Band Wireless Networks:
Design and Optimization (Wiley, 2005), and Signal Processing Applications in
CDMA Communications (Artech House, 2000).

Dr. Liu’s activities for the IEEE Communications Society include member-
ship on several technical committees and serving as an Editor for the IEEE
TRANSACTIONS IN COMMUNICATIONS. He is the General Chairman for the 2005
Asilomar conference on Signals, Systems, and Computers. He is a recipient of
1997 National Science Foundation (NSF) CAREER Award, The Best Patent
Award in China, and 2000 Office of Naval Research (ONR) Young Investigator
Award.

C.-J. Richard Shi (M’91-SM’99–F’06) is currently
a Professor in Electrical Engineering at the Univer-
sity of Washington. His research interests include
computer-aided design and test of integrated circuits
and systems, as well as VLSI implementation of
communication systems. He is a key contributor
to IEEE std 1076.1-1999 (VHDL-AMS) language
standard for the description and simulation of
mixed-signal circuits and systems. He founded IEEE
International Workshop on Behavioral Modeling
and Simulation (BMAS) in 1997, and has served on

the technical program committees of several international conferences. He has
authored or coauthored over 100 papers published in international journals and
conferences, and has served as the principal investigator of over 10 research
projects supported by DARPA, SRC and NSF.

Dr. Shi received the Best Paper Award from the IEEE/ACM Design Automa-
tion Conference, a Best Paper Award from the IEEE VLSI Test Symposium, a
National Science Foundation CAREER Award, and a Doctoral Prize from the
Natural Science and Engineering Research Council of Canada. He has been an
Associate Editor, as well as a Guest Editor, of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING. He
is currently an Associate Editor of IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATE CIRCUITS AND SYSTEMS and IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS.

	toc
	Code Construction and FPGA Implementation of a Low-Error-Floor M
	Lei Yang, Student Member, IEEE, Hui Liu, Senior Member, IEEE, an
	I. I NTRODUCTION

	Fig.€1. Irregular H-matrix and its corresponding Tanner graph.
	II. LDPC D ECODING A LGORITHM
	III. C YCLE E LIMINATION A LGORITHM
	A. Idea

	Fig.€2. Base matrix with cycles.
	Fig.€3. Illustration of the number of cycles increase after expa
	Fig.€4. Another illustration of the cycle number increase after
	Lemma: Any cycle of length $2g$ in a base matrix will lead to $L
	Proof: We only need to prove the lemma for the vertical shifted-

	Fig.€5. Square permutation $L\times L$ matrix with row cyclicall
	Condition 1: The $2g$ 1's are located in g different rows, and
	Condition 2: The $2g$ 1's are located at g different columns,

	Fig.€6. 1's from $2g$ permutation matrices constitute a length-
	B. C YCLE E LIMINATION A LGORITHM
	IV. LDPC C ODES D ESIGN

	Fig.€7. H-matrix of irregular 1/2 LDPC code.
	A. LDPC Code Base Matrix Design
	1) Regular Rate 5/8 Code: A $(3, k)$ regular LDPC structure is a
	2) Regular Rate 7/8 Code: $(3, k) $ regular code structure is us
	3) Irregular Rate 1/2 Code: Irregular LDPC codes do not outperfo

	TABLE€I C ODE D ESIGN P ARAMETERS
	B. Square Permutation Matrix Shifted Value Design
	C. Simulation Results

	Fig.€8. Simulation results of the ZP and CE-constructed codes.
	V. D ECODER A RCHITECTURE
	A. Finite-Precision Implementation

	Fig.€9. Multirate decoding architecture.
	Fig.€10. Comparison of LUT and MSC simulation results.
	B. Check-Node Computation Block

	Fig.€11. Architecture of a 4-CNU (4CU).
	Fig.€12. Architecture of an 8-CNU (8CU) made of two 4CUs.
	Fig. 13. Architecture of ${j}=3$ VNU without LUTs.
	C. Variable-Node Computation Block
	D. Configurable Routers
	E. Memory Bank
	VI. FPGA I MPLEMENTATION AND M EASUREMENT R ESULTS

	TABLE€II FPGA R ESOURCE U SAGE S TATISTICS
	Fig.€14. Measurement result comparison between CE and ZP-constru
	Fig.€15. Girth histogram of the ZP-constructed codes.
	VII. C ONCLUSION
	C. Berrou, A. Glavieux, and P. Thitimajshima, Near shannon limit
	T. Richardson and R. Urbanke, The renaissance of Gallager's low-
	E. Yeo, B. Nikolic, and V. Anantharam, Iterative decoder archite
	P. Urard, E. Yeo, and B. Gupta et al., A 135 Mb/s DVB-S2 complia
	J. Campello, D. S. Modha, and S. Rajagopalan, Designing LDPC cod
	X. Y. Hu, E. Eleftheriou, and D. M. Arnold, Progressive edge-gro
	H. Zhang and T. Zhang, Design of VLSI implementation-oriented LD
	D. E. Hocevar, LDPC code construction with flexible hardware imp
	A. Delvarathinam, E. Kim, and G. Choi, Low-density parity-check
	E. Boutillon, J. Castura, and F. R. Kschischang, Decoder-first c
	A. J. Blanksby and C. J. Howland, A 690-mW 1-Gb/s 1024-b, rate-1
	T. Zhang and K. K. Parhi, VLSI implementation-oriented (3,k)-reg
	G. Xing, M. Shen, and H. Liu et al., An LDPC-based Terrestrial M
	L. Yang, M. Shen, H. Liu, and C.-J. R. Shi, An FPGA implementati
	L. Yang, H. Liu, and C.-J. R. Shi, Cycle elimination method to c
	L. Yang, H. Liu, and C.-J. R. Shi, VLSI implementation of low-er
	R. G. Gallager, Low-Density Parity-Check Codes . Cambridge, MA:
	M. Chiani, A. Conti, and A. Ventura, Evaluation of low-density p
	D. J. C. Mackay, S. T. Wilson, and M. C. Davey, Comparison of co
	T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, Constructi
	A. Anastasopoulos, A comparison between the sum-product and the
	X. Y. Hu, E. Eleftheriou, and D. M. Arnold, Efficient implementa
	T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, Constructi
	T. Richardson, M. A. Shokrollahi, and R. L. Urbanke, Design of c
	T. Richardson, Error floors of LDPC codes, in Proc. 41st Allerto

