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Abstract—This paper addresses passivity-based motion coor-
dination of rigid bodies in the Special Euclidean group ���
under the assumption that the agents exchange information over
strongly connected graphs. In this paper, we especially focus on
one of the motion coordination problems on ��� called attitude
synchronization. We first develop a passivity-based distributed
velocity input law to achieve attitude synchronization. Using the
notion of algebraic connectivity, we then establish a connection
between the speed of convergence and the structure of the in-
terconnection graph. We also prove attitude synchronization in
the leader-follower case and in the cases of communication delay
and temporary communication failures. Finally, the performance
of our developed control laws is demonstrated through both
numerical simulation and experiments on a planar (2-D) test bed.

Index Terms—Algebraic connectivity, attitude synchronization,
cooperative control, motion coordination, passivity-based control.

I. INTRODUCTION

M OTION coordination or cooperative control is an active
area of current research [1], [2] with numerous practical

applications such as sensor networks, robot networks, coor-
dinated control of satellites and formation control of aircraft
[3]–[7]. In addition, motion coordination is also motivated by
scientific interest in cooperative behavior in nature such as
flocking of birds and schooling of fishes [8]. The goal in cooper-
ative control problems is to design a distributed control strategy
using only local information so that the aggregate system at-
tains specified behaviors, such as consensus [2], [9], flocking
[12]–[16], synchronization [17], [18], or coordination [19].

Limitations on available information make the cooperative
control problem challenging and require a theory and viewpoint
quite different from conventional problems. Graph theory has
been applied to the analysis of such problems where agents and
their communication are represented by nodes and edges of a
graph, respectively. In this approach, the graph Laplacian plays
an especially important role in the analysis of convergence and
connectivity of such distributed systems. The graph Laplacian
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has been utilized to prove consensus and flocking, analyze the
connectivity, determine the convergence value and to construct
team objective functions in several references [2], [7], [9], [23].

More recently, passivity and passivity-based control have
proved useful for the problem of motion coordination of
multi-agent systems [10], [11], [24]–[28], [32]. In [24], [25]
passivity-based control laws are presented for output synchro-
nization of networks of passive nonlinear systems. Output
synchronization is proved by employing the sum of storage
functions as a Lyapunov function candidate. As shown in
these references, passivity-based control enables one to handle
communication delays and switching topology within a unified
(energy-based) framework. Likewise, in [26] and [27] passivity
is used to study the problem of steering the differences between
the outputs of agents to a prescribed compact set, and to address
the formation control or path synchronization problem.

Motion coordination in non-Euclidean space is gaining in-
creasing interest [10], [11], [19], [20], [22], [28]–[32], motivated
by many practical systems such as underwater vehicles, satel-
lites, and visual feedback systems. Reference [19] considers a
model of identical planar particles whose phase variable evolves
on the circle , and designs steering control laws to stabilize
the closed-loop system. They show global phase stabilization,
circular formations and balancing in all-to-all communication
which may be an unrealistic assumption in multi-agent systems.
In contrast to [19], [29] and [30] attain global convergence in
the presence of communication limitation. These control laws
instead require information other than orientations of neighbors
in order to use a consensus estimator. References [10], [11], [20],
and [28] consider multiple rigid bodies with attitude dynamics
represented by Euler-Lagrange equations, while the former
part of [20] and [32] use a kinematic model. Note that [10],
[11], [28], and [32] more or less use the notion of passivity. For
the kinematic model, [32] presents a passivity-based velocity
control law consisting only of the relative information, and [20]
a control law which achieves global convergence by using a
consensus estimator [21]. For the dynamical models, [10] and
[20] present control laws achieving global convergence under the
assumption that their own absolute angular velocities are avail-
able for control, where [10] uses an external input and [20] does
not. Reference [20] also proposes a control input attaining local
convergence based only on relative information. On the other
hand, [28] proposes a passivity-based control law achieving
global convergence, which uses only relative information but
requires an external input.

In this paper, we address passivity-based attitude synchro-
nization in based on some techniques developed in [24],
[25], and [32]. Throughout this paper, we mean by attitude syn-
chronization that all the rigid bodies’ translational velocities are
equal and orientations converge to a common value. We con-
sider a group of rigid bodies in whose interconnection is
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represented by a strongly connected graph. First, we show that
the kinematics of a rigid body in is passive. Then, we de-
velop a passivity-based distributed velocity input law to achieve
attitude synchronization under the condition that all the orien-
tation matrices are positive definite. Namely, our proposed ve-
locity control scheme does not achieve global convergence, but
it is instead easy to implement, since it depends only on local
relative information between its own reference frame and that
of its neighbors.

We next introduce the notion of algebraic connectivity in
order to establish a connection between the speed of conver-
gence and the graph structure. The speed of convergence is a
useful metric for the design of the information graph as well as
for the analysis of the performance of cooperative control for a
given network. Note that its counterpart in consensus has been
extensively studied [2].

We also show attitude synchronization in the case of a leader-
follower network and we address the practically important cases
of time delays in communication, and temporary communica-
tion failures.

We finally show the performance of our control laws through
numerical simulation and through experiments. Note that the
experiments are performed on a planar (2-D) test bed.

The main contribution of this paper is to extend several
standard results in consensus [2] (such as convergence, com-
munication delays, leader following, connectivity analysis
and switching topology) to a motion coordination problem in

, and to show that these problems can be handled within
a unified energy-based framework. In addition, our work has
the following technical advantages over other works on motion
coordination in or [10], [11], [19], [20], [22],
[28]–[30]: 1) only strong connectivity is assumed on the graph
while other energy-based works require strongly connected
balanced graphs or connected undirected graphs and 2) this
paper clarifies a connection between the speed of convergence
and the graph structure for attitude synchronization in .

This paper is organized as follows. Section II formulates
rigid-body motion in and the graph structure considered
in this paper. In Section III, we first show that the rigid-body
motion in is passive, and introduce the attitude syn-
chronization problem. Then, an angular velocity control law
is proposed based on passivity and achievement of attitude
synchronization is proved. We also show if there are commu-
nication delays and/or a leader, attitude synchronization is still
attained. Section IV analyzes the connectivity and possibility of
communication losses. We demonstrate our results through nu-
merical simulations and experiments in Section V and present
conclusions in Section VI.

II. SYSTEM DESCRIPTION

Throughout this paper, we consider the motion of a group of
rigid bodies in 3-D space (see Fig. 1). Let be an inertial

coordinate frame and , a body-fixed coor-
dinate frame whose origin is located at the center of mass of
body . Assume that all the coordinate frames are right-handed
and Cartesian. We denote by the position of the rigid
body in a fixed inertial coordinate frame .
We will use to represent the rotation matrix of a

Fig. 1. Rigid-body motion in �����.

body-fixed frame relative to an inertial coordinate frame .
Here, , and specify the direction of ro-
tation and the angle of rotation, respectively. The notation “ ”
(wedge) is the skew-symmetric operator from to the space
of 3 3 skew-symmetric matrices, namely

The notation “ ” (vee) denotes the inverse operator to “ ”. The
transformation is orthogonal with unit determinant, i.e., an
element of the Special Orthogonal group . A configura-
tion consists of the pair and hence the configuration
space of the rigid-body motion is the Special Euclidean group

, which is the product space of with . We use
the 4 4 matrix

as the homogeneous representation of .
Let us now introduce the velocity of each rigid body to rep-

resent the rigid-body motion of the frame relative to .
Define the body velocity and

where and are the linear and angular veloci-
ties of body relative to , respectively. Then, each rigid-body
motion is represented by the kinematic model

(1)

The main advantages to using the above homogeneous repre-
sentation are global and geometric descriptions of rigid-body
motion, which greatly simplify the analysis in the 3-D space.
For more details on the rigid-body motion in , refer to
[33] and [34].

The interconnection of a network of rigid bodies is repre-
sented by a weighted, directed, and strongly connected graph

, where , and
are the node set, the edge set and the positive weight set, respec-
tively. The neighbors of body are defined as [2]
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Namely, agent received information from agent if .
The weights represent the reliability of each communi-
cation link. We moreover define the weighted graph Laplacian
matrix

if

if
if

which plays an important role in this paper.

III. ATTITUDE SYNCHRONIZATION

In this section, we investigate the attitude synchronization
problem in . We first show that the kinematic model (1) is
passive and we use this property to develop an output feedback
law for attitude synchronization.

A. Passivity in

We first define the energy of rotation

where is the identity matrix. By the definition,
if and only if . Then, its derivative

along the trajectories of (1) is given by

(2)

where

(see, e.g., [34]). The term satisfies
, and hence is interpreted as an operator ex-

tracting the direction of rotation and the angle from . Note
that can also be viewed as the state vector with re-
spect to the rotation as long as because of the fact
that the rotational axis and the angle uniquely determine the ro-
tation matrix if . Thus, is given by the inner
product of the angular velocity and the state vector with respect
to the rotation. Moreover, we define the total energy of transla-
tion and rotation

where represents the Frobenius matrix norm
and the Euclidean vector norm.

Lemma 1: The time derivative of along the trajectories
of (1) satisfies

(3)

Proof: Immediate from [35, pp. 42, Lemma 1].

Fig. 2. Attitude synchronization in �����.

If we now consider the velocity as an input and the vector
form of the rigid-body motion as an output, Lemma 1 says
that the rigid-body motion in (1) is passive from the input

to the output in the sense defined in [36], since integrating
(3) from 0 to yields

(4)

B. Attitude Synchronization in

The goal of this section is to design the velocity input so
that the group of rigid bodies achieves attitude synchronization
in the sense of the following definition.

Definition 1: A group of rigid bodies is said to achieve atti-
tude synchronization, if and

(5)

Equation (5) implies that the orientations of all the rigid bodies
asymptotically converge to a common value (see Fig. 2).

According to the above definition of attitude synchronization,
in the remainder of this section we fix

(6)

in the input terms , and present an angular velocity con-
trol law that achieves attitude synchronization. It is clear from
Lemma 1 that the kinematic model (1) is also passive from
to with the storage function .

We propose the angular velocity control law

(7)

where are feedback gains. This control law is distributed,
i.e., is composed only of the rigid body’s own information and
that of its neighbors. It should, in addition, be noted that

is the relative orientation of rigid body from
the frame and hence the angular velocity law (7) does not
require itself.

As a consequence of Lemma 1, we have the following the-
orem. Throughout this paper, we refer to a real matrix , which
is not necessarily symmetric, as a positive definite (positive
semi-definite) matrix if and only if
for all nonzero vector .
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Theorem 1: Consider the rigid bodies represented by (1).
Under the assumptions that all rigid body orientation matrices
are positive definite and the interconnection graph is fixed
and strongly connected, the angular velocity control input (7)
achieves attitude synchronization in the sense of (5).

Proof: See Appendix A.
Remarks:

1) In the proof of Theorem 1, a potential function is de-
fined as a weighted sum of the energy functions of rotation

and used as a Lyapunov function candidate. This
choice is quite natural from the viewpoint that the kine-
matic model (4) is passive. In addition, this potential func-
tion enables us to remove the balanced graph assumption of
earlier approaches, e.g., [24], [25], and thus prove attitude
synchronization for a wider class of information graphs,
namely, strongly connected graphs.

2) If the rotation matrix and linear velocity are given
by

(8)

the kinematics model (1) is equivalent to the 2-D model
considered in [14]. If the rotation matrix and linear velocity
are represented by Z-Y-Z Euler angles and ,
respectively, then (1) is equivalent to the 3-D case in the
above reference. It should be noted that [14] takes into ac-
count a nonholonomic constraint, whereas this paper does
not since we are interested in the full 3-D motion.

3) The inequality is necessary and sufficient to
satisfy the assumption that all rigid bodies orientation ma-
trices are positive definite. Note that the satisfaction of this
inequality at the initial time implies that it holds for all time

as shown in the following Lemma.
Lemma 2: Consider the rigid bodies represented by (1).

Suppose that the angular velocity (7) is the input to each rigid
body. If all rigid body orientation matrices are positive definite
at the initial time, then they remain positive definite for all time

.
Proof: See Appendix B.

A similar assumption appears in [14], [17], [18], and [37].
Note that there are several works investigating global conver-
gence. For example, the [19] assures it under the assumption of
all-to-all communication, which may be a strong assumption on
graphs. On the other hand, [20], [29], and [30] investigate global
convergence in the presence of communicative limitation. How-
ever, these control laws require information other than the orien-
tations of neighbors due to the use of a consensus estimator. In
addition, global convergence is also achieved in [10] under the
assumption that all the rigid bodies know their own attitude with
respect to the inertial frame. In contrast to these works, due to
the assumption , we may have to initially align the
rigid bodies by determining their orientation axes in order to sat-
isfy . However, our result is instead applicable

to the situation where only the relative orientation is available
for control and communication is more limited as long as the
graph is strongly connected.

4) Reference [9] presents a consensus algorithm under the as-
sumption that the information graph has a directed span-
ning tree, which is a weaker condition than the strong con-
nectivity. However, in , it is difficult to adopt the
approach of [9], which is based on eigenvalue analysis.
Though balanced or undirected graphs are assumed in most
previous research works adopting approaches other than
eigenvalue analysis [2], [14], [16], [20], [28], we assume
neither of them. Meanwhile, in [38] and [39] a state-depen-
dent weighted graph is investigated to maintain connect-
edness while the weights are time-invariant and indepen-
dent of the state in [2], [16], and this paper. Note that these
are completely different assumptions. Indeed the former
assumes that the weights are symmetric, i.e., ,
whereas the latter does not require it.

5) Though the problems under consideration are quite dif-
ferent from ours, passivity-based motion coordination is
also investigated in [26] and [27], which suggests that pas-
sivity is a useful tool in motion coordination.

6) The final orientation value depends on the initial configu-
ration of the system and on the graph. We are not aware
of any research that tries to find the convergence value in

, while a convergence value is clarified in the case
of the Euclidean space in [2] and [23].

7) The velocity input (7) achieves not only (5) but also

(9)

for the following reason. Equation (1) yields

(10)

Focusing on the (1,2)-element of (10), we obtain
. It follows from (5) and (6) that the present velocity

input also achieves (9). The property (9) is called flocking
in [13], [15], and [16]. We add , to the def-
inition of attitude coordination in order to assure the (9).
Indeed, without , , all the rigid bodies go in dif-
ferent directions while their attitudes converge to the same.

C. Communication Delays

In this section, we consider attitude synchronization in the
presence of communication delays. We assume that the delay
is time invariant and finite, which is the same situation as [24]
and [25].

In this case, attitude synchronization is redefined as

(11)
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where is the delay in the communication from agent
to agent . Accordingly, we modify the input (7) as

(12)

based on [24] and [25]. Then, we have the following corollary.
Corollary 1: Consider the rigid bodies represented by (1).

Then, under the assumption that all rigid body orientation ma-
trices are positive definite, and the interconnection graph is fixed
and strongly connected, the velocity input (12) achieves attitude
synchronization in the sense of (11).

Proof: This corollary is proved in the same way as The-
orem 1 by using the potential function

Remark that the control input (12) does not consist of rela-
tive information with respect to neighbors and all the neighbors
have to communicate to agent their own attitude matrices with
respect to the inertial frame, which is different than the other
part of this paper. This implies that all the agents should share
the same inertial frame in contrast to the delay free case.

D. Leader Following

We consider here the case that one rigid body, labeled 0, acts
as a leader as in [12] and [14]. Suppose that rigid body 0 moves
with a constant velocity and orientation. Other agents may or
may not have the leader as a neighbor. In this case, attitude syn-
chronization is defined by

(13)

which means that the orientations of all agents converge to the
orientation of the leader. In this case, we modify the angular
velocity input (7) as

(14)

where if rigid body and the leader are neighbors and
otherwise. With this control input we have the following

corollary.
Corollary 2: Consider the rigid bodies represented by (1)

and the leader moving with a constant velocity and orientation.
The angular velocity (14) achieves attitude synchronization in
the sense of (13) if it follows that:

1) the relative orientation matrices between the leader and the
agents are positive definite;

2) the interconnection graph excluding the leader is fixed and
strongly connected;

3) there exists at least one satisfying .
Proof: This corollary can be easily proved by using the

potential function

In Section III-C, we stated that the final orientation value is
determined by the initial configuration (Remark 6). On the other
hand, in the leader-follower case, the orientations of all agents
converge to the leader’s orientation. Of course, we can converge
all agents’ orientations to a desired one if it is chosen as the
leader’s orientation.

IV. CONNECTIVITY ANALYSIS

A. Algebraic Connectivity

The purpose of this section is to analyze the relationship be-
tween the graph structure and the speed of convergence of the
network to its final configuration. We first introduce an index

evaluating the speed of convergence. In order to measure
the speed, should satisfy the following two conditions:

1) attitude synchronization is achieved if and only if
holds;

2) is independent of the graph.
Note that the function

defined in Appendix A does not
satisfy condition 1) and it is necessary to consider a different
function. Olfati-Saber et al. [2] employs a function evaluating
the error between the position of each agent and the conver-
gence value. However, this type of function cannot be used
directly since the convergence value is unknown in this paper.
Alternatively, functions of the orientation errors between rigid
bodies also satisfy condition 1), and such a function can be
easily constructed by using the graph Laplacian . However,
the use of is prohibited due to condition 2). For the above
reasons, we define the function

to evaluate the speed of convergence, where denotes the
graph Laplacian of the nonweighted complete graph (i.e.,

), namely

where and
. This function evaluates the

relative orientation for all rigid bodies regardless of the actual
connectivity, and satisfies both of the above conditions. Notice
that the potential function , in the previous section is defined
by the individual agent’s energy functions , rather that
the energy of the relative orientations.
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Fig. 3. Second smallest eigenvalues of � for various information graphs.

Before stating the main result of this section, we introduce the
following notation. Let denote the sym-
metric part of a matrix . The notation rep-
resents the diagonal matrix with diagonal elements
and denotes , where ,

. Let and be the smallest
eigenvalue and the second smallest eigenvalue, respectively, of
any real symmetric square matrix . We can now state the fol-
lowing.

Theorem 2: Consider the rigid bodies represented by
(1). Then, under the assumption that the relative orientations,

, are positive definite, there exist positive real
numbers and such that

(15)

Proof: Appendix C
Because of the independence of on the graph

structure, Theorem 2 implies that the larger the value of
for a given graph, the faster the right-hand side

of (15) converges to 0. In general, is called
algebraic connectivity of a graph, and it is well-known in
consensus [2] that it is a measure of the speed of convergence.

Generally speaking, the graph with many distributed edges
has a large algebraic connectivity. In order to illustrate it, we
prepare three graphs in Fig. 3, where all the edges have weights
1. Graph 1 has a larger than Graph 2, which illus-
trates that the algebraic connectivity of a graph with distributed
edges is large, and Graphs 2 also has a larger than
Graph 3, which indicates the fact that the algebraic connectivity
of a graph with many edges is large. These facts imply that the
algebraic connectivity and hence the speed of convergence de-
pend not only on the number of edges but also on their distri-
bution. Reference [40] investigates the problem of choosing the
weights of an undirected graph so as to maximize or minimize
some function of the eigenvalues of the associated graph Lapla-
cian, and [41] and [42] propose methods to maximize the second
smallest eigenvalue of the graph Laplacian of the state depen-
dent graph.

Theorem 2 also gives another important insight into conver-
gence analysis. In the inequality (15), the error of orientations
between rigid bodies exponentially converges to 0, though The-
orem 1 only shows asymptotic convergence. Notice that The-
orem 2 assumes the positive definiteness of the relative orienta-
tions, while Theorem 1 that of the individual orientations. The-

Fig. 4. Brief connectivity loss.

orem 2 at least guarantees a type of local exponential conver-
gence even with the initial conditions of Theorem 1 since, even-
tually, the relative orientations will converge to value less than

, at which time the remaining convergence will be exponen-
tial. An assumption similar to Theorem 2 is made in [17], where
exponential synchronization is proved.

B. Brief Connectivity Loss

In this section, we investigate the situation where the infor-
mation graph changes over time. Although other interpretations
may be possible, we suppose that the disconnection represents
communication failures. To study the effect of communication
failures we utilize the concept of brief instability developed in
[43]. This concept will be instrumental in capturing the fraction
of the time that the graph may remain disconnected (see Fig. 4).

Let be a certain set of possible graphs with nodes and
let be the piecewise constant switching
signal with consecutive switching times separated by a dwell
time, . Namely, any two consecutive switching times
and , satisfy , . The
signal belongs to either the following subsets of :

1) : a subset composed of strongly connected graphs;
2) : a subset composed of not strongly connected

graphs.
It is obvious from the definitions that holds true.
Let us now introduce the connectivity loss time , which
is the length of the time when the graph belongs to over any
time interval . The function is clearly given by

Brief connectivity losses [43] means

(16)
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Fig. 5. Graph Topology (Simulation 1).

holds for some and . The scalar value is
called the asymptotic connectivity loss rate, and is called the
connectivity loss bound.

Theorem 3: Consider the rigid bodies represented by (1).
Assume that the relative orientations, , are pos-
itive definite. Then, if the inequalities (16) holds, there exists a
lower bound of such that the angular velocity (7) achieves
attitude synchronization in the sense of (5).

Proof: See Appendix D.
Roughly speaking, the inequality (16) means that the frac-

tion of the connectivity loss time is small, and the existence of
a lower bound of assures that the graph does not switch fre-
quently.

In previous works, various approaches are adopted to deal
with switching topology, for example, in [9], [12], [13], [16],
[24], [25], and [44] where the concepts of joint connectedness,
nonsmooth analysis, dwell time and uniform connectedness are
all employed. Note that some works [12], [13], [24], [25], [44]
among them handle a wider class of switching graphs than this
paper, though they consider motion coordination not in
but in the .

V. NUMERICAL SIMULATIONS AND EXPERIMENTS

In this section, we demonstrate the effectiveness of our re-
sults by numerical simulation and experiments carried out on a
mobile robot test bed. Specifically, Theorem 1 (attitude synchro-
nization) is demonstrated through both simulations and experi-
ments, Theorem 3 (switching topology) is demonstrated through
simulations, and Theorem 2 (speed of convergence) is demon-
strated through experiments.

A. Numerical Simulations

1) Simulation 1 (Attitude Synchronization): In this simula-
tion we show numerically that the angular velocity (7) with

, attains attitude synchronization. In our
simulations the group consists of five rigid bodies with the kine-
matics described by (1).

We first demonstrate the results in Section IV assuming the
information graph structure with , depicted
in Fig. 5. Note that this graph is strongly connected but is not
balanced. We run the simulation under the following initial
conditions.

Fig. 6. Trajectories of the rigid bodies (Simulation 1).

We remark that the orientation matrices are positive definite at
the initial time. Figs. 6 and 7 show the trajectories of the rigid
bodies and rotation vectors . In Fig. 6, the encircled number
is associated with the corresponding one in Fig. 5. We see from
Fig. 6 that the rigid bodies smoothly adjust their orientation and
move in the same direction. In Fig. 7, the rotation vectors
asymptotically converge to a common vector. From these fig-
ures, we can confirm that attitude synchronization is achieved
by the angular velocity input (7).

2) Simulation 2 (Switching Topology): We next investigate
the switching topology and confirm that attitude synchroniza-
tion is still achieved. The initial states are changed as below
since the relative orientation matrices should be positive definite

In this simulation, two types of graphs are repeated periodically
every 2[s] (see Fig. 8), where one belongs to and another .
Suppose that the graph is strongly connected at the initial time.
Since these graphs are balanced, the weighted graph Laplacian

satisfies . Thus, and . Due
to the change of the graph, the connectivity loss time
satisfies , namely . In this
simulation, the lower bound of should be greater than 0 in
order to achieve attitude synchronization. Similarly to the pre-
vious simulation, Fig. 9 shows the trajectories of the position
and orientation of each rigid body, and Fig. 10 the rotation vector
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Fig. 7. Time responses of rotation vector � � (Simulation 1).

Fig. 8. Graph topology (Simulation 2).

Fig. 9. Trajectories of the rigid bodies (Simulation 2).

. We see from Fig. 9 that all the rigid bodies eventually con-
verge to a common orientation and move toward the same di-
rection. Fig. 10 illustrates that asymptotically converge to
a common vector. These results suggest that attitude synchro-
nization is achieved even in the switching topology case.

B. Experiments

In this section we present the experimental results on a planar
(2-D) test bed. If the rotation matrix and linear velocity
are set as

then the kinematics model (1) is equivalent to the 2-D case.
Fig. 11 illustrates the experimental environment including the
vehicles, camera, PC, and CF transmitters. The four vehicles
(Fig. 12) are controlled by a digital signal processor (DSP) from
dSPACE Inc., which utilizes a power PC running at 2.8 GHz.
Control programs are written in MATLAB and SIMULINK, and

implemented on the DSP using the real-time workshop and
dSPACE Software such as ControlDesk, RealTime Interface,
and so on. The DSP energizes the RF transmitters, which send
commands to the vehicles. An MTV-7310 camera is mounted
above the vehicles and has a resolution of 470 570.

The video signals are available in real time via a frame
grabber board PicPort-Stereo-HrD and image processing soft-
ware HALCON. The sampling period of the controller and the
frame rate provided by the camera are 0.001[s] and 30[fps],
respectively. The positions and orientations of the rigid bodies
are calculated from the image data. Note that the experimental
test bed is currently not distributed and the present law is imple-
mented in a centralized way. In order to implement kinematic
control on the vehicle network, we first designed a local PI
controller a priori to track reference signals and then input
the kinematic control laws as velocity reference signals (see
Fig. 13). The total control system is depicted in Fig. 14, which
illustrates only two rigid bodies for simplicity.

Fig. 15 shows a graph from this experiment. The control gain
, is empirically selected. Let the weights of the

graph be , . The experiment is carried out with
the initial conditions

(17)

The experimental results are shown in Figs. 16 and 17, which
illustrate the orientation and position of the vehicles, respec-
tively. In Fig. 9, the circles denote the initial positions of the
vehicles. We can see from Fig. 16 that the orientations of the
vehicles asymptotically converge to a common value and from
Fig. 9 that vehicles eventually move in the same direction.

We next demonstrate the speed of convergence of attitude
synchronization for various networks shown in Figs. 18(a),
19(a), and 20(a), where the controller gain are the same
as the previous experiment. The initial conditions (17) are
changed to , , ,

in order to guarantee that the relative orientation
matrices are positive definite. The experimental results are
shown in Figs. 18(b), 19(b), and 20(b), which illustrate the
orientations of the rigid bodies. The graph structure in Figs. 19
and 20 achieves faster convergence than that of Fig. 18. These
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Fig. 10. Time responses of rotation vector � � (Simulation 2).

Fig. 11. Experiment environment.

Fig. 12. Vehicles.

Fig. 13. Local control system.

Fig. 14. Total control system.

Fig. 15. Graph topology.

Fig. 16. Time responses of orientation.

Fig. 17. Time responses of positions.

results suggest that the bigger is, the faster
convergence is attained as stated in Section IV-A.

VI. CONCLUSION

In this paper, we have investigated passivity-based attitude
synchronization in of the kinematics of rigid bodies.
We first have developed a passivity-based control law locally
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Fig. 18. Experimental result for graph 1 �� �� � � ����.

Fig. 19. Experimental result for graph 2 �� �� � � ����.

Fig. 20. Experimental result for graph 3 �� �� � � ����.

attaining attitude synchronization. Passivity has been also em-
ployed in connectivity analysis and we have established a con-

nection between the speed of convergence and the graph struc-
ture. We have also shown the facts that the passivity-based con-
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trol input still attains attitude synchronization in various situa-
tions such as the cases with communication delay, a leader and
a topology switching. The simulation and experimental results
have demonstrated the validity of our results.

A further direction of this research is to extend the results of
this paper to pose (position and attitude) synchronization.

APPENDIX A
PROOF OF THEOREM 1

Before proving this theorem, we prepare the following
Lemma on properties of the graph Laplacian.

Lemma 3:
1) If the graph is strongly connected and the weights are pos-

itive, there exists a vector satisfying whose
elements are positive [9], [46].

2) If the graph is strongly connected, [2].
Proof: Define the potential function

where is the energy function of rotation of rigid body
and are elements of the vector satisfying

(18)

From the (2) and (7), the derivative of this potential function
along trajectories of the kinematics model (1) is given by

From the fact that holds for any 3-D vectors
and , we next obtain (19), shown at the bottom

of the page. Thus, (19) can be rewritten as

Since rotation matrices are assumed to be positive def-
inite, the following inequality holds [45]:

(20)

where is a minimal eigenvalue of a matrix
. Therefore, the derivative of the potential function

satisfies

From Lemma 3, the term
satisfies

... (21)

(19)
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This yields the following inequality, and hence the deviation of
the potential function is nonpositive definite:

(22)

The inequality (22) means the potential function is non-in-
creasing for all . Let us now define the set

. Then, the set is character-
ized by all trajectories satisfying ,

. Therefore, Lasalle’s Invariance Principle [47] and strong
connectivity of the information graph prove attitude synchro-
nization of (5).

APPENDIX B
PROOF OF LEMMA 2

In this proof, we use the fact that the positive definiteness of
the rotation matrix is equivalent to .

Let , denote the rigid body with the
maximal energy function at time , i.e.,

Then, the derivative of this potential function along
the trajectory of the kinematics model (1) is given by

Calculations similar to (19) and (20) yields the inequality

It is clear from the definition of that

Since , the in-
equality holds true. We thus obtain

from the assumption that the rotation matrices are positive def-
inite at the initial time. This inequality implies that all the rigid
bodies’ orientation matrices are positive definite for any time

. This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Before proving this theorem, we present the following
lemmas.

Lemma 4: Define the function

where and are given by (18). Then, satisfies the in-
equality

(23)

Proof: By the definition of and , we immediately
obtain

(24)

and

(25)

Thus, (23) follows from (24) and (25).
Lemma 5: There exists an satisfying

(26)

Proof: The derivative of along trajectories of (1) is
given by in (27), shown at the bottom of the next page. Making
a calculation similar to (21), we obtain

(28)

It follows from (28) that

(29)
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and from (29)

(30)

holds true. Hence, we have (31), shown at the bottom of the
page. Since the rotation matrices are assumed
to be positive definite, they satisfy the following inequality [45]:

(32)

Substituting the inequality (32) into (31) yields

(33)

Let us now define

Then, because of the assumption that
are positive definite for all and

. From this definition, (33) can be rewritten as (34), shown at

(27)

(31)
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the bottom of the page. Due to a property of the Kronecker
product, and the Courant-Fischer
theorem [46], the following inequality is satisfied:

This implies that
is semipositive definite, and that

(35)

The inequality (26) now follows from the inequalities (34) and
(35).

Now, we are ready to prove Theorem 2.
Proof: From Lemmas 4 and 5, we get

It follows from the comparison principle [47] that

(36)
The inequalities (23) and (36) together imply the inequality (37),
shown at the bottom of the page. The proof is thus completed
taking:

• ;
• ;

•
.

APPENDIX D
PROOF OF THEOREM 3

Proof: From Lemma 3 in Appendix A it follows that
if , then the algebraic connectivity satisfies

and
otherwise. By using the characteristic function, the inequality
(15) can be rewritten on the interval as

(38)

where , ,
and , , are defined in the proof of Theorem 2 (Appendix
B). The inequality (38) implies that

(39)

holds true on the interval , where
. Similarly, it follows

from (15) that the function satisfies

(40)

on the interval . Substituting (40) to (39) yields the in-
equality

By iterating the above calculation, we obtain

(34)

(37)
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where denotes the number of graph switches over the
interval . From the assumptions of the theorem,

and are satisfied and hence

This inequality implies that when
is satisfied, then we have

(41)

which is a necessary and sufficient condition for attitude syn-
chronization. Thus a sufficient conditions for (41) is given by

which means the existence of a lower bound of to achieve
attitude synchronization. This completes the proof.

ACKNOWLEDGMENT

The authors would like to thank Mr. N. Kobayashi for invalu-
able help in carrying out the experiments.

REFERENCES

[1] Cooperative Control: A Post-Workshop Volume 2003 Block Island
Workshop On Cooperative Control, ser. Lecture Notes in Control
and Information Sciences, V. Kumar, N. Leonard, and A. S. Morse,
Eds.. New York: Springer-Verlag, 2004, vol. 309.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[3] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, Apr. 2004.

[4] W. Li and C. G. Cassandras, “Distributive cooperative coverage control
of sensor networks,” in Proc. 44th Conf. Decision Control, 2005, pp.
2542–2547.

[5] S. Martinez, F. Bullo, J. Cortes, and E. Frazzoli, “On synchronous
robotic networks part I: models, tasks and complexity notions,” in Proc.
44th Conf. Decision Control, 2005, pp. 2847–2856.

[6] S. Martinez, F. Bullo, J. Cortes, and E. Frazzoli, “On synchronous
robotic networks part ii: Time complexity of rendezvous and deploy-
ment algorithms,” in Proc. 44th IEEE Conf. Decision Control, 2005,
pp. 8313–8318.

[7] W. Ren, “Consensus strategies for cooperative control of vehicle for-
mations,” IET Control Theory Appl., vol. 1, no. 2, pp. 505–512, 2007.

[8] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with dis-
tributed information,” IEEE Control Syst. Mag., vol. 27, no. 4, pp.
75–88, Apr. 2007.

[9] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control
via Local Information Exchange,” Int. J. Robust Nonlinear Control,
vol. 17, no. 10–11, pp. 1002–1033, 2007.

[10] W. Ren, “Synchronized multiple spacecraft rotations: A revisit in the
context of consensus building,” in Proc. Amer. Control Conf., 2007, pp.
3174–3179.

[11] J. R. Lawton and R. W. Beard, “Synchronized multiple spacecraft ro-
tations,” Automatica, vol. 38, no. 8, pp. 1359–1364, 2002.

[12] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[13] H. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp.
863–868, May 2007.

[14] N. Moshtagh and A. Jadbabaie, “Distributed geodesic control laws for
flocking of nonholonomic agents,” IEEE Trans. Autom. Control, vol.
52, no. 4, pp. 681–686, Apr. 2007.

[15] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Trans. Autom. Control, vol. 51, no. 3, pp.
401–420, Mar. 2006.

[16] D. J. Lee and M. W. Spong, “Stable flocking of multiple inertial agents
on balanced graphs,” IEEE Trans. Autom. Control, vol. 52, no. 8, pp.
1469–1475, Aug. 2007.

[17] N. Chopra and M. W. Spong, “On synchronization of kuramoto oscilla-
tors,” in Proc. 44th IEEE Conf. Decision Control, 2005, pp. 3916–3922.

[18] A. Jadbabaie, N. Motee, and M. Barahona, “On the stability of the Ku-
ramoto model of coupled nonlinear oscillators,” in Proc. Amer. Control
Conf., 2004, pp. 4296–4301.

[19] R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar
collective motion: All-to-All communication,” IEEE Trans. Autom.
Control, vol. 52, no. 5, pp. 811–824, May 2007.

[20] A. Sarlette, R. Sepulchre, and N. E. Leonard, “Autonomous rigid body
attitude synchronization,” in Proc. 46th IEEE Conf. Decision Control,
2007, pp. 2566–2571.

[21] A. Sarlette and R. Sepulchre, “Consensus optimization on manifolds,”
SIAM J. Control Opt., 2008, accepted for publication.

[22] S. Nair and N. E. Leonard, “Stable synchronization of rigid body net-
works,” Netw. Heterogeneous Media, vol. 2, no. 4, pp. 595–624, 2007.

[23] D. Bauso, L. Giarré, and R. Pesenti, “Non-linear protocols for optimal
distributed consensus in networks of dynamic agents,” Syst. Control
Lett., vol. 55, no. 11, pp. 918–928, 2006.

[24] N. Chopra and M. W. Spong, “Output synchronization of nonlinear
systems with time delay in communication,” in Proc. 45th IEEE Conf.
Decision Control, 2006, pp. 4986–4992.

[25] N. Chopra and M. W. Spong, “Passivity-based control of multi-agent
systems,” in Advances in Robot Control: From Everyday Physics to
Human-Like Movements, S. Kawamura and M. Svnin, Eds. New
York: Springer, 2006, pp. 107–134.

[26] M. Arcak, “Passivity as a design tool for group coordination,” IEEE
Trans. Autom. Control, vol. 52, no. 8, pp. 1380–1390, Aug. 2007.

[27] I.-A. F. Ihle, M. Arcak, and T. I. Fossen, “Passivity-based designs
for synchronized path following,” Automatica, vol. 43, no. 9, pp.
1508–1518, 2007.

[28] H. Bai, M. Arcak, and J. T. Wen, “A decentralized design for group
alignment and synchronous rotation without inertial frame infor-
mation,” in Proc. 46th IEEE Conf. Decision Control, 2007, pp.
2552–2557.

[29] L. Scardovi, A. Sarlette, and R. Sepulchre, “Synchronization and bal-
ancing on the N-tours,” Syst. Control Lett., vol. 56, no. 5, pp. 335–341,
2007.

[30] L. Scardovi, R. Sepulchre, and N. E. Leonard, “Stabilization laws for
collective motion in three dimensions,” in Proc. Eur. Control Conf.,
2007, pp. 4591–4597.

[31] E. W. Justh and P. S. Krishnaprasad, “Natural frames and interacting
particles in three dimensions,” in Proc. 44th IEEE Conf. Decision Con-
trol Eur. Control Conf., 2005, pp. 2841–2846.

[32] Y. Igarashi, T. Hatanaka, M. Fujita, and M. W. Spong, “Passivity-based
3D attitude coordination: Convergence and connectivity,” in Proc. 46th
IEEE Conf. Decision Control, 2007, pp. 2558–2565.

[33] R. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.

[34] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems.
New York: Springer, 2004.

[35] M. Fujita, H. Kawai, and M. W. Spong, “Passivity-based dynamic
visual feedback control for three dimensional target tracking:Sta-
bility and L2-gain performance analysis,” IEEE Trans. Control Syst.
Technol., vol. 15, no. 1, pp. 40–52, Jan. 2007.

[36] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. New York: Wiley, 2006.

[37] A. Papachristodoulou and A. Jadbabaie, “Synchronization in oscillator
networks with heterogeneous delays, switching topologies and non-
linear dynamics,” in Proc. 45th IEEE Conf. Decision Control, 2006,
pp. 4307–4312.

[38] M. Ji and M. Egerstedt, “Distributed coordination control of multiagent
systems while preserving connectedness,” IEEE Trans. Robot., vol. 23,
no. 4, pp. 693–703, Aug. 2007.

[39] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining con-
nectivity of mobile networks,” IEEE Trans. Robot., vol. 23, no. 4, pp.
812–816, Aug. 2007.

[40] S. Boyd, “Convex optimization of graph Laplacian eigenvalues,” in
Proc. Int. Congr. Math., 2006, pp. 1311–1319.

[41] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” IEEE Trans. Autom. Con-
trol, vol. 51, no. 1, pp. 116–120, Jan. 2006.

Authorized licensed use limited to: TOKYO INSTITUTE OF TECHNOLOGY. Downloaded on August 05,2010 at 04:21:31 UTC from IEEE Xplore.  Restrictions apply. 



1134 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

[42] M. Carmela, D. Gennaro, and A. Jadbabaie, “Decentralized control of
connectivity for multi-agent systems,” in Proc. 45th IEEE Conf. Deci-
sion Control, 2006, pp. 3629–3633.

[43] J. Hespanha, O. A. Yakimenko, I. I. Kaminer, and A. M. Pascoal,
“Linear parametrically varying systems with brief instabilities: An ap-
plication to vision/inertial navigation,” IEEE Trans. Aerosp. Electron.
Syst., vol. 40, no. 3, pp. 889–900, Mar. 2004.

[44] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Trans. Autom. Control, vol. 50, no. 2, pp.
169–182, Feb. 2005.

[45] Y. Fang, K. A. Loparo, and X. Feng, “Inequalities for the trace of
matrix product,” IEEE Trans. Autom. Control, vol. 39, no. 12, pp.
2489–2490, Dec. 1994.

[46] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge, U.K.:
Cambridge University Press, 1985.

[47] H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 2002.

Yuji Igarashi received the B.E. and M.E. degrees in
control and systems engineering from Tokyo Insti-
tute of Technology, Tokyo, Japan, in 2006 and 2008,
respectively.

He is currently with the Advanced Technology
R&D Center, Mitsubishi Electric Corporation,
Hyogo, Japan. His research interests include cooper-
ative control.

Takeshi Hatanaka received the B.Eng. degree
in informatics and mathematical science, and the
M.Inf. and Ph.D. degrees in applied mathematics
and physics from Kyoto University, Kyoto, Japan, in
2002, 2004, and 2007, respectively.

He is currently an Assistant Professor with the
Department of Mechanical and Control Engineering,
Tokyo Institute of Technology, Tokyo, Japan. From
2006 to 2007, he was a research fellow of the Japan
Society for the Promotion of Science at Kyoto Uni-
versity. His research interests include cooperative

control, mobile sensor networks and predictive control.

Masayuki Fujita received the B.E., M.E., and Dr.
of Engineering degrees in electrical engineering from
Waseda University, Tokyo, Japan, in 1982, 1984, and
1987, respectively.

Since 2005, he has been a Professor of the Depart-
ment of Mechanical and Control Engineering, Tokyo
Institute of Technology, Tokyo, Japan. From 1985
until 1992, he was with the Department of Electrical
and Computer Engineering, Kanazawa University,
Kanazawa, Japan. He was on the faculty of Japan
Advanced Institute of Science and Technology as an

Associate Professor from 1992 to 1998 and Kanazawa University as a Professor
in 1999. From 1994 to 1995, he held a visiting position with the Department
of Automatic Control Engineering, Technical University of Munich, Munich,
Germany. His research interests include robust control and its applications,
cooperative control and passivity-based visual feedback.

Dr. Fujita was a recipient of the 2008 IEEE Transactions on Control Systems
Technology Outstanding Paper Award, the Best Paper Award from the Society
of Instrument and Control Engineers (SICE) in 1997, and from the Institute of
Systems, Control and Information Engineers (ISCIE) in 2000. He will serve the
General Chair of 2010 IEEE Multi-conference on Systems and Control. He is
currently Board of Governor of the IEEE Control Systems Society, an Editor of
the SICE Journal of Control, Measurement, and System Integration and Asso-
ciate Editor of Automatica. He also served as an Associate Editor of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL and Asian Journal of Control.

Mark W. Spong (F’96) received the D.Sc. degree in
systems science and mathematics from Washington
University, St. Louis, in 1981.

From 1984–2008 he was at the University of Illi-
nois at Urbana-Champaign. Currently, he is Dean of
Engineering and Computer Science at the University
of Texas at Dallas and holder of the Lars Magnus Er-
iccson Chair in Electrical Engineering. His research
interests include robotics and nonlinear control. He
has published more than 250 technical articles in con-
trol and robotics and is coauthor of 4 books.

Dr. Spong was a recipient of recent awards including the IEEE Transac-
tions on Control Systems Technology Outstanding Paper Award, the IROS
Fumio Harashima Award for Innovative Technologies, the Senior Scientist
Research Award from the Alexander von Humboldt Foundation, the Distin-
guished Member Award from the IEEE Control Systems Society, the John
R. Ragazzini and O. Hugo Schuck Awards from the American Automatic
Control Council,and the IEEE Third Millennium Medal. He is Past President
of the IEEE Control Systems Society and past Editor-in-Chief of the IEEE
TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.

Authorized licensed use limited to: TOKYO INSTITUTE OF TECHNOLOGY. Downloaded on August 05,2010 at 04:21:31 UTC from IEEE Xplore.  Restrictions apply. 


