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Abstract—Loop fusion improves data locality and re-
duces synchronization in data-parallel applications. How-
ever, loop fusion is not always legal. Even when legal,
fusion may introduce loop-carried dependences which re-
duce parallelism. In addition, performance losses result
from cache conflicts in fused loops. We present new, sys-
tematic techniques which: (1) allow fusion of loop nests in
the presence of fusion-preventing dependences, (2) allow
parallel execution of fused loops with minimal synchro-
nization, and (3) eliminate cache conflicts in fused loops.
We evaluate our techniques on a 56-processor KSR2 mul-
tiprocessor, and show improvements of up to 20% for rep-
resentative loop nest sequences. The results also indicate
a performance tradeoff as more processors are used, sug-
gesting careful evaluation of the profitability of fusion.

1 Introduction

The performance of data-parallel applications on cache-
coherent shared-memory multiprocessors is significantly
affected by data locality and by the cost of synchroniza-
tion. Loop fusion is a code transformation which is used to
combine multiple parallel loops into a single loop, enhanc-
ing data locality and reducing synchronization. Fusion is
not always legal in the presence of dependences between
the loops being fused. Even when it is legal, fusion may
introduce loop-carried dependences which reduce existing
parallelism and introduce additional synchronization. Fus-
ing a large number of loops also increases the number of
arrays referenced in the fused loop, which gives rise to
cache conflicts that degrade performance.

In this paper, we propose a new set of related loop
and data transformations to address the above difficulties.
The loop transformation technique fuses loops, even in
the presence of fusion-preventing dependences, by shift-
ing iteration spaces prior to fusion. Parallel execution of a
fused loop with minimal synchronization is then enabled by
peeling iterations to remove serializing dependences. We
refer to this loop transformation as shift-and-peel. The data

∗This research is supported by grants from NSERC (Canada) and
ITRC (Ontario). The use of the KSR2 was provided by the University of
Michigan Center for Parallel Computing.

La : doall i1 = . . .
. . .

doall ik = . . .
. . .

do in = . . .
A1[F a

1 (�ı)], A2[F a
2 (�ı)], . . .

Lb : doall i1 = . . .
. . .

doall ik = . . .
. . .

do in = . . .
A1[F b

1 (�ı)], A2[F b
2 (�ı)], . . .

...

Figure 1: Program model

transformation technique adjusts the array layout in mem-
ory after fusion to eliminate mapping conflicts in the cache.
We refer to this data transformation as cache partitioning.

The domain of the shift-and-peel transformation is pro-
gram segments consisting of a sequence of loop nests that
reuse a number of arrays, as shown in Figure 1. Each
loop nest is assumed to be in a canonical form in which
at least k ≥ 1 outermost loops are fully parallel loops. A
dependence between any pair of loop nests is assumed to
be uniform, i.e., with a constant distance. In addition, there
should be no intervening code between the loop nests. We
are interested in fusing the sequence of loop nests such that
the resulting loop nest has k outer loops that are fully paral-
lel. We do not address the loss of parallelism in any of the
original loop nests with more than k parallel loops. This
issue has been addressed in previous work [6]. Our data
transformation technique requires in addition that array ac-
cesses be compatible, i.e, accesses to a given array must
have the same stride and direction across all loop nests. Al-
though compatible accesses imply uniform dependences,
the reverse is not necessarily true, hence compatibility is
a stricter requirement. Nonetheless, compatible array ac-
cesses are typical in many scientific applications.

Program transformations may be used to obtain a pro-
gram segment that lies in the domain of our techniques.
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L1: do i=2,n−1
            a[i] = ...
            b[i] = ...
        end do
L2: do i=2,n−1
            ... = a[i+1]
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        end do

Figure 2: Illustration of illegal fusion of adjacent loops

Interprocedural analysis can identify candidate loops for
fusion-enabling transformations such as loop extraction
and loop embedding[9]. Loop distribution [3] may be used
to produce parallel loop nests that adhere to the model.
Since the loops will be eventually fused together, there is
no loss of locality. Code motion [1] may be employed
to obtain a sequence of parallel loops with no intervening
code. Loop and/or array dimension permutation [3, 7] may
be used to ensure compatible access patterns.

2 Loop Fusion

Fusion of loops from adjacent loop nests combines their
respective loop bodies into a single body and collapses their
respective iteration spaces into one combined space. In so
doing, the number of iterations separating references to the
same array is reduced, and array reuse can then be exploited
to enhance register and cache locality. Register locality is
enhanced through reuse of register-allocated array values
in a single iteration of the fused iteration space [6]. Cache
locality is enhanced through reuse of array elements across
multiple iterations of the fused iteration space [3]. In ei-
ther case, exploiting the reuse avoids costly references to
main memory, thereby improving performance. In addi-
tion, fusion permits a reduction in the number of barrier
synchronizations needed between parallel loops.

Fusion is not always legal. Array reuse between ad-
jacent loops implies the existence of data dependences
between different loops. These dependences are initially
loop-independent since their source and sink iterations are
in different iteration spaces. Fusion places the source and
sink iterations of each dependence in the same iteration
space. Fusion is legal only if it does not result in a loop-
carried dependence that flows backwards with respect to
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Figure 3: Shifting iteration spaces to permit legal fusion

the iteration execution order [10, 14]. For example, Fig-
ure 2 illustrates how the fusion of two loops may result in
backward dependences.

We propose a simple technique to enable legal fusion
of multiple loops in the presence of backward loop-carried
dependences, based on the alignment techniques described
in [4, 11]. The only necessary condition for this technique
is uniform dependences. The key idea is to make backward
dependences loop-independent in the fused loop by shifting
the iteration space containing the sink of the dependences
with respect to the iteration space containing the source
of the dependence. The amount by which to shift is de-
termined by the dependence distance. Other dependences
between the loops are affected, but do not prevent fusion.
For example, the iteration space of loop L2 in Figure 3 is
shifted by one iteration because of the backward depen-
dence with a distance of one. Note that the shift increases
the distance of the forward dependence by one, but this
does not prevent fusion.

In general, more than two loops may be considered for
fusion, and fusion-preventingdependences may result from
any pair of candidate loops. Complex dependence rela-
tionships may exist between candidate loops in the form
of dependence chains passing through iterations in differ-
ent loops. These dependence chains are dictated by the
array reuse and constitute iteration ordering requirements
which must be preserved for correctness. If one loop
is shifted, subsequent loops along all dependence chains
passing through this loop must also be shifted. Hence,
shifts must be propagated along dependence chains. Con-
sequently, it is advantageous to treat candidate loops col-
lectively rather than incrementally one pair at a time.

We present a systematic method to determine the amount
of shift needed for each iteration space to permit legal fu-
sion of multiple loops. The technique is presented assum-
ing one-dimensional loop nests for simplicity. However, it
should be emphasized that it is applicable to multidimen-
sional loop nests. An acyclic dependence chain multigraph
is constructed to represent dependence chains. Each loop
nest is represented by a vertex, and each dependence be-
tween a pair of loops is represented by a directed edge
weighted by the dependence distance. A forward depen-



TRAVERSEDEPENDENCECHAINGRAPH(G)::
foreach v ∈ V [G] do weight(v) = 0 endfor
foreach v ∈ V [G] in topological order do

foreach e = (v, vc) ∈ E[G] do
if weight(e) < 0 then

weight(vc) = min(weight(vc),
weight(v) + weight(e))

endif
endfor

endfor
Figure 4: Algorithm for propagating shifts

dence has a positive distance, and results in an edge with
a positive weight. Conversely, a backward dependence
has a negative distance, and results in an edge with a neg-
ative weight. A multigraph is required since there may
be multiple dependences between the same two loops. The
multigraph is reduced to a simpler dependence chain graph
by replacing multiple edges between two vertices by a sin-
gle edge whose weight is the minimum of the original set
of edges between these two vertices. When this mini-
mum is negative, it determines the shift required to remove
all backward dependences between the two corresponding
loops. This reduction preserves the structure of the original
dependence chains. A traversal algorithm is then used to
propagate shifts along the dependence chains in this graph.
Each vertex is assigned a weight, which is initialized to
zero, and the vertices are visited in topological order to ac-
cumulate shifts along the chains. Note that this topological
order is given directly by the original loop order, hence
there is no need to perform a topological sort. Only edges
with a negative weight contribute shifts; all other edges are
treated as having a weight of zero. The algorithm is given
in Figure 4. The complexity of the algorithm is linear in
the size of the graph, and upon termination, the final ver-
tex weights are interpreted as the amount by which to shift
each loop relative to the first loop to enable legal fusion.
Figure 5 illustrates the above procedure for representing
dependence chains and deriving shifts.

Once the required shifts have been derived, the loops
must be transformed to complete the legal fusion. There are
two methods to implement the shifts for fusion. In a direct
approach, the loops are fused, and subscript expressions
in statements from shifted loops are adjusted according
to the shift. An advantage of this direct approach is the
potential for register locality. However, shifting increases
the reuse distance and hence limits reuse which may be
exploited in registers. Furthermore, shifting makes the
resulting iteration space nonuniform, requiring guards in
the fused loop. Iterations at both the start and end of the
fused loop can be peeled out of the iteration space to avoid
these guards, as shown in Figure 6(a). Nonetheless, guards
may still be required if the original iteration spaces differ.
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Figure 5: Representing dependences to derive shifts

A simple alternative to the direct approach is to strip-
mine [3] the original loops by a factor of s, then fuse the
resulting outer controlling loops to interleave iterations in
groups of s, as shown in Figure 6(b). Implementing shifts
in this method only requires adjusting the inner loop bound
expressions with the amount of the shift, leaving the sub-
script expressions unchanged. Peeling is required only for
the end iterations in the original iteration spaces of shifted
loops. Differing iteration spaces are easily accommodated
by suitable modifications to the inner loop bounds. Note
that with a strip size s = 1, each inner loop performs at
most one iteration and effectively serves as a guard. Strip-
mining may incur some overhead in comparison to the
direct approach, but the strip size may be used to deter-
mine the amount of data loaded into the cache for each
array referenced in the inner loops. This flexibility is de-
sirable in controlling the extent of cache conflicts, as will
be described later.

In this section, shifting has been described for one-
dimensional loop nests. It should be emphasized that
shifting is equally applicable when fusing more than one
loop across multidimensional loop nests. The procedure
described above is simply applied at each loop level, be-
ginning with the outermost loop and working inward. The
dependences carried at each level determine the depen-
dence chains which are then used to derive the required
shifts. Although shifting an outer loop may change de-
pendences with respect to inner loops, shifts are derived
independently at each level using the original dependences



do i=2,3
     a[i] = b[i]
end do
c[2]=a[3]+a[1]

do i=4,n−1
     a[i] = b[i]
     c[i−1] = a[i]+a[i−2]
     d[i−2] = c[i−1]+c[i−3]
end do

c[n−1] = a[n]+a[n−2]
do i=n−2,n−1
     d[i] = c[i+1]+c[i−1]
end do

do ii=2,n−1,s
    do i=ii,min(ii+s−1,n−1)
        a[i] = b[i]
    end do
    do i=max(ii−1,1),min(ii+s−2,n−2)
        c[i] = a[i+1]+a[i−1]
    end do
    do i=max(ii−2,1),min(ii+s−3,n−3)
        d[i] = c[i+1]+c[i−1]
    end do
end do

c[n−1] = a[n]+a[n−2]
do i=n−2,n−1
    d[i] = c[i+1]+c[i−1]
end do

(a) Direct method

(b) Strip−mined  method

Figure 6: Implementing shifts for fusion

to remove backward dependences at all levels and permit
subsequent parallelization in a uniform manner. Implemen-
tation of the shifts at each level is straightforward using the
strip-mined approach described above.

3 Parallelizing Fused Loops

Loop fusion enhances locality but may result in loop-
carried dependences which prevent synchronization-free
parallel execution of the fused loop. This is illustrated in
Figure 7. The loops L1 and L2 in Figure 7(a) have no
loop-carried dependences; the iterations of each loop may
be executed in parallel without synchronization. Only a
barrier synchronization is required to ensure that all iter-
ations of L1 have executed before any iterations of L2.
However, when the iteration spaces of the two loops are
fused as shown in Figure 7(b), loop-carried dependences
result, requiring synchronization that serializes execution
of blocks of iterations assigned to different processors.

We propose a simple method to remove serializing
dependences which result from fusion, assuming static,
blocked loop scheduling. The central idea of the method

(b) Fused iteration space
       serializes iterations

L1 L2

(a) Iteration spaces
       of parallel loops

(c) Peeling sink of cross−processor dependence
       avoids synchronization in fused loop

parallel

L1+L2

L1+L2
serial

L1 L2

Figure 7: Parallel execution of fused loops

is to identify iterations which become the sinks of cross-
processor dependences in the fused loop, and then peel
these iterations from the iteration space. The only neces-
sary condition for this technique is uniform dependences,
which force the peeled iterations to be located at block
boundaries. The number of iterations which must be peeled
is determined by the dependence distance. Peeling removes
synchronization between blocks after fusion, as shown in
Figure 7(c). Loop-carried dependences still exist, but are
contained entirely within a block executed by the same
processor. The peeled iterations are executed only after all
other iterations within each block have been executed.

In programs where more than two loops are fused, se-
rializing dependences arise from any pair of the original
loops. Complex dependence relationships may exist be-
tween candidate loops in the form of dependence chains
similar to those considered when shifting iteration spaces.
The peeling of an iteration from one loop requires peeling
of all subsequent iterations along all dependence chains
passing through that iteration, i.e., peeling must also prop-
agate along dependence chains.

To determine the number of iterations to peel for each
loop, we use the same graph-based framework used for
shifting iteration spaces. However, only the forward depen-
dences resulting from fusion need to be considered, since
shifting removes backward dependences. In the depen-
dence chain multigraph, such dependences are identified
by edges with positive weights. The multigraph is reduced
to a simpler graph by replacing multiple edges between
two vertices with a single edge whose weight is the max-
imum from the original set of edges between the vertices
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istart = START_ITER(my_pid)
iend = END_ITER(my_pid)
do ii=istart,iend,s
    do i=ii,min(ii+s−1,iend)
        a[i] = b[i]
    end do
    do i=max(ii−1,istart+1),min(ii+s−2,iend−1)
        c[i] = a[i+1]+a[i−1]
    end do
    do i=max(ii−2,istart+2),min(ii+s−3,iend−2)
        d[i] = c[i+1]+c[i−1]
    end do
end do

BARRIER

do i=iend,iend+1
    c[i] = a[i+1]+a[i−1]
end do
do i=iend−1,iend+2
    d[i] = c[i+1]+c[i−1]
end do

(a) Dependence
  chain multigraph

Figure 8: Derivation and implementation of peeling

(as opposed to the minimum for shifting). When the maxi-
mum weight is positive, it determines the required number
of iterations which must be peeled to remove serializing
dependences. The graph traversal algorithm used to propa-
gate shifts is used again to propagate the required amounts
of peeling along the dependence chains. The only modifi-
cation is to consider edges with a positive weight. All other
edges are treated as having a weight of zero. Upon termina-
tion, vertex weights correspond to the number of iterations
to peel relative to the first loop. Figure 8(a-c) illustrates this
procedure using the dependence chain multigraph shown
in Figure 5.

Implementation of peeling to parallelize the fused loop is
straightforward using the previously-described strip-mined
method. The loop bounds of the outer strip controlling loop
determine the subset of the full iteration space assigned to
each processor for parallel execution. Peeling is accom-
plished simply by adjusting the lower bounds in the inner
strip loops where necessary. For the transformed code in
Figure 8(d), which executes iterations istart. . .iend, one
iteration from the second loop must be peeled, based on

Figure 8(c), as well as two iterations from the third loop.
The upper bounds, which resulted from shifting for legal
fusion, are unaffected.

The iterations peeled from the start of each block of it-
erations may only be executed after all preceding iterations
along dependence chains have been executed; a barrier
synchronization is inserted to enforce this synchronization.
Iterations peeled from the same block may have depen-
dences between them. However, there are no dependences
between sets of iterations peeled from different blocks be-
cause the dependences are uniform. As a result, these
sets may be executed in parallel without synchronization
following the barrier.

However, shifting for legal fusion also results in peeled
iterations, and these iterations are always peeled from the
end of a block. There may be dependences between the
iterations peeled from the end of one block as a result
of shifting and the iterations peeled from the start of an
adjacent block after parallelization. We opt to place all
adjacent peeled iterations in the same set. In this manner,
dependences are contained entirely within each set, hence
synchronization-free parallel execution of these sets is still
possible. For example, in the transformed code shown
in Figure 8(d), the peeled iterations include those peeled
from the end of block istart. . .iend as a result of shifting,
and also those peeled after parallelization from the start
of the next block, beginning at iend+1. These iterations
are executed in parallel with peeled iterations from other
blocks following the barrier. The transformed code for
blocks at the boundaries of the full iteration space is slightly
different; for brevity, it is not shown here.

The combined shift-and-peel transformation is applied
to a loop nest sequence assuming that the number of itera-
tions per loop nest is greater than the number of processors.
The number of peeled iterations is determined by the de-
pendence distances. If this number exceeds the number
of iterations per processor after loop scheduling, the trans-
formation cannot be applied directly. In such cases, the
loop nest sequence is divided to isolate the endpoints of the
dependences with the greatest distance in separately-fused
subsequences and reduce the number of peeled iterations.

A final observation is that peeling to remove serializ-
ing dependences can also be applied to any single loop
with forward dependences. By identifying the source and
sink statements for each dependence, then applying loop
distribution to place statements in separate loops, a set of
loops is obtained which adheres to our model. The shift-
and-peel transformation can then be used to fuse the loops
back together again such that serializing dependences are
removed. This approach compares favorably with that of
Callahan [4] and Appelbe and Smith [2] in that it does not
require expensive replication of code and in that it uses



0

100000

200000

300000

400000

1 3 5 7 9 11 13 15 17 19 21

M
is

se
s

Amount of padding

Misses with padding
Misses with cache partitioning

Figure 9: Misses from padding and cache partitioning

algorithms with lower complexity.
In this section, peeling has been described for one-

dimensional loop nests. It should be emphasized that peel-
ing is applicable for multidimensional loop nests. The
procedure described above is simply applied at each loop
level, beginning with the outermost loop and working in-
ward. The number of iterations to peel at each level is
derived from the chains of forward dependences at each
level. It is important to emphasize that both shifting and
peeling are performed independently at each loop level
using the original dependence information. In this man-
ner, peeled iterations are grouped together in a systematic
manner without requiring a more involved, case-specific
dependence analysis, thus simplifying the transformation.

4 Cache Partitioning

Conflicts among elements of various arrays in the cache
cause misses that can negate the locality benefits obtained
by fusion, and can also reduce parallel performance by
increasing memory contention. Conflicts occur when por-
tions of data from different arrays map into overlapping
regions of the cache. Reuse of array data may extend
across multiple iterations, and shifting to enable legal fu-
sion increases the distance between reuses. The net effect
is an increase in the amount of data from each array which
must remain cached in order to enhance locality, and hence
an increase in the potential for conflicts.

A common solution to this problem is to pad array di-
mensions to perturb the mapping of data into the cache and
reduce the occurrence of conflicts [3]. However, it is diffi-
cult to predict the amount of padding which minimizes the
number of conflicts, particularly when the number of arrays
is large. Figure 9 depicts the impact of various amounts of
padding on the number of cache misses for the execution of
a fused loop referencing nine arrays whose original dimen-
sions are 512 × 512 (the details of this experiment will be

arrays

cache

Figure 10: Avoiding conflicts in the cache

described in a later section). The number of misses varies
erratically with the amount of padding, making it difficult
to select the amount of padding to use, and the minimum
occurs for the relatively large padding of 19.

We propose cache partitioning as a means of avoiding
conflicts without the “guesswork” of padding. The basic
idea behind cache partitioning is to logically divide the
cache into nonoverlapping partitions, one for each array,
and to adjust the starting address of each array in memory
such that each array maps into a different partition, as
shown in Figure 10. The starting addresses of the arrays
are adjusted by inserting appropriately-sized gaps between
the arrays. Cache partitioning relies on compatible data
access patterns such that a conflict-free mapping of array
starting addresses into the cache ensures that the mapping
for the remaining array data will also be conflict-free. Note
that the logical cache partitions move through the cache
during loop execution, but never overlap. Evidence of the
effectiveness of cache partitioning can be seen in Figure 9,
which compares the number of misses from applying cache
partitioning to the original arrays with the number of misses
for various amounts of padding. Cache partitioning directly
minimizes the number of misses and prevents erratic cache
behavior. In this paper, we limit our presentation to one-
dimensional partitioning; higher-dimensional partitioning
is described in [7]. In one-dimensional partitioning, the
data in each partition is made contiguous by limiting the
number of indices from only the outermost array dimension
to make the data from an array fit in a partition.

The introduction of gaps between arrays is required to
force each array to map into a separate partition of the
cache. These gaps represent memory overhead which
should be minimized. We employ the the greedy layout
algorithm shown in Figure 11 to reduce the size of these
gaps for a set of na arrays, assuming a direct-mapped cache
with a typical address mapping function CACHEMAP(). The
arrays are selected in an arbitrary order. A set of available
partitions P is maintained, and each array to be placed in
memory is assigned to a cache partition of size sp which
minimizes the distance between the starting address re-
quired for that partition and the end of the array most
recently placed in memory. Although multiple memory
addresses map into the selected partition, the address in



GREEDYMEMORYLAYOUT(A,c)::
na = |A| // A = set of arrays
sp = c/na // partition size (c = cache size)
P = {0, 1, . . . , na − 1} // available partitions
q = q0 // start of storage in memory
do

select a ∈ A // selection is arbitrary
mapped address = CACHEMAP(q)
foreach p ∈ P do // determine gaps

target address(p) = p · sp

gap(p) = target address(p)− mapped address
if target address(p) < mapped address then

gap(p) = gap(p) + c // “wraparound”
endif

endfor
select popt ∈ P where gap(popt) = min

p∈P
gap(p)

P = P \ {popt}
START(a) = q + gap(popt) // insert gap
q = START(a) + SIZE(a) // adjust start
A = A \ {a}

while A �= ∅

Figure 11: Layout algorithm for cache partitioning

free memory closest to the end of the most recently placed
array is always used. Each partition selected in this man-
ner is removed from the set of available partitions to ensure
that two arrays are not assigned to the same partition. The
complexity of the algorithm is O(n2

a).
The partition size directly determines the maximum strip

size for fusion in the previously-discussed strip-mined ap-
proach, where the largest possible strip size reduces the
overhead of strip-mining. The strip size must be selected
such that the total data referenced for each array in an inner
loop fits within a cache partition. Selection of a larger strip
size is legal, but causes data to overflow into neighboring
partitions in the cache, leading to unnecessary conflicts and
reducing performance.

The advantage of cache partitioning is that it results
in predictable cache behavior by avoiding conflicts. The
overhead which cache partitioning introduces as memory
gaps between arrays is comparable to the unused memory
introduced within arrays with padding. However, these
gaps enable a predictable reduction in the number of misses,
unlike the unpredictable outcome of padding.

5 Experimental Results

Results of experiments conducted on a Kendall Square
Research KSR2 multiprocessor system [5] using two rep-
resentative loop nest sequences are presented to illustrate
the performance advantages that can be obtained from our
techniques. From the Livermore Loops, Kernel 18 (LL18)
is considered, which is an excerpt of three loop nests from a

hydrodynamics code. These loop nests cannot be fused di-
rectly, as backward loop-carried dependences result. From
the qgbox ocean modelling code [8], a sequence of five
loop nests is considered from the calc subroutine. These
loop nests also cannot be fused directly due to backward
loop-carried dependences. In addition, differences between
the iteration spaces prevent direct fusion; one of the loops
has a larger iteration space than the other four. A problem
size of 512 × 512 double-precision (8-byte) floating point
values is used for both examples. LL18 has 9 arrays, re-
sulting in a total data size of 18 Mbytes. There are 6 arrays
in calc, for a total data size of 12 Mbytes.

The outermost loops in each loop nest sequence are
manually fused and parallelized using the techniques de-
scribed in this paper. Fusion for LL18 requires a shift of
1 for the second loop relative to the first loop, and a shift
of 2 for the third loop. Parallelization after fusion requires
peeling one iteration from the third loop. In calc, two of
the loops require shifting to enable fusion of all five loops;
the largest shift is 2. Differences in iteration spaces are
accommodated by adjusting the min and max expressions
within the inner loops after fusion. Parallelization requires
peeling iterations from two of the original loops; the largest
amount of peeling is two iterations.

Our experiments focus on the impact of misses in the
data cache on performance. Execution time and the num-
ber of cache misses are measured with the pmon perfor-
mance monitoring hardware on each KSR processor. Loops
are executed repeatedly to permit reliable measurement
of execution time, particularly for parallel execution. In
our experiments, cache partitioning is applied assuming a
direct-mapped cache. The KSR data cache is 2-way set-
associative, but maintains only one address tag for each
set of 32 contiguous cache lines and employs a random
replacement policy for these sets [12]. The associativity
permits two distinct addresses to map to the same cache
location without incurring conflict misses. However, ran-
dom replacement ejects 32 cache lines at a time. Hence,
the benefit of the associativity is limited, and we opt to
consider the cache as direct-mapped.

The first set of results demonstrates the predictable cache
behavior obtained with cache partitioning. Fused and un-
fused versions of the loops in LL18 were executed on 16
processors. Figure 12 compares the number of misses ob-
tained for various amounts of padding with the number of
misses obtained from applying cache partitioning to the
original arrays. These numbers reflect the misses on one
processor; the results are similar for the other processors
in the same parallel run. The cache behavior with padding
is erratic and unpredictable. On the other hand, cache par-
titioning directly results in the smallest number of misses.
Results for 4 and 8 processors also yield the same conclu-
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Figure 12: Effectiveness of cache partitioning for LL18

sions. It is interesting to observe that the potential benefit
of fusion is easily lost due to conflict misses; it is only when
such misses are eliminated that the full benefit of fusion can
be realized. The results indicate that padding cannot guar-
antee the avoidance of conflicts after fusion. This can be
seen for certain values of padding for which the number of
misses after fusion is comparable to the number of misses
without fusion. Consequently, all our subsequent results
and comparisons are based on cache-partitioned memory
layout. The gaps introduced using this technique consti-
tute an overhead of less than 2% for both LL18 and calc,
which is comparable to the overhead from padding.

The next set of results show the parallel performance
of fused and unfused versions of LL18 and calc using
cache-partitioned memory layout for up to 56 processors on
the KSR2. For each parallel run (with or without fusion),
the speedup is computed with respect to the unfused version
of the code executing on a single processor (using cache-
partitioned layout as mentioned above). The uniprocessor
execution time is 78 seconds for LL18, and 64 seconds for
calc. The number of cache misses is also measured for
each run. Figure 13 shows the speedup curves and cache
misses for LL18, and Figure 14 shows the same results for
calc. For LL18, fusion improves performance by 7% to
15% for up to 32 processors, beyond which the unfused
version performs better. Similarly, fusion improves the
performance for calc by 11% to 20% up to 24 proces-
sors, beyond which the unfused version performs better. It
is important to note that the unfused versions are already
benefitting from cache partitioning, hence these results re-
flect the benefit from fusion alone. As such, they provide
a lower bound on the performance improvement.

The results indicate a tradeoff when applying fusion
and parallelization. Enhancing locality and reducing the
number of barrier synchronizations with fusion must be
weighed against the overhead of strip-mining used to im-
plement shifting and peeling. For a given data size, using
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Figure 13: Benefit of fusion for LL18

more processors increases the likelihood of data fitting in
the cache of each processor, which reduces the relative
gains from improving locality by fusion. The larger data
size for LL18 causes the benefit of fusion to overcome
the overhead up to a larger number of processors than for
calc. Furthermore, grouping peeled iterations from adja-
cent blocks to permit them to be executed in parallel may
increase the number of misses for nonlocal data. The re-
sults indicate that this effect becomes significant for a large
number of processors, as can be seen for calc; the num-
ber of misses with fusion exceeds the number of misses
without fusion beyond 40 processors. These observations
suggest using knowledge of data sizes and cache sizes at
compile-time to determine the profitability of fusion.

The final set of results compares our peeling transfor-
mation with the alignment and replication transformation
proposed by Callahan [4] and Appelbe and Smith [2] (to be
discussed in section on Related Work). Figure 15 compares
the performance of the fused LL18 loop nest parallelized
using peeling with the performance of the same loop nest
parallelized using direct application of alignment and repli-
cation. In this case, it was necessary to replicate two arrays
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and two statements to enable synchronization-free parallel
execution. The figure clearly indicates that superior per-
formance is achieved using peeling, which is attributed to
the overhead associated with replication of code and data.

The results of this section have demonstrated the abil-
ity of our techniques to overcome the limitations of loop-
carried dependences for fusion and parallelism. Although

the improvement reported here for fusion is modest, it is
expected that a larger improvement will result for faster
processors. In addition, the relative cost of synchroniza-
tion increases with faster processors. As a result, the ben-
efit of reducing the number of barrier synchronizations, in
conjunction with locality enhancement, will increase.

6 Related Work

Warren [13] presents an algorithm for incrementally
adding candidate loops to a fusible set to enhance vec-
tor register reuse, and to permit contraction of temporary
arrays into scalars. However, fusion is not permitted with
loop-carried dependences or incompatible loop bounds.

Callahan [4] proposes loop alignment to allow
synchronization-free parallel execution of a loop nest, and
uses code replication to resolve conflicts in alignment re-
quirements. His approach potentially results in exponential
growth in the number of statements in the loop, and can
result in significant overhead because of the redundant ex-
ecution of replicated code.

Porterfield [11] suggests a “peel-and-jam” transforma-
tion in which iterations are peeled from the beginning or
end of one loop nest to allow fusion with another loop nest.
However, no systematic method is described for fusion of
multiple loop nests, nor is the parallelization of the fused
loop nest considered.

Appelbe and Smith [2] present a graph-based algorithm
for deriving the required alignment, replication, and re-
ordering to permit parallelization of an individual loop
nest with forward dependences. Their approach is simi-
lar to Callahan’s approach in that it incurs overhead due to
redundant execution of replicated code.

Kennedy and McKinley [6] use loop fusion and distri-
bution to enhance locality and maximize parallelism. They
focus on register reuse, and describe a fusion algorithm
for avoiding the fusion of parallel loops with serial loops.
However, they disallow fusion when loop-carried depen-
dences result or when the iteration spaces of candidate loops
are not identical.

In contrast, the shifting and peeling techniques described
in this paper allow the fusion and parallelization of multiple
loops in the presence of loop-carried dependences. The
adjustments needed for shifting and peeling are derived
for multiple loops using a simple graph-based framework.
The techniques are simpler and more efficient than the
alignment and replication techniques of both Callahan [4]
and Appelbe and Smith [2]. The transformation algorithms
for both shifting and peeling are linear in the number of
loops being fused and can be easily automated in a compiler.
A particularly unique aspect of this work is that it addresses
cache conflicts that result from bringing references to many



different arrays together in a single fused loop, an aspect
which has not been adequately addressed in the past.

7 Concluding Remarks

In this paper, we presented new techniques to improve
data locality in data-parallel programs using fusion. We
presented a shifting transformation to fuse loop nests, even
in the presence of fusion-preventing dependences. The fu-
sion of loop nests may result in loop-carried dependences,
which prevent synchronization-free parallel execution. We
presented a peeling transformation to overcome such de-
pendences and allow parallel execution with minimal syn-
chronization and without the overhead of code replication.
Conflicts in the cache among array elements can negate the
benefits of fusion. We presented cache partitioning as a
method to eliminate such conflicts in a predictable manner.

The above techniques have been evaluated using two
real applications, and experimental results on a 56-
processor KSR2 multiprocessor show up to 20% improve-
ment in performance. Larger improvements can be ex-
pected as processor speeds continue to increase with re-
spect to memory speeds. The results also indicate that
performance tradeoffs exist. Performance gains resulting
from fusion become smaller as the number of processors
becomes larger, and the data used by each processor is more
likely to remain cached. When the number of processors is
sufficiently large, the overhead of fusion outweighs its ben-
efits, and performance losses result. We conclude that the
profitability of fusion should be evaluated with knowledge
of the data size with respect to the cache size.

Future work includes the implementation of the tech-
niques in an experimental compiler system being developed
by the authors at the University of Toronto, and conducting
a more comprehensive study of the profitability of fusion
using a larger number of applications.
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