Fusion Frames and Robust Dimension Reduction

Ali Pezeshki Gitta Kutyniok Robert Calderbank
Princeton University Stanford University Princeton University
Princeton, NJ 08544 Stanford, CA 94305 Princeton, NJ 08544

pezeshki@math.princeton.edu kutyniok@stanford.edu calderbk@math.princeton.edu

Abstract— We consider the linear minimum mean- fusion frames, for which A and B can be chosen to
squared error (LMMSE) estimation of a random vector of be equal and hencgi\; P; = A1 We note that the
interest from its fusion frame measurements in presence definition given in [1] and [2] for fusion frames applies
noise and subspace erasures. Each fusion frame meayq closed and weighted subspaces in any Hilbert space.
surement is a low-dimensional vector whose elements arey swever, since the scope of this paper is limited to non-

inner products of an orthogonal basis for a fusion frame : M L :
subspace and the random vector of interest. We derive weighted subspaces R™, the definition of a fusion

bounds on the mean-squared error (MSE) and show that frame is only presented for this case.

the MSE will achieve its lower bound if the fusion frameis A fusion frame is a frame-like collection of low-
tight. We prove that tight fusion frames consisting of equi- dimensional subspaces, where a signal is represented by
dimensional subspaces have maximum robustness witha collection of vectors, whose elements are the inner
respect to erasures of one subspace, and that the optimalproducts of the signal and the orthogonal bases for
dimension depends on SNR. We also show that tight fusion the fusion frame subspaces. Similar to frames, fusion
frames consisting of equi-dimensional subspaces with equa ga meg can be used to provide a redundant representation
pairwise chordal distances are most robust with respect of a signal. In fact, in applications where data has
to two and more subspace erasures, and refer to such . o -
fusion frames asequi-distance tight fusion frames. Finally, to be processed in a distributed manner_by combining
we show that the squared chordal distance between the S€verallocally processed data vectors, fusion frames may
subspaces in such fusion frames meets the so-callgthplex Provide a more natural mathematical framework than
bound, and thereby establish a connection between equi- frames. The reader is referred to [2]-[6] for examples
distance tight fusion frames and optimal Grassmannian of applications of fusion frames in distributed sensing,
packings. parallel computing, and packet encoding.

l. INTRODUCTION The optimal reconstruction (i, norm sense) of a
deterministic signalkx € R from its fusion frame
measurements is considered in [2]. Constructing frames
that allow for robust reconstruction of a deterministic
signal in the presence of frame element erasures has
been considered by a number of authors [7]-[10]. The
construction of fusion frames for robust reconstruction of
deterministic signals in the presence of subspace erasures
has been considered in [5] and [11].

The notion of afusion frame was introduced in [1]
and further developed in [2]. A fusion frame f& is
a finite collection of subspacg®V;}¥ , in RM such that
there exist constants < A < B < oo satisfying

N
Allx|* <) |Px|* < Bx|?, for anyx € R,
=1

whereP; is the orthogonal projection ontd);. Alterna- In this paper, we consider the LMMSE estimation of
tively, {W;}Z, is a fusion frame if and only if a zero-mean random vecter € RM from its fusion
N frame measurements in presence of additive white noise
Al < ZPi < BL (1) and subspace erasures. Each fusion frame measurement
i=1 is a low-dimensional (smaller thai/) vector whose

The constants! and B are called fusion frame boundselements are inner productsefand an orthogonal basis
An important class of fusion framas the class ofight for a fusion frame subspace. We limit our analysis to the
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be achieved if the fusion frame is tight. We then analyznd
the effect of subspace erasures on the performance of
LMMSE estimators. We limit our analysis to the class
of tight fusion frames and aim to minimize tieaximal
MSE due to the erasure éfsubspaces fat = 1, k = 2,
andk > 2. We show that maximum robustness again
one subspace erasure is achieved when all subspaces < r | _ (Rux Ru
in a tight-fusion frame have equal dimensions, and that K > (x" 2 )] = <Rzz Rzz> )
the optimal dimension depends on SNR. We also show
that a tight fusion frame consisting of equi-dimensionalhere
subspaces with equal pairwiskordal distancesis max-
imally robust with respect to two and more subspace
erasures. Ve refer to such fusion framesqs-distance .is the M x L cross-covariance matrix betwesnand z,
tight fusion frames. We show that the squares of the pair-, = R”  and
wise chordal distances between the subspaces in equi® = **’
distance tight fusion frames meet the so-cakadplex
bound, and thereby establish an important connection R.. = Elzz'] = U'R, U+ o3l 2)
between the construction of such fusion frames and . . :
: . : is the L x L composite measurement covariance matrix.
optimal Grassmannian packings (cf. Conway et al. [12]). _ T T
This connection indicates that optimal Grassmannian | "€ linear MSE minimizer for estimating frorrllz
packings are fundamental for robust dimension redug.the Wiener filter or the LMMSE filteF = R..R._,
tion. which estimates by x = Fz (e.g., see [13]). The error

We note that this paper is a summary of results. V&gvariance matriR.. in this estimation is given by

have omitted many of the proofs, and derivations have
been shortened or left out entirely. A more comprehen-
sive treatment of the subject is presented in [6].

U:(Ul Uy --- UN)7

where L = 3"V m;. Then, the composite covariance
Srrgatrix betweernx andz can be written as

V4

R,. = E[xz’] = R,,U

Ree = E[(X - )A()(X - )A()T]

1L\
= (Rt + - S P
II. LMMSE ESTIMATION WITH NO ERASURES n =1

Let {W;}X, be a fusion frame foR*M with bounds The MSE is obtained by taking the trace Bf... Since
A < B andm; be the dimension oW;, i =1,....N. R — 421, it follows from (1) that

Let x € RM be a zero-mean random vector with

covariance matrixE[xx’] = R,, = o2I. We wish to M M
T

estimatex from N low-dimensional (smaller thai/) 1, B
measurement vectors € R™: given by e n

q
s

2i = Ulx+n;, i=1....N The lower bound will be achieved, if the fusion frame
! ’ oy is tight. That is, whend = B and

whereU; € RM*™: js a known but otherwise arbitrary

left-orthogonal basis forW;, ¢« = 1,...,N. That is N

U;pri = I,,,, wherel,,, is them; x m; identity matrix, Z P; = AL ©)

andU,;U! = P;, whereP; is the orthogonal projection =1

matrix onto W;. The vectorn; € R™ is an additive Taking the trace from both sides of (3) yields the bound

white noise vector with zero mean and covariance matrix 5o

Enn!] =02I,i=1,...,N. We assume that the noise N

. Z':l m; L
vectors for different subspaces are mutually uncorrelated A==l _ = 4)
and that the signal vectat and the noise vectors;, M M
i=1,... ,_N are uncorrelgted. Thus, the MSE is given by

We define the composite measurement vegtarR”
and the composite basis matfix € RM*L as MSE — Mo?2o?2 5)
- o2L "
z=(z 2L ... )T on + 7



[1l. EFFECT OFSUBSPACE ERASURES wherem; = tr[P;] is the dimension oV, and L =

We now consider the case where subspace eraSlEgﬂmi-
occur, that is, when measurement vectors from oneSince we have assumed that all one-erasures are
or more subspaces are lost or discarded. We wish &gually important we have to choose; = rn for all
determine the MSE when the LMMSE filt&, whichis ¢ = 1,...,N, so that any one-erasure results in the
calculated based on the full composite covariance mati&me amount of performance degradation. This strategy
in (2), is applied to a composite measurement vector wigh €quivalent to minimizing the maximal MSE due to
erasures. In order to maintain optimality with respect @ne subspace erasure and reduces the MSE expression

no erasures, in our analysis we assume that the fusiBr(6) to

frame {W;}¥, is tight with bound A given by (4). Mo20? ol(o? + o2)m

We con:_sider the case where ausubspac_e erasures are MSE = (Nmo2/M + o2) + (Nmo2/M + O_%)z-

equally important. In other words, we aim to minimize _ _

the maximal MSE due td erasures. As a function ofm, M SE = MSE(m) has a maximum
Let S ¢ {1,2,...,N} be the set of indices corre-atm = m, where

sponding to the erased subspaces. Then, the composite .M (N —1)ot — o202

measurement vector with erasurgse RZ may be "N (N +1)o2 +02)(1 — 202)

expressed as The MSE is monotonically increasing fon < m and

z=(I-E)z, monotonically decreasing fom > m. The smallest
whereE is anL x L block-diagonal erasure matrix whosesaluem can take under the constraint that the setof
ith diagonal block is am; x m; zero matrix, ifi ¢ S, dimensional subspasgW;}Y | remains a tight fusion

or anm,; x m; identity matrix, if; € S. frame is m,,;, = [M/N], where[-] denotes integer
The estimate ok is given byx = Fz, whereF = ceiling. We assume that the largest valuecan take is
R..R;} is the (no-erasure) LMMSE filter with errorm,, .. < M. The maximum allowable dimension,,,.
covariance matrix is determined by practical considerations. Therefore, we
R.. = E [(x - %)(x - %)7] have the following theorem.

Theorem 1. Let {W;}¥, be a tight fusion frame
= — — _ _ T 1 J=1

= E[(x-F(I-E)z)(x - FI-E)z)"]. consisting of subspaces with dimensions,;,, < m; <
The MSE for this estimate can be written as Mumaz, © = 1, ..., N. Then the maximal MSE due to the

MSE = tr[R..] = MSE, + MSE erasure of one subspace is minimized when all subspaces

_ _ in {W;}¥ | have equal dimensiom = m*, where
where M SE, = tr[R..] is the no-erasure MSE in (5)

and M SE is the extra MSE due to erasures given by Mapin, I Mipaz < M oOF
2 § if Mopnin < M < Mypge and
MSE = o’tr | o2 (Z Pi> +op (Z PZ) : = MSE(Mupin) < MSE(Mumaz),
icS icS

Munaz, Otherwise.

wherea = 02 /(Ao2 + 02).

We now show how the subspaces in the fusion franfe TWO Subspace Erasures
{W;}¥, must be constructed so that the total MSE is We now consider the case where two subspaces, say
minimized for a given number of erasures. We consid#re ith subspace and thih subspace, are erased or dis-
three scenarios: one subspace erasure, two subsgatded. We take the fusion frame to be tight and assume
erasures, and more than two subspace erasures. all subspaces have equal dimensiohto maintain MSE
optimality with respect to no erasures and one-erasures.
This reduces the minimization of the totd/ SE to
minimizing the extra MSE, which is given by

MSE = aztr[ai(Pi + Pj)2 + O',%(PZ‘ + P])]
= 20%(02 4+ o2)m* + 2% 2tr[P,Py).

A. One Subspace Erasure
If only one of the subspaces, say tlik subspace, is
erased, thed/SE is given by
MSE = MSEq + tr[a*(02 + 02)P;]

Moo | oedrad)
o i,

o+ 5L <0$L + %L)

To minimize M SE we have to choos&V; and W,
so that tfP;P;] is minimized. SinceP; and P; are



orthogonal projection matrices ontd); and WW;, the as
eigenvalues ofP;P; are squares of the cosines of the

principal angles 6,(i, j), ¢ = 1,..., M between®; and MSE = o*(o}+00) ) tr[Py]
W;. Therefore, ieS
—|—CJ£20'§Z Z tr[PZP]]

i€S jEeS,j#i
= (02 + o) [S|m’
+a?a2[S|(S| - (M - &),

M
tr[P;P;] = " cos® 0,(i, ) = M — d2(i, j),
/=1

where
M 1/2 where|S| is the cardinality ofS. Noting thatm*, d and
do(i,7) = (Z sin? 9£(i>j)> |S| are fixed, we have the following theorem.
=1 Theorem 3: Let {W;}Y, be an equi-distance tight
fusion frame withdim[W;] = m*, i = 1,...,N. Then
is known as thechordal distance [12] betweenV; and the MSE due tok subspace erasure$, < k < N is
Wij. constant.

Thus, we need to maximize the chordal distance
de(i, j). Since we have assumed that all two subspace |\, =oNNECTIONS WITHOPTIMAL
erasures are equally important, we have to construct the
subspace$V;};¥, so that any such pair has maximum |n this section, we show that tight fusion frames that
chordal distance. This strategy is equivalent to minimigonsist of equi-dimensional and equi-distance subspaces
ing the maximal MSE due to two subspace erasures.are closely related to optimal packings of subspaces.
We will show in Section IV that the subspaces in &/e start by reviewing the classical packing problem for
fusion frame consisting of equi-dimensional and equsubspaces [12], [14], [15].
distance subspaces have maximal chordal distance if angtlassical Packing Problem: For givenm, M, N, find
only if the fusion frame is tight. We refer to such & set ofim-dimensional subspacd®V;}¥ | in RM such
fusion frame as arqui-distance tight fusion frame and  that min;; d.(i, j) is as large as possible. In this case
to the corresponding subspaces@simal equi-distance e call {W,;}X | anoptimal packing.
subspaces. We defer the construction of maximal equi- The following theorem shows that if the squares of
distance subspaces to Section IV, where we explain §#@ pairwise chordal distances between a setnof
connection between this construction and the problem @fensional subspaces & meet thesimplex bound
optimal packing ofN equi-dimensional subspaces in &, (s — 1) N/[M(N — 1)], then those subspaces form
Grassmannian space [12], [14]. We have the followingh optimal packing, as the minimum of chordal distances
result concerning maximal equi-distance subspaces. cannot grow any further.

Theorem 2: Let {W;};Y, be a tight fusion frame with  Theorem 4:[12] Each packing ofn-dimensional sub-

PACKINGS

equal dimensional subspaces, whelienV;] = m*, spaceW;}Y, in RM satisfies

i = 1,...,N. Then the maximal MSE due to two

subspace erasures is minimized when the subspates o0 . m(M —m) N o

are maximal equi-distance subspaces. c(i,]) < v N_1 Bi=LeN

We now establish a connection between tight fusion
frames and optimal packings by stating the following
We now consider the case where more than twWbeorem.
subspaces are erased or discarded. Here we take thEheorem 5: Let {W;}¥, be a fusion frame of equi-
fusion frame to be an equi-distance tight fusion fran@imensional subspaces with equal pairwise chordal dis-
to maintain MSE optimality with respeét erasures, for tancesd.. Then, the fusion frame is tight if and only if

C. More Than Two Subspace Erasures

0<k<2. d? equals the simplex bound.
Let {W;}Y, be an equi-distance tight fusion frame, An intriguing consequence of Theorem 5 is as follows.
wheredim[W;] = m*, i = 1,...,N andd.(i,j) = d. Corollary 1: Equi-distance tight fusion frames are

for any (i, j) pair withi # j. Then,M SE can be written optimal Grassmannian packings.



V. CONCLUSIONS [9] R. B. Holmes and V. |. Paulsen, “Optimal frames for erasiir

. . . Linear Algebra Appl., vol. 377, pp. 31-51, 2004.
We considered the LMMSE estimation of a Zer?lO] B. G. Bodmann and V. I. Paulsen, “Frames, graphs and era-

mean random vector, with covarianegl, from its low- sures,”Linear Algebra Appl., vol. 404, pp. 118-146, 2005.
dimensional fusion frame measurements in the presefité P. G. Casazza and G. Kutyniok, “Robustness of fusiomés

; ; under erasures of subspaces and of local frame vecRadgn
of noise and subspace erasures. We showed that, in the transforms, geometry, and wavelets (New Orleans, LA, 2006).

absenc_e of ergsures, th? MSE will aChi_eve its lower Contemp. Math., Amer. Math. Soc., Providence, RI, to appear.
bound if the fusion frame is tight. We restricted our ergt2] J. H. Conway, R. H. Hardin, and N. J. A. Sloane, “Packing$,
sure analysis to the class of tight fusion frames and con- Planes, etc.. packings in Grassmannian spadexgeriment.

; P : Math., vol. 5, no. 2, pp. 139-159, 1996.
sidered minimizing the maximal MSE due kosubspace [13] L. L. Scharf, Satistical Signal Procesing.  MA: Addison-

erasures. We showed that maximum robustness against wesley, 1991.
one subspace erasures is achieved when all subspacéstbfd. H. Conway and N. J. A. Sloan&phere Packings, Lattices
the tight fusion frame have equal dimensions, Where\ﬂ:} and Groups, 2nd ed. New York: Springer, 1993.

. . . A. R. Calderbank, R. H. Hardin, E. M. Rains, P. W. Shor,
optimal dimension depends on the SNR. We also sho and N. J. A. Sloane, “A group-theoretic framework for the

that equi-distance tight fusion frames are maximally construction of packings in Grassmannian spackslgebraic
robust against two and more than two subspace erasures. Combin,, vol. 9, no. 2, pp. 129-140, 1999.

In addition, we established that equi-distance tight fasio

frames are in fact optimal Grassmannian packings, and

thereby highlighted the importance of optimal Grassman-

nian packings for robust dimension reduction.
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