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Abstract— We consider the linear minimum mean-
squared error (LMMSE) estimation of a random vector of
interest from its fusion frame measurements in presence
noise and subspace erasures. Each fusion frame mea-
surement is a low-dimensional vector whose elements are
inner products of an orthogonal basis for a fusion frame
subspace and the random vector of interest. We derive
bounds on the mean-squared error (MSE) and show that
the MSE will achieve its lower bound if the fusion frame is
tight. We prove that tight fusion frames consisting of equi-
dimensional subspaces have maximum robustness with
respect to erasures of one subspace, and that the optimal
dimension depends on SNR. We also show that tight fusion
frames consisting of equi-dimensional subspaces with equal
pairwise chordal distances are most robust with respect
to two and more subspace erasures, and refer to such
fusion frames asequi-distance tight fusion frames. Finally,
we show that the squared chordal distance between the
subspaces in such fusion frames meets the so-calledsimplex
bound, and thereby establish a connection between equi-
distance tight fusion frames and optimal Grassmannian
packings.

I. INTRODUCTION

The notion of afusion frame was introduced in [1]
and further developed in [2]. A fusion frame forR

M is
a finite collection of subspaces{Wi}

N
i=1

in R
M such that

there exist constants0 < A ≤ B < ∞ satisfying

A‖x‖2 ≤

N∑

i=1

‖Pix‖
2 ≤ B‖x‖2, for any x ∈ R

M ,

wherePi is the orthogonal projection ontoWi. Alterna-
tively, {Wi}

N
i=1

is a fusion frame if and only if

A I ≤

N∑

i=1

Pi ≤ B I. (1)

The constantsA andB are called fusion frame bounds.
An important class of fusion framesis the class oftight
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fusion frames, for which A and B can be chosen to
be equal and hence

∑N
i=1

Pi = A I. We note that the
definition given in [1] and [2] for fusion frames applies
to closed and weighted subspaces in any Hilbert space.
However, since the scope of this paper is limited to non-
weighted subspaces inRM , the definition of a fusion
frame is only presented for this case.

A fusion frame is a frame-like collection of low-
dimensional subspaces, where a signal is represented by
a collection of vectors, whose elements are the inner
products of the signal and the orthogonal bases for
the fusion frame subspaces. Similar to frames, fusion
frames can be used to provide a redundant representation
of a signal. In fact, in applications where data has
to be processed in a distributed manner by combining
several locally processed data vectors, fusion frames may
provide a more natural mathematical framework than
frames. The reader is referred to [2]–[6] for examples
of applications of fusion frames in distributed sensing,
parallel computing, and packet encoding.

The optimal reconstruction (inℓ2 norm sense) of a
deterministic signalx ∈ R

M from its fusion frame
measurements is considered in [2]. Constructing frames
that allow for robust reconstruction of a deterministic
signal in the presence of frame element erasures has
been considered by a number of authors [7]–[10]. The
construction of fusion frames for robust reconstruction of
deterministic signals in the presence of subspace erasures
has been considered in [5] and [11].

In this paper, we consider the LMMSE estimation of
a zero-mean random vectorx ∈ R

M from its fusion
frame measurements in presence of additive white noise
and subspace erasures. Each fusion frame measurement
is a low-dimensional (smaller thanM ) vector whose
elements are inner products ofx and an orthogonal basis
for a fusion frame subspace. We limit our analysis to the
case where the signal covariance matrixRxx = E[xx

T ]
is Rxx = σ2

xI. We derive bounds on the MSE in the
absence of erasures and show that the lower bound will



be achieved if the fusion frame is tight. We then analyze
the effect of subspace erasures on the performance of
LMMSE estimators. We limit our analysis to the class
of tight fusion frames and aim to minimize themaximal
MSE due to the erasure ofk subspaces fork = 1, k = 2,
andk > 2. We show that maximum robustness against
one subspace erasure is achieved when all subspaces
in a tight-fusion frame have equal dimensions, and that
the optimal dimension depends on SNR. We also show
that a tight fusion frame consisting of equi-dimensional
subspaces with equal pairwisechordal distances is max-
imally robust with respect to two and more subspace
erasures. We refer to such fusion frames asequi-distance
tight fusion frames. We show that the squares of the pair-
wise chordal distances between the subspaces in equi-
distance tight fusion frames meet the so-calledsimplex
bound, and thereby establish an important connection
between the construction of such fusion frames and
optimal Grassmannian packings (cf. Conway et al. [12]).
This connection indicates that optimal Grassmannian
packings are fundamental for robust dimension reduc-
tion.

We note that this paper is a summary of results. We
have omitted many of the proofs, and derivations have
been shortened or left out entirely. A more comprehen-
sive treatment of the subject is presented in [6].

II. LMMSE ESTIMATION WITH NO ERASURES

Let {Wi}
N
i=1

be a fusion frame forRM with bounds
A ≤ B andmi be the dimension ofWi, i = 1, . . . , N .
Let x ∈ R

M be a zero-mean random vector with
covariance matrixE[xx

T ] = Rxx = σ2
xI. We wish to

estimatex from N low-dimensional (smaller thanM )
measurement vectorszi ∈ R

mi given by

zi = U
T
i x + ni, i = 1, . . . , N,

whereUi ∈ R
M×mi is a known but otherwise arbitrary

left-orthogonal basis for Wi, i = 1, . . . , N . That is
U

T
i Ui = Imi

, whereImi
is themi×mi identity matrix,

andUiU
T
i = Pi, wherePi is the orthogonal projection

matrix ontoWi. The vectorni ∈ R
mi is an additive

white noise vector with zero mean and covariance matrix
E[nin

T
i ] = σ2

nI, i = 1, . . . , N . We assume that the noise
vectors for different subspaces are mutually uncorrelated,
and that the signal vectorx and the noise vectorsni,
i = 1, . . . , N are uncorrelated.

We define the composite measurement vectorz ∈ R
L

and the composite basis matrixU ∈ R
M×L as

z = (zT
1 z

T
2 · · · z

T
N )T

and

U = (U1 U2 · · · UN ),

where L =
∑N

i=1
mi. Then, the composite covariance

matrix betweenx andz can be written as

E

[(
x

z

)(
x

T
z

T
)]

=

(
Rxx Rxz

Rzx Rzz

)
,

where

Rxz = E[xz
T ] = RxxU

is theM ×L cross-covariance matrix betweenx andz,
Rzx = R

T
xz, and

Rzz = E[zzT ] = U
T
RxxU + σ2

nIL (2)

is theL×L composite measurement covariance matrix.
The linear MSE minimizer for estimatingx from z

is the Wiener filter or the LMMSE filterF = RxzR
−1
zz ,

which estimatesx by x̂ = Fz (e.g., see [13]). The error
covariance matrixRee in this estimation is given by

Ree = E[(x − x̂)(x − x̂)T ]

=
(
R

−1

xx +
1

σ2
n

N∑

i=1

Pi

)−1

.

The MSE is obtained by taking the trace ofRee. Since
Rxx = σ2

xI, it follows from (1) that

M
1

σ2

x

+ B
σ2

n

≤ (MSE = tr{Ree}) ≤
M

1

σ2

x

+ A
σ2

n

.

The lower bound will be achieved, if the fusion frame
is tight. That is, whenA = B and

N∑

i=1

Pi = AI. (3)

Taking the trace from both sides of (3) yields the bound
A as

A =

∑N
i=1

mi

M
=

L

M
. (4)

Thus, the MSE is given by

MSE =
Mσ2

nσ2
x

σ2
n + σ2

x
L

M

. (5)



III. E FFECT OFSUBSPACEERASURES

We now consider the case where subspace erasures
occur, that is, when measurement vectors from one
or more subspaces are lost or discarded. We wish to
determine the MSE when the LMMSE filterF, which is
calculated based on the full composite covariance matrix
in (2), is applied to a composite measurement vector with
erasures. In order to maintain optimality with respect to
no erasures, in our analysis we assume that the fusion
frame {Wi}

N
i=1

is tight with boundA given by (4).
We consider the case where allk-subspace erasures are
equally important. In other words, we aim to minimize
the maximal MSE due tok erasures.

Let S ⊂ {1, 2, . . . , N} be the set of indices corre-
sponding to the erased subspaces. Then, the composite
measurement vector with erasuresz̃ ∈ R

L may be
expressed as

z̃ = (I − E)z,

whereE is anL×L block-diagonal erasure matrix whose
ith diagonal block is anmi × mi zero matrix, if i /∈ S,
or anmi × mi identity matrix, if i ∈ S.

The estimate ofx is given by x̃ = Fz̃, whereF =
RxzR

−1
zz is the (no-erasure) LMMSE filter with error

covariance matrix

R̃ee = E
[
(x − x̃)(x − x̃)T

]

= E
[
(x − F(I − E)z)(x − F(I − E)z)T

]
.

The MSE for this estimate can be written as

MSE = tr[R̃ee] = MSE0 + MSE,

whereMSE0 = tr[Ree] is the no-erasure MSE in (5)
andMSE is the extra MSE due to erasures given by

MSE = α2tr


σ2

x

(
∑

i∈S

Pi

)2

+ σ2

n

(
∑

i∈S

Pi

)
 ,

whereα = σ2
x/(Aσ2

x + σ2
n).

We now show how the subspaces in the fusion frame
{Wi}

N
i=1

must be constructed so that the total MSE is
minimized for a given number of erasures. We consider
three scenarios: one subspace erasure, two subspace
erasures, and more than two subspace erasures.

A. One Subspace Erasure

If only one of the subspaces, say theith subspace, is
erased, thenMSE is given by

MSE = MSE0 + tr[α2(σ2

x + σ2

n)Pi]

=
Mσ2

xσ2
n

σ2
n + σ2

x

M L
+

σ4
x(σ2

x + σ2
n)

(
σ2

n + σ2

x

M L
)2

mi, (6)

where mi = tr[Pi] is the dimension ofWi and L =∑N
i=1

mi.
Since we have assumed that all one-erasures are

equally important we have to choosemi = m for all
i = 1, . . . , N , so that any one-erasure results in the
same amount of performance degradation. This strategy
is equivalent to minimizing the maximal MSE due to
one subspace erasure and reduces the MSE expression
in (6) to

MSE =
Mσ2

xσ2
n

(Nmσ2
x/M + σ2

n)
+

σ4
x(σ2

x + σ2
n)m

(Nmσ2
x/M + σ2

n)2
.

As a function ofm, MSE = MSE(m) has a maximum
at m = m̃, where

m̃ =
M

N

(N − 1)σ4
n − σ2

xσ
2
n

((N + 1)σ2
n + σ2

x)(1 − 2σ2
x)

.

The MSE is monotonically increasing form < m̃ and
monotonically decreasing form > m̃. The smallest
valuem can take under the constraint that the set ofm-
dimensional subspaces {Wi}

N
i=1

remains a tight fusion
frame is mmin = ⌈M/N⌉, where ⌈·⌉ denotes integer
ceiling. We assume that the largest valuem can take is
mmax ≤ M . The maximum allowable dimensionmmax

is determined by practical considerations. Therefore, we
have the following theorem.

Theorem 1: Let {Wi}
N
i=1

be a tight fusion frame
consisting of subspaces with dimensionsmmin ≤ mi ≤
mmax, i = 1, . . . , N . Then the maximal MSE due to the
erasure of one subspace is minimized when all subspaces
in {Wi}

N
i=1

have equal dimensionm = m∗, where

m∗ =





mmin, if mmax ≤ m̃ or

if mmin ≤ m̃ ≤ mmax and

MSE(mmin) ≤ MSE(mmax),

mmax, otherwise.

B. Two Subspace Erasures

We now consider the case where two subspaces, say
the ith subspace and thejth subspace, are erased or dis-
carded. We take the fusion frame to be tight and assume
all subspaces have equal dimensionm∗ to maintain MSE
optimality with respect to no erasures and one-erasures.
This reduces the minimization of the totalMSE to
minimizing the extra MSE, which is given by

MSE = α2tr[σ2

x(Pi + Pj)
2 + σ2

n(Pi + Pj)]

= 2α2(σ2

x + σ2

n)m∗ + 2α2σ2

xtr[PiPj ].

To minimize MSE we have to chooseWi andWj,
so that tr[PiPj ] is minimized. SincePi and Pj are



orthogonal projection matrices ontoWi and Wj , the
eigenvalues ofPiPj are squares of the cosines of the
principal angles θℓ(i, j), ℓ = 1, . . . ,M betweenWi and
Wj. Therefore,

tr[PiPj ] =

M∑

ℓ=1

cos2 θℓ(i, j) = M − d2

c(i, j),

where

dc(i, j) =

(
M∑

ℓ=1

sin2 θℓ(i, j)

)1/2

is known as thechordal distance [12] betweenWi and
Wj.

Thus, we need to maximize the chordal distance
dc(i, j). Since we have assumed that all two subspace
erasures are equally important, we have to construct the
subspaces{Wi}

N
i=1

so that any such pair has maximum
chordal distance. This strategy is equivalent to minimiz-
ing the maximal MSE due to two subspace erasures.

We will show in Section IV that the subspaces in a
fusion frame consisting of equi-dimensional and equi-
distance subspaces have maximal chordal distance if and
only if the fusion frame is tight. We refer to such a
fusion frame as anequi-distance tight fusion frame and
to the corresponding subspaces asmaximal equi-distance
subspaces. We defer the construction of maximal equi-
distance subspaces to Section IV, where we explain the
connection between this construction and the problem of
optimal packing ofN equi-dimensional subspaces in a
Grassmannian space [12], [14]. We have the following
result concerning maximal equi-distance subspaces.

Theorem 2: Let {Wi}
N
i=1

be a tight fusion frame with
equal dimensional subspaces, wheredim[Wi] = m∗,
i = 1, . . . , N . Then the maximal MSE due to two
subspace erasures is minimized when the subspacesWi

are maximal equi-distance subspaces.

C. More Than Two Subspace Erasures

We now consider the case where more than two
subspaces are erased or discarded. Here we take the
fusion frame to be an equi-distance tight fusion frame
to maintain MSE optimality with respectk erasures, for
0 ≤ k ≤ 2.

Let {Wi}
N
i=1

be an equi-distance tight fusion frame,
wheredim[Wi] = m∗, i = 1, . . . , N and dc(i, j) = dc

for any(i, j) pair with i 6= j. Then,MSE can be written

as

MSE = α2(σ2

x + σ2

n)
∑

i∈S

tr[Pi]

+α2σ2

x

∑

i∈S

∑

j∈S,j 6=i

tr[PiPj ]

= α2(σ2

x + σ2

n)|S|m∗

+α2σ2

x|S|(|S| − 1)(M − d2

c),

where|S| is the cardinality ofS. Noting thatm∗, d2
c and

|S| are fixed, we have the following theorem.
Theorem 3: Let {Wi}

N
i=1

be an equi-distance tight
fusion frame withdim[Wi] = m∗, i = 1, . . . , N . Then
the MSE due tok subspace erasures,3 ≤ k < N is
constant.

IV. CONNECTIONS WITH OPTIMAL PACKINGS

In this section, we show that tight fusion frames that
consist of equi-dimensional and equi-distance subspaces
are closely related to optimal packings of subspaces.
We start by reviewing the classical packing problem for
subspaces [12], [14], [15].

Classical Packing Problem: For givenm,M,N , find
a set ofm-dimensional subspaces{Wi}

N
i=1

in R
M such

that mini6=j dc(i, j) is as large as possible. In this case
we call {Wi}

N
i=1

an optimal packing.
The following theorem shows that if the squares of

the pairwise chordal distances between a set ofm-
dimensional subspaces ofR

M meet thesimplex bound
m(M − m)N/[M(N − 1)], then those subspaces form
an optimal packing, as the minimum of chordal distances
cannot grow any further.

Theorem 4:[12] Each packing ofm-dimensional sub-
spaces{Wi}

N
i=1

in R
M satisfies

d2

c(i, j) ≤
m(M − m)

M

N

N − 1
, i, j = 1, . . . , N.

We now establish a connection between tight fusion
frames and optimal packings by stating the following
theorem.

Theorem 5: Let {Wi}
N
i=1

be a fusion frame of equi-
dimensional subspaces with equal pairwise chordal dis-
tancesdc. Then, the fusion frame is tight if and only if
d2

c equals the simplex bound.
An intriguing consequence of Theorem 5 is as follows.
Corollary 1: Equi-distance tight fusion frames are

optimal Grassmannian packings.



V. CONCLUSIONS

We considered the LMMSE estimation of a zero
mean random vector, with covarianceσ2

xI, from its low-
dimensional fusion frame measurements in the presence
of noise and subspace erasures. We showed that, in the
absence of erasures, the MSE will achieve its lower
bound if the fusion frame is tight. We restricted our era-
sure analysis to the class of tight fusion frames and con-
sidered minimizing the maximal MSE due tok subspace
erasures. We showed that maximum robustness against
one subspace erasures is achieved when all subspaces of
the tight fusion frame have equal dimensions, where the
optimal dimension depends on the SNR. We also showed
that equi-distance tight fusion frames are maximally
robust against two and more than two subspace erasures.
In addition, we established that equi-distance tight fusion
frames are in fact optimal Grassmannian packings, and
thereby highlighted the importance of optimal Grassman-
nian packings for robust dimension reduction.

ACKNOWLEDGMENT

G. Kutyniok would like to thank Peter Casazza, Shi-
dong Li, and Christopher Rozell for discussions about
fusion frames. She is indebted to Minh Do and Richard
Baraniuk for a discussion about applications of fusion
frames during the 2007 Von Neuman Symposium in
Snow Bird, Utah. This work was conducted when G.
Kutyniok was a visitor at PACM, Princeton University,
and she would like to thank PACM for their hospitality.

REFERENCES

[1] P. G. Casazza and G. Kutyniok, “Frames of subspaces,” in
Wavelets, frames and operator theory, ser. Contemp. Math.
Providence, RI: Amer. Math. Soc., 2004, vol. 345, pp. 87–113.

[2] P. G. Casazza, G. Kutyniok, and S. Li, “Fusion frames and dis-
tributed processing,”Appl. Comput. Harmon. Anal., to appear.

[3] P. J. Bjørstad and J. Mandel, “On the spectra of sums of
orthogonal projections with applications to parallel computing,”
BIT, vol. 1, no. 1, pp. 76–88, 1991.

[4] C. J. Rozell and D. H. Johnson, “Analyzing the robustnessof
redundant population codes in sonsory and feature extraction
systems,”Neurocomputing, vol. 69, pp. 1215–1218, 2006.

[5] B. G. Bodmann, “Optimal linear transmission by loss-
insensitive packet encoding,”Appl. Comput. Harmon. Anal.,
vol. 22, no. 3, pp. 274–285, 2007.

[6] G. Kutyniok, A. Pezeshki, R. Calderbank, and T. Liu, “Robust
dimension reduction, fusion frames, and Grassmannian pack-
ings,” Applied and Computational Harmonic Analysis, submit-
ted Sep. 2007.
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