
Spatially Distributed Normative Infrastructure

Fabio Y. Okuyama1, Rafael H. Bordini2, and Antônio Carlos da Rocha Costa3

1 Programa de Pós-Graduação em Computação
Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre–RS, Brazil
okuyama@inf.ufrgs.br

2 Department of Computer Science – University of Durham
Durham DH1 3LE, U.K.

R.Bordini@durham.ac.uk

3 Escola de Informática – Universidade Católica de Pelotas (UCPel)
Pelotas–RS, Brazil

rocha@atlas.ucpel.tche.br

Abstract. In previous works we have presented a model to describe and simu-
late environment for situated multi-agent systems, that we called ELMS. Here, we
present an extensions to our model that provide means to have normative infor-
mation distributed in the environment. Organisational structures for multi-agent
systems are usually defined independently of any spatial or temporal structure.
Therefore, when the multi-agent system is situated in a spatial environment, there
is usually a conceptual gap between the definition of the system’s organisational
structures and the definition of the environment. Spatially distributing the norma-
tive information over the environment is a natural way to simplify the definition of
organisational structures and the development of large-scale multi-agent systems.
By distributing the normative information in different spatial locations, we allow
agents to directly access the relevant information needed in each environmental
context. The extensions to our model for multi-agent environments, allows the
definition of spatially distributed norms and the means to distribute and handle
such objects in a shared environment.

1 Introduction

The environment is an important part of Multi-Agent Systems (MAS), even more for
systems of situated agents. Multi-agent systems are usually designed as a set of agents,
the environment where they interact, social structures, and the possible interactions
among these components.

In previous works, we presented a language that allows MAS designers to describe,
at a high level, environments for situated multi-agent systems [12, 1]. The language
is called ELMS, and was created to be part of a platform for the development of (so-
cial) simulations based on multi-agent systems. In this paper, we present extensions that
complements the environment description with structures that by allowing the distribu-
tion of normative information over the environment supporting a connection among the
environment and the organisational structures.

In particular, we present here a set of concepts for a spatially distributed infrastruc-
ture formed by normative objects, normative places and norm supervisors. This infras-
tructure in our view will facilitate the modeling of various real-world situation, particu-
larly for simulation, but more generally also for coordination of large-scale multi-agent
systems.

To understand the notion of normative object, consider the posters one typically sees
in public places (such as libraries or bars) saying “Please be quiet” or “No smoking
in this area”. Human societies often resort to this mechanism for decentralising the
burden of regulating social behaviour; people then adopt such norms whenever they
have visual access to such posters. This should be equally efficient for computational
systems because it avoids the need for having all the norms hard-wired in the agents
or the need to providing a complete, exhaustive representation of all social norms in a
single public structure, known to all agents, as it is usually the case in approaches to
agent organisations.

The normative places are zones were the normative objects are pertinent. As an
example, consider a research group where there are researcher agents and its main
objective is to do its research, what can be done at the laboratory and at the library. The
interactions at the laboratory among researchers, staff and with the environment are to
be outlined in the spatial scene of the laboratory space. The information about how to
behave in a library is defined in the library spatial location, where the researches will
also assume the role of library user. Normative information relevant for each such site
(and each place at each site) can be posted to the agents with the help of normative
objects. The norm supervisor agents, are a special class of agents that monitors the
compliance of norms in the MAS. What differs in norm supervisors agents is that they
are enabled to receive normative information that are not specifically relevant to them.
They may be system agents or plain agents with such functionality enabled.

In summary, the extensions we introduce here support situated norms and leaves the
necessary room for the inclusion of group structures that are spatially situated within a
(simulated) physical environment. This is done using two means: first, normative ob-
jects, which are objects that can contain normative information; and second, a norma-
tive principle for situated norms, conceived as a special form of conditional rule, where
an explicit condition on an agent’s perception of a normative object appears: ‘When
playing the relevant role and being physically situated within the confines referred by
a situated norm N expressed in a normative object previously perceived, the agent is
required to reason about following norm N ; otherwise, it is excused from reason about
it’. Also, normative objects may be directed towards a specific role in a given organ-
isation. We can thus model things such as a sign saying that students are not allowed
beyond the library desk (while members of staff are).

In the next section, we briefly present our platform and the various component lan-
guages we use to model multi-agent systems. In Section 3, we briefly review how an
environment should be modelled using our approach. In Section 4, we present the nor-
mative extensions that we introduce in this paper. We then illustrate our approach with
an example in Section 5; the example is based on the scenario presented in [4]. We
discuss related work in Section 6, then conclude the paper.

2 The MAS-SOC Platform

One of the main goals of the MAS-SOC simulation platform (Multi-Agent Simulations
for the SOCial Sciences) is to provide a framework for the creation of agent-based
simulations which do not require too much experience in programming from users, yet
allowing the use of state-of-the-art agent technologies. In particular, it should allow for
the design and implementation of simulations with cognitive agents.

In our approach, an agent’s individual reasoning is specified in an extended version
of AgentSpeak [14], as interpreted by Jason [2], an Open Source agent platform4 based
on JAVA. The extensions allow, among other things, for speech-act based agent com-
munication, and there is ongoing work to allow for ontologies as part of an AgentSpeak
agent’s belief base.

The environments where agents are situated are specified in ELMS, a language we
have designed for the description of multi-agent environments [12]. For more details on
MAS-SOC, refer to [1]. We here concentrate on the ELMS extensions to describe ba-
sic organisational structures and social norms, and to relate an organisational structure
and the relevant normative aspects to the spatial structures defined within the physical
environment.

3 Modelling Physical Environments

As presented in [12], we developed an language to describe environments and the means
to execute the simulated environment. Agents in a multi-agent system interact with the
environment where they are situated and interact with each other (possibly through
the shared environment). Therefore, the environment has an important role in a multi-
agent system, whether the environment is the Internet, the real world, or some simulated
environment.

We understand as environment modelling, the modelling of external aspects that an
agent needs as input to its reasoning and for deciding on its course of action. In a multi-
agent scenario, how one agent percepts another is an important issue. Thus, modelling
explicitly the agent “body” (or avatar) should also be included on environment mod-
elling. Further, it is necessary to model explicitly the physical actions and perception
capabilities that the agents are allowed in a given environment.

The language is called ELMS (Environment Description Language for Multi-Agent
Simulation). Below we briefly review how a physical environment is described using
this language.

To define an environment using ELMS, the following classes of constructs can be
used:

– Agent Body: the agent’s characteristics that are perceptible to other agents. Agent
“bodies” are defined by a set of properties that characterise it and are perceptible to
other agents. Such properties are represented as string, integer, float, and boolean
values. Each “body” is associated with a set of actions that the agent is allowed to
perform and of environment properties that the agent can perceive.

4 Available at http://jason.sourceforge.net.

– Agent Sensorial Capabilities (Perception): specifies what kind of the environ-
ment properties that will be perceptible to each agent that have a “body” with such
capacity. It is defined as the environmental properties that will be sent to the agent
and the specific circumstances where they are possible (e.g. an agent may be able
to see in a radius of 2 cells only if there are nothing obstructing its vision).

– Agent Effective Capacities (Action): specifies what kind of environment changes
that is possible to an agent that have a “body” with such capacity. These changes
are defined as assignments of values to the attributes of environments5. The produc-
tion (instantiation) of previously defined resources (objects), and the consumption
(deletion) of existing instances may also be part of an action description. Also, the
conditions under such action may be successfully6 performed should be specified,
for example a robot may walk only on a certain type of terrain, i.e. the action will
fail if the terrain type is wrong.

– Physical Environment Objects and Resources: the objects and resources that are
present in the environment. Although objects and resources can have some concep-
tual differences, they are represented by same structure in ELMS. Agents interact
with objects through the actions over the environment. Object structures are defined
by a set of properties that are relevant to the modelling and may be perceived by an
agent. In the same way as the “bodies” of the agents, the resources are represented
by string, integer, float, and boolean values. each object can also be associated with
a set of reactions that may happen as consequence of an agent’s actions.

– Object Reactions: the objects can “react”, under specific circumstances, in order to
respond to actions performed by the agents in the environment. Such reactions are
given as the assignment of values to properties, the creation of previously defined
object instances, and the deletion of existing object instances.

– Space Structure (Grid): the space is (optionally) divided into cells forming a grid
that represents the spatial structure of the environment. When a grid is used, it can
be defined in 2 or 3 dimensions. As for resources, each cell can have reactions
associated to it. Although the specified set of reactions apply to all of the cells,
this does not mean that all cells will behave equally, since they may be in different
contexts (i.e., each cell has independent attributes, thus having different contents
and, clearly, different positions, which can all affect the particular reactions).

3.1 Notes on Environment Descriptions

– Perceptions: agents do not normally have complete access to the environment.
Perception of the environment will not normally give complete and accurate infor-
mation about the whole environment and the other agents in it. However, since such
restriction is not imposed by the ELMS model itself, designers can choose to create
fully accessible environments if this is appropriate for a particular application.

5 Note that agent bodies are also properties of the environment.
6 In the current implementation of the model it is only possible to perform successful actions,

otherwise the action fails completely, actions with partial success may be available in future
versions.

– Actions: it helps improve the coherence of the environment if agent actions are
defined as simple “atomic” actions. This creates, of course, the possibility of an-
other agent or the environment interfere on the realisation of an agent’s plan (chain
of actions). However, as reasoning about action choices is meant to be part of the
agents’ “mind”, a whole course of action should not be defined as a single, com-
plex action made available to agents by the environment definition. Also, “simple
atomic actions” allow a wider range of possible action interleavings.

– Reactions: all object reactions triggered by some change in the environment are
executed in a single simulation cycle. This is different from agent actions, as each
agent can execute only one action per cycle.

Additionally to the constructs mentioned above, the following operational con-
structs are used in our approach to model the (simulated) physical environment.

– Constructors: Each agent and resource may need to be initialised at the moment of
its instantiation. This is defined by a list of initial value assignment to its attributes.

– Observables: A list of environment properties whose values are to be dis-
played/logged; these are the specific properties of a simulation that the user wants
to observe/analyse.

The simulation of the environment itself is done by a process that controls the ac-
cess and changes made to the data structure that represents the environment (in fact,
only such process can access the data structure); the process is called the environment
controller. The data structure that represents the environment is generated by the ELMS
interpreter for a specification in ELMS given as input. In each simulation cycle, the
environment controller sends to all agents currently taking part in the simulation the
percepts to which they have access (as specified in ELMS). Recall that ELMS envi-
ronments are designed for cognitive agents, so perception is transmitted in messages
as a list of ground logical facts. After sending perception, the process waits for the ac-
tions that the agents have chosen to perform in that simulation cycle and then execute
the action over the environment, what means to perform the changes specified in the
actions on the environment data structures. Finally, the environment sends the updated
perceptions to the agents, starting a new cycle.

4 Normative Infrastructure

Typically, environments will have some objects aimed at informing agents about norms,
give some advice, or warn about potential dangers. For example, a poster fixed on a wall
of a library asking for “silence” is an object of the environment, but also informs about
a norm that should be respected within that space. Another example are traffic signs,
which give advice about directions or regulate priorities in crossings. The existence of
such signs, that we call normative objects, implies the existence of a regulating code in
such context, that we call situated norms.

In the examples above, the norms are only meant to be followed within certain
boundaries of space or time and lose their effect completely if those space and time
restrictions are not met, which is the initial motivation for situated norms. Another

important advantage of modelling some norms as situated norms is the fact that the
spatial context where the norm is to be followed is immediately determined. Thus, the
norm can be “pre-compiled” to its situated form, making it easier for the agents to
operationalise the norm, and also facilitating the verification of norm compliance.

In this section we present the extensions to ELMS, these extensions are meant to
provide an infrastructure in order to allow the distribution of normative information
on the environment. Such infrastructure intends to be a connection point between the
environment and organisational structures, improving significantly the possibilities of
our simulation platform.

4.1 Normative Places

As described in previous sections, we have developed a language to describe environ-
ments for situated multi-agent systems. The description, based on the concepts of agent
bodies, objects, and an optional grid, did not offer the means to define the notion of a
“place”, i.e., that a set of cells would be related to a concept of a place with similarities:
places where activities are done or places where groups or agent settings are related;
we refer to them as Normative Places. This is effectively used to represent the phys-
ical space where an organisation takes place; that is, the spatial scope of a particular
organisation, and consequently the norms related to the activities of such organisation.

A Normative Place is defined simply by its name and the set of cells that are part
of it. Each normative place is a set of cells with a label, that may have intersection
with other sets, or even be contained by another. For example a school may have a
large set of cells where some cells refer to a normative place “classroom”, and another
to its “library”. The normative place definition would allow for the definition of the
spatial location where certain norms are valid and relevant, as it will be seen in the next
section. As future work, a normative place is intended to be also associated to group
structures, creating a connection between the organisational structures and the physical
environment. We plan to make possible the association of any existing approach to agent
organisations, such as MOISE+ [11], OperA/OMNI [16], GAIA [18], or approaches
based on “electronic institutions” [7, 8], to each normative place.

In order to ease the definition of repetitive normative place structures, classes can be
defined then “instantiated” in specific positions of the grid. Examples of such definitions
are as follows.

<NORMATIVE-PLACE-TYPE NAME="library"/>

<NORMATIVE-PLACE-TYPE NAME="classroom"/>

<PLACE NAME="lib1" NORMATIVE-PLACE-TYPE="library">
<CELL X="0" Y="0"/>
<CELL X="0" Y="1"/>

</PLACE>

<PLACE NAME="cr1" NORMATIVE-PLACE-TYPE="classroom">
<CELL X="2" Y="0">

</PLACE>

4.2 Normative Objects

Typically, environments will have some objects aimed at informing agents about norms,
give some advice, or warn about potential dangers. For example, a poster fixed on a wall
of a library asking for “silence” is an object of the environment, but also informs about
a norm that should be respected within that space. Another example are traffic signs,
which give advice about directions or regulate priorities in crossings. The existence of
such signs implies the existence of a regulating code to be followed in such places.

In this extended version of ELMS, there are special types of objects that contain
normative information, which we refer to as normative objects. Those objects are “read-
able” by agents under specific individual conditions. For example, an agent can read a
specific rule if it has a specific ability to perceive that type of object. In the most typical
case, the condition is simply being physically close to the object.

Such objects can be defined before the simulation starts, or can be created dynami-
cally during the simulation. Each object can be placed in a collection of cells of the spa-
tial grid of the environment. Such cells represent the normative place where the content
of the normative object can be accessed and is relevant. If such collection of cells is not
given, the normative object will only be perceived by agents under specific conditions.
The conditions under which the normative objects can be perceived are defined by the
simulation designer using the usual ELMS constructs for defining conditions.

The normative information in a normative object is “read” by an agent through its
perceptive ability. It contains the norm itself and meta-information (e.g., which agent
or institution created the norm). The normative objects can be defined before the simu-
lation starts in a norms definition file or during the simulation, by the definition of the
following properties:

– Type: the type of the normative information contained in the object; it determines
the level of importance (e.g. a warning, an obligation, a direction);

– Issued by: where the power underlying the norm comes from (e.g., an agent, a
group, an institution).

– Norm: a string that represents the normative information; this should be in the for-
mat of AgentSpeak predicates in the case of MAS-SOC environments, or whatever
format the targeted agents will be able to understand.

– Placement: the set of normative spaces where the normative information applies. If
omitted, the object is assumed to be accessible from anywhere, but normally under
conditions determined by the designer; see the next item. This also determines the
space where the normative information applies.

– Condition: conditions under which the normative information can be perceived.
The conditions can be associated with groups, roles, abilities, and current physical
placement and orientation of agents and objects.

– Id: identification string for eventual deletion/edition of the normative object.

We now briefly describe how the agents will receive normative information from
normative objects. Whenever the agent position is such that access to the normative
object is accessible, and the Condition is satisfied, the agent will receive perception of
the form:

rule([PLACE],[GROUP],[ISSUED BY],[NORM])
Ex: rule(home, family, parents, obligation(child,play(TOY),tidy(TOY)))

The example above can be read as: “This is rule in group family, issued by the par-
ents, with application at the normative place home (see below), that says: if the action
play(TOY) is done by an agent of role child, then it is an obligation of that agent to
do tidy(TOY) as well”.

A rule like that would not normally be posted on a sign in a family home, but it
illustrates the more general idea of situated norms as norms that apply within given
environmental locations.

It is important to remark that the norm-abiding behaviour is not related to the exis-
tence of a normative object. Beyond the existence of such object, it is necessary for the
agent to perceive the normative object, and autonomous agents will also reason about
whether to follow or not the norm stated by the normative object.

4.3 Pre-compilation of Norms

The normative objects are not meant to be only means to spread general norms. The
norms informed through the normative objects are supposed to be contextualised or pre-
compiled7 with the information of the determined normative place where it is pertinent.

Since the spatial context of the norm is limited and determined by the normative
places, a generic norm can be pre-compiled with such information, in order to become
less abstract. This process is meant to make easier to operationalise the norm, since
the norm is “ready to use” and it is in the spatial context where it is pertinent. Other
advantages of having less abstract norms are that the verification of norm compliance
is facilitated and the reduction of misinterpretations of the norms, what could happen
with abstract non-contextualised norms.

For example a norm that says “Be kind to the elderly”, may be quite hard to op-
erationalise and verify, in general. However, in a fixed spatial context such as a bus or
train, with the norm contextualised as “Give up your seat for the elderly”, or in a street
crossing, with the norm contextualised as “Help elderly people to cross the street”, the
norm would be much more easily interpreted by the agents, and verified by any norm
compliance checking mechanism.

4.4 Norm Supervisors

Since the agents are free to reason about abiding or not a norm stated in a normative
object, there is also a need to monitor the behaviour of those agents.

The supervisor agent may be an agent of the system, designed to verify the com-
pliance of the norms or it may be a common agent whose interests require that all the
agents follow the norms. In both cases, the agent just need to be enabled to receive
some extra informations about the norms, the actions being performed and environ-
mental state changing.

Since the norm and the possible violations are contextualised in a specific place in a
normative place, it is much more easier to define the possible violations and the norms

7 Task done by the simulation designer.

that are pertinent to such place. By the use of simple rules the supervisor agent verifies
the compliance of norms, and then according to the requirements of the system, it may
interrupt a course of action, punish or simply report infractions of the norm.

It is important to notice that, the norm supervisors are not meant to avoid infractions.
The norm supervisors are agents that have access to extra information in order to be able
to verify the compliance of norms. The simulation designer may enable such capacity in
a agent to help it achieving its goal or use such informations to monitor the simulation
or as an input for a reputation system.

According to [6] an agent may be motivated to verify the compliance of the norms
by other agents in order to assure that the costs of norm adherence is being paid by
the other agents too. A norm abiding agent, will want that all the others addressees of
the norms follow it too, otherwise the norm adhering behaviour may become a kind
of competitive disadvantage. In [6], the authors refer to agents with such behaviour as
norm defenders, it is also said that an agent complying with norms is likely to become
a norm defender.

4.5 Environment-Agent Cycle

Fig. 1. Environment-Agent Cycle

In this section, we present the general lines of how the environment is simulated.
The Figure 1 shows on the left side some activities states for the environment simula-

tion, on the right side a simplified model of activities states of an agent, with the main
communications at the center. The environment states are described bellow:

1. The environment checks the class of the agent and which perceptions are enabled
for such class of the agent. Then, it verifies which perceptions fulfills the condi-
tions specified on the perception specification and stores the specified environment
properties to be sent to the agent.

2. The normative objects that are in the same normative place are checked in order to
verify if they contain normative information relevant to the agent. If the conditions
are fulfilled the norms are also stored to be sent.

3. The environment sends the perceptions and normative information to the agent.
4. The environment waits for the action selected by the agent.
5. It checks if the selected action is enabled to the agent and if it fulfills the conditions

specified on the action specification. If so, environment properties are changed as
speficied on the action definition.

6. The environment verifies which reactions of the objects were triggered by the cur-
rent state of environment properties. The triggered reactions are performed over the
environment data. And then, the cycle starts over going back to the step 1.

A general outline of a protocol that the agent should follow is described bellow:

A The agent waits for the reception of the perceptions and normative information
from the environment.

B The agent may compare the perceptions received with its own world representation
in order to detect changes.

C The agent will select its action, based on its own objectives and the norms that it
has perceived. Such decision involves the balance of a large set of factors, from
where we may cite:

– beliefs about the environment;
– goals or states-of-world that the agent want to become true;
– determine which goals from the set of are possible;
– selection of which goal to follow;
– selection of which norms to follow or not;
– solve conflicts among goals and norms;

D The agent sends the selected perception.

If the agent is an supervisor agent, the main differences will be that it will be en-
abled to receive normative information that may be not relevant for itself and extra
information about other agents. Using such information the supervisor agent may ver-
ify the compliance of norms. The actions that the supervisor agent may do in a case of
non-compliance of norms is

Modelling Environments using ELMS

As the MAS-SOC platform does not enforce a particular agent-oriented software en-
gineering methodology, designers can use the one they prefer. It is possible to model

a multi-agent system that will have an ELMS environment using any approach: start-
ing from the system organisation (top-down), or starting from the agent interactions
(bottom-up).

In both approaches, the modelling of the organisational structures and the agents’
reasoning need fine tuning to achieve the desired results. To have a stable point on which
to base the tuning-up of the agents’ reasoning or the organisational model, we have
suggest the use of an explicitly defined environment description written in the ELMS
language and the concepts presented in the Section 3. The environment is an important
part of an multi-agent system, and although it can be very dynamic, in regards to design
it is usually the most “stable” part of the system.

Even when the environment of the multi-agent system is the “real world” and the
agent is a robot with sensors and effectors, the environment modelling should play a
significant role. In such situation, the robot should have a set of sensors that give a
predefined set of percepts the robot will acquire when sensing the environment. Also,
the robot should have a set of effectors that allow a restricted set of (parameterisable)
actions. Thus, the possible sensor inputs and effectors output should be modelled first
to facilitate the development of the software for the robot.

After that initial modelling, defining which are going to be agents in the simulation
and the general goals of the organisations in the society, we suggest starting the imple-
mentation using the environment language. The ELMS language is meant to describe
the environment, by defining its spatial representation, the types of objects present in
the environment, and the types of agents. Each type of agent is defined with its sensorial
and effective capacities.

Based on these observations, we suggest that the multi-agent system modelling
starts with the environment definition, followed by the definition of the normative
places. The environment modelling is achieved by:

1. Definition of which kinds of action each type of agent is able to perform in the
environment. Actions typically produce effects over objects of the environment or
other agents.

2. Based on the changes that the agents’ effective capabilities are able to make in the
environment and the objectives of the simulation, the size and granularity of the
grid can be determined. For example, how many cells an agent can move within
one action or simulation cycle, and in how many simulation cycles the agent would
be able to traverse the simulated space.

3. Based on the granularity and size of the spatial environment, the sensorial capabil-
ities of the agents can be modelled, defining for example in which range an agent
can detect other agents or objects.

4. Based on an agent’s sensorial capabilities and on its typical activities, it should be
possible to define which attributes of that agent is important to declare as accessible
to other agents. For example, if agents identify each other’s role by the colour of
their uniform, the “agent body” should have an attribute that represent the colour
of the agent’s uniform.

5. The types of objects or resources present in the environment should also be mod-
elled based on which attributes will be perceptible by the agents and which actions
can affect them.

6. Finally, instances of the agent and object classes should be placed in the environ-
ment, determining its initial state.

The definition of the environment should be followed by the definition of norma-
tive places and then by the definition of the spatially distributed normative objects, as
follows:

1. Together with the objects instances placed in the environment, the types of norma-
tive places within the environment can also be defined.

2. By instantiating normative places into sets of cells, normative places are created.
3. Then, based the set of activities that can possibly be performed in each type of

normative place, the norms that are relevant to that type of place can be defined.
4. Finally, the types of normative objects can be defined and instantiated in the nor-

mative places, defining the locations where situated norms can be perceived.

Using the environment as a basis, the agents’ reasoning capabilities can then be de-
fined so as to help agents achieve their objectives as well as the objective of the groups
in which they participate. Also, the detailed definitions of possible organisational struc-
tures can be fine-tuned, in order to have the system achieving its overall objectives. In
MAS-SOC, we use AgentSpeak to define the practical reasoning for each agent; in par-
ticular, we use the extended version of AgentSpeak as interpreted by Jason; for details,
see [3].

5 Example

Below we give an example showing how normative objects are defined using our ap-
proach. It is based on the scenario presented in [4], a scenario in which the agents are
placed on an environment where they may eat the food they find, challenge other agents
for their food, or move in search of food.

In this scenario, an agent owns any food item that is near to itself (at a distance of
up to 2 cells). The agents can “see” food and other agents in a radius of 1 cell, but can
sense food in a radius of 2 cells. The physical space is represented by a grid of 10× 10
cells.

The norms used in that scenario essentially concern the respect for the ownership
of a food item, which means they prescribe non-aggressive behaviour. In the original
scenario, the norms were valid throughout the grid, but in this example norms are valid
only within normative places, as indicated by normative objects.

A shortened version of the physical environment description given below. The actual
environment description of environments in ELMS are done in XML, but in order to
optimise the space and improve readability, we have adopted a pseudocode just to show
the main points of the environment.

environment.name:="NORMATIVE";
environment.grid.dim(10,10);

food = Resource{
owner: String ("none")
id: integer}

agent = Agent_body{
id: integer(SELF);
power: integer(50);
vision: PERCEPTION;
sense_food: PERCEPTION;
walk: ACTION;
attack: ACTION;
eat: ACTION;

}

vision = PERCEPTION{
cell[+0][+0].contents; cell[+0][+1].food.owner;
cell[+0][-1].contents; cell[+1][+0].food.owner;
cell[-1][+0].contents;
cell[+0][+0].food.owner; cell[+0][+1].food.owner;
cell[+0][-1].food.owner; cell[+1][+0].food.owner;
cell[-1][+0].food.owner;

}

sense_food = PERCEPTION{
cell[+1][+1].food.id; cell[-1][-1].food.id;
cell[-1][+1].food.id; cell[+1][-1].food.id;
cell[+0][-2].food.id; cell[+0][+2].food.id;
cell[-2][+0].food.id; cell[+2][+0].food.id;

}

eat = ACTION(FOOD_ID:integer){....}
walk = ACTION{....}
attack = ACTION{...}

In the code excerpt above, the grid size is defined, then food is defined as an en-
vironment resource, then a generic type of agent body is defined. The agent body is
defined as being capable of two types of perception — vision and food sensing – and
being able to perform three types of actions: walk, attack, and eat. The vision percep-
tion allows the agent to perceive the contents of the current cell and the 4 neighbouring
cells, while sense food allows it to perceive food within a 2-cell radius.

For this example, the grid is partitioned in four normative places of equal sizes, and
the normative objects are defined and placed in three of the four quadrants, as shown in
the code excerpt below:

upper-left = PLACE{
type = "food-protected"
environment.grid[0..4][0..4];
}

upper-right = PLACE{
type = "food-protected"
environment.grid[5..9][0..4];

}

lower-left = PLACE{
type = "food-protected"
environment.grid[0..4][5..9];
}

norm-obj1 = NORM_OBJ{
type := "prohibition";
place:= "upper-left"
norm := "prohibited(true,attack(SELF,AGENT))";

}

norm-obj2 = NORM_OBJ{
type := "prohibited";

place:= "upper-right"
norm := "prohibited(not(in-possession(SELF,FOOD)),eat(SELF,FOOD))";

}

norm-obj3 = NORM_OBJ{
type := "prohibition";
place:= "lower-left"
norm := "prohibited(true,attack(SELF,AGENT))";

}

norm-obj4 = NORM_OBJ{
type := "prohibited";
place:= "lower-left"
norm := "prohibited(not(in-possession(SELF,FOOD)),eat(SELF,FOOD))";

}

The normative objects in the above example are very simple, and are given simply
to illustrate how they can be modelled in our approach. For instance, norm-obj1 and
norm-obj3 say that an agent ought not to attack (steal food from) another agent,
while norm-obj2 and norm-obj4 say that the agent ought not to eat a food item
which is not in possession of the agent itself.

Clearly, the agents’ behaviour will be different in the four quadrants of the environ-
ment:

– in the upper-left quadrant, an agent is advised from eating food that is in the pos-
session of another agent, since the situated norm states that an agent is prohibited
from stealing food;

– in the upper-right quadrant, agents are supposedly prohibited of doing that, but not
effectively, since the situated norm only prohibits the eating of food that is not in
the possession of the agent itself (rather than the stealing of food); so, an agent can
eat food that previously was in the possession of another agent if it first manages to
steal that food;

– in the lower-left quadrant, both restrictions are on; we note that this situation can
be seen as redundant, if one understands that the second norm is implied by the first
one;

– the remaining quadrant (lower-right) is a lawless area, where agents are completely
free to attack each other and to eat anyone else’s food.

Notice that prohibited is used as a conditional deontic operator, with two argu-
ments: the first argument is a condition to be tested, the second argument is the action
that is prohibited. In the modelled problem, the agents are not forced to follow the rules,
but the agents use the normative information to monitor each other, using it as input for
a reputation system.

6 Related Work

The notion of artifacts [17] and coordination artifacts [13] resembles our notion of
normative objects. As defined in [13], coordination artifacts are abstractions meant to
improve the automation of coordination activities, being the building blocks to cre-
ate effective shared collaborative working environments. They are defined as runtime

abstractions that encapsulate and provide a coordination service to the agents. Arti-
facts [17] were presented as a generalisation of coordination artifacts. Artifacts are an
abstraction to represent tools, services, objects and entities in a multi-agent environ-
ment.

As building blocks for environment modelling, artifacts encapsulate the features of
the environment as services to be used by the agents. The main objective of a coordi-
nation artifacts is to be used as an abstraction of an environmental coordination service
provided to the agents. However, coordination artifacts express normative rules only
implicitly, through their practical effects on the actions of the agents, and so their nor-
mative impact does not require any normative reasoning from the part of the agents. In
our work, rather than having a general notion of objects that by their (physical) prop-
erties facilitate coordination, normative objects are objects used specifically to store
symbolic information that can be interpreted by agents, so that they can become aware
of norms that should be followed within a well-defined location.

Our choice has the advantage of keeping open the possibility of agent autonomy, as
suggested in [5]. Agents are, in principle, able to decide whether to follow the norms or
not, when trying to be effective in the pursuit of their goals. This is something that is
not possible if an agent’s action can only happen if in accordance to norms enforced by
coordination mechanisms.

Another important difference is that normative objects are spatially distributed over
a physical environment, with a spatial scope where they apply, and closely tied to the
part of the organisation that is physically located in that space. While the objective of
the coordination artifacts is to remove the burden of coordination from the agents, our
work tries to simplify the way designers can guide the behaviour of each individual
agent as they move around an environment where organisations are spatially located;
this allows agents to adapt the way they behave in different social contexts.

In [9], the authors present the AGRE model, an extension to the previous AGR
model. These latest extensions allow the definition of structures that represents the phys-
ical space. The approach defines organisational structures (i.e., groups) and the physical
structures (i.e., areas) as “specialisations” of a generic space. The social structures are
not contextualised in the space as they are in our work, leaving the social and physical
structures quite unrelated.

In ELMS, however, it is not possible to explicitly define social structures, even
though it would be possible to implicitly define them through the norms. This is be-
cause the aim of ELMS is, as mentioned earlier, to allow for environmental infras-
tructures compatible with existing approaches to organisational modelling, not for the
modelling of organisations as such; the combination of ELMS with existing approaches
to modelling organisations is planned as future work.

Another important series of related work is that on Electronic Institutions [10]. The
internal working of an electronic institutions is given (in a simplified view) as a state-
machine where each state is called a “scene”. Each scene specifies the set of roles
that agents may perform in it, and a “conversation protocol” that the agents should
follow when interacting in the scene. To traverse the series of scenes that constitute
the operation of the electronic institution, agents must do a sequence of actions in each
scene, and also to commit to certain actions in certain scenes, as the result of their

having performed certain other actions in certain other scenes. Our notion of normative
space was inspired by such notion of scene, through giving it a physical, spatial content.

Similar to the electronic institutions approach, there is work on computational in-
stitutions [15], which are defined as virtual organisations ruled by constitutive norms
and regulative norms. In computational institutions, organisational modelling uses the
abstraction of coordination artifacts as building blocks, in a way that is very similar
to our use of normative objects in spatially distributed organizations, but still keeping
implicit in coordination artifacts the normative content imposed on the agents.

7 Conclusions

In this paper we have extended the ELMS language for describing environments with
the means to define normative structures that make part of an environment representa-
tion. There are currently many approaches to modelling and implementing multi-agent
systems: some are top-down approaches with focus on the organisations, while bottom-
up approaches focus on the agents. We believe that including environment modelling at
the initial stages of both approaches would help the modelling and implementation of
multi-agent systems. To help such modelling, we have proposed an approach with an
explicit environment description which now also includes the notions of situated norms,
normative places, and (spatially distributed) normative objects.

It is important to note that our work is not an approach for modelling the organ-
isational dimension of a multi-agent system. With the definition of normative places,
where group structures would be inserted, we intend to fill a conceptual gap between the
usual ways in which organisations and physical environments are modelled. In future
work, with the integration of current means for defining organisational structures with
ELMS, and thus with the possibility of associating them to normative places, we hope
to contribute to a more integrated approach to designing and implementing the various
aspects of multi-agent systems: concentrating on one particular organisation section at
a time, specially if it is an organisation section attached to a spatial location, makes it
easier for designers to define the groups, roles and agent behaviour that should operate
in that particular organisation section.

We believe that an explicit environment description is an important part of a multi-
agent system because it is a stable point from where the agent reasoning and the organ-
isational structures can be fine-tuned so as to facilitate the development of agents and
organisations that can achieve their goals. The notion of spatially distributed normative
objects that we have introduced here can be a good solution connecting definitions of
organisations and definitions of environments. Additionally, distributing the organisa-
tional/normative information can facilitate the modelling of large organisations.

By distributing the normative information in the environment, it is possible to parti-
tion the environment in a functional way, thus helping the structured definition of large
simulations, norms being associated only with the places where they are meant to be
followed. It is also more efficient (by taking advantage of natural distribution) to have
norms spread in an environment than having them in a repository made available for
the whole society, as it is usually the case. Another advantage of having the information
distributed is the possibility of the pre-compilation of the norms with the spatial con-

text information, what we call situated norms. This makes much easiar to make norms
operational: to follow and to verify the compliance of the norms. Using the resulting
information of the norm verification as input for a reputation system, and having dif-
ferent norms ot each place, even with the same behaviour an agent may have different
reputations to each place, what may be a interesting subject to future works.

It is interesting to note that, being conditioned on the possibility of checking the
existence of a normative object, the normative reasoning required from agents that deal
with normative objects is necessarily of a non-monotonic nature, and the experience of
programming such reasoning in AgentSpeak is something we plan to experiment with
in the future. Also as future work, we intend to allow a normative place to be associated
with group structures, creating a connection between the organisational structures and
the physical environment. We plan to make possible such association for any existing
approach to agent organisations, such asMOISE+ [11], OperA/OMNI [16], GAIA [18],
or approaches based on electronic institutions [7, 8]. The recursive nature of normative
places may not be compatible, however, with some of such approaches to organisation,
where the (possibly implicit) system of normative rules has no provision for a recursive
structure in its operation.

Acknowledgments

This work was partially supported by CNPq and FAPERGS.

References

1. R. H. Bordini, A. C. d. R. Costa, J. F. Hübner, A. F. Moreira, F. Y. Okuyama, and R. Vieira.
MAS-SOC: a social simulation platform based on agent-oriented programming. Journal of
Artificial Societies and Social Simulation, 8(3), 2005.

2. R. H. Bordini, J. F. Hübner, et al. Jason: A Java-based agentSpeak interpreter used with
saci for multi-agent distribution over the net, manual, release version 0.7 edition, Aug 2005.
http://jason.sourceforge.net/.

3. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece of agent-oriented
programming. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors,
Multi-Agent Programming: Languages, Platforms and Applications, chapter 1. Springer-
Verlag, 2005.

4. C. Castelfranchi, R. Conte, and M. Paolucci. Normative reputation and the costs
of compliance. Journal of Artificial Societies and Social Simulation, 1(3), 1998.
<http://www.soc.surrey.ac.uk/JASSS/1/3/3.html>.

5. C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberative normative agents:
Principles and architecture. In 6th International Workshop on Intelligent Agents VI, Agent
Theories, Architectures, and Languages (ATAL), Lecture Notes In Computer Science, Vol.
1757, pages 364–378, Londo, 1999. Springer-Verlag.

6. R. Conte and C. Castelfranchi. Cognitive and Social Action. UCL Press, London, 1995.
7. M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions editor. In AAMAS,

pages 1045–1052. ACM, 2002.
8. M. Esteva, B. Rosell, J. A. Rodrı́guez-Aguilar, and J. L. Arcos. Ameli: An agent-based

middleware for electronic institutions. In AAMAS, pages 236–243. IEEE Computer Society,
2004.

9. J. Ferber, F. Michel, and J.-A. Báez-Barranco. Agre: Integrating environments with organi-
zations. In E4MAS, pages 48–56, 2004.

10. A. Garcia-Camino, P. Noriega, and J. A. Rodrı́guez-Aguilar. Implementing norms in elec-
tronic institutions. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and
M. Wooldridge, editors, AAMAS, pages 667–673. ACM, 2005.

11. J. F. Hübner, J. S. Sichman, and O. Boissier. MOISE+: Towards a structural, functional,
and deontic model for MAS organization. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’2002), Bologna, Italy,
2002.

12. F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. ELMS: An environment de-
scription language for multi-agent simulations. In D. Weyns, H. van Dyke Parunak, and
F. Michel, editors, Proceedings of the First International Workshop on Environments for
Multiagent Systems (E4MAS), held with AAMAS-04, 19th of July, number 3374 in Lecture
Notes In Artificial Intelligence, pages 91–108, Berlin, 2005. Springer-Verlag.

13. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination artifacts:
Environment-based coordination for intelligent agents. In AAMAS’04, 2004.

14. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. Perram, editors, Proceedings of the Seventh Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven, The
Netherlands, number 1038 in Lecture Notes in Artificial Intelligence, pages 42–55, London,
1996. Springer-Verlag.

15. R. Rubino, A. Omicini, and E. Denti. Computational institutions for modelling norm-
regulated MAS: An approach based on coordination artifacts. In G. Lindemann, S. Ossowski,
J. Padget, and J. Vazquez-Salceda, editors, 1st International Workshop “Agents, Norms and
Institutions for Regulated Multi-Agent Systems” (ANI@REM 2005), AAMAS 2005, Utrecht,
The Netherlands, 25 July 2005.

16. J. Vázquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems, 11(3):307–360, 2005.

17. M. Viroli, A. Omicini, and A. Ricci. Engineering MAS environment with artifacts. In
D. Weyns, H. V. D. Parunak, and F. Michel, editors, 2nd International Workshop “Environ-
ments for Multi-Agent Systems” (E4MAS 2005), pages 62–77, AAMAS 2005, Utrecht, The
Netherlands, 26 July 2005.

18. M. Wooldridge, N. R. Jennings, and D. Kinny. The GAIA methodology for agent-oriented
analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

