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Abstract—Cold-start scenarios in recommender systems are
situations in which no prior events, like ratings or clicks, are
known for certain users or items. To compute predictions in
such cases, additional information about users (user attributes,
e.g. gender, age, geographical location, occupation) and items
(item attributes, e.g. genres, product categories, keywords) must
be used.

We describe a method that maps such entity (e.g. user or
item) attributes to the latent features of a matrix (or higher-
dimensional) factorization model. With such mappings, the
factors of a MF model trained by standard techniques can
be applied to the new-user and the new-item problem, while
retaining its advantages, in particular speed and predictive
accuracy.

We use the mapping concept to construct an attribute-
aware matrix factorization model for item recommendation
from implicit, positive-only feedback. Experiments on the new-
item problem show that this approach provides good predictive
accuracy, while the prediction time only grows by a constant
factor.

I. INTRODUCTION

Matrix and tensor factorization are well-suited methods
for solving several problems in the field of recommender
systems, like rating prediction for a given user and item (e.g.
a movie or a book) [[14], recommending a set of items to a
given user [3[], or predicting tags for a certain item to a user
[23]]. Because predictions from factorization models rely on
the computation of simple dot products of latent feature
vectors representing users, items, and possibly other entities
in the application domain, they usually have good runtime
performance. Training with regard to suitable optimization
objectives usually leads to good predictive accuracy.

The downside of standard factorization methods is that
feature vectors are only available for entities observed in the
training data, e.g. users who rated a movie or bought a book,
or movies rated by at least one user. Thus for entirely new
users and items, such methods are not capable of computing
meaningful recommendations. Even many hybrid systems
that rely on both collaborative and content information
cannot provide useful predictions for entirely new entities,
i.e. ones that have no collaborative information associated
with them.

In real-world recommender systems, such cold-start prob-
lem are often solved by switching to a different, purely
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I 1n this article, we use the terms “cold start”,
user” in the narrower sense; see section @}

new item”, and “new

content-based method when encountering entirely new enti-
ties; other options are to present just the most popular items
to new users and to randomly present new items to the users
in order to gather collaborative information about those new
entities.

Our approach is a modular one, with well-defined inter-
faces between its components: At the core of our model is
a standard factorization model that only works for entities
with collaborative training data. This factorization model is
optimized for the given recommendation task. The additional
components are mapping functions that compute adequate
latent feature representations for new entities from their
attribute representations.

For example, in the classical recommendation task of
movie rating prediction, this approach would handle new
users and new items by computing first the latent feature
vectors for the unknown entities from attributes like the
user’s age or location and a movie’s genres or main cast,
and then by using those estimated latent feature vectors to
compute the rating from the underlying matrix factorization
(MF) model.

The training of such a combined model consists of learn-
ing the underlying standard model from the collaborative
data, and then learning the mapping functions from the pairs
of latent feature vectors and attribute vectors belonging to
entities that are present in the collaborative data.

Note that this mapping approach is applicable to a va-
riety of prediction tasks, underlying factorization models,
and families of mapping functions. In the following, we
describe the use of this framework for the task of item
recommendation from implicit, positive-only feedback using
a matrix factorization model optimized for Rendle et al.’s
Bayesian Personalized Ranking (BPR) [22]], and demonstrate
its usefulness for the new-item recommendation task with a
set of experiments.

The main contributions of this work are

1) a general, simple and straightforward method to
make factorization models attribute-aware by plugging
learnable mapping functions onto them, and,

2) based on that method, an extension of matrix factor-
ization optimized for Bayesian Personalized Ranking
(BPR-MF) that can deal with the cold-start problem,
yielding accurate and fast attribute-aware item rec-
ommendation methods based on different families of



Table I
ATTRIBUTE EXAMPLE: MOVIE GENRES

[ ID | Movie | Genres |

1 The Usual Suspects | Crime, Thriller
2 | American Beauty Comedy, Drama
3 The Godfather Crime, Action
4 | Road Trip Comedy

mapping functions.

3) We also show empirically that it is worth training
the mapping function for optimal model performance
with respect to application-specific losses, instead of
just trying to map the latent features as accurately as
possible.

II. PROBLEM STATEMENT

In a classical recommender system, there are two types of
entities, users (e.g. customers) and items (e.g. movies, books,
songs). Throughout this paper, we use U = {1,...,|U|} and
I ={1,...,|I]} to denote the sets of all user and all item
IDs, respectively. For simplicity, we will not differentiate
between the integer ID representing an entity and the entity
itself.

We have different kinds of information about the entities:

1) information pertaining to one entity, content informa-
tion, e.g. user attributes like age, gender, hobbies or
item attributes like the price of a product, words in the
title or description of a movie, editorial ratings, and

2) information that is linked to a user-item pair, collabo-
rative information, e.g. the rating “4 stars” on a scale
from one to five given to a movie by a specific user,
the information that a user has purchased an item in
an online shop or viewed a video in an IPTV system,
or a tag in a collaborative tagging system.

There are several types of collaborative information. One
important distinction is between explicit (e.g. ratings, up-
and downvotes) and implicit expressions of user preferences
(e.g. clicks, purchases). Depending on the type of system,
implicit information may be positive-only, i.e. there may be
no recorded negative preference observations.

We represent positive-only implicit feedback as a binary
matrix S € {0, 1HUIXII where s,; is 1 iff user u has given
positive feedback about item 7. AV € RIVIX™ be the matrix
of user attributes where aU, is 1 iff user u has attribute I,
A' ¢ RII*™ be the matrix of item attributes, where a,
is 1 iff item ¢ has attribute [. There are m different user
attributes, and n item attributes. We assume that attributes
are known for all users and items, e.g. because all items are
movies where attributes like genre, participating actors etc.
are known.

Example 1: Suppose we have the movies The Usual
Suspects, American Beauty, The Godfather, and Road Trip

in our recommender system. Each of those items is assigned
to one or several of the genres Crime, Thriller, Comedy,
Drama, and Action. If we assign consecutive IDs to the
movie and genres, we can create the following item attribute
matrix from the contents of Table [I}

11000
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A=11 000 1|
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where the rows refer to the different movies, and the columns
refer to the different genres. We will use this data in the
following examples.

A. Item Recommendation from Implicit Feedback

The task of item recommendation from implicit, positive-
only feedback [9], [10], [16], [17], [22] is to rank the
items from a candidate set 7°*™ according to the probability
of being viewed/purchased by a given user, based on the
feedback matrix S and possibly additional data AY, AL

We use I} := {i € I : s,; = 1} to refer to the items
for which user w has provided feedback and I, :={i € I:
Sui = 0} to refer to the items for which that user has not
provided feedback.

Note that item recommendation is related to, but distinct
from, rating prediction, where the task is to predict how
much a user will like an item — or rather, what explicit
rating the user will assign to the item.

Example 2: Suppose we have the users Alice, Ben, and
Christine. None of them has watched The Usual Suspects;
Christine has watched all three other movies, while Alice
and Ben each have only watched American Beauty and The
Godfather, respectively. If we assign IDs to all entities in
order of their appearance, we have

01 00
S=(0 0 1 0
01 11

From S, we can deduce the sets I;” = {2} and I; =
{1,3,4} for Alice (user 1). Note that we only see positive
feedback here: We cannot deduce that Alice and Ben do not
like the other movies only because they have not watched
them.

B. Cold-Start Scenarios

In a wider sense, cold-start scenarios are those situations
where we want to compute predictions for users or items
that have few collaborative information [7], [21]; in the
narrow sense, cold-start scenarios are exactly those scenarios
in which there is no collaborative information at all for the
given users or items [9], [10], [18]. In this article, we use
the term in the latter sense.

Example 3: In our small example, The Usual Suspects
would be a new (cold-start) item.



Figure 1. Mapping framework, see section |I1I-A]
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III. METHODS

In this section, we describe the framework we have
sketched in the introduction, and use it for the task of item
recommendation from implicit, positive-only feedback.

A. High-Level Framework

In factorization models, every entity (e.g. users, items,
tags) is represented by a latent feature vector f € RF.
Usually, the latent features of an entity can only be set to
meaningful values during training if the entity occurs in the
(collaborative) training data.

If this is not the case, one way to still make use of the
factorization model for new entities is to estimate their latent
features from the existing content data: to map from the
attribute space to the latent feature space. The recommender
system could then use the factorization model to compute
scores for all kinds of entities; latent feature vectors for
new entities would be computed from the content attributes
and further on used as if they were normally trained latent
features.

The mapping functions could theoretically take any form,
although for practical purposes we will limit them to families
of functions that allow the learning of useful mapping
functions.

The training of a factorization model with a mapping
extension consists of the following steps:

1) training the factorization model using the data S, and

then

2) learning the mapping functions from the latent features

of the entities in the training data and their content
attributes.
Figure (1] illustrates the framework for a domain involving
users and items: The rectangles on the left-hand side rep-
resent the factor matrices, the ones on the right-hand side

the attribute matrices. Attributes are supposed to be known
for all entities (vertical hatching), while factors are initially
only known for those entities that occur in the training data
(vertical hatching). Entities without collaborative data have
no factors (blank). The unknown entity factors are estimated
using the corresponding mapping function. The mapping
functions are learned from the factor and attribute values of
the entities with complete information (thin arrows). Note
that this framework can be extended to application domains
with additional entity types besides users and items.

B. Matrix Factorization Model

To exemplify how attribute-to-feature mappings can be
used for item recommendation from implicit data, we
use BPR-MF, a matrix factorization model based on the
Bayesian Personalized Ranking (BPR) framework [22]. Bear
in mind that the general framework presented here can be
applied to other matrix factorization models, as well as
to any other model where the entities of the application
domain are represented by latent feature vectors, like Tucker
decomposition [27]] or PARAFAC [11]. In the examples and
experiments, we focus on new items; new users (or other
kinds of entities) can be handled analogously.

1) Bayesian Personalized Ranking: BPR is a framework
for optimizing different kinds of models based on training
data containing implicit feedback or other kinds of im-
plicit and explicit (partial) ranking information. It has been
successfully applied to k-nearest-neighbor (kNN), matrix
factorization, and different tensor factorization models for
the tasks of item recommendation [22] and personalized tag
prediction [23]]. BPR’s key ideas are to consider entity pairs
instead of single entities in its loss function, which allows the
interpretation of positive-only data as partial ranking data,
and to learn the model parameters using a generic algorithm
based on stochastic gradient descent.

2) Matrix Factorization based on BPR: BPR-MF approx-
imates the score matrix Y by the product of two low-rank
matrices W € RIVIXF and H € RIIX%, For a specific user
u and item %, the score estimation is

k
Jui = Zwufhif = (wy, hy). 1
=

For estimating whether a user prefers one item over another,
we optimize for the BPR-OPT criterion:

BPR-OPT = Z
(u,i,j)€Ds

Ino(&ui;) — AOI°, ()

where Zy;; = Jui — Juj and Dg = {(u,i,j)|i € I} Nj €
I, }. © = (W, H) represents the parameters of the model
and A is a regularization constant. ¢ denotes the logistic
function: 1

o) = e

3)



Figure 2. Optimizing for BPR-OPT using stochastic gradient descent with
replacement

1: procedure LEARNBPR(Dg)

2: initialize ©

3 repeat

4 draw (u,1,7) from Dg
5: Tuij < Gui — Yuj

7 until convergence

8 return ©

9: end procedure

3) Learning Algorithm: For learning the MF model, we
use the LEARNBPR algorithm [22], which is a variant of
stochastic gradient descent that samples from Dg. To apply
LEARNBPR to MF, only the gradient of £,;; with respect to
every model parameter has to be derived. The pseudocode of
the generic algorithm is shown in Figure |2} « is the learning
rate (step size). A more detailed description of BPR-MF and
its theoretical background can be found in [22].

Example 4: Training a hypothetical factorization model
with k = 2 yields two matrices consisting of the user and
item factor vectors, respectively:

02 1.2 o
w=|13 03|, a=|% L0
0o 11 1.1 0.2
S 0.1 1.2

Every row in W corresponds to one user, which means that
row 1 represents Alice, row 2 Ben, and row 3 Christine. In
H, each row corresponds to exactly one movie. Suppose that
The Usual Suspects has not yet been added to the content
catalog, so row 1 does not contain any meaningful values.
We can compute item recommendations for Alice by ranking
her previously unseen movies according to their predicted
scores:

g13 = (wi,h3)=02-1.1+1.2-02=046

Because the score for Road Trip is 1.46, the system would
put it further on top of the result list than The Godfather,
which only has a score of 0.46. If we want to make a
prediction for The Usual Suspects, we need to estimate its
factors from its attributes.

C. Attribute-to-Feature Mappings

In this section, we show how to design attribute-to-feature
mappings for items; user-attribute-to-feature mappings can
be designed accordingly.

The general form of score estimation by mapping from
item attributes to item factors is

k
Yui 1= Z wufd)f(aIi) = <Wua ¢(a1i)>7 (€]
=1

Table II
COSINE SIMILARITIES BETWEEN MOVIES

[Movie [0S [AB | 7G [ RT |
The Usual Suspects 1 0 0.5 0
American Beauty 0 1 0 0.5
The Godfather 0.5 0 1
Road Trip 0 0.5 0 1

where ¢y : R® — R denotes the function that maps the
item attributes to the factor with index f, and ¢ : R™" —
R¥ denotes the vector-valued function that maps the item
attributes to all item factors.

1) K-Nearest-Neighbor Mapping: One approach to map
the attribute space to the factor space is to use weighted
k-nearest-neighbor (kNN) regression [12] for each factor.

We determine the k£ nearest neighbors Vi as the most
similar items according to the cosine similarity [15] of the
attribute vectors. Each factor is then estimated by

ZjGNk,(i) sim(a';, alj)hjf

of(als) = . )
! ZjeNk(i) szm(ali, an)
The cosine similarity is given by
, (x,y)
sim(x,y) = ) (6)
Il

Note that for other kinds of attribute data (e.g. strings,
real numbers), other similarity metrics could be employed.

Example 5: The cosine similarities of the different
items are given in Table The factors of The Usual
Suspects, estimated by 1-NN, would be

. I 0.5'h311 1 1
hl = ¢(a Z) = 050’153 2 = N
.2 0.2
0.5
With this estimation, we can compute a score for the new
item:

g11 = (wi,hi) =0.2-1.1+1.2-0.2 = 0.46.

This result means that we would still recommend Road Trip
to Alice.

2) Linear Mapping: For score estimation with a linear
mapping to the item factors, we plug linear functions into
equation (@):

¢r(a's) =) mpaj. = (my,ay). ©)
=1

Each item factor is expressed by a weighted sum of the item
attributes.



Example 6: Suppose we have trained a linear mapping
model with the following weights:

M — 0.7 0.0 0.1 1.0 0.7
~—\0.1 00 08 1.1 00/°

The rows in matrix M correspond to the different latent
features, while the columns denote the influence of each at-
tribute to the latent features. Then the latent feature estimates
are

fo_ (10741:0040-0140-10+0-0.7) _ (0.7
17 {1.014+1-00+0-08+0-1.1+0-0.0/)  \o0.1

and the score for Alice and The Usual Suspects is
G141 = (w1, hy) =0.2-0.7+1.2-0.1 = 0.26.

Optimizing for Least Squares Error: One way to learn
suitable parameters for the linear mapping functions is
optimizing the model for the (regularized) squared error on
the latent features, i.e. straightforward ridge regression [12].
Because the number of input variables (attributes) can be in
the tens of thousands, we use stochastic gradient descent for
training. This simple approach did not yield optimal results
(see section [[V-D), so we investigated another mapping
method, which is explained next.

Optimizing for BPR-OPT: To optimize the parameters
of the linear functions, ® = M € R**™_ for the BPR-OPT
criterion (of the prediction model in equation |4) is a more
suitable approach, because it fits the parameters leading
to optimal model performance, rather than just accurately
approximating the latent feature values. As stated above,
when optimizing for BPR-OPT, we are interested in the
difference between two item scores for the same user:

k n k n
Jui — Juj = Z W g Z mpah — Z Wy f Z mfzajl-p (8)
f=1 =1 =1 =1

Note that introducing a bias term moy (via an artificial
attribute that is always set to 1) does not make sense for
item mappings, because the bias part would be exactly the
same for both sums.

This can be simplified to

k n

I I

Wa fM 104 Wy fMf1aj
f=11=1

k

@ui - gu] = Z

M=

.
Il
i
o~
Il
_

I
N
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wufmfl(aiIl - agl'z)~

%
Il
—
~
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For training with LEARNBPR (see section [lII-B3)), we
need the partial derivative with respect to m;y for f €
{1...k},le{l...n}:

9 . N I 1
Wﬂ(yui — Juj) = wuy(ay — aj)- (&)

The resulting learning algorithm for the linear mapping
model optimized for BPR-OPT is shown in Figure [3]

Figure 3. Learning algorithm for linear mapping: The score difference
DJui — Jus is defined in equation

1: procedure LEARNBPR(Dg, W, H, AT)

2 initialize M

3 repeat

4 draw (u,i,7) from Dg

5: Tuij < Yui — Yug

6: forlgfgkdok

7 mymyta 7&22;3 'wuf(ali*alj)*Amf>
8 end for

9 until convergence

10: return M

11: end procedure

D. Run-Time Overhead

Generally, the runtime overhead of adding mapping func-
tions to an existing factorization model is low. For each
new entity, the factors need to be estimated once, and can
be either be stored in the pre-existing factor matrices, or
in special data structures. After that, the computation of a
prediction takes the same time as with just the underlying
model. Note that factorization models themselves are among
the fastest state-of-the-art methods. The experimental part
of this paper contains a comparison in section that
shows the method’s advantage over classical content-based
filtering.

IV. EXPERIMENTS

We performed experiments to confirm that our approach is
able to produce useful new-item cold-start recommendations.
We compare the two mapping methods described in section
[ to other approaches capable of solving the new-item cold-
start problem (section [[V-D). We also investigated how the
number of attributes affects the prediction accuracy (section

V-E).

A. Datasets

For the experiments, we use the MovieLens 1M datase
which is a commonly-used rating dataset [[10], [[18]]. Like
[10], we do not use the rating values, but just binary
rating events, assuming that users tend to rate movies they
have watched. To evaluate the performance of recommender
algorithms in the presence of new items, we randomly split
the items in the dataset into 5 groups of roughly equal size,
and assign all corresponding rating events, to perform 5-fold
cross-validation.

As attributes, we use the genre information included with
the MovielLens dataset, and additional information from
the Internet Movie Database (IMDB Table gives an
overview of the attribute sets. All attributes used in the

Zhttp://www.grouplens.org/,
3http://WWW.irndb.com/interfaces, downloaded April 16, 2010
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Table III
ATTRIBUTE SETS

[ Name [ Source | Number [ Sparsity |
genres MovieLens 18 90.83 %
directors | IMDB 479 99.59 %
actors IMDB 16,149 9991 %
credits IMDB 17,739 9991 %

evaluation are nominal (set-valued), their representation is
binary, i.e. every possible attribute is represented by one
number that is 1 if the item has the attribute, and 0 if
not. Number refers to the number of attributes in the set,
and Sparsity refers to the relative number of zero values in
the movies’ attribute representations, the matrix Al Note
that the methods described in this paper also would work
for real-valued attributes. The credits attribute set contains
actors, directors, producers, writers, cinematographers, etc.
involved with the movies; it is a superset of the other two
IMDB attribute sets.

B. Compared Methods

We compared three mapping methods with two baseline
methods. For the mapping methods, we computed BPR-
MF models (see section with k& = 32 factors using
hyperparameters that yielded satisfactory results in non-cold-
start evaluationsf]

We also performed the experiments with different num-
bers of factors (k € {32,56,80,120,160}), and got similar
results.

map—knn: The kNN-based mapping method described
in section [III-C1} we determined suitable values for k using
4-fold cross-validation on the training dataE]

map-1in: A linear mapping method that uses ridge
regression to estimate the latent features from the attributes,
described in section We determined suitable values
for the hyperparameters (learning rate, regularization con-
stant) using 4-fold cross-validation on the training data.

map-bpr: The linear mapping method that is opti-
mized for BPR-OPT is described in section Again,
we determined suitable values for the hyperparameters
(learning rate, regularization constant) using 4-fold cross-
validation on the training data.

cbf-knn: Item-attribute based kNN, for example
used in [3]; we used the cosine similarity between the items’
binary attribute vectors as the similarity measure. We set
k = oo, so scores for user v and item 7 are computed by
summing up the similarities of the item ¢ with the items

4 a=0.01,\, = 0.02125,\; = \; = 0.00355, 265 iterations
5 For this and the other methods, we picked the hyperparameter (com-
binations) with the best prec@5 performance.

previously seen by user u:

Gui = Y _ simfi, j). (10)
JEIL
Note that this is content-based filtering using kNN, not
attribute-to-factor mapping via kNN as mentioned in section
II-C
random: To put the other methods in perspective, we
also included the results for predicting a random set of items.
We do not compare against just recommending the most
popular items, because in our evaluation protocol there are
only previously unseen items in the test set, thus there is no
popularity information about any of the candidate items.
Unified Boltzmann Machine: In the first experiment, we
cite experimental results by Gunawardana and Meek [10],
who used a comparable evaluation protocol.

C. Evaluation Metrics

prec@n (precision at m) measures the number of cor-
rectly predicted items in the top-n recommendations. It is
commonly used in the area of information retrieval [15]], is
relevant to practice and easy to interpret. We report results
for prec@5. We also measured prec@10 in all experiments,
which gave the same results regarding the ranking of the
methods. Additionally, we report AUC (the area under the
ROC curve), which is a more general ranking measure.

AUC = E Zu 0(Zuij), (11)
(u.i.)€U X
ISS! x (Icand_lss!)

where z, and § are defined as

1 sy {1 720
Zy = R x) =
O~ T 0. ele

D. Experiment 1: Method Comparison

The comparison of the aforementioned methods on the
attribute sets genres, directors, and a combination of the
two sets can be seen in Figures [ and [5] [10] used a
similar evaluation protocol in their cold-start experiments
— the same dataset, also an 80-20 split, but only evaluate
on 500 randomly selected users, instead of all users. For
genres, they report about 25% prec@5 for their primary
method (Unified Boltzmann Machines). As you can see in
Figure [4] the results for map-bpr also fall into this region,
while map-knn and the two baseline methods perform
considerably lower. For directors, map-bpr, map-knn,
and cbf-knn are roughly on par. The comparison of
map—1in and map-bpr shows that is really worth training
the mapping function for overall recommendation perfor-
mance, instead of least squares error on the latent features.
Regarding the AUC metric (Figure ), the results are similar.

Note that for cbf—-knn, the results deteriorate when the
two attribute sets are combined, while the two mapping



Figure 4. Comparison: prec@5
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methods, and in particular map-bpr, profit from the ad-
ditional data. We think that cbf-knn’s suboptimal results
could be fixed by computing separate item similarities for
the different attribute sets and then combining them, but
doubt that this will be a stronger method than map-bpr.

E. Experiment 2: Large Attribute Sets

Next, we investigated the methods’ performance on larger
attribute sets (several thousand attributes). We notice (see
Figure [6] and [7) that for large attribute sets the baseline
method cbf-knn performs better than the mapping meth-
ods. Gunawardana and Meek [[10] observed similar behavior
for their models, Unified Boltzmann Machines and Tied
Boltzmann Machines [9]: using only the genre data led
to better results than using actor data (there: about 8,000

Figure 6. High-dimensional attribute sets: prec@5
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attributes) or the combined genres+actors data.

Again the combination of attribute sets leads to a dete-
rioration of the prediction quality for cbf—knn, while the
mapping methods do not suffer from more data.

F. Run-Time Comparison

Figure (8] shows the test times per user for the different
methods. The number of factors per entity is again 32 for
map-bpr and map-knn. One can clearly see that the
mapping methods profit from the underlying fast matrix
factorization model, while the kNN-based content-based
filtering cbf-knn takes several times longer to compute
the predictions.



Figure 8. Comparison: Test time per user
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G. Discussion

The experiments have shown that for the new-item recom-
mendation task, BPR-MF in combination with an attribute-
to-feature mapping function yields accuracies comparable to
state-of-the-art methods like Unified Boltzmann Machines
(section [[V-D).

The performance on large attribute sets could still be
improved over content-based filtering with cosine similar-
ity, however this is a problem that other methods in the
literature also suffer from (section [[V-E)). One reason for
this could be that cosine similarity works particularly well
for high-dimensional sparse data, and that linear models like
map-bpr and simple models like map-knn (without much
adaption to the data) are not powerful enough to make use
of large, sparse attribute sets. A remedy may be using a non-
linear learned mapping function, e.g. based on multi-layer
neural networks, or support vector regression [26].

Additionally, the mapping approaches have the advantage
of being much faster (section than content-based
filtering using kINN.

H. Reproducibility of the Experiments

We have implemented all presented algorithms in the
MyMedialLite recommender system algorithm library, which
is available for download under http://ismll.de/mymedialite.
The library is free/open source software, distributed under
the terms of the GNU General Public License.

V. RELATED WORK

Pazzani and Billsus [20] give an overview of content-
based methods that can be used for new-item scenarios.

One of the MF variants described in [|14] takes attributes
into account for the rating prediction task; however it is
assumed that for every entity there is also collaborative

information available, which makes the model unsuitable for
cold-start scenarios in the narrower sense.

Pilaszy and Tikk [21] propose an MF model for rating
prediction that maps attributes to the factor space using a lin-
ear transformation, based on a method proposed by Paterek
[19]. The method (NSVD1) can either handle user or item
attributes; predictions are computed from item attributes by

n
Gui = (W, Y mpal). (12)
=1

This rating prediction method is similar to a special case
of the framework presented here, but there are several
differences, considering the concrete application as well as
the model:

e NSVDI is for rating prediction, while the models
designed in the present paper deal with item recom-
mendation (see section [lI-Al).

o Pilaszy and Tikk’s learning algorithm estimates all
parameter at once, while we use a two-stage learning
scheme (see section [[II-A).

o If NSVDI1 uses user and item attributes at the same
time, then there are no free latent features in the models
— the rating is estimated entirely from the entities’
attributes; our model only uses the entity attributes if
no collaborative information is known about the given
entity.

Pilaszy and Tikk learn the factors of one entity (e.g. the
users) simultaneously with the mapping to the factors of
the other entity (e.g. the items), which only exist implicitly
via the mapping; the model is not based on a completely
trained standard MF model, which is augmented by attribute-
to-factor mappings like in our framework. In [21] there is
also a generalization of NSVD1 that takes both user and item
attributes into account, and which has free latent features.
Because of the free latent features, this generalization is not
capable of generating cold-start recommendations; it could,
however, be enabled to do that using our framework.
fLDA [2] uses content data for rating prediction. It
combines one-way and two-way user-item interactions and
jointly learns the parameters for those interactions. The
authors assume a bag-of-words-like structure for the content
attributes of items such that latent feature extraction based on
LDA [6] is possible. Thus, the fLDA approach is restricted
to bag-of-word-features (i.e. nominal) whereas our approach
can deal with any type of attributes (i.e. nominal, ordinal,
metric); it is not applicable to new-user scenarios. The
same authors also proposed Regression-based Latent Factor
Models (RLFM) [1]], a similar hybrid collaborative filtering
method for rating prediction, which works also in cold-start
scenarios. According to the authors, by assuming Bernoulli-
distributed observations, fLDA and RLFM would also be
suitable for item recommendation with positive and negative
feedback; nevertheless, the suitability of the approach for
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that task is not shown empirically.

Pairwise Preference Regression [[18] is a regression model
for rating prediction optimized for a personalized pairwise
loss function. The two-way aspect model [25] is a variant of
the aspect model [[13]] for the item recommendation and the
rating prediction task. Filterbots [24] are a heuristic method
to augment collaborative filtering systems with content data.
Unified Boltzmann Machines [10] are probabilistic models
that learn from collaborative and content information by
combining Untied Boltzmann Machines, that capture corre-
lations between items, with Tied Boltzmann Machines [9],
that take content information into account.

VI. CONCLUSIONS

We presented a general and straightforward framework to
make factorization models attribute-aware. The framework is
applicable to both user and item attributes, and can deal with
nominal/binary and real-valued attributes. We demonstrated
the usefulness of the method by an extension of matrix
factorization optimized for Bayesian Personalized Ranking
(BPR) that is capable of making item recommendations for
new items. The experimental evaluation on two different
types of mappings — kNN and linear mappings optimized for
BPR - showed that the method produces accurate predictions
on par with state-of-the-art methods, and that it carries little
run-time overhead.

We also showed empirically that it is worth training
the mapping function for optimal model performance with
respect to application-specific losses, instead of just trying
to map the latent features as accurately as possible.

An appealing property of our framework is its simplicity
and modularity: Because its components are only loosely
coupled, it can be used to enhance existing factorization
models to support new-user and new-item cold-start scenar-
ios.

In the future, we will extend this work in several direc-
tions, among others with experiments on user attributes and
real-valued (instead of binary) attributes. We also want to
see whether the method produces similarly good results for
other applications like rating or tag prediction. As stated
before, we will investigate how to improve mapping and
prediction accuracy for large attribute sets by employing
non-linear learned mapping functions like multi-layer neural
networks or support vector regression.
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