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 An elevator configuration task ,  the VT task ,  is modelled within DESIRE as a design
 task .  DESIRE is a framework within which complex reasoning tasks are modelled as
 compositional architectures .  Compositional architectures are based on a task
 decomposition ,  acquired during task analysis .  An existing generic task model of
 design ,  based on a logical analysis and synthesis of task models devised for diverse
 applications ,  has been refined for the elevator configuration task .  The resulting task
 model includes a description of the ontology of the elevator domain and a
 description of the task model .  ÷   1996 Academic Press Limited

 1 .  Introduction

 Design is a complex process ,  in which reasoning with dif ferent types of knowledge
 plays an important role .  Knowledge of requirements which can be imposed on an
 artifact (a design object) ,  knowledge of the domain principles and theories involved ,
 but also knowledge of perspectives taken on the artifact ,  are interwoven .  Of equal
 importance is knowledge of design strategies :  knowledge of strategies to manage
 conflicts between the dif ferent interests of the parties involved (e . g .  customer ,
 designer) ,  knowledge of strategies to reason about partial designs and partial sets of
 requirements ,  etc .  To model design ,  the design process must be made explicit .
 During conceptual design (including knowledge acquisition) of a design support
 system ,  knowledge of both design strategies and design objects must be obtained .

 Configuring an elevator ,  as described by Marcus ,  Stout and McDermott (1988) ,
 Marcus and McDermott (1989) ,  and Yost (1994) ,  is a specific type of design task .
 Elevator configurations are the design objects ,  customer specifications and relevant
 building information define the (initial) requirements ,  and constraints define design
 object knowledge .  Compiled modification knowledge (default and fix knowledge)
 guides the design process .

 In this paper a generic task model of design (see Brazier ,  Langen ,  Ruttkay and
 Treur ,  1994 b ) ,  is applied to the VT task .  This model is based on a logical theory of
 design (see Brazier ,  Langen and Treur ,  1995 a ) and task models of design tasks in
 dif ferent fields of application (for example ,  Brumsen ,  Pannekeet & Treur ,  1992 ;
 Geelen & Kowalczyk ,  1992 ;  Geelen ,  Ruttkay & Treur ,  1992) .  The framework within
 which the task has been modelled ,  specified and operationalized ,  is the DESIRE
 framework (DEsign and Specifiation of Interactive REasoning components) ,  pre-
 sented in Langevelde ,  Philipsen and Treur (1992) and Brazier ,  Treur ,  Wijngaards
 and Willems (1995 c ) ;  introduced below in Section 2 .  In Section 3 ,  the role of the
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 generic task model of design in initial problem analysis is discussed .  The specializa-
 tion of the generic task model of design to the VT task is presented in Section 4 .  In
 Section 5 the specification of an ontology for the elevator domain is described .  In
 Section 6 parts of a sample trace are presented and in Section 7 implementation
 aspects are discussed .  The approach as a whole is discussed in Section 8 ,  together
 with an indication of areas for future research .

 2 .  Knowledge modelling approach :  DESIRE

 Within DESIRE the primary focus has been on tasks and interactions between
 tasks ,  with slightly less focus on structures for knowledge representation .  Both
 aspects are ,  however ,  equally important for knowledge modelling .  The framework
 supports task analysis ,  formal specification ,  and operationalization in the form of a
 prototype system ,  each of which is discussed below .

 2 . 1 .  TASK ANALYSIS

 To model expert knowledge ,  the parties involved in knowledge acquisition must
 reach a common understanding of the problem ,  possible solutions ,  and the strategies
 entailed .  Mediating models ,  discussed by Ford ,  Bradshaw ,  Adams-Webber and
 Agnew (1993) ,  play an important role in this respect .  An explicit type of mediating
 model distinguished within the DESIRE approach to knowledge acquisition is the
 shared task model  as presented by Brazier ,  Treur and Wijngaards (1994 a ) .  Shared
 task models are conceptualizations of tasks for which a representation accepted by
 knowledge engineer(s) and expert(s) is devised during knowledge acquisition .
 Existing (generic) task models are re-used to guide the initial acquisition process of
 a shared task model .  Which task models are used during knowledge acquisition
 depends on the initial description of a task or parts of a task :  in interaction with
 experts existing models are examined ,  discussed ,  rejected ,  modified and / or refined .

 Within the DESIRE framework a number of (generic) task models exist for this
 purpose .  These models have been defined on the basis of experience and logical
 analysis .  The concept of a generic task ,  introduced by Chandrasekaran (1986) and
 Brown and Chandrasekaran (1989) ,  is comparable to the notion of  generic task
 model  in that they are both generic with respect to domains .  Generic task models
 within the DESIRE framework ,  however ,  are generic with respect to both tasks and
 domain :  generic task models can be refined with respect to the task by  specialization
 (e . g .  further decomposition of a sub-task) and refined with respect to the domain by
 instantiation  (e . g .  addition of domain-specific knowledge) .  Moreover ,  the way a
 generic task model is specified in DESIRE is more declarative (with semantics based
 on temporal logic) than the way generic tasks are described in Chandrasekaran
 (1986) and Brown and Chandrasekaran (1989) .

 Dif ferent levels of abstraction and composition play an important role during
 knowledge acquisition :  more specific knowledge is acquired of the task and task
 (de)composition ,  domain-specific knowledge content ,  interaction between tasks and
 sub-tasks within the decomposition ,  interaction between participating agents ,  etc .  As
 a result ,  the shared task model becomes more explicit ,  more refined (i . e .  specialized
 and instantiated) .  Very specific levels of detail are ,  however ,  most frequently
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 omitted :  such details are often neither applicable nor relevant for the understanding
 of the task by the dif ferent parties involved (e . g .  knowledge engineer(s) and
 expert(s)) .

 Domain-specific knowledge is modelled in knowledge structures ,  and is included
 in task models by references to such structures .  Which techniques are used for
 knowledge elicitation is not predefined .  Techniques vary in their applicability ,
 depending on the situation ,  the resources ,  the task ,  the type of knowledge on which
 the knowledge engineer wishes to focus ,  etc .

 The dif ferent types of knowledge included in a task model can be represented in a
 number of ways :  informal and formal representations ,  but also conceptual and
 specific representations are possible .  A complete specification is ,  however ,  always
 formal .  The types of knowledge included in a task model are as follows .

 $  The task decomposition .
 $  Information exchange between subtasks .
 $  Sequencing of subtasks .
 $  Knowledge structures .
 $  Task delegation .

 Each of these types of knowledge is discussed below in more detail .

 2 . 1 . 1 .  Task  ( de ) composition
 To model and specify (de)compositions of tasks ,  knowledge is required of :

 $  a task hierarchy ;
 $  information a task requires as input and information a task produces as output ;
 $  meta-object relations between (sub)tasks (i . e .  which (sub)tasks reason about

 which other (sub)tasks) .

 Within a  task hierarchy ,  composed and primitive tasks are distinguished :  in
 contrast to primitive tasks ,  composed tasks are tasks for which sub-tasks are
 identified .  Sub-tasks ,  in turn ,  can be either composed or primitive .  A task hierarchy
 defines which sub-tasks are distinguished and the task – sub-task relations between
 them .  This entails a one-to-many relation .

 The types of information required as  input  for a (sub)task or generated as  output
 as a result of (sub)task performance are specified explicitly in the interface of the
 (sub)task .  The actual contents of these specifications is given through reference to
 the knowledge structures described below .

 Reflective reasoning is an essential element in most complex reasoning processes .
 Tasks which include reasoning about other tasks (for example about the results of a
 task or lack thereof ,  about the goals to be pursued ,  about assumptions ,  defaults ,
 preferences ,  etc . ) are modelled as  meta - le y  el tasks  with respect to  object - le y  el tasks .
 Often more than two levels of reasoning are involved in a complex task ,  resulting in
 meta-meta-  .  .  .  reasoning tasks .

 2 . 1 . 2 .  Information exchange
 Knowledge of  information exchange  between (sub)tasks defines the types of
 information transferred between (sub)tasks ,  explicitly specified by relations between
 tasks .  Also the grounds are defined upon which the ‘‘decision’’ to transfer this
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 information is based .  Explicit evaluation criteria may be specified for this purpose ,
 for example that a specific (sub)task has succeeded in deriving specific information .

 2 . 1 . 3 .  Sequencing of tasks
 Knowledge of  task sequencing  defines temporal relations between (sub)tasks :  which
 tasks must (directly) precede other tasks and which may be activated in parallel .
 Task sequencing knowledge specifies under which conditions which tasks (directly)
 precede which other tasks .  These conditions ,  preconditions for task activation ,  may
 be based on  e y  aluation criteria  expressed in terms of the evaluation of the results
 (success or failure) of one or more of the preceding tasks .  The evaluation criteria ,
 the result and the name of the next task(s) to be activated are specified explicitly .

 Task control is limited to evaluation and activation of a task’s immediate sub-tasks
 and is independent of the content of underlying (sub)tasks and knowledge .

 2 . 1 . 4 .  Knowledge structures
 During knowledge acquisition appropriate  structures  for domain  knowledge  must be
 devised .  These structures may be referenced within a task decomposition to specify
 input and output information types ,  and knowledge bases .  The meaning of the
 concepts used to describe a domain and the relations between concepts and groups
 of concepts ,  must be determined .  Concepts are required to identify objects
 distinguished in a domain ,  but also to express the methods and strategies employed
 to perform a task .  Often concepts and relations between concepts are defined in
 knowledge structures such as hierarchies and rules ,  but alternative knowledge
 structures are possible .

 2 . 1 . 5 .  Delegation of tasks
 In complex situations often a number of autonomous systems and / or users are
 involved .  Knowledge of task delegation refers to the division of tasks amongst these
 participants .  In a minimally interactive task ,  tasks can be divided between an
 automated system and an end-user .  In more complex situations often more
 participants are involved .  Essentially  task delegation  is defined by a set of
 participants (i . e .   agents ) and a relation between tasks and agents .

 2 . 2 .  FORMAL SPECIFICATION
 Within the declarative DESIRE framework ,  conceptual task models are acquired
 and mapped onto compositional architectures for which formal specifications are
 devised .  The five types of knowledge distinguished above are formally specified .

 2 . 2 . 1 .  Task  ( de ) composition
 Tasks and sub-tasks correspond to  components  and  sub - components :  composed
 tasks to  composed components ,  primitive tasks to  primiti y  e components .  Each
 component has a  kernel .  The kernel of a primitive component may be specified by
 either a  knowledge base  or another type of specification tuned to the technique used
 (e . g .  neural network ,  database ,  calculation module ,  OR algorithm) .  The kernel
 knowledge of composed components contains specifications of sub-components .

 For each of the information types required / produced by a (sub)task ,   signatures
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 are referenced for the  input  and  output  interfaces of the (sub)task .  Signatures are
 specified by knowledge structures that define units of information :  (ground ;  i . e .
 instantiated)  atoms  and their  truth  y  alues  ( true ,  false ,  unknown ) .

 Meta-object relations between tasks are specified by means of levelled signatures .
 Within input and output signatures dif ferent meta-object levels are distinguished and
 between signatures meta-object level links are defined .

 2 . 2 . 2 .  Information links
 Interaction between and within tasks and sub-tasks is defined by activation of
 information links  between components and sub-components .  Links may transfer not
 only information generated in one component to be used as input by another
 component ,  but also meta-information about the reasoning process itself ,  such as the
 goals ,  assumptions ,  and epistemic information .  Each information link relates output
 of one component to input of another by specifying which truth value of a specific
 output atom is linked with which truth value of a specific input atom .  This allows for
 renaming  of atoms :  each component may have its own lexicon ,  independent of other
 components .

 Within composed components the following types of links are distinguished .

 $  Links between the input interface and a sub-component ,  and between a
 sub-component and the output interface ( mediating links ) .

 $  Links between sub-components (  pri y  ate kernel links ) .

 The conditions for activation of information links are explicitly specified as (part of)
 task control knowledge .

 2 . 2 . 3 .  Task control knowledge
 Specification of knowledge of task sequencing is distributed over the component
 hierarchy .  Within a component ,  knowledge of task sequencing is explicitly modelled
 as  task control knowledge .  It includes not only knowledge of which sub-tasks should
 be activated when and how ,  but also knowledge of the goals associated with task
 activation and the amount of ef fort which can be af forded to achieve a goal to a
 given extent .  These aspects are specified as sub-component and link activation
 together with sets of  targets  (specifying evaluation criteria) and  requests , extent  and
 ef fort  to define the sub-component’s goals .  Sub-components are ,  in principle ,  black
 boxes to the task control of an encompassing component :  task control is based
 purely on information about the success and / or failure of component activation .
 Activation of a component is considered to have been successful ,  for example ,  with
 respect to one of its target sets if it has reached the goals specified by this target set
 (and specifications of the number of goals to be reached—e . g .  any or every—and the
 ef fort to be af forded) .

 2 . 2 . 4 .  Knowledge structures
 Within DESIRE  knowledge structures  such as hierarchies and rules are specified by
 signatures  and  knowledge bases  expressed in order-sorted predicate logic .  Know-
 ledge structures may include references to other knowledge structures .

 The advantage of reference is not only that existing specifications may be easily
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 adopted (existing ontologies) ,  but also that during the knowledge modelling process
 non-instantiated specifications may be referenced (to be specified at a later date) .

 2 . 2 . 5 .  Task delegation
 Relations between tasks and  agents  are explicitly specified .  Assignment of tasks can
 be determined in advance ,  but may also be dynamic (determined during task
 execution ,  for example) .

 2 . 3 .  FORMAL SEMANTICS AND OPERATIONALIZATION

 The formal specification of compositional architectures defines the formal semantics
 of a system’s behaviour in terms of temporal logic (Brazier  et al . ,  1995 c ;  Engelfriet
 and Treur ,  1994) .  Validation and verification can be based on such specifications ,
 but in addition an operational (prototype) system can be automatically generated .

 Formal specifications in DESIRE can be translated directly into operational code ,
 for testing and demonstration purposes .  The DESIRE framework has tools for this
 purpose ,  including implementation generators and interpreters for a number of
 environments (such as ADS and PROLOG) and platforms .  Syntax-directed and
 graphical editors support dif ferent phases of specification .

 3 .  Initial problem analysis

 As discussed above ,  knowledge acquisition within the DESIRE approach is most
 often based on direct interaction with domain experts aimed at deriving a shared
 task model of the task at hand .  Generic task models provide support during the
 initial phase of modelling .  For the VT task ,  direct interaction with experts was not
 possible ;  the domain description provided by Yost (1994) was the only material
 available for analysis .  This description included compiled (expert) knowledge of the
 design task ;  more detailed knowledge was often not included in the task description .
 As the DESIRE approach to modelling a design task ‘‘from scratch’’ would have
 been to structure the knowledge acquisition process on the basis of the generic task
 model of design ,  this approach has been simulated for the VT task .  Before
 discussing the initial problem analysis in relation to the generic task model of design ,
 the generic task model itself is briefly described .

 3 . 1 .  GENERIC TASK MODEL OF DESIGN

 Design is a dynamic complex task in which requirements and (partial) design object
 descriptions are (continually) manipulated until a satisfactory solution has been
 found .  Conflicting interests ,  requirements ,  design possibilities ,  and design strategies
 are inherent to design tasks ,  as is the coordination of (parallel) partial design
 processes .  The generic task model of design can be used for two types of processes :
 (1) a single designer’s design process and (2) the coordination between designers’
 design processes ,  itself a design process .  The VT task describes a process of the first
 type .
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 The generic task model of design described by Brazier  et al .  (1994 b ) assumes the
 existence of a problem statement and more specific knowledge of (initial)
 requirements  and  requirement qualifications ,  in addition to knowledge of the  design
 objects  and knowledge of  design strategies .  Requirements ,  the necessary and desired
 properties of the design object (within a given context) ,  are not all equally
 ‘‘important . ’’ Preferences often exist between requirements ,  and / or sets of require-
 ments .  These preferences ,  modelled as requirement qualifications ,  together with the
 requirements themselves ,  are often modified on the basis of the evaluation of
 (partial) design object descriptions ,  frequently in interaction with the customer .  To
 determine which set of requirements to consider at a particular point in time (on its
 own or in parallel with other sets of requirements) ,  often depends on what is known
 about the (partial) design object description (for example ,  to which extent
 requirements are fulfilled) ,  about the requirements (for example ,  whether they are
 conflicting or not) ,  and about the relations between views within the design process .

 Strategies employed for the creation of the design artifact itself necessarily
 consider dif ferent types of knowledge .  A description of a design object from one
 point of  y  iew  will often dif fer from a description of the same object from another
 point of view .  The design object description is most often partial :  it is extended and
 modified during design ,  on the basis of additional knowledge and integration of
 sub-solutions .

 Design process coordination ,  in particular  design process e y  aluation ,  analyses the
 current state of the design process and determines which strategy to employ for
 exploration of the design space .  This strategy influences the coordination of the
 manipulation of requirement qualification sets and design object descriptions .  The
 result of the design task ,  a design object description ,  fulfils a set of requirements
 (developed during the design process) and complies with the knowledge of the
 domain .

 Figure 1 shows a compositional architecture for the design task ,  in which
 (sub)components are arranged hierarchically ,  corresponding to the task decomposi-
 tion .  A short description of the model is given below in three sections ,  each
 describing a main component of the model :  (1)  requirement-qualification-
 set-manipulation ,  (2)  design-object-description-manipulation ,  and (3)
 design-process-coordinator .   In the sequel ,  requirement qualification set will
 often be abbreviated as RQS ,  design object description as DOD ,  and design process
 coordination as DPC .

 3 . 1 . 1 .  Requirement qualification set manipulation
 Requirements and their qualifications are acquired from the customer .  Requirement
 qualification set manipulation guides the process of requirement qualification
 acquisition .  Given a set of requirements and their qualifications ,  the determination
 of the most relevant subset of requirement qualifications entails a closer analysis of
 the qualifications (e . g .  relevance ,  importance ,  strength) of the individual require-
 ments and their relations .  Hard requirements ,  for example ,  must ,  by definition ,  hold
 for the final design object description but are not necessarily continually imposed
 during design .  A set of related hard requirements (a view) ,  however ,  may be
 grouped together during design .  The choices made ,  the strategy chosen for the
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 F IGURE  1 .  Generic task model of design :  task decomposition and information links .

 determination of the set of requirements to be considered ,  are based on knowledge
 of preferences between requirements .  Within the  requirement-qualification-
 set-manipulation  component ,  the following sub-components are distinguished .

 $  The  RQS-modification  component determines the modification of the current set
 of requirement qualifications .

 $  The  RQS-deductive-refinement  component determines which requirements are
 implied by the resulting set of requirement qualifications .

 $  The  RQS-update-of-current-description  component keeps track of the most
 recent requirement qualification set .

 $  The  RQS-update-of-modification-history  component keeps track of the
 requirement sets considered during the design process .

 To determine which requirements to consider first ,  which to ignore ,  and which to
 modify or add (e . g .  by decomposing requirements into more specific requirements) ,
 the possible modifications need to be considered .  Explicit ranking criteria between
 preferred sets of requirements are sometimes available ,  but most often other types
 of strategic knowledge are required .  One global strategy for determining which
 modifications are most relevant can be based on a possible distinction between the
 sources of a requirement :  requirements based on user preferences may be given
 higher priority than requirements formulated on the basis of default assumptions
 (similar to the approach described by Haroud ,  Boulanger ,  Gelle & Smith 1994) .
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 3 . 1 . 2 .  Design object description manipulation
 Creating a design object description on the basis of the requirements imposed ,
 entails determining a strategy for design object description construction .  This
 process is similar to the requirement qualification set manipulation process ,  although
 the knowledge dif fers considerably .  Within the  design-object-description-
 manipulation  component ,  the following sub-components are distinguished .

 $  The  DOD-modification  component determines which parts of the current design
 object description should be modified .

 $  The  DOD-deductive-refinement  component determines ,  on the basis of its
 domain knowledge which information on the design object description is implied
 by the (modified) current design object description .

 $  The  DOD-update-of-current-description  component keeps track of the most
 recent design object description .

 $  The  DOD-update-of-modification-history  component keeps track of the
 design object descriptions considered during the design process .

 The relationship between the  update-of-modification-history  components of
 the  RQS-manipulation  component and the  DOD-manipulation  component is
 explicitly defined .

 3 . 1 . 3 .  Coordination of the design process
 Coordination of the design process is dedicated to determining whether to continue
 the design process or not ,  and if so ,  how (according to which strategy) .  It consists of
 two sub-components namely  design-process-evaluation  and  update-of-
 current-requirements .

 The component  design-process-evaluation  is responsible for determining
 whether it makes sense (from a strategic point of view) to continue the design
 process by manipulating either the current requirement qualification set or the
 current design object description .  For this purpose ,  it monitors the progress of the
 design process (by making use of information on the modification histories
 maintained by the  update-of-modification-history  components) ,  decides on a
 coordination strategy and informs the manipulation components about its strategic
 decision .

 The task of  update-of-current-requirements  maintains the set of require-
 ments to which the design process is (temporarily) committed .

 3 . 2 .  THE VT TASK

 The VT task is clearly a design task :  requirements exist and an object is designed on
 the basis of the requirements .  The requirements given in the VT task description are
 the problem specification values :  customer specifications and relevant building
 information .  The object designed is an elevator configuration .  The problem
 specification values (input values) may be changed ,  if necessary ,  although this is
 considered to be highly undesirable .  Initially ,  all requirements are considered to be
 of equal importance .  Modification knowledge is compiled into defaults and into fixes
 with dif ferent levels of desirability .  The least desirable are the fixes that modify
 elements of the design object description which contradict requirements imposed by
 the customer .  The most desirable are the fixes that prescribe an alternative value
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 for elements of the design object description .  As most of this knowledge is
 ‘‘hard-wired’’ in the VT task description ,  further analysis was required to interpret
 the knowledge presented .

 As mentioned in Section 2 . 1 ,  the generic task model of design described in Section
 3 . 1 was devised on the basis of a logical analysis of design ,  as well as analysis of and
 abstraction from more specific task models developed for a number of domains ,  such
 as design of measures for environmental policy ,  routes for international payment
 orders ,  and of fice assignments .  The application of the generic task model to the VT
 task as described in this paper has provided validation of the genericity and
 usefulness of the generic task model in a new design domain .

 4 .  Problem solving method

 In many knowledge modelling approached (such as KADS (ML) 2 ,  PROTE ́  GE ́  ,
 DIDS ,  KARL ,  VITAL ,  see articles in this issue) the concept of  problem sol y  ing
 method  plays an important role .  In DESIRE ,  the concept of a non-instantiated (i . e .
 not instantiated with knowledge structures for the specific domain) task model is
 comparable to the concept of a problem solving method .  Problem-solving methods
 are specified in the form of task models that are generic with respect to the specific
 domain .  The strict relation between task decomposition and control decomposition
 (i . e .  specification of the task control is distributed over the task hierarchy) as
 employed in DESIRE ,  however ,  is not included in ,  for example ,  KADS-based
 approaches such as KADS / (ML) 2  and KARL .  In this section ,  the generic task
 model of design introduced in Section 3 ,  is refined to a problem solving method for
 the VT task :  a task model with references to knowledge structures that are
 instantiated only with knowledge independent of the elevator domain .

 To develop a task model of the VT task ,  the VT task description provided by Yost
 (1994) has been thoroughly analysed .  As direct interaction with an expert was not
 one of the options available ,  the task model of the VT task could only be validated
 by analysis of the test case in Section 9 of Yost (1994) .  This test case specifies
 parameter values before and after design modifications ,  all constraints violated
 before design modifications ,  and the design modifications employed to resolve these
 constraint violations .

 The organization of this section is again based on the five types of knowledge
 distinguished in DESIRE :  task decomposition ,  information links ,  task control
 control knowledge ,  knowledge structures ,  and task delegation .  Only knowledge
 structures that are independent of the elevator domain are included in the task
 model described in this section ;  knowledge structures specific to the elevator domain
 remain non-instantiated .  These non-instantiated domain-specific knowledge struc-
 tures for the elevator domain are the subject of Section 5 .

 4 . 1 .  TASK DECOMPOSITION

 The three elements in a task decomposition (the task hierarchy ,  input and output
 specification ,  and meta-object level distinctions) are described below for (parts of)
 the VT task .  The task decomposition will be motivated by citations from Yost
 (1994) .  To illustrate the formalization of these concepts within DESIRE ,  examples
 of both graphical and textual formal specifications are presented .
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 F IGURE  2 .  Block notation for the top level of the generic task model of design .

 4 . 1 . 1 .  Task hierarchy
 Task hierarchies can be represented graphically in many ways .  In DESIRE ,   tree  and
 block notation  are two graphical representations often employed .  For task hierar-
 chies ,  these two notations are equivalent .  In this section ,  to illustrate the
 representation ,  the block notation is used to specify the top level of the task
 hierarchy of the generic task model of design (see Figure 2) .  The hierarchies for the
 two manipulation sub-tasks will be represented by the tree notation (see Figures 3
 and 4) .  The block notation will also be used to represent a lower level part of the
 design task hierarchy (see Figure 5) .

 Section 1 . 2 of Yost (1994) describes an elevator configuration system that is able
 to :

 $  accept customer specifications and relevant building information ,
 $  derive preliminary values for parts and parameters ,
 $  check for constraint violations ,
 $  propose and implement configuration modifications until a complete configuration

 with no constraint violations is devised ,
 $  print a description of the final configuration

 As discussed in Section 3 . 2 of this paper ,  the VT elevator configuration task can
 be viewed as a design task .  In the generic task model of design ,  the design task is
 decomposed into three sub-tasks ,  depicted in block notation in Figure 2 .  In a
 graphical block notation ,  composed components are depicted as nested blocks ,  in
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 which not all abstraction levels are necessarily represented :  the content of the kernel
 of a component at a lower level may be left unspecified .  In Figure 2 a block
 representation of only the top level of the task model is depicted .  The three main
 components of the task model are shown ,  together with the task control at each of
 the two levels of abstraction depicted .

 The sub-task  requirement qualification set manipulation  acquires requirements of
 the elevator configuration in the form of customer (or contract) specifications and
 relevant building information .  The sub-task  design object description manipulation
 derives preliminary values for parts and parameters ,  checks for constraint violations ,
 and modifies the configuration until it is complete and violates no constraints .  The
 sub-task  design process coordination  determines and monitors the elevator con-
 figuration strategy suggested in Section 1 . 4 of Yost (1994) ,  according to which
 subtasks related to the above five capabilities are invoked .  The subsequent sub-task
 activations ,  determined by design process coordination ,  are in accordance with the
 procedure specified by Yost (1994) .

 As in Section 3 ,  requirement qualification set will often be abbreviated as RQS ,
 design object description as DOD ,  and design process coordination as DPC .

 As explained in Section 3 . 1 ,  the task of RQS manipulation is decomposed into
 four sub-tasks (see Figure 3 for a representation in tree notation) .  The sub-task  RQS
 modification  adds customer specifications and relevant building information to the
 current (and initially empty) set of requirements and deletes requirements that are
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 untenable in view of finding a solution by means of the given knowledge .  As no
 essential distinctions in qualifications of requirements are made in the documenta-
 tion of the VT task ,  the qualifications are not explicitly mentioned in the
 presentation of the VT task model .  The RQS modification sub-task is decomposed
 in a separate sub-section below .  The sub-task  RQS deducti y  e refinement  deduces
 additional requirements from those present in the current requirement set .
 Unfortunately ,  Yost (1994) does not provide knowledge for this sub-task .  The
 sub-task  RQS update of current description  keeps track of the contents of the current
 requirement set and the sub-task  RQS update of modification history  records the
 modifications to requirement sets made during the design process .  These two
 sub-tasks are implicitly present in a number of text fragments in Yost (1994) .

 The task of DOD manipulation is similarly decomposed into four sub-tasks (see
 the tree representation in Figure 4) .  The sub-task  DOD modification  asserts initial
 values for parts and parameters ,  checks for constraint violations ,  and modifies the
 current configuration until it is complete and does not violate any constraints .  This
 sub-task is further decomposed in a separate sub-section below .  The sub-task  DOD
 deducti y  e refinement  deduces additional parameter values from those present in the
 current configuration .  Yost (1994) provides ample knowledge for this sub-task ;  for
 example ,  in Section 4 . 2 it is stated that ‘‘[the SLING UNDERBEAM]  is equal to the
 CAR CAB HEIGHT  ?  ?  ?  plus the SLING UNDERBEAM SPACE . ’’ The sub-task
 DOD update of current description  keeps track of the contents of the current
 configuration and the sub-task  DOD update of modification history  records the
 configuration modifications made during the design process .  These two sub-tasks are
 explicitly indicated by Yost (1994) in Section 7 :  ‘‘ Tentati y  ely make the changes  .  .  .  , ’’
 ‘‘ .  .  .  undo the tentati y  e changes  .  .  .  , ’’ and ‘‘ .  .  .   the tentati y  e changes should be made
 permanent . ’’

 The task of design process coordination is decomposed into two sub-tasks .  The
 sub-task  design process e y  aluation  determines ,  on the basis of the results achieved at
 a given point in the design process ,  which behaviour is appropriate .  Section 1 . 4 of
 Yost (1994) provides knowledge on this matter .  The sub-task  update of current
 requirements  keeps track of the current requirements produced by RQS manipula-
 tion that need to be satisfied by any elevator configuration produced by DOD
 manipulation .

 It can be observed from the above task descriptions that most of the functionality
 required for the elevator configuration system has to be provided by the modifica-
 tion subtasks of RQS manipulation and DOD manipulation .  These two sub-tasks are
 further decomposed in the following two sub-sections .

 Task hierarchy of RQS modification
 As argued earlier ,  RQS modification is a complex task for which a characterization
 must be sought .  Yost (1994) states in Section 1 . 4 the following :  ‘‘ First , get  y  alues for
 all of the input parameters  .  .  .  from the customer . ’’ In other words ,  requirements are
 acquired from the user ,  possibly in subsequent steps ,  until for each input parameter
 known to be relevant for configuring elevators ,  a requirement exists that prescribes
 its value .  RQS modification can be seen as a process control task :  it is decomposed
 into three sub-tasks that (1) perform an analysis of the current state ,  (2) determine a
 next modification ,  and (3) implement this modification .  This is a task decomposition
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 of a  process control task  that is adopted from the analyses of ,  and task model for ,
 process control by Brazier ,  de Klerk ,  van Langen ,  and Treur (1993) .

 In Figure 3 the complete task decomposition of RQS modification is included .  The
 sub-task  RQS modification analysis  examines the results of modifying the require-
 ments .  It determines whether the last modification of the requirement set has
 resulted in a complete requirement set .  This first element is mentioned in Section 1 . 4
 of Yost (1994) :  ‘‘ First , get  y  alues for all of the input parameters  .  .  . ’’ This element
 also checks whether the last modification ,  or any earlier modifications ,  introduced
 untenable (sets of) requirements .  The second element is implied in Section 7 of Yost
 (1994) :  ‘‘ .  .  .  [fixes]  may require changing building dimensions or contract
 specifications . ’’   The sub-task  RQS modification determination  proposes a modifica-
 tion to the current requirement set .  The sub-task  RQS modification implementation
 applies the proposed modification to the current requirement set .  Any further
 consequences can be derived by RQS deductive refinement (although ,  as remarked
 earlier ,  Yost (1994) does not provide knowledge for this sub-task) .

 The task of RQS modification determination has been decomposed into two
 sub-tasks .  The sub-task  RQS extension determination  proposes a requirement to be
 added to the current requirement set .  This task has been decomposed into four
 sub-tasks .  The sub-task  extension suitability determination  selects a type of require-
 ment that needs to be added to the current requirement set and the sub-task
 extension method determination  proposes a method to specify a requirement of the
 selected type .  Yost (1994) states in Section 1 . 2 that there are two types of
 requirements :  ‘‘ .  .  .   customer specifications and rele y  ant building dimensions . ’’ The
 sub-task  user requirement acquisition  collects requirements on input parameters
 from the customer .  The sub-task  default requirement determination  specifies default
 requirements that are applicable to most configuration problems .  Unfortunately ,
 Yost (1994) does not provide knowledge for this sub-task .  The second sub-task of
 RQS modification determination ,   RQS re y  ision determination ,  proposes a set of
 changes to the current requirement set to remove untenable requirements .

 Task hierarchy of DOD modification
 DOD modification is a complex task which requires further analysis .  Yost (1994)
 states in Section 1 . 2 that the configuration has to be modified ‘‘ until a complete
 configuration with no constraint  y  iolations is achie y  ed . ’’ In Section 1 . 4 ,  Yost again
 postulates to stop modifying the configuration ‘‘ when there are no more parameters
 or constraints to process  .  .  .  . ’’ This suggests that DOD modification can be regarded
 as process control task .  Figure 4 includes a partial task decomposition of DOD
 modification in the form of a tree .  (The task decompositions of DOD modification
 analysis and DOD modification implementation which are present in our VT task
 model are not shown in this paper . )

 As a process control task ,  the task of DOD modification can be decomposed into
 three sub-tasks .  The sub-task  DOD modification analysis  investigates the results of
 the last modification .  It determines whether the last modification resulted in a
 complete configuration ,  whether it produced a configuration without any violated
 constraints ,  or whether it fixed a particular constraint violation without introducing
 any new violations .  The first two elements are both mentioned in Section 1 . 2 and the
 third in Section 7 of Yost (1994) .  The sub-task  DOD modification determination
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 proposes a modification to the current configuration that has not yet been tried .
 Yost (1994) apparently assumes that a modification as such ,  if needed ,  can be
 determined at any point in design ,  even when fixing constraint violations .  Whenever
 a constraint violation has been detected ,  DOD modification determination proposes
 revisions of the current configuration to resolve this violation .  This is explicitly
 stated in Yost (1994) ,  Section 7 :  ‘‘ If the constraint is  y  iolated  .  .  .  you should
 immediately try to find design modifications that remedy the  y  iolation . ’’ The sub-task
 DOD modification implementation  applies the proposed modification to the current
 configuration .  DOD deductive refinement (deductively) derives additional informa-
 tion required .

 The task of DOD modification determination has been decomposed into two
 sub-tasks .  The sub-task  DOD extension determination  proposes a value for a
 parameter that does not have a value in the current configuration .  The sub-task
 DOD re y  ision determination  proposes a set of changes to existing parameter values
 to resolve a particular constraint violation in the current configuration .  These
 complex sub-tasks are decomposed further below .

 The task of DOD extension determination has been decomposed into four
 sub-tasks .  The sub-task  extension suitability determination  selects a parameter that
 does not yet have a value in the current configuration and the sub-task  extension
 method determination  proposes a method to assign a value to the selected
 parameter .  Yost (1994) suggests in Section 1 . 4 ,  the following procedure for
 determining a parameter and a method :  ‘‘ First , get  y  alues for all of the input
 parameters  .  .  .  from the customer . Then , deri y  e  y  alues for all of the other
 parameters  .  .  .  .  Values for parameters can be deri y  ed in any order , once  y  alues ha y  e
 been deri y  ed for any parameters on which they depend . ’’ The sub-task  user  y  alue
 acquisition  extracts values for input parameters from the requirements provided by
 the customer .  The sub-task  default  y  alue determination  assigns initial values to
 parameters ,  provided that knowledge about initial (i . e .  default) values for these
 parameters is available .  For example ,  Section 4 . 2 of Yost (1994) states that ‘‘[the
 SLING UNDERBEAM SPACE]  is initially  2 1   inches , but may be changed to fix
 constraint  y  iolations  .  .  .  . ’’ In addition ,  DOD deductive refinement can be used to
 deduce values for parameters (by computation) from the values of parameters
 already assigned .  This has been explained above as part of the decomposition of
 DOD manipulation .

 The task of DOD revision determination has been decomposed into three
 sub-tasks .  The sub-task  y  iolated constraint selection  selects a violated constraint to
 be resolved next .  Yost (1994) states in Section 7 that if ‘‘ more than one constraint
 can be processed at the same time , pick one arbitrarily , ’’ although ‘‘ .  .  .   if both
 MACHINE GROOVE PRESSURE and HOIST CABLE TRACTION RATIO
 constraints are  y  iolated at the same time , try to fix the MACHINE GROOVE
 PRESSURE  y  iolation first . ’’ The sub-task  fix combination determination  proposes a
 set of fixes that could resolve the selected constraint violation .  Section 7 of Yost
 (1994) describes an algorithm to compute fix combinations ,  the order of which is
 determined by the desirability of the fixes involved .  The sub-task  fix steps
 determination  computes for the current fix combination which steps for which of the
 fixes should be tried .  Yost (1994) ,  Section 7 states :  ‘‘ Some fixes specify that a  y  alue
 should be stepped along some dimension  .  .  .  , all possible combinations of
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 steps  .  .  .  should be tried before mo y  ing on to the next basic fix combination . ’’ An
 example of a fix for which this holds is given for the CAR BUFFER BLOCKING
 HEIGHT constraint :  ‘‘ .  .  .   try increasing the HOISTWAY PIT DEPTH  .  .  .  by
 one - inch steps  .  .  . ’’

 4 . 1 . 2 .  Input and output specifications
 The information required by a sub-task modelled and specified as input for the
 corresponding sub-component ,  is specified for each sub-task within the hierarchies
 presented above .  This also holds for the information produced by a sub-task ,
 modelled and specified as output of the corresponding component .  At the most
 abstract level depicted above in Figure 2 for the VT task ,  the initial values for
 specific parameters given by the customer or representing relevant building
 information ,  are input for the design task (and used for the formulation of
 requirements) .  The input interface is depicted by the long narrow rectangle attached
 to the left edge of the outer block .  Other values for these parameters may be
 determined during the design process ,  but values for other parameters are not
 expected as input (and thus not explicitly modelled) .  The final output of the VT task
 is a list of values for the parameters specified by Yost (1994) .  In addition ,  the list of
 requirements on which the final design has been based ,  can be seen as a result ,  and
 thus as part of the output of the design task .  The output interface is depicted in
 Figure 2 by the long narrow rectangle attached to the right edge of the outer block .
 During the design process ,  questions can be generated for the customer ,  for instance
 the question whether a particular requirement may be changed (in order to apply a
 highly undesirable fix) .  These questions are modelled as intermediate output .

 For a more detailed example ,  in Figure 5 a block representation of a lower level
 hierarchy for the task of determining an extension for the design object description ,
 is depicted ,  including the four lower level tasks distinguished .  The hierarchies
 depicted in Figure 2 and 5 will be used below to illustrate the remaining types of
 knowledge modelled and specified for the VT task model in more detail .

 One of the sub-components of  DOD-extension-determination  depicted in Figure 5
 is the sub-component  extension-suitability-determination .  This sub-
 component determines the next parameters for which a value must be obtained .  The
 output of this component ,  the parameters suitable for extension ,  is input for the
 components  defalut-value-determination ,  and  user-value-acquisition .
 The input and output information types are specified by named signatures .  For
 instance ,  the (domain-independent) output signature of the component  extension-
 suitability-determination  is  Suitable-parameter-sig ,  specified below .

 The signature definitions are part of the specification of the knowledge structures .
 A signature in DESIRE is a (partial) declaration of sorts ,  sub-sorts ,  objects and
 functions designating elements of these sorts ,  and relations defined over these sorts .
 Also references to other signatures can be used to build up a new signature .

 s i g n a t u r e   Parameter-sort-sig
 s o r t s

 PARAMETER
 e n d   s i g n a t u r e
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 s i g n a t u r e   Suitable-parameter-sig
 s i g n a t u r e s

 Parameter-sort-sig ,  Parameter-object-sig ;
 r e l a t i o n s

 suitable-for-extension :  PARAMETER ;
 e n d   s i g n a t u r e

 These signatures together give rise to atoms of the form  suitable-for-
 extension(P)  with  P  a parameter as defined in  Parameter-sort-sig .   This is
 task-oriented information that is part of a problem-solving method .  The actual
 parameters ,  the possible instantiations (such as FLOOR HEIGHT and
 HOISTWAY DEPTH) ,  are assumed to be given in the domain-specific signature
 Parameter-object-sig  to which reference is made .  This signature will be
 discussed in Section 5 .

 An example of an input signature is  Extension-focus-sig ,  the input signature
 of the component  default-value-determination ,  that defines a relation indicat-
 ing on which parameters to focus :

 s i g n a t u r e   Extension-focus-sign
 s i g n a t u r e s

 Parameter-sort-sig ,  Parameter-object-sig ;
 r e l a t i o n s

 in-focus-of-extension :  PARAMETER ;
 e n d   s i g n a t u r e

 4 . 1 . 3 .  Object - meta distinctions
 The VT task model is a task model for a complex reasoning task ,  namely design .
 Design entails a considerable amount of reflection .

 $  Reasoning about requirements (which to consider first ,  which to adapt given
 conflicts ,  etc . ) is meta-level reasoning with respect to the requirements .

 $  Reasoning about a design object description (which part of the design artifact to
 consider first ,  which inconsistencies to accept during design ,  etc . ) is meta-level
 reasoning with respect to the design object description .

 $  Reasoning about which global design strategy to employ is meta-level reasoning
 with respect to design process coordination .

 Reflection of this nature ,  inherent to design ,  is explicitly modelled and specified
 for the VT task .  Within the component  DOD-extension-determination ,  for
 example ,  the component  extension-method-determination  is a meta-level
 reasoning component with respect to the components  extension-suitability-
 determination ,  default-value-determination ,  and  user-value-
 acquisition .  It reasons (by means of domain-specific strategic knowledge) about
 the most appropriate way to determine the value of the selected parameter .  As
 another example ,  the  modification  components of both  requirement-
 qualification-set-manipulation  and  design-object-description-
 manipulation  are meta-level components with respect to their  deductive-
 refinement  components :  they reason about the results of the reasoning within
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 deductive-refinement  (e . g .  the fact that the value of a particular parameter has
 not been derived yet by  DOD-deductive-refinement ) .

 4 . 2 .  INFORMATION LINKS

 As described in Section 2 ,  links are used to model and specify exchange of
 information between components .  Mediating links are used to specify interaction
 between the input and output interfaces of a component and sub-components :  (1) to
 transfer information provided as input to a component to a sub-component ,  and (2)
 to transfer information produced as output of a sub-component to the output
 interface of the component .  This holds ,  for example ,  for the transfer of customer
 requirements and building specifications ,  provided as input to the VT task ,  to the
 input interface of the component  requirement-qualification-set-
 manipulation .   Private links are used to transfer information between sub-
 components .  The component  RQS-modification  within  RQS-manipulation ,  for
 example ,  transfers the initial list of requirements and building specifications to the
 history component to be stored for possible future reference .

 The information links for the top levels of the VT task model are depicted
 graphically in Figure 1 in Section 3 .  The information links for the component
 DOD-extension-determination  are depicted in Figure 6 .

 Which information links are used within a component is specified as part of its

(sub) component

Legend

DOD EXTENSION DETERMINATION

task control

EXTENSION METHOD
DETERMINATION

EXTENSION SUITABILITY
DETERMINATION

DEFAULT VALUE
DETERMINATION

USER VALUE
AQUISITION

task control

task control task control task control

information link

 F IGURE  6 .  Information links in the component  DOD-extension-determination .
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 task information ;  the partial specification of  DOD-extension-determination ’s task
 information is as follows :

 t a s k   i n f o r m a t i o n   DOD-extension-determination-info
 s u b - c o m p o n e n t s  extension-suitability-determination ,

 extension-method-determination ,
 default-value-determination ,  user-value-
 acquisition ;

 i n f o r m a t i o n   l i n k s configuration-parameters-from-input ,
 epistemic-info-on-focus-determination ,
 focus-for-default-value-determination ,
 default-value-to-output ,
 focus-for-user-value-determination ,  user-
 value-to-output ;

 (task control omitted here)
 e n d   t a s k   i n f o r m a t i o n   DOD-extension-determination-info

 An example of an  information link  within  DOD-extension-determination  is the
 link between the component  extension-suitability-determination  and
 default-value-determination ,  with which the parameters focused on are
 transferred .  The specification of this link is shown below :

 p r i v a t e   l i n k   focus-for-default-value-determination :   o b j e c t - o b j e c t

 d o m a i n

 o u t p u t

 l e v e l

 s i g n a t u r e

 c o - d o m a i n

 i n p u t

 l e v e l

 s i g n a t u r e

 s o r t   l i n k s

 o b j e c t   l i n k s

 t e r m   l i n k s

 extension-suitability-determination

 object-output
 Suitable-parameter-sig ;
 default-value-determination

 object-input
 Extension-focus-sig ;
 i d e n t i t y

 i d e n t i t y

 i d e n t i t y

 a t o m   l i n k s  (suitable-for-extension(P :  PARAMETER) ,  in-focus-
 of-extension(P :  PARAMETER)) :   kk t r u e ,   t r u e l ,
 k f a l s e ,   f a l s e l ,   k u n k n o w n ,   u n k n o w n ll .

 e n d   l i n k

 This link relates output of  extension-suitability-determination  to input of
 default-value-determination .  If this link is activated (this depends on task
 control knowledge ,  see Section 4 . 3) ,  the truth value of the atom  suitable-for-
 extension(P :  PARAMETER)  is transferred from  extension-suitability-
 determination  to  default-value-determination  and the atom is renamed into
 in-focus-of-extension(P :  PARAMETER) .

 An example of an  object - meta link  is the link which transfers information about
 the parameters (whether they have been determined suitable or not) to the
 meta-level component  extension-method-determination  to reason about an
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 appropriate method .  This link between  extension-suitability-determination
 and  extension-method-determination  uses the meta-level signature
 Epistemic-output-of-extension-suitability-determination  declaring the
 standard unary relations  true ,  false ,  and  known  on terms corresponding to atoms
 at the object level of  extension-suitability-determination .  The epistemic
 meta-predicates  true ,  false ,   and  known  are two-valued .  In the link ,  only the
 meta-level relation  true  is used .  This relation is true for an atom  a  on the object
 level if and only if  a  has truth value  true  (i . e .  the relation is false if  a  has truth value
 false  or  unknown ) .  The signature  Extension-focus-determination-results-
 sig  declares the unary relations  determined-to-be-in-focus-of-extension  and
 left-outside-focus-of-extension  on  PARAMETER .  The link is specified as
 follows :

 p r i v a t e   l i n k

 d o m a i n

 o u t p u t

 l e v e l

 s i g n a t u r e

 c o - d o m a i n

 i n p u t

 l e v e l

 s i g n a t u r e

 s o r t   l i n k s

 o b j e c t   l i n k s

 t e r m   l i n k s

 a t o m   l i n k s

 epistemic-info-on-focus-determination :
 e p i s t e m i c - o b j e c t

 extension-suitability-determination

 epistemic-output
 Epistemic-output-of-extension-suitability-
 determination ;
 extension-method-determination

 object-input
 Extension-focus-determination-results-sig ;
 i d e n t i t y

 i d e n t i t y

 i d e n t i t y

 (true(suitable-for-extension(P :  PARAMETER)) ,
 determined-to-be-in-focus-of-extension(P :
 PARAMETER)) :
 kk t r u e ,   t r u e l ,   k f a l s e ,   f a l s e ll ;
 (true(suitable-for-extension(P :  PARAMETER)) ,
 left-outside-focus-of-extension(P :  PARAMETER)) :
 kk f a l s e ,   t r u e l ,   k t r u e ,   f a l s e ll ;

 e n d   l i n k

 This link relates output of the component  extension-suitability-
 determination  to input of the component  extension-method-determination ,
 by which the truth value  true(or false)  of an atom of the form  true(suitable-
 for-extension(P :  PARAMETER))  is translated into the truth value  true(or
 false)  of an atom of the form  determined-to-be-in-focus-of-extension(P :
 PARAMETER)  and the truth value  false(or true)  of the atom  true(suitable-
 for-extension(P :  PARAMETER))  is translated into the truth value  true(or
 false)  of an atom of the form  left-outside-focus-of-extension(P :
 PARAMETER) .  Note that also this link renames atoms between components .

 Information link names are used in the task control of  DOD-extension-
 determination  to specify under which conditions to transfer the up-to-date
 information .
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 Information link names are used in the task control of  DOD-extension-
 determination  to specify under which conditions to transfer the up-to-date
 information .

 4 . 3 .  TASK CONTROL KNOWLEDGE

 Knowledge related to sequencing of tasks is modelled and specified as task control
 knowledge ,  as discussed in Section 2 .  Task control knowledge does not specify a
 fixed sequence of component activation but defines the global conditions for
 component and link activation .  Parallel activation of components is therefore
 possible ,  although not applied in the VT task .  Each composed component has its
 own task control knowledge ,  as shown in Figure 2 for the VT task .  Task control
 specifies under which conditions and how (e . g .  with what evaluation criteria ,  extent
 of reasoning ,  and ef fort to be af forded) components and the related links are to be
 activated .  Top-level task control knowledge within the VT model ,  for example ,
 specifies the conditions for activation of the three top-level sub-components and the
 information links between the three sub-components .  Each of these sub-components
 has its own task control knowledge to specify when and how its sub-components and
 links are to be activated ,  etc . :  task control knowledge is distributed over the
 component hierarchy .

 To illustrate the specification of task control knowledge ,  activation of the
 sub-tasks in  DOD-extension-determination  will be used .  An example in which
 the success of one component is required before a next component can be activated
 (with the necessary information) is the following rule :

 i f  evaluation(extension-suitability-determination ,  parameter-
 suitability ,  succeeded)

 a n d  previous-component-state(extension-suitability-determination ,
 active)

 t h e n  next-component-state(extension-method-determination ,  active)
 a n d  next-target-set(extension-method-determination ,  method-

 suitability)
 a n d  next-link-state(epistemic-info-on-focus-determination ,  up-to-

 date) ;

 This (temporal) task knowledge rule states that :

 if  the component  extension-suitability-determination  has just suc-
 ceeded in accomplishing the targets defined by its target set  parameter-
 suitability  according to its ef fort and extent settings (i . e .  it has
 determined some suitable parameters) ,

 then  the component  extension-method-determination  is assigned a new set
 of targets  method-suitability  to accomplish ,  and it is to be activated
 (with the aim of determining methods by which values for the parameters
 in focus should be found) with information that the link  epistemic-info-
 on-focus-determination  has updated after activation of  extension-
 suitability-determination  and before activation of  extension-
 method-determination .
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 Activation of  extension-method-determination  results in the determination
 of methods with which values for the parameters focused on can be determined .  The
 success of activation of  extension-method-determination  is evaluated by
 establishing whether (and which) one of the target sets  suitability-of-default-
 value-determination  or  suitability-of-user-value-determination  has
 been successfully achieved .  The result of evaluation is used to determine which
 component is to be activated next ,  specified in the following task control rules of the
 component  DOD-extension-determination :

 i f  evaluation(extension-method-determination ,  suitability-of-
 default-value-determination ,  succeeded)

 a n d  previous-component-state(extension-method-determination ,  active)
 t h e n  next-component-state(default-value-determination ,  active)
 a n d  next-link-state(focus-for-default-value-determination ,  up-to-

 date) ;
 i f  evaluation(extension-method-determination ,  suitability-of-user-

 value-determination ,  succeeded)
 a n d  previous-component-state(extension-method-determination ,  active)

 t h e n  next-component-state(user-value-determination ,  active)
 a n d  next-link-state(focus-for-user-value-determination ,  up-to-date) ;

 4 . 4 .  KNOWLEDGE STRUCTURES

 As discussed in Section 2 ,  specifications of task models include references to specific ,
 applicable knowledge structures such as  signatures  and  knowledge bases .  Signatures
 define the conceptualization of the domain :  a terminological structure in terms of
 which information and knowledge can be expressed .  The specification of signatures
 was addressed in Section 4 . 1 .  The task-specific signature  Suitable-parameter-sig
 was introduced to illustrate the use of signatures .  This signature ,  defined for the
 output interface of  extension-suitability-determination ,  specifies a relation
 that indicates which parameters are suitable for extension of the design object
 description .  The link  focus-for-default-value-determination  interprets the
 set of suitable parameters as a focus for extension ,  that is input information for the
 component  default-value-determination .

 To determine suitable parameters on which to focus ,   extension-suitability-
 determination  needs information on which parameters have a value in the current
 configuration ,  as well as information on derivational dependencies between para-
 meters .  The component  extension-suitability-determination  receives these
 types of information through its input interface .  The input signature of  extension-
 suitability-determination  refers to the signatures  Configuration-
 parameter-sig  and  Parameter-dependency-sig  presented below .

 s i g n a t u r e   Configuration-parameter-sig
 s i g n a t u r e s

 Parameter-sort-sig ,  Parameter-object-sig ;
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 r e l a t i o n s

 parameter-of-configuration :  PARAMETER ;
 e n d   s i g n a t u r e

 s i g n a t u r e   Parameter-dependency-sig
 s i g n a t u r e s

 Parameter-sort-sig ,  Parameter-object-sig ;
 r e l a t i o n s

 dependent-on :  PARAMETER*PARAMETER ;
 e n d   s i g n a t u r e

 Note that Yost (1994) does not impose dependencies between parameters ,  but he
 suggests dependencies by expressing domain knowledge on the relations between
 parameters as equalities of the form  y  5  f  ( x #  ) (or the equivalent in words) ,
 sometimes accompanied by conditions stating when such equalities are appropriate .
 The VT task model assumes that all domain knowledge that can be represented in
 this form .  During the configuration process ,  this knowledge is inspected to
 determine dependencies between parameters :  another form of reflective reasoning
 within the VT task model described .

 The component  extension-suitability-determination  uses the above men-
 tioned types of information to determine the most appropriate focus .  This is
 achieved by reasoning about which parameters are candidates for the focus .  This
 type of information is specified by the signature  Extension-candidate-sig :

 s i g n a t u r e   Extension-candidate-sig
 s i g n a t u r e s

 Parameter-sort-sig ,  Parameter-object-sig ;
 r e l a t i o n s

 candidate-for-extension :  PARAMETER ;
 e n d   s i g n a t u r e

 The following two knowledge base rules are used to determine which parameters
 are  not  candidates :

 i f

 t h e n

 i f

 a n d

 a n d

 t h e n

 parameter-of-configuration(P :  PARAMETER)
 n o t   candidate-for-extension(P :  PARAMETER) ;

 n o t   parameter-of-configuration(P1 :  PARAMETER)
 dependent-on(P1 :  PARAMETER ,  P2 :  PARAMETER)
 n o t   parameter-of-configuration(P2 :  PARAMETER)
 n o t   candidate-for-extension(P1 :  PARAMETER) ;

 Meta-level reasoning is needed to make the assumption that a parameter  can  be a
 candidate ,  on the basis of the information that this parameter has  not  been derived
 to be a non-candidate .  This is a form of closed world assumption and is specified by
 the following meta-rule :

 i f  n o t   false(candidate-for-extension(P :  PARAMETER))
 t h e n  to-assume(candidate-for-extension(P :  PARAMETER) ,  positive) ;

 Using reflective reasoning based on this meta-rule within  extension-
 suitability-determination  positive facts of the form  candidate-for-
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 extension(P :  PARAMETER)  are postulated .  For the VT task ,  it is not necessary to
 make a further distinction among the candidates thus established :  any candidate is
 suitable .  This is expressed in the following rule :

 i f  candidate-for-extension(P :  PARAMETER)
 t h e n  suitable-for-extension(P :  PARAMETER) ;

 The knowledge bases specified above are knowledge structures referenced within
 the specification of  extension-suitability-determination  in the VT task
 model .  The component  extension-suitability-determination  is a composed
 component .  It contains three sub-components ,  that determine ,  respectively ,  non-
 candidate parameters ,  assumptions on candidate parameters ,  and parameters
 suitable for extension .  In each of these sub-components ,  references are specified to
 the related knowledge structures .

 Note that these signatures and knowledge bases abstract from the elevator
 domain .  They describe task-specific terms and knowledge that can be used for the
 task in dif ferent domains .  As such they can be viewed as part of the problem solving
 method .

 To be of use in a specific domain such as the elevator domain ,  however ,  additional
 domain knowledge is required :  domain-specific signatures and knowledge bases
 need to be defined .  They are discussed in more detail in Section 5 .

 4 . 5 .  TASK DELEGATION

 In Yost’s document not much attention is paid to the distinction between tasks for
 the user and tasks for the system .  In our task model ,  not only does the user provide
 initial input ,  namely customer requirements ,  but the user may also be consulted on
 other possible values for a requirement ,  if the given requirement can not be fulfilled .
 The same holds for the design object description modification—consulting the user
 for an appropriate value is an option which may be considered during design .

 5 .  Domain ontology

 A domain ontology is a definition of the terms and the relations used in the
 specification of domain knowledge .  An existing generic ontology may be used to
 guide the knowledge acquisition process ,  as a structure for new knowledge and facts .
 Such an ontology is generic in the sense that it is expressed in terms independent of
 the particular application domain (e . g .  independent of the elevator domain) .  The
 VT ontology for design ,  written in ONTOLINGUA by Gruber and Runkel (1993) ,
 distinguishes the  generic terms  parameter ,  value ,  formula ,  and constraint .  For the
 domain at hand ,  the elevator domain ,  these generic terms are instantiated with
 ele y  ator domain specific terms :  specific names of parameters ,  constraints ,  etc .  These
 generic terms and elevator domain specific terms are called  domain - oriented .

 In addition to domain-oriented structures ,  structures for (problem solving)
 process-oriented or  task - oriented  notions distinguished by Yost (1994) and by
 Brazier  et al .  (1994 b ) in the generic task model of design are specified ;  e . g .  violated
 constraints ,  or parameters in focus (for extension or modification) ,  fixes .
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elevator

hoistway car assembly safety mechanisms

car buffer

 F IGURE  7 .  Part of the part-of hierarchy for an elevator (arrows indicate ‘‘part-of’’ relations) .

 5 . 1 .  ONTOLOGIES

 Ontologies are often expressed in terms of concept hierarchies and concept-
 attribute-value structures .  In the elevator domain ,  both types of structures have
 been distinguished .

 The main organizational structure used by Yost (1994) is a  concept hierarchy  in
 terms of components of an elevator (not to be confused with components of a task
 model) :   hoistway ,  car assembly ,  counterweight assembly ,  suspension ,
 safety mechanisms ,   and  cables .  Each of these components is descriebd in terms
 of its sub-components .  For example ,  the  car assembly  consists of a  passenger
 cab ,  a  supporting structure  (with sub-components  platform  and  sling ) ,  and
 safety mechanisms .  Part of the resulting concept hierarchy is depicted in Figure 7 .

 In this conceptual structure components are not necessarily disjoint (i . e .  the
 concept hierarchy is not a tree) .  Yost (1994) states in Section 2 that the  safety
 mechanisms  component ,  for instance ,  is a sub-component of the  elevator .  Yost
 also mentions :  ‘‘ The car assembly consists of the  passenger cab ,   its supporting
 structure , and safety mechanisms ’’ together with ‘‘ There is at least one buf fer under
 each of the  car  and  counterweight . ’’ This has been interpreted as stating that the  car
 buf fer  is part of the  safety mechanisms  as well as part of the  car assembly .

 The second type of structure often used to specify ontologies is the  concept -
 attribute - y  alue  structure .  The concept  car assembly ,  for example ,  has a number of
 attributes ,  each of which can be assigned a value .  This is shown in Figure 8 .

car assembly

WEIGHT  :  VALUE

MISC WEIGHT  :  VALUE

GUIDESHOE WEIGHT  :  VALUE

SUPPLEMENT WEIGHT  :  VALUE

 F IGURE  8 .  The concept  car assembly  and four of its attributes .
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 The component structure  components-with-constraints  of Gruber and
 Runkel (1993) is based on the DIDS knowledge base for VT ,  which in turn is tuned
 to the problem-solving method used :   configuration-design  (Runkel & Birmin-
 gham ,  1994) .  In the ONTOLINGUA ontology ,  all sub-components of an elevator
 are part of the  elevator  component ;  sub-components themselves do not have parts .
 This structure does not correspond to the component structure partially depicted in
 Figure 7 ,  which is based on Yost (1994) .

 The component structure  components-with-constraints  seems to be based on
 the additional assumption that a constraint related to a component only refers to
 parameters of that same component .  This would explain ,  for instance ,  that almost
 every parameter is related to the  elevator  component (which contains 119
 parameters) ,  including for example CAR MISC WEIGHT (see Section 5 . 6 of Yost
 (1994) on the  car assembly) .  In other words ,  in the ONTOLINGUA ontology ,
 parameters are organised in an object-oriented fashion as slots of components .

 In the procedure for the VT task described by Yost (1994) ,  knowledge of concepts
 and their relations is not used in the process of generating an elevator configuration .
 All domain knowledge and constraints are expressed in terms of values of concept
 attributes .  Therefore ,  the concept hierarchy need not be explicitly modelled and
 specified for the VT task ,  but may be useful for other tasks for which the same
 domain knowledge could be applied (reuse of ontologies) .

 Gruber and Runkel (1993) represent all knowledge about the domain as
 constraints ,  whether used for derivation of attribute values or for imposing
 restrictions on attribute values .  Both in the generic task model of design and in the
 VT task model presented here ,  a distinction is made between object-level domain
 knowledge that does hold for any design (and can be used by object-level reasoning
 to derive further properties of the design object description) and meta-level domain
 knowledge that expresses what should hold for any design (and can be used by
 meta-level reasoning to analyse the current design object description) .  The first type
 of knowledge is used in the component  DOD-deductive-refinement ,  the second
 type in the component  DOD-modification  (both within  DOD-manipulation ) .

 5 . 2 .  SPECIFICATION OF ONTOLOGIES IN DESIRE

 Ontologies are specified in DESIRE as knowledge structures ,  defined in terms of
 signatures for order-sorted predicate logic .  In this section ,  example specifications are
 presented of domain-oriented ontologies (in Section 5 . 2 . 1) and task-oriented
 ontologies (in Section 5 . 2 . 2) .

 5 . 2 . 1 .  Domain - oriented ontology
 A feature of DESIRE ,  shown in Section 4 . 1 . 2 ,  is that signatures may be constructed
 through reference .  For example ,  generic signatures may refer to signatures
 specifying domain-specific instances ,  and vice versa .  This enables the separation of
 generic knowledge structures from domain-specific knowledge structures .  In the
 following signature specifications ,  a generic concept hierarchy is specified by means
 of the signature  Concept-hierarchy-sig ,  attributes of a concept by  Concept-
 attribute-sig ,  and values of concept attributes by  Concept-attribute-value-
 sig .   Each of the generic signatures below refers to other generic signatures :
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 Concept-sort-sig ,  Attribute-sort-sig ,  and  Value-sig (the latter is specified
 later) .

 s i g n a t u r e   Concept-sort-sig
 s o r t s

 CONCEPT ;
 e n d   s i g n a t u r e

 s i g n a t u r e   Concept-hierarchy-sig
 s i g n a t u r e s

 Concept-sort-sig ,  Concept-object-sig ;
 r e l a t i o n s

 part-of :  CONCEPT*CONCEPT ;
 e n d   s i g n a t u r e

 s i g n a t u r e   Attribute-sort-sig
 s o r t s

 ATTRIBUTE :
 e n d   s i g n a t u r e

 s i g n a t u r e   Concept-attribute-sig
 s i g n a t u r e s

 Concept-sort-sig ,  Attribute-sort-sig ,  Concept-object-sig ,
 Attribute-object-sig ;

 r e l a t i o n s

 concept-attribute :  CONCEPT*ATTRIBUTE ;
 e n d   s i g n a t u r e

 s i g n a t u r e   Concept-attribute-value-sig
 s i g n a t u r e s

 Concept-sort-sig ,  Attribute-sort-sig ,  Value-sig ,  Concept-object-sig ,
 Attribute-object-sig ;

 r e l a t i o n s

 concept-attribute-value :  CONCEPT*ATTRIBUTE*VALUE ;
 e n d   s i g n a t u r e

 Within the generic signature specifications above also references are made to the
 domain specific signatures  Concept-object-sig  and  Attribute-object-sig .  For
 the elevator domain these are specified by :

 s i g n a t u r e   Concept-object-sig
 s i g n a t u r e s

 Concept-sort-sig ;
 o b j e c t s

 elevator ,  hoistway ,  car-assembly ,  safety-mechanisms ,  car-buf fer ,  .  .  . :
 CONCEPT ;

 e n d   s i g n a t u r e

 s i g n a t u r e   Attribute-object-sig
 s i g n a t u r e s

 Attribute-sort-sig ;
 o b j e c t s

 model ,  weight ,  height ,  length ,  thickness ,  .  .  . :  ATTRIBUTE ;
 e n d   s i g n a t u r e
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 This illustrates how in DESIRE a separation can be made between generic
 ontologies and (elevator) specific instances of them .

 A concept and an attribute together uniquely identify (and determine the name
 of) a parameter of the elevator configuration .  As argued in Section 5 . 1 ,  concept
 hierarchies need not be explicitly modelled and specified for the VT task described
 by Yost (1994) .  In the VT task model specified in DESIRE ,  only parameters and
 values are used to describe elevator configurations .  This choice is supported by the
 fact that Yost (1994) also names parameters on the basis of the concepts and
 attributes to which they refer .

 In the domain-oriented part of the ontology in DESIRE ,  a sort  PARAMETER  (see
 the generic signature  Parameter-sort-sig  in Section 4 . 1 . 2) is defined for the
 purpose of modelling and specifying the parameters distinguished by Yost (1994) .  In
 the example below ,  a reference is made in the domain-specific signature
 Parameter-object-sig  to the generic signature  Parameter-sort-sig .   The
 signature  Parameter-object-sig  specifically instantiates the sort  PARAMETER  by
 elevator-domain specific instances of parameters .

 s i g n a t u r e   Parameter-object-sig
 s i g n a t u r e s

 Parameter-sort-sig ;
 o b j e c t s

 car-weight ,  door-speed ,  hoistway-depth ,  sling-model ,  .  .  . ;
 PARAMETER ;

 e n d   s i g n a t u r e

 The four types of value that can be assigned (see Figure 9) to parameters are as
 follows (with reference to Yost ,  1994) .

 $  INTEGER  for values of parameters such as OPENING COUNT (Section 3 :  ‘‘ The
 number of floors the ele y  ator will stop on . ’’) .

 $  REAL  for values of parameters such as PLATFORM RUNNING CLEARANCE
 (Section 4 . 4 :  ‘‘[The PLATFORM RUNNING CLEARANCE]  is  1 . 2 5   inches . ’’) .

 $  BOOLEAN  for values of parameters such as CAR LANTERN (Section 3 :  ‘‘ Whether
 or not the car should be equipped with a lantern  (  yes or no ) . ’’) .

 $  STRING  for values of parameters such as DOOR MODEL (Section 5 . 1 :  ‘‘ For
 side - opening doors , the  [ DOOR MODEL ]  consists of the DOOR MODEL
 CODE followed by a code identifying the DOOR OPENING STRIKE SIDE  .  .  .  ,
 with the two codes separated by a dash . ’’) .

VALUE

INTEGER REAL STRING BOOLEAN

 F IGURE  9 .  Value type hierarchy (supertype-sub-type links are from top to bottom) .
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 In the signature  Value-sig  for which the specifications are depicted below ,
 sub-sorts are used to model and specify the relation between  VALUE  and the four
 more specific value types .  The signature  Parameter-value-sig  defines a relation
 expressing which value is assigned to which parameter .

 s i g n a t u r e   Value-sig
 s i g n a t u r e s

 Integer-sig ,  Real-sig ,  String-sig ,  Boolean-sig ;
 s o r t s

 VALUE ;
 s u b s o r t s

 INTEGER ,  REAL ,  STRING ,  BOOLEAN  , VALUE ;
 e n d   s i g n a t u r e

 s i g n a t u r e   Parameter-value-sig
 s i g n a t u r e s

 Parameter-sort-sig ,  Parameter-object-sig ,  Value-sig ;
 r e l a t i o n s

 value-of :  PARAMETER*VALUE ;
 e n d   s i g n a t u r e

 For the specification of the sorts  INTEGER  and  REAL ,  the objects  0  and  1 ,  arithmetic
 comparison relations such as  5   and  #    and arithmetic functions such as  1 , 2 ,   and *
 are assumed as usual .

 Part of the VT domain knowledge can be used to deduce additional parameter
 values from those already known .  For example ,  Yost (1994) states in Section 4 . 3 that
 ‘‘[the COUNTER-WEIGHT STACK HEIGHT]  is equal to the number of coun-
 terweight plates  ( COUNTERWEIGHT PLATE QUANTITY )  .  .  .  times the
 indi y  idual plate thickness  .  .  .  ( COUNTERWEIGHT PLATE THICKNESS ) . ’’ This
 can be expressed in DESIRE by means of the following knowledge base rule (note
 that the choices of this rule implies that the parameter in the conclusion depends on
 the parameters in the condition) :

 i f   value-of(counterweight-plate-quantity ,  PQ :  VALUE)
 a n d   value-of(counterweight-plate-thickness ,  PT ;  VALUE)
 a n d   SH :  VALUE 5 PQ :  VALUE*PT :  VALUE

 t h e n   value-of(counterweight-stack-height ,  SH :  VALUE) ;

 The constraints described in Section 7 of Yost (1994) also need to be modelled
 and specified .  A typcial constraint is constraint C-22 :  ‘‘ The COUNTERWEIGHT
 STACK HEIGHT  .  .  .  can be at most the COUNTERWEIGHT FRAME
 HEIGHT  .  .  .  minus the COUNTERWEIGHT FRAME THICKNESS  .  .  . ;   if it is not ,
 three fixes are possible :  .  .  . ’’ According to Section 7 of Yost (1994) ,  each constrain
 focuses on a specific parameter :  this parameter is explicitly mentioned in the
 introduction of the constraint .  A test on the value of this parameter is expressed as
 a  WFF  (see Figure 10) .  Three kinds of constraints can be distinguished :   minimum ,
 maximum ,  and  compatibility constraints .  A minimum constraint sets a lower limit on
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CONSTRAINT

MINIMUM
CONSTRAINT

MAXIMUM
CONSTRAINT

COMPATIBILITY
CONSTRAINT

expression: WFF
focus: PARAMETER
kind: DELIMITER

kind = min kind = max kind = compatibility

 F IGURE  10 .  Constraint type hierarchy .

 the value of a specific parameter ,  a maximum constraint sets an upper limit .  For
 example ,  constraint C-22 cited above is a maximum constraint .  A compatibility
 constraint limits the possible values of a parameter to a finite ,  enumerated set of
 values .  For example ,  compatibility constraint C-34 states about MACHINE
 MODEL 18 that ‘‘ MACHINE MODEL  1 8   is compatible with MOTOR MODELS
 1 0 HP And  15 HP . ‘‘ These three types of constraints can be modelled and specified in
 DESIRE in a sort hierarchy (sorts and sub-sorts) and / or by relations expressing the
 specific types of constraint .  Figure 10 depicts both options .

 In the VT task model ,  relations have been used to model and specify the three
 dif ferent types of constraints .  Relations provide a more constraint .  Figure 10 depicts
 both options .

 In the VT task model ,  relations have been used to model and specify the three
 dif ferent types of constraints .  Relations provide a more flexible representation :  the
 type of a constraint can be derived dynamically .  An example of a specification in
 which the type of constraint is specified is the signature  Constraint-attribute-
 sig  shown below .

 s i g n a t u r e   Constraint-sort-sig
 s o r t s

 CONSTRAINT ;
 e n d   s i g n a t u r e

 s i g n a t u r e   Delimiter-sig
 s o r t s

 DELIMITER ;
 o b j e c t s

 min ,  max ,  compatibility :  DELIMITER ;
 e n d   s i g n a t u r e

 s i g n a t u r e   Constraint-attribute-sig
 s i g n a t u r e s

 Constraint-sort-sig ,  Parameter-sort-sig ,  Constraint-object-sig ,
 Parameter-object-sig ,
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 Delimiter-sig ,  Wf f-sig ;
 r e l a t i o n s

 kind :  CONSTRAINT*DELIMITER ;
 focus :  CONSTRAINT*PARAMETER ;
 expression :  CONSTRAINT*WFF ;

 e n d   s i g n a t u r e

 s i g n a t u r e   Parameter-value-fact-sig
 s i g n a t u r e s

 Parameter-sort-sig ,  Parameter-object-sig ,  Value-sig ;
 s o r t s

 PARAMETER-VALUE-FACT ;
 f u n c t i o n s

 value-of :  PARAMETER*VALUE  5 PARAMETER-VALUE-FACT ;
 e n d   s i g n a t u r e

 The meta-level function  value-of  is used to represent at the meta-level ,  the
 object-level relation  value-of  with the same arity .  The arithmetic comparison
 relations at the object-level are represented at the meta-level in a similar way .  The
 following signature defines the elevator-specific instances :

 s i g n a t u r e   Constraint-object-sig
 s i g n a t u r e s

 Constraint-sort-sig ;
 o b j e c t s

 eligible-motor-model ,  max-machine-groove-pressure ,  max-hoist-
 cable-traction-ratio ,
 max-car-guiderail-vertical-force ,  min-hoist-cable-safety-
 factor ,  .  .  . :  CONSTRAINT ;

 e n d   s i g n a t u r e

 Using the above signatures ,  knowledge about constraint C-22 can be expressed as
 follows :

 kind(max-counterweight-stack-height ,  max)
 focus(max-counterweight-stack-height ,  counterweight-stack-height)
 expression(max-counterweight-stack-height ,
 value-of(counterweight-stack-height ,  SH)
 and value-of(counterweight-frame-height ,  FH)
 and value-of(counterweight-frame-thickness ,  FT)
 implies SH  # FH 2 FT)

 where  and  and  implies  are both functions from  WFF 3 WFF  to  WFF  (written in-fix) ,
 denoting logical conjunction and logical implication ,  respectively .

 5 . 2 . 2 .  Task - oriented ontology
 The representation of concepts by means of which the VT domain is described in the
 previous section is influenced by the task to be performed .  The task determines not
 only which information about the domain is to be represented but also the
 terminology to be employed .  In the VT task ,  for example ,  colour is irrelevant and
 therefore not included in the domain oriented ontology .  Characteristics and
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 dimensions of elevator components are described in terms of parameters ,  which is
 motivated by the view of an elevator as a configuration .  These observations agree
 with the argument put forward by Vanwelkenhuysen and Mizoguchi (1995) that
 domain knowledge cannot be adequately represented independent of the class of
 tasks for which it has been designed .

 The domain-oriented ontologies presented in Section 5 . 2 . 1 to a certain extent
 reflect the task ,  but their semantics are based on the domain .  However ,  besides
 domain-oriented ontologies ,  also concepts with process aspects of the task as their
 semantics are required :  task-oriented ontologies .  Notions like fixes are task-oriented
 and are part of the knowledge structures that are used to instantiate a problem-
 solving method .

 Task-oriented information includes meta-level relations that express dynamic
 properties of the design task such as violations of constraints ,  applied fixes ,  and
 tentative parameter values .  Task-oriented relations are represented in generic
 signatures ,  such as  Suitable-parameter-sig  introduced in Section 4 . 1 . 2 (see also
 Sections 4 . 2 and 4 . 4) .  The following signatures illustrate the use of meta-level
 relations to denote the contents of the current and the tentative configurations .

 s i g n a t u r e   Configuration-content-sig
 s i g n a t u r e s

 Parameter-value-fact-sig :
 r e l a t i o n s

 in-current-configuration ,  in-tentative-configuration :  PARAMETER-VALUE-
 FACT ;

 e n d   s i g n a t u r e

 Meta-relations are also used to specify which parameter values are required by the
 user (Section 3 of Yost ,  1994) :  customer specifications and relevant building
 information .  These relations represent the requirements for the VT task .  In
 addition ,  initial values for parameters are encoded by meta-relations ,  representing
 heuristics about plausible designs .

 The following knowledge about fixes is modelled and specified (see Figure 11) .

FIX

ONCE-APPLIED FIX

constraint: CONSTRAINT
applicability: WFF
focus: PARAMETER
action: ACTION
desirability: INTEGER
frequency: FREQUENCY

frequency = once frequency = stepwise

STEPWISE-APPLIED FIX

 F IGURE  11 .  Fix type hierarchy .
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 $  The constraint in relation to which the fix can be considered (in order to resolve
 the constraint’s violation) .

 $  A condition stating when the fix is applicable ,  given a violation of its related
 constraint .

 $  The parameter on which the fix focuses (i . e .  of which the value is changed by the
 fix) .

 $  The action to perform on (i . e .  the change in value of) the parameter in focus when
 the fix is applied .

 $  The desirability of the fix .
 $  An indication of whether the fix may change the value of the parameter in focus

 once or repeatedly .

 The applicability condition of a fix is expressed in terms of parameters and their
 current values .  For example ,  in Section 7 ,  Yost (1994) mentions a fix to constraint
 C-34 with the following applicability condition :  ‘‘ the MACHINE MODEL is  1 8 , or
 the MACHINE MODEL is  2 8   and the MOTOR MODEL is  2 5 HP ,  3 0 HP , or
 4 0 HP . ’’

 Actions mentioned in Section 7 of Yost (1994) can be divided into  upgrade actions
 (‘‘ .  .  . try upgrading the SAFETY BEAM MODEL  .  .  . ’’) , increase actions  and
 decrease actions  (‘‘ .  .  . either increase the CAR CAB HEIGHT by the amount of the
 constraint  y  iolation , or decrease the OPENING HEIGHT by the amount of the
 constraint  y  iolation . ’’) .  These dif ferent types are shown in Figure 12 .  Changing
 values of parameters consists of one of these actions .

 The desirability of a fix ,  at constant encoded as an integer ,  guides the construction
 of fix combinations as described in Section 7 of Yost (1994) .  Although not stated
 explicitly ,  the desirability of a fix seems to depend on the type of parameter that is
 to be changed .  Fixes to parameters of which the value is prescribed by requirements
 (customer specifications and relevant building information) have a desirability of
 D6 ,  D9  or  D10 .  Whenever a fix tentatively changes a value prescribed by a
 requirement ,  the customer may be consulted about the change .  The trace shown in

VALUE INCREASE

direction = inc

VALUE DECREASE

direction = dec

VALUE COMPUTATIONVALUE UPGRADE

ACTION

amount: ARITHMETIC-EXPRESSION
direction: DIRECTIONS

 F IGURE  12 .  Action type hierarchy .
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 Table 2 (Section 6 of this paper) presents an example of consulting the customer in
 order to resolve a constraint violation .

 Similar signatures as for constraints are provided to model and specify fixes .  For
 example ,  one of the fixes to the violation of constraint C-22 is to increase the
 COUNTERWEIGHT PLATE DEPTH by half-inch steps .  This can be expressed as
 follows :

 constraint(fix-22-1 ,  max-counteweight-stack-height)
 applicability(fix-22-1 ,  true)
 focus(fix-22-1 ,  counterweight-plate-depth)
 action(fix-22-1 ,  increase(0 . 5))
 desirability(fix-22-1 ,  3)
 frequency(fix-22-1 ,  stepwise)

 (where  true  is a tautology ;  i . e .  a trivial or empty applicability condition) .
 Closely associated with these fixes are fix combinations .  The current combination

 is encoded in a unary relation  in-combination  on  FIX :  it is expressed as a set of
 atoms  in-combination(F)  for all fixes  F  in the combination .  Some of these fixes
 may be stepwise-applied fixes .  The number of times a fix step has been applied is
 encoded in the binary relation  number-of-fix-steps-tried :  FIX*INTEGER .  From
 these two relations ,  the actual modification can be formulated :  for each fix in the
 current combination ,  the number of fix steps applied determines the next fix step to
 be applied ,  represented by the binary relation  current-design-modification :
 INTEGER*ACTION .

 Other types of objects distinguished are the dependencies between parameters
 (i . e .  which parameters are needed to compute a specific parameter) ,  between
 parameters and constraints (i . e .  which parameters are involved in a constraint) ,
 and between parameters and fixes (i . e .  which parameters are involved in a fix) .
 These dependencies are represented by the relations  dependent-on :
 PARAMETER*PARAMETER ,  involved-in-constraint :  PARAMETER*CONSTRAINT ,
 and  involved-in-fix :  PARAMETER*FIX .  The first two relations correspond to the
 USED-IN  attribute in Gruber and Runkel (1993) .  The third relation is task-specific
 knowledge that is not considered in Gruber and Runkel (1993) .  All three relations
 are needed to be able to derive just enough parameters to evaluate the results of
 applying fixes :  ‘‘ Recompute just enough  y  alues to find out if  [the applied fix is
 acceptable or not] , ’’ as stated in Section 7 of Yost (1994) .

 6 .  Sample trace

 In this section ,  excerpts from a sample trace are presented that have been produced
 by a prototype system automatically generated from the full DESIRE specification
 of the VT task model .  Parts of this specification have been presented in Sections 4
 and 5 of this paper .  The test case described in Section 9 of Yost (1994) has been
 reproduced with the prototype system :  for the given sample customer specifications
 and relevant building information ,  the same constraint violations were detected ,  the
 same design modifications were applied ,  and the same final configuration resulted .

 Note that our aim has been to preserve the expert’s knowledge described by Yost
 (1994) as much as possible ,  rather than to impose a particular problem-solving
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 method onto the task and neglect the expert’s knowledge .  The refinement of the
 generic task model of design leading to the VT task model has been motivated by
 statements from Yost (1994) .  Furthermore ,  to our opinion all of the expert’s
 knowledge has been modelled and specified in the VT task model .

 Table 1 shows the violated constraints that were detected during the design
 process ,  together with the fixes (design modifications) that were applied to remove
 these violations ,  for the test case provided in Section 9 of Yost (1994) .  The left
 column shows the constraints violated ,  including the one selected for fixing (in
 italics) ,  the middle column shows the design modification tried ,  and the right column
 indicates whether or not the design modification was accepted .

 Rather than showing the activations of all the components of the VT task model ,
 two detailed examples are presented .

 $  Fixing of the  min-platform-to-hoistway-left  constraint violation ,  which
 illustrates the cooperation between  DOD-manipulation  and  RQS-
 manipulation .

 $  Fixing of the  max-traction-ratio  constraint violation ,  which illustrates various
 activations of components within  DOD-manipulation .

 For each example a table is presented ,  containing a sequence of activations of
 components ,  together with the results of activations (using an abbreviated notation) .
 In the left column ,  components are separated from subcomponents by means of
 colons .

 In the first example ,  the constraint  min-platform-to-hoistway-left  is vio-
 lated and a fix to resolve this violation is proposed .  However ,  this fix is not
 immediately accepted ,  as it changes a value protected by a requirement .  Instead ,
 RQS-manipulation  is activated and the customer is asked whether or not he or she
 can accept the proposed change .  The customer agrees and the requirement is
 changed accordingly ,  after which  DOD-manipulation  is allowed to continue .

 The second example focuses on resolving the violation of the constraint
 max-traction-ratio .  Several fix combinations have to be tried to resolve this
 constraint violation .  For the test case descirbed in Section 9 of Yost (1994) ,  solving
 this particular constraint violation is the most extensive part of the design process .
 To resolve this constraint violation ,  a combination of three fixes is needed .  As the
 complete component activation sequence is quite extensive ,  only a small fragment
 will be shown .

 7 .  Implementation aspects

 As discussed above ,  the DESIRE framework includes tools which can be used to
 generate a prototype implementation from a formal specification .  A number of these
 tools have been used in the course of the VT project .

 The implementation generator  impl  was used to generate executable prototype
 code for a UNIX / Prolog environment .  One consequence of modelling the VT task is
 that ef ficiency within the DESIRE framework could (and had to) be greatly
 improved ,  in particular for the implementation generator and executor .

 The general manager  gm  for this environment was used to run the prototype code .
 This tool also provides facilities for the developer to examine the results of the
 reasoning process per component .  Through communication with  aid ,  a graphical
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 T ABLE  1
 Violated constraints and design modifications in the design process

 Design modification
 Violated constraints
 (selections in italics)  Focus parameter  Step  Action  Accepted

 min-platform-to-
 hoistway-left

 opening-to-hoistway-

 left

 1  increase by (8 2
 platform-to-

 hoistway-left)

 yes

 eligible-motor-model

 max-vertical-rail-force

 machine-model

 car-railunit-weight

 1

 1

 upgrade

 upgrade

 yes

 yes

 min-hoist-cable-safety-
 factor

 hoist-cable-quantity  1  increase by (5 2
 hoist-cable-

 quantity)

 yes

 max-traction-ratio  cwt-to-platform-rear  1  decrease by 0 . 5  no

 max-traction-ratio  cwt-to-platform-rear  2  decrease by 0 . 5  no

 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 max-traction-ratio  cwt-to-platform-rear  7  decrease by 0 . 5  no

 max-traction-ratio  car-supplement-weight  1  increase by 100  no

 min-cwt-to-platform-rear

 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 max-traction-ratio  car-supplement-weight  6  increase by 100  no

 max-traction-ratio  car-supplement-weight  1  increase by 100  no

 max-car-supplement-

 weight

 cwt-to-platform-rear  1  decrease by 0 . 5

 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 max-traction-ratio  car-supplement-weight

 cwt-to-platform-rear

 1

 7

 increase by 100

 decrease by 0 . 5
 no

 max-traction-ratio  car-supplement-weight  2  increase by 100  no

 min-cwt-to-platform-rear  cwt-to-platform-rear  1  decrease by 0 . 5
 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 max-traction-ratio  car-supplement-weight  5  increase by 100  no

 cwt-to-platform-rear  7  decrease by 0 . 5

 max-traction-ratio  car-supplement-weight  6  increase by 100  no

 min-cwt-to-platform-rear  cwt-to-platform-rear  1  decrease by 0 . 5

 max-traction-ratio  comp-cable-model  1  upgrade  no

 max-car-supplement-

 weight

 max-traction-ratio  comp-cable-model  1  upgrade  no

 cwt-to-platform-rear  1  decrease by 0 . 5
 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 max-traction-ratio  comp-cable-model  1  upgrade  no

 cwt-to-platform-rear  8  decrease by 0 . 5

 max-traction-ratio  comp-cable-model  1  upgrade  no

 min-cwt-to-platform-rear  car-supplement-weight  1  increase by 100

 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 max-traction-ratio  comp-cable-model  1  upgrade  no

 car-supplement-weight  6  increase by 100

 max-traction-ratio  comp-cable-model  1  upgrade  no

 max-car-supplement-

 weight

 car-supplement-weight  1  increase by 100

 cwt-to-platform-rear  1  decrease by 0 . 5
 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 max-traction-ratio  comp-cable-model  1  upgrade  yes

 car-supplement-weight  5  increase by 100

 cwt-to-platform-rear  7  decrease by 0 . 5

 min-machine-beam-selection-
 modulus

 machine-beam-model  1  upgrade  yes
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 editor for DESIRE specifications of which a prototype has been developed ,  this
 examination can be done graphically .  A first optimization of both  impl  and  gm
 decreased the time required for prototype generation and execution considerably .

 8 .  Discussion
 In this discussion first the design model presented in Section 3 is compared to other
 design models ,  then the formal specification language DESIRE is compared to other
 languages with formal specifications and finally the results presented in this paper
 are discussed .

 8 . 1 .  COMPARISON WITH OTHER DESIGN MODELS AND THEORIES

 Researchers from various disciplines (such as architecture ,  mechanical engineering ,
 industrial design ,  and artificial intelligence) have developed many dif ferent models
 and theories of design .  These models and theories describe characteristic features of
 design such as the following .

 $  Design problem statements (function ,  need ,  desire ,  goal ,  objective ,  required
 behaviour ,  requirement ,  constraint) .

 $  Design objects (structure ,  attribute ,  property ,  behaviour) .
 $  Design paradigms (decomposition ,  case-based design) .
 $  Design knowledge (domain knowledge ,  strategic knowledge) .
 $  Decomposition of the design task into sub-tasks .
 $  Input for and output of sub-tasks .
 $  Kinds of knowledge (and possibly also suitable inference mechanisms) for

 sub-tasks .
 $  Control of sub-tasks .

 In the following ,  some of the well-known and / or more recent models and theories
 will be compared with the generic task model of design described in Section 3 ,
 discussing two of the five types of knowledge distinguished in Section 2 :  task
 (de)composition and task control knowledge .  For the sake of brevity ,  the generic
 task model of design will be referred to as GTMD .

 8 . 1 . 1 .  Task  ( de ) composition
 Design models often include a decomposition of the design task into sub-tasks .
 These sub-tasks may be further decomposed ,  but most design models contain a
 one-level decomposition only .

 Archer (1970) decomposes design into 30 sub-tasks (in his terminology ‘‘steps’’) ,
 of which 12 describe the generation of requirements and 17 the generation of a
 design object description .  One sub-task describes the evaluation of the design
 process ,  as do a few others partially .  Examples of sub-tasks in Archer’s model are as
 follows .

 $  Selection of the next sub-problem to handle .
 $  Identification of goals (i . e .  requirements of properties of the design object) within

 the selected sub-problem .
 $  Analysis of the relationships between the states of properties of the design object

 and the fulfilment of the identified goals .
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 T ABLE  2
 Trace of component acti y  ations and results for fixing the  min-platform-to-

 hoistway-left  constraint

 Activation of component  Results

 Within  DOD-manipulation :  DOD-modification :

 DOD-modification-analysis :  Violated constraints :
 constraints-analysis  min-platform-to-hoistway-left .

 DOD-modification-determination :  Selected constraint :
 DOD-revision-determination :  min-platform-to-hoistway-left .
 violated-constraint-selection

 DOD-modification-determination :  Determined fix combination :
 DOD-revision-determination :  increase opening-to-hoistway-left by

 fix-combination-determination  (8  2  platform-to-hoistway-left)

 DOD-modification-determination :  Determined next fix steps :
 DOD-revision-determination :  increase once opening-to-hoistway-left by

 fix-steps-determination  (8  2  platform-to-hoistway-left) .

 DOD-modification-implementation :  Parameters to recompute ,  among which :
 implementation-focus-determination  opening-to-hoistway-left .

 DOD-modification-implementation :  Tentative parameter value :
 fix-steps-application  value-of(opening-to-hoistway-left ,  33) .

 DOD-modification-analysis :

 fix-execution-analysis :

 configuration-status-determination

 The selected constraint is now satisfied ,  and no new
 constraint violations were introduced .

 DOD-modification-analysis :

 fix-execution-analysis :

 fix-steps-acceptability-determination

 The requirement on  opening-to-hoistway-left  is not
 met by the tentative configuration ,  so a dead end is
 reached .

 Within  DPC :
 design-process-coordination  Because no further progress can be made in devising a

 DOD ,  the current set of requirements has to be modified .
 Within  RQS-manipulation :  RQS-modification :

 RQS-modification-analysis  Untenable requirement :
 untenable-requirements-analysis  value-of(opening-to-hoistway-left ,  32) .

 RQS-modification-determination :  Requirement dropped :
 RQS-revision-determination  value-of(opening-to-hoistway-left ,  32) .

 RQS-modification-determination :

 RQS-extension-determination :

 extension-method-determination

 Selected extension determination method :
 consult-customer .

 RQS-modification-determination :

 RQS-extension-determination :

 New requirement (based on the last design modification
 tried) :

 user-requirement-acquisition  value(opening-to-hoistway-left ,  33) .

 Within  DPC :
 design-process-coordination  Because the current set of requirements has been modified ,

 further attempts must be made to devise a design object
 description .

 Within  DOD-manipulation :  DOD-modification :
 DOD-modification-analysis :

 fix-execution-analysis :

 fix-steps-acceptability-determination

 The last design modification is acceptable .

 DOD-modification-implementation :

 configuration-update

 The values of all dependent parameters which have not yet
 been recomputed are now removed from the current
 configuration .

 Within  DOD-manipulation :
 DOD-deductive-refinement  The values of all dependent parameters are deduced .
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 $  Identification of decision variables on which the states of properties of the design
 object depend .

 $  Assignment of states to the identified decision variables .
 $  Reiteration of the problem-solving process until the overall problem is resolved .

 The GTMD can be further refined to specify Archer’s model .  For instance ,  of the
 sub-tasks above ,  the first two can be modelled as sub-components of  RQS-
 modification ,  the third one as  RQS-deductive-refinement ,  the fourth and fifth one
 as sub-components of  DOD-modification ,   and the last one as  design-process-
 evaluation .

 Akin (1978) distinguishes the following sub-tasks (in his terminology ‘‘mechan-
 isms’’) of architectural designs .

 $  Information acquisition ,  which collects external information about aspects of the
 design problem .

 $  Information interpretation ,  which expands the implications of the incoming
 information to the various aspects of the design problem at hand .

 $  Information storage ,  which stores past actions in design problem-solving to aid
 future actions .

 $  Partial-solution generation ,  which produces a solution to one or a few aspects of
 the total set of design requirements .

 $  Solution evaluation ,  which checks each new partial solution against the criteria
 used in generating all previous partial solutions .

 $  Solution integration ,  which combines all partial solutions into one overall solution ,
 provided that the partial solutions do not conflict with the criteria .

 $  Input – output mechanisms ,  which aid in the presentation of input for and output
 from the design process ,  as part of both problem formulation and solution
 generation .

 The GTMD can be extended to model information acquisition by the
 modification  components of both  RQS-manipulation  and  DOD-manipulation ,
 information interpretation by the two respective  deductive-refinement
 components ,  and information storage by the respective  update-of-modification-
 history  components .  Partial-solution generation ,  solution evaluation ,  and solution
 integration can be modelled by sub-components of  DOD-modification .   Input –
 output mechanisms are not considered explicitly in the GTMD ,  but could be
 modelled as sub-components of the  modification  components of both  RQS-
 manipulation  and  DOD-manipulation .

 Coyne (1988) identifies the following sub-tasks of design .

 $  Interpretation of designs (by deduction) .
 $  Derivation of interpretative knowledge (by induction ,  producing logical rules) .
 $  Delimitation of a space of designs conforming to a set of interpretations (by

 abduction) .

 In the GTMD ,  interpretation is modelled by  DOD-deductive-refinement .
 Delimitation of a space of designs is specified in the GTMD as deductive reasoning
 on the meta-level with respect to the design object description ,  resulting in
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 T ABLE  3
 Trace of component acti y  ations and results for fixing the  max-traction-ratio

 constraint

 Activation of component  Results

 Within  DOD-manipulation :  DOD-modification :

 DOD-modification-analysis :  Violated constraints :
 constraints-analysis  max-traction-ratio .

 DOD-modification-determination :  Selected constraint :
 DOD-revision-determination :  violated-constraint-selection  max-traction-ratio .

 DOD-modification-determination :  Determined fix combination :
 DOD-revision-determination :  decrease cwt-to-platform-rear by

 0 . 5 . fix-combination-determination

 DOD-modification-determination :  Determined next fix steps :
 DOD-revision-determination :  decrease cwt-to-platform-rear 1

 time by 0 . 5 . fix-steps-determination

 DOD-modification-implementation :  Parameters to recompute ,  among which :
 implementation-focus-determination

 cwt-to-platform-rear .

 DOD-modification-implementation :  A tentative configuration ,  including :
 fix-steps-application  value-of(cwt-to-platform-rear ,

 4 . 75) .

 DOD-modification-analysis :  fix-execution-analysis :  Violated constraints :
 configuration-status-determination  max-traction-ratio .

 DOD-modification-analysis :  fix-execution-analysis :  The fix step is not acceptable .
 fix-steps-acceptability-determination

 DOD-modification-analysis :  fix-execution-analysis :

 fix-failure-determination

 Further fix steps for the given fix combina-
 tion are possible .

 DOD-modification-determination :  Determined next fix steps :
 DOD-revision-determination :  fix-steps-determination  decrease cwt-to-platform-rear 2

 times by 0 . 5 .
 The same scenario de y  elops , until :

 DOD-modification-determination :  Determined next fix steps :
 DOD-revision-determination :  fix-steps-determination  decrease cwt-to-platform-rear 7

 times by 0 . 5 .

 DOD-modification-implementation :

 implementation-focus-determination

 Parameters to be recomputed ,  among
 which :

 cwt-to-platform-rear .

 DOD-modification-implementation :  A tentative configuration ,  including :
 fix-steps-application  value of(cwt-to-platform-rear ,

 1 . 75) .

 DOD-modification-analysis :  fix-execution-analysis :  Violated constraints :
 configuration-status-determination  max-traction-ratio ,  min-cwt-to-

 platform-rear .

 DOD-modification-analysis :  fix-execution-analysis :  The fix step is not acceptable .
 fix-steps-acceptability-determination

 DOD-modification-analysis :  fix-execution-analysis :

 fix-failure-determination

 Further stepping will never resolve the
 violation of  min-cwt-to-platform-
 rear .

 DOD-modification-determination :

 DOD-revision-determination :  fix-steps-determination

 No more fix steps are possible for the
 given fix combination .

 DOD-modification-determination :

 DOD-revision-determination :  fix-combination-determination

 Determined fix combination :
 increase car-supplement-weight by

 100 .
 And so forth .
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 assumptions on (parts of) the design object .  This type of reasoning is modelled by
 the  DOD-modification  component .  Derivation of interpretative knowledge is not
 addressed by the GTMD .

 Brown and Chandrasekaran (1989) distinguish the following design sub-tasks ,  as
 part of a family of methods called propose-verify-redesign .

 $  Design problem decomposition .
 $  Design plan generation (i . e .  precompiled partial solutions to design (sub)goals) .
 $  Design proposal by critiquing and modifying almost correct designs .
 $  Design proposal by constraint satisfaction .
 $  Goal / constraint propagation to sub-problems .
 $  Recomposition (i . e .  to glue partial solutions of the sub-problems back into a

 solution of the original problem) .
 $  Design verification .
 $  Design criticism .

 Most of these sub-tasks are further discussed by Chandrasekaran (1990) ;  he
 categorizes them as sub-tasks of the propose-critique-modify family of methods .
 Another common name for this family is propose-and-revise .

 In the GTMD ,
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 $  Testing whether the proposed solution necessitates additional structural
 modifications .

 In the GTMD ,  both the diagnosis sub-task and the repair sub-task can be specified
 by decompositions of  DOD-modification .  In fact ,  part of the decompositions given
 in Section 4 can be used :  an alternative decomposition of  DOD-modification-
 analysis  can be used for the diagnosis sub-task and  DOD-modification-
 determination  can be tuned to the repair sub-task .

 Gero (1990) defines a model of the design process in which the following sub-tasks
 (in his terminology ‘‘activities’’) are included .

 $  Formulation ,  or specification ,  which transforms the functions to be achieved to
 expected behaviours of the design object .

 $  Synthesis ,  which generates a structure of the design object on the basis of the
 object’s expected behaviours .

 $  Analysis ,  which derives specific behaviours of the design object from its structure .
 $  Evaluation ,  which compares the predicted behaviours of the design object’s

 structure with the expected behaviours in order to determine whether the
 structure is capable of producing the functions to be achieved .

 $  Reformulation ,  which changes the expected behaviours of the design object in
 response to the (successful or failed) synthesis of structures and the analysis of
 their behaviours .

 $  Production of the design description ,  which transforms the design object’s
 structure into a design description (e . g .  a collection of drawings and notes) .

 In the GTMD ,  formulation and reformulation are modelled by  RQS-
 modification ,  and analysis by  DOD-deductive-refinement .  Synthesis ,  evaluation ,
 and design description production can be modelled by a decomposition of
 DOD-modification .  In fact ,  the decomposition given in Section 4 can be used in part
 for this purpose :   DOD-modification-analysis  is meant for evaluation and  DOD-
 modification-determination  for synthesis .

 Maher (1990) distinguishes three main design sub-tasks (‘‘sub-processes’’ in her
 terminology) .

 $  Formulation ,  which identifies the requirements of the design problem .
 $  Synthesis ,  which includes the identification of one or more design descriptions that

 are consistent with the requirements defined during formulation and additional
 requirements identified during synthesis .

 $  Evaluation ,  which involves interpreting a (partially or completely) specified design
 description for conformance with the requirements .

 Maher further distinguishes three distinct models of design synthesis .

 $  Decomposition ,  which divides the design problem into smaller ,  less complex
 design sub-problems and recomposes sub-solutions into a solution for the original
 problem .

 $  Case-based reasoning ,  which uses analogical reasoning to select and transform
 specific solutions to previous design problems to be appropriate as solutions for a
 specific new design problem .

 $  Transformation ,  which uses rules to transform the initial set of design require-
 ments into a design solution .
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 In the GTMD ,  the formulation of initial and additional requirements is handled
 by  RQS-manipulation .  Similar to Gero’s (1990) model ,  synthesis and evaluation
 can both be modelled as sub-components of  DOD-modification .  Brazier ,  van
 Langen ,  Treur and Wijngaards (1995 b ) show how synthesis by case-based reasoning
 can be modelled as a decomposition of the GTMD .

 Takeda ,  Veerkamp ,  Tomiyama and Yoshikawa (1990) have developed a
 cognitive design model ,  constructed from unit design cycles of which each consists of
 five sub-tasks .
 $  Awareness of the problem by comparing the design object under consideration

 with the functional specifications .
 $  Suggestion of key concepts needed to solve the problem .
 $  Development of candidates for the problem from the key concepts using various

 types of design knowledge .
 $  Evaluation of the candidates in various ways .
 $  Conclusion on which candidate to adopt (and the corresponding modification of

 the descriptions of the design object) .
 Note that Takeda  et al . ’s (1990) evaluation sub-task judges design proposals

 during  synthesis ,  whereas in the models of Gero (1990) and Maher (1990) a
 judgement is made  after  synthesis .

 Takeda  et al .  (1990) distinguish two levels in the design process .  One is the object
 level ,  where the designer thinks about design objects themselves ,  involving the
 sub-tasks suggestion of key concepts and development of candidates .  The other is
 the action level ,  where the designer thinks about how to proceed with the design .
 This level is linked to the object level by the sub-tasks awareness of the problem ,
 evaluation of candidates and conclusion on the candidate to adopt .

 In the GTMD ,  the above sub-tasks can be modelled by a decomposition of
 DOD-modification .  In particular ,  the decomposition into sub-components for the
 generation of candidate assumptions on (parts of) the design object ,  the comparison
 of candidates ,  and the selection of candidates is a common way to model the
 sub-tasks of development ,  evaluation ,  and conclusion .

 Runkel ,  Balkany and Birmingham (1994) do not assume a general or generic
 model of design .  Rather ,  they adapt existing models of specific design tasks for new
 design tasks in other domains of application .  To make a comparison ,  the
 mechanisms mentioned in their VT problem-solving metohd (VT-PSM) will be
 taken as sub-tasks .
 $  Checking whether there are required functions (in the case of VT ,  customer

 specifications and building dimensions) that are not yet realised by the design
 description .

 $  Selection of one function that has not yet been realised .
 $  Generation of a part description that can be used to provide the selected function .
 $  Addition of the part description to the overall design description ,  including the

 fixing of constraint violations that might be introduced as a result of the addition .
 $  Checking whether all required functions are realised by the design object

 description .
 $  Chronological backtracking in case addition of the part description fails (because

 none of the available fixes could resolve the constraint violations introduced) .
 $  Display of the solution .
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 The VT task model described in Section 4 dif fers from Runkel  et al . ’s (1994)
 VT-PSM .  First ,  our VT task model is more dif ferentiated with respect to the fixing
 of constraint violations .  The sub-tasks involved in fixing constraint violations have
 been explicitly modelled in our VT task model ,  primarily by the decomposition of
 DOD-modification ,  whereas in the VT-PSM fixing is not made explicit in terms of
 sub-tasks of the addition of the generated part description .

 Second ,  in our VT task model ,  checking of the requirements is done in another
 way .  Within  DOD-extension-determination ,  the component  user-value-
 acquisition  proposes assignments of values to parameters in accordance with the
 requirements given by the user .  By checking whether all output parameters have
 been assigned a value (within  DOD-modification-analysis ) ,  it is then also made
 sure that all requirements have been met .  On the other hand ,  checking of
 constraints is not made explicit in the VT-PSM ,  but an implicit sub-task of the
 addition of the generated part description .  In our VT task model ,  there are
 sub-components that specify constraint checking within  DOD-modification-
 analysis .

 Third ,  in our VT task model ,  there is no specific sub-task for chronological
 backtracking .  Instead ,  this has been modelled by an interplay of  DOD-modification
 (involving  DOD-revision-determination  and  DOD-modification-
 implementation ) and  DOD-update-of-modification-history  (for retrieval of
 previous configurations) .

 Smithers ,  Corne and Ross (1994) do not focus on a task decomposition of design ,
 but they mention the following sub-tasks .

 $  Description of requirements (on the basis of the client’s or customer’s
 needs / desires) .

 $  Problem construction (i . e .  generation of a well-structured problem statement from
 an ill-structured requirements description) .

 $  Problem solving (i . e .  generation of a satisfactory design object description) .
 $  Requirements revision and modification (in response to the results of problem

 solving) .

 The sub-tasks of requirements description ,  problem construction ,  and require-
 ments revision and modification are modelled in the GTMD by  RQS-manipulation .
 For problem construction ,  a decomposition of  RQS-modification  will be necessary .
 Furthermore ,  problem solving is modelled by  DOD-manipulation .

 Wielinga ,  Akkermans and Schreiber (1995) also do not focus on a task
 decomposition of design ,  but they present a very global model of design problem
 solving ,  in which needs and desires (from a client) and informal constraints are
 analysed (by the designer) to a formal set of requirements and a formal set of
 constraints .  These results of analysis are then used (by the designer) in a synthesis
 process to develop a structure (the design) consisting of a number of elements with
 specified properties and relations between them .  In the GTMD ,  analysis is modelled
 by  RQS-manipulation  and synthesis by  DOD-manipulation .

 8 . 1 . 2 .  Task control knowledge
 Design models usually incorporate task control aspects .  Task control is often
 organized in terms of a statement of steps that have to be undertaken more or less
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 sequentially .  In only a few cases ,  the rationale behind the sequence of these steps is
 made explicit .  The papers discussed below all provide explicit means to express task
 control knowledge .

 Archer (1970) describes task control knowledge within a model comprising 30
 sub-tasks (mentioned earlier in Section 8 . 1 . 1) .  For example ,  in the description of the
 sub-task of evaluating the design description with respect to the requirements ,  task
 control knowledge is brought to bear which states what to do in case the design
 description does not establish a solution of the selected sub-problem .  Archer does
 not really specify task control knowledge separately ,  with the exception of the
 reiteration sub-task .

 Akin (1978) uses design plans to express task control knowledge .  His design plans
 consist of statements of the form condition-action-intent ,  which can be read as :  if
 k condition l  holds ,  then take  k action l   in order to achieve  k intent l .  The action
 instantiated by the control structure is a direct consequence of the state of the
 process at the moment of initiation .

 Brown and Chandrasekaran’s (1989) generic tasks incorporate task control
 knowledge in their inference strategies .  If a problem matches the function of a
 generic task ,  then the generic task provides a knowledge representation and an
 inference strategy that can be used to solve the problem .  Thus ,  generic tasks provide
 a method for accomplishing each of the sub-tasks into which a task such as design
 can be decomposed .  For example ,  in the decomposition sub-task ,  the default
 inference strategy is to attack design problems top-down :  the larger problems are
 analysed before the smaller ones .  (This does not imply that these problems are
 solved in a top-down order . )

 Also Chandrasekaran (1990) pays explicit attention to control issues in design
 problem decomposition .  In his view ,  there are two types of control issues :  one deals
 with which sets of problem decompositions to choose and the other with the order in
 which the sub-problems within a given decomposition ought to be attacked .  He
 provides examples similar to Brown and Chandrasekaran (1989) and states that the
 appropriateness of a given control strategy relies on the dependencies between the
 sub-problems .

 Takeda  et al .  (1990) organize task control knowledge in design scenarios
 consisting of procedures and rules .  These scenarios drive a metamodel mechanism of
 stepwise refinement of information about the design object .  A step in the design
 process is performed by executing a design scenario ,  to be selected by the designer .
 Execution of the scenario transfers the meta-model (comprising all information
 about the design object regarding functional specification ,  structure ,  and actual
 behaviour) from its current state to the next .  If the scenario produces satisfactory
 results ,  another scenario is selected to further refine the meta-model .  Otherwise ,  an
 alternative scenario is selected for the original state of the meta-model .

 Runkel  et al .  (1994) use a propose-and-revise method for the VT task ,  which is
 expressed as a program with WHILE and IF statements in which design sub-tasks
 are invoked .  These sub-tasks implement operators that describe how to move from
 state to state in the problem space and that determine if a state is a goal state .

 Smithers  et al .  (1994) assume in their theory of design as exploration the
 availability of a control strategy that uses the history of the design process and the
 available design knowledge to decide on whether to produce a new well-structured
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 problem statement or to generate a new (revised) requirements description .  Which
 parts of the design knowledge are relevant for this purpose is not indicated .

 In conclusion ,  the following remarks can be made .  First ,  Archer (1970) and
 Takeda  et al .  (1990) do not separate task control knowledge clearly from the other
 types of task knowledge ,  whereas in the GTMD and in the other approaches
 discussed above ,  task control knowledge is specified separately .  Second ,  the GTMD
 task control structure resembles that of design plans by Akin (1978) ,  inference
 strategies by Brown and Chandrasekaran (1989) and problem solving methods by
 Runkel  et al .  (1994) .  In contrast to DIDS ,  by means of which the VT-PSM has been
 constructed by Runkel  et al .  (1994) ,  DESIRE also supports the specification of task
 control knowledge within composed components that themselves have sub-
 components .  Within our VT task model the control involved in fixing constraint
 violations has been specified explicitly within a sub-component .

 8 . 2 .  COMPARISON OF LANGUAGES WITH FORMAL SPECIFICATIONS

 There are many commonalities ,  but also dif ferences ,  between DESIRE and other
 formal specification languages .  The scope of this section is not to present a detailed
 comparison ,  but to highlight some important dif ferences .

 In KADS-based specification languages such as (ML) 2  and KARL the underlying
 model is the model of expertise that consists of the domain layer ,  the inference
 layer ,  and the task layer .  Other models of KADS (e . g .  the communication model)
 are not included in the model of expertise .  DESIRE specifications include
 specifications of (reasoning about) interaction .  Communication between agents (e . g .
 a system and a user) is explicitly modelled and specified ,  not only at the level of
 (object) information exchange but more importantly at the level of strategic (meta)
 information exchange .  The process of interaction may also be subject to strategic
 reasoning .

 A main dif ference between DESIRE and other approaches is that meta-level
 reasoning is explicitly modelled and specified .  Meta-information can be obtained
 from tasks at a lower level ,  reasoned about at a meta-level and meta-information
 can be reflected downwards to tasks at a lower level .  Such information may include ,
 for example ,  epistemic information about the information state of a task .  There is no
 restriction on the number of meta-levels incorporated in a model .  Not only is
 reasoning about reasoning possibly ,  but also reasoning about knowledge structures .
 In the VT-task ,  for instance ,  by reasoning about the structure of the domain
 knowledge parameter dependencies are recognized .

 The control of the reasoning process is an aspect in which approaches dif fer .
 KARL generates all solutions ,  but restricts the logical language to make the
 inference decidable .  In (ML) 2  the logical language in an inference action is too
 powerful to be decidable ,  but limited control is possible during evaluation :  any or
 any new solution may be derived .  In DESIRE the extent to which reasoning is
 af forded to determine the result of a task is explicitly specified :  four types of
 exhaustiveness may be specified indicating any ,  any-new ,  all-possible ,  or every
 result .

 For every DESIRE specification of a system (with finite sorts) it is possible to
 automatically generate an executable (prototype) .  This is similar to KARL ,  but in
 contrast to (ML) 2 .
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 8 . 3 .  DISCUSSION OF RESULTS

 The main objective of modelling the VT task was to compare dif ferent approaches
 to knowledge modelling .  To obtain a clear understanding of the dif ferences and
 similarities between approaches ,  underlying assumptions behind knowledge model-
 ling need to be made explicit .

 In this paper the DESIRE approach to knowledge modelling has been illustrated
 for the VT task :  the conceptualization ,  formalization and (prototype) operationali-
 zation of the VT design task within a compositional framework have been
 presented .  The philosophy behind DESIRE is that one framework should incorpor-
 ate these three aspects of knowledge modelling ,  supporting prototyping of partial
 task models during the development of a system for a complex reasoning task .  Not
 only are prototype implementations always part of the development process ,  so are
 formal specifications .  Formal specifications are namely the necessary condition for
 prototyping .  Although other formal specification languages exist (see for a com-
 parison Treur & Wetter ,  1993 ;  Fensel & van Harmelen ,  1994) few other environ-
 ments have been developed in which formal specifications play an important role
 during knowledge modelling and prototyping (MIKE is one of the exceptions ,  see
 Landes ,  Fensel & Angele ,  1993) .

 The conceptualization of a system for complex reasoning tasks is based on a
 shared task model ,  acquired in interaction with one or more experts .  This model is
 refined during system design .  Due to the reconstruction of the knowledge modelling
 process which was necessary for the VT task ,  it is unclear at which level of
 conceptualization the task model for VT should be seen as a shared task model .  The
 model presented in Section 4 most likely includes too much detail ,  but this cannot be
 supported due to lack of actual interaction with experts .

 The advantages of a (formal) compositional approach to system design may not ,
 at first ,  be apparent .  Compositional architectures in DESIRE ,  though ,  provide
 support for  reuse ,  for the design of  transparent  architectures involving  multiple
 agents ,  for  y  erification  and  y  alidation  based on formal semantics ,  and  multiple
 structures  for knowledge representation .  These contributions are discussed below .
 For reuse the advantages have been demonstrated at two levels :  the level of
 structures and the level of instantiation .

 Reuse of existing components such as the generic task model of design ,  is an
 example of  reuse of structures .  As discussed in Section 3 the generic task model of
 design with which the VT task has been modelled ,  is the result of (1) logical analysis
 of design and (2) abstraction of existing task models of design tasks in dif ferent
 domains of application .  One of the domains of application on which the generic task
 model of design is based ,  is the of fice assignment task ,  the previous Sisyphus task .
 The common generic structure of the task model for the VT task and the task model
 for of fice assignment is present in the generic task model of design .  Specialization
 (further decomposition) and instantiation (addition of specific knowledge structures)
 of the generic task model of design for VT follows the task description provided by
 Yost (1994) closely ,  both with respect to task and domain knowledge .  The generic
 task model of design provided a basis for knowledge acquisition and formalization ,
 although some re-engineering was needed to extract knowledge regarding the
 manipulation of requirements from the VT task description .  For instance ,  fixes with
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 desirability  D9  and  D10  operate on parameters of which the values are dictated by
 requirements (customer specifications and relevant building information) .  This also
 holds for modelling interaction with the user ,  an essential element in the design of
 design support systems ,  for which the DESIRE framework is equipped .  In the task
 model of the VT task presented in this paper a customer can influence requirement
 and design object description modifications ,  when necessary .

 Reuse of instantiated components  is an example of reuse at the level of
 instantiation .  The (composed) component  constraints-analysis  is a component
 which can be (re)used (unaltered) in task models for applications within other
 domains .  This component has been added to the (as yet unstructured) DESIRE
 library of pre-specified components .

 For  transparency ,  the integration of task ,  control ,  and knowledge (de)composition
 at dif ferent levels of abstraction within a task model provides a means to combine
 conceptualization and formalization within one framework .  Explicit representation
 of control for (de)composed tasks provides a means to specify strategic reasoning at
 an applicable level of decomposition .  Reasoning about reasoning processes ,  meta-
 level reasoning ,  is explicitly modelled in compositional architectures with multiple
 (meta-)levels .

 The strong relationship between hierarchical (de)composition of control and task
 (de)compositions ,  together with the distinction between meta-level and object-level
 components provides flexibility with respect to reflective reasoning which is not
 available within KADS-oriented approaches to task modelling .

 For the determination of the formal semantics of a system’s behaviour ,  composi-
 tional architectures provide a well-defined structure .  The temporal semantics of
 compositional architectures have been presented in Brazier  et al .  (1995 c ) ,  providing
 a basis for  y  alidation  and  y  erification ,  as demonstrated in preliminary research in
 this area by Treur and Willems (1994 ,  1995) .

 The integration of  multiple knowledge structures  within one task model is
 supported by DESIRE .  By referencing parts of knowledge structures ,  parts of
 ontologies can be imported into task models when required .  Dif ferent knowledge
 representation structures can be used for dif ferent types of knowledge ,  when
 preferred .  The generic ontology for design ,  in ONTOLINGUA ,  provided a basis for
 structuring the knowledge required for the VT task .  However ,  the VT-specific
 ontology given by Gruber and Runkel (1993) ,  in which components do not map onto
 the ‘‘natural’’ components of an elevator but seem to be influenced by the
 problem-solving method envisioned ,  was not used entirely as a basis for the
 DESIRE knowledge structures .  The parts of the VT specification which were in line
 with Yost (1994) were imported .

 The DESIRE specification of the VT task model was devised without considering
 ef ficiency .  Ef ficiency is not a criterion which is considered during knowledge
 acquisition and specification with DESIRE ;  ef ficiency is a criterion for tool design .
 One of the consequences of modelling ,  specifying and implementing the VT task
 was the recognition of a weakness of the DESIRE environment with respect to
 ef ficiency .  A first optimization of the current implementation generator ,  for
 example ,  decreased the time required for the prototype generation and execution
 considerably .  The need for improved graphical editors has also been recognized ,
 together with the need for more advanced knowledge acquisition tools that can
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 import existing ontologies .  Semi-automatic retrieval of pre-specified components
 from the DESIRE library could improve ef ficiency of the modelling process .  The
 development of more advanced tracing and debugging facilities (combined with the
 graphical editor) can further improve ef ficiency of the development process .

 This research has been (partially) supported by the Dutch Foundation for Knowledge-based
 Systems (SKBS) ,  within the A3 project ‘‘An environment for modular knowledge-based
 systems (based on meta-knowledge) for design tasks’’ and NWO-SION within project
 612-322-316 ,  ‘‘Evolutionary design in knowledge-based systems . ’’
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