
Combining Abstract Interpreters

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Ashish Tiwari
SRI International
tiwari@csl.sri.com

Abstract
We present a methodology for automatically combining abstract
interpreters over given lattices to construct an abstract interpreter
for the combination of those lattices. This lends modularity to the
process of design and implementation of abstract interpreters.

We define the notion of logical product of lattices. This kind
of combination is more precise than the reduced product combi-
nation. We give algorithms to obtain the join operator and the ex-
istential quantification operator for the combined lattice from the
corresponding operators of the individual lattices. We also give a
bound on the number of steps required to reach a fixed point across
loops during analysis over the combined lattice in terms of the cor-
responding bounds for the individual lattices. We prove that our
combination methodology yields the most precise abstract inter-
pretation operators over the logical product of lattices when the
individual lattices are over theories that are convex, stably infinite,
and disjoint.

We also present an interesting application of logical product
wherein some lattices can be reduced to combination of other
(unrelated) lattices with known abstract interpreters.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms Algorithms, Theory, Verification

Keywords Abstract Interpreter, Logical Product, Reduced Prod-
uct, Nelson-Oppen Combination

1. Introduction
Establishing full correctness for general programs is computation-
ally intractable. Hence, program analysis and verification is typi-
cally performed over some (sound) abstraction or approximation
of the program. This gives rise to false positives, i.e., some prop-
erties that are true in the original program may not be true in the
abstract version. Abstract Interpretation is a well-known method-
ology to analyze programs over a given abstraction [5]. There is
an efficiency-precision trade-off in the choice of the abstraction. A

Research of the second author was supported in part by NSF grant CCR-
ITR-0326540.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

a1 := 0; a2 := 0;
b1 := 1; b2 := F(1);
c1 := 2; c2 := 2;
d1 := 3; d2 := F(4);

a1 := a1+1; a2 := a2+2;
b1 := F(b1); b2 := F(b2);
c1 := F(2c1-c2); c2 := F(c2);
d1 := F(1+d1); d2 := F(d2+1);

b1< b2

False

True

Assert(a2=2a1);
Assert(b2 = F(b1));
Assert(c2=c1);
Assert(d2 = F(d1+1));

Figure 1. This program illustrates the difference between preci-
sion of performing analysis overdirect product, reduced product,
andlogical productof the linear arithmetic lattice and uninterpreted
functions lattice. Analysis over direct product can verify the first
two assertions, while analysis over reduced product can verify the
first three assertions. The analysis over logical product can verify
all assertions.F denotes some function without any side-effects
and can be modeled as an uninterpreted function for purpose of
proving the assertions.

more precise abstraction leads to fewer false positives but is also
harder to reason about.

One commonly used method to create more precise abstract do-
mains is by combining simpler ones. There are two commonly used
notions of lattice combinations in the literature: thedirect product,
and thereduced product[6, 4]. Both these combinations yield a lat-
tice whose elements are a cartesian product of the elements of the
individual lattices. The difference is that the lattice operations in
the direct product are performed component-wise (also referred to
as theindependent attribute method[20]), while in case of the re-
duced product the lattice operations take into account both compo-
nents simultaneously. Hence, the direct product “discovers in one
shot the information found separately by the component analyses
but we do not learn more by performing all analyses simultane-
ously than by performing them one after another and finally taking
their conjunctions”. In case of reduced product the advantage is
that “each analysis in the abstract composition benefits from the
information brought by the other analyses” [4].

Consider, for example, the program shown inFigure 1. Note
that all assertions at the end of the program are true. If this program

is analyzed over the linear equalities lattice (using, for example,
the abstract interpreter described in [16] or [5]), then only the first
assertion can be validated. This is because discovering the relation-
ship betweenb1 andb2, betweenc1 andc2, and betweend1 andd2

involves reasoning about uninterpreted functions. Similarly, if this
program is analyzed over the uninterpreted functions lattice (using,
for example, the abstract interpreter described in [12]), then only
the second assertion can be validated. Hence, an analysis over the
direct product of these lattices can only verify the first two asser-
tions (since performing an analysis over the direct product of these
lattices is equivalent to performing analyses over the individual lat-
tices independently and then putting the results together).

An analysis over the reduced product of these lattices can verify
the third assertion too. Such an analysis computes at each program
point the invariants that involve only linear arithmetic operators or
only uninterpreted functions. In particular, it is able to discover the
loop invariantc1 = c2, which is required to prove the third asser-
tion. Hence, the reduced product combination is more precise than
the direct product combination. However, there is no automatic way
to construct the abstract interpretation operations for the reduced
product lattice. In fact, Cousot and Cousot [6] have pointed out that
it is not possible to combine two abstract interpreters in a “black-
box” manner to obtain the most precise abstract interpreter for the
reduced product lattice. The algorithms for the reduced product lat-
tice need to be designed and implemented from scratch.

In this paper, we show how to automatically construct the most
precise abstract interpretation for the reduced product combina-
tion of lattices that satisfy some constraint (namely, the elements
of these lattices are conjunctions of atomic facts over theories that
are convex, stably infinite, and disjoint). This constraint is general
enough to describe several abstract domains that have been used to
build existing abstract interpreters. In fact, we go one step further
and define a new notion of combination for such lattices calledlogi-
cal product, which is more precise than the reduced product, and we
show how to automatically construct abstract interpretation opera-
tions for the logical product lattice. The approach of automatically
combining abstract interpretation operators lends modularity to the
design and implementation of program analyses based on abstract
interpretations. It avoids the need for proof of correctness of the
analysis over combined domains (in fact, these proofs can be quite
involved like our generic proof of correctness of our combination
algorithms) and allows for reuse of implementations of analyses
over the individual domains.

The logical product of lattices whose elements are conjunctions
of atomic facts from theoriesT1 andT2 is the lattice whose ele-
ments are conjunctions of atomic facts over the combined theory
T1 ∪ T2. Note that the logical product lattice consists of more ele-
ments than simply the direct product of the lattices, and hence it is
more precise than the reduced product. Consider again the program
shown inFigure 1. Note that an analysis over the reduced product
combination of linear arithmetic and uninterpreted functions lattice
cannot verify the fourth assertion because the relevant loop invari-
antd2 = F (d1 +1) is not expressible as an element of the reduced
product lattice, which involves conjunctions of only linear equali-
ties and equalities between uninterpreted function terms as opposed
to equalities between mixed expressions (i.e., expressions that in-
volve both linear arithmetic and uninterpreted functions). However,
analysis over the logical product of linear arithmetic and uninter-
preted functions lattices can verify all four assertions in the pro-
gram.

Our methodology for combining abstract interpretation opera-
tors is inspired by the classic Nelson-Oppen methodology for com-
bining decision procedures [19]. Nelson and Oppen have showed
how to combine decision procedures for convex, stably infinite and
disjoint theories to obtain a decision procedure for the combined

theory with only a polynomial-time blowup in the computational
complexity. It turns out that abstract interpretation operators for a
lattice over some theory are harder than the decision procedure for
that theory. Hence, the problem of combining abstract interpreta-
tion operators is harder than the problem of combining decision
procedures. As a result, the restrictions on theories that allow for
efficient combination of their decision procedures (namely, convex-
ity, stably infiniteness, and disjointness) also transfer to the context
of combining abstract interpreters for lattices over those theories.

One of the attractive features of our combination algorithms
is that the complexity of the abstract interpretation operators for
the logical product lattice is at most quadratic in the complexity
of the operations for the individual lattices. Also, our combination
methodology is more general than being restricted to lattices over
convex, stably infinite, and convex theories. In cases when the lat-
tices to be combined do not satisfy the desired constraint, our com-
bination methodology still gives abstract interpretation operations
that are more precise than those for the direct product lattice; how-
ever they may not in general be as precise as the reduced product
lattice.

In Section 5, we provide an interesting application of reasoning
about logical product of lattices. It turns out that some lattices
can be modeled as logical product of other unrelated lattices with
known abstract interpreters. Hence, abstract interpreters for such
decomposable lattices can be constructed by combining abstract
interpretation operators for those other unrelated lattices using our
combination methodology.

This paper is organized as follows. InSection 2, we introduce
some basic terminology and discuss some basic operations in the
Nelson-Oppen method for combining decision procedures. We use
this terminology and operations in bothSection 3andSection 4.
Section 3defines the logical product combination of lattices, while
Section 4describes how to construct an abstract interpreter for
the logical product of lattices given the abstract interpreter for
the individual lattices. We describe an interesting application of
our logical product combination methodology inSection 5. We
then discuss some related work inSection 6and future work in
Section 7.

2. Background
Our methodology for combining abstract interpreters is based on
the Nelson-Oppen method of combining decision procedures [19].
In this section, we introduce some terminology and algorithms that
are used in the Nelson-Oppen method. We use this terminology
and algorithms as part of our combination methodology described
in Section 3andSection 4.

A theoryT consists of a signatureΣT, which is a set of func-
tion and predicate symbols, and some axiomsAT, which define the
meaning of the function and predicate symbols inΣT. The combi-
nation of two theoriesT1 andT2 is the theoryT1 ∪ T2 such that
ΣT1∪T2 = ΣT1 ∪ ΣT2 andAT1∪T2 = AT1 ∪ AT2 . A term t over
theoryT is an expression consisting of variables, and function sym-
bols fromΣT. In this paper, we consider the following theories in
our examples.

• Theory of parity.
This theory has the signature{=, even, odd , +,−, 0, 1}, where
even andodd are unary predicates, while+,− are binary func-
tions, and0 and1 are constants (nullary functions). The axioms
of this theory include all standard axioms of even and odd num-
bers likeeven(0), even(t) ∧ odd(t′) ⇒ odd(t + t′), etc. In
the latter axiom,t andt′ are universally quantified.

• Theory of sign.
This theory has the signature{=, positive,negative, +,−, 0, 1},
wherepositive andnegative are unary predicates.

E = x3 ≤ F (2x2 − x1) ∧ x3 ≥ x1 ∧ x1 = F (x1) ∧ x2 = F (F (x1))

AlienTermsT1,T2(E) = {2x2 − x1, F (2x2 − x1)}
PurifyT1,T2

(E) = 〈V, E1, E2〉 whereE1 is t1 = 2x2 − x1 ∧ x3 ≤ t2 ∧ x3 ≥ x1

andE2 is t2 = F (t1) ∧ x1 = F (x1) ∧ x2 = F (F (x1))

andV is {t1, t2}
NOSaturationT1,T2(E1, E2) = 〈E1 ∧ E′, E2 ∧ E′〉 whereE′ is x1 = x2 ∧ x1 = t1 ∧ x1 = t2 ∧ x1 = x3

Figure 2. This example illustrates the functionsAlienTermsT1,T2 , PurifyT1,T2
andNOSaturationT1,T2 , which are used in the Nelson-

Oppen method of combining decision procedures.E is a conjunction of atomic facts over the combined theory of linear arithmetic (T1) and
uninterpreted functions (T2).

• Theory of linear arithmetic.
This theory has the signature{=,≤, +,−, 0, 1}. We some-
times use the phrasetheory of linear arithmetic with only equal-
ity to refer to the theory with signature{=, +,−, 0, 1}.

• Theory of uninterpreted functions.
The signature of this theory consists of uninterpreted functions
and the equality predicate. The theory of uninterpreted func-
tions (UFS) has only one axiom for each functionF a, namely,
aV

i=1

ti = t′i ⇒ F a(t1, . . , ta) = F a(t′1, . . , t
′
a). Alterna-

tively, we can reason about uninterpreted functions using the
theory of term algebra (TA), where it is also the case that (1)
F (t1, . . . , ta) = G(t′1, . . . , t

′
b) iff a = b, F is same asG, and

for all i, ti = t′i, and (2) any term properly containingx is not
equal tox. Due to a technical observation [13], using either of
these theories gives the same results in the context of program
analysis.

• Theory of lists.
This theory has the signature{car , cdr , cons, =} with the
usual axioms.

An atomic factf over theoryT is a predicate of the form
p(t1, . . , ta), wherep is a predicate symbol fromΣT andt1, . . , ta

are terms overT. We use the notationVars(γ) andSymbols(γ)
to denote the set of variables and symbols respectively that occur
in γ, whereγ may be a term, fact, or conjunction of facts. We use
the termdefinitionfor an atomic fact of the formx = t, where the
variablex does not occur in the termt.

Let E be any conjunction of atomic facts over combination of
two theoriesT1∪T2. We defineAlienTermsT1,T2(E) to be the set
of all alien terms that occur inE. A term t in E is alien if the top-
level function symbol int belongs toΣT1 (or ΣT2) and t occurs
as an argument of some function or predicate symbol fromΣT2

(or ΣT1 respectively) inE. For example, consider the conjunction
E over the combination of the theories of linear arithmetic and
uninterpreted functions inFigure 2. Note that2x2 − x1 is an
alien term because it is a linear arithmetic term that occurs as an
argument of uninterpreted functionF (in the termF (2x2 − x1)).
Similarly, the termF (2x2 − x1) is an alien term because its top-
level operator is the uninterpreted functionF while it occurs as an
argument of the inequality predicate inx3 ≤ F (2x2 − x1).

ThePurifyT1,T2
operator takes as input a conjunction of atomic

facts E over combination of two theoriesT1 ∪ T2 and returns
〈V, E1, E2〉, whereE1 and E2 are conjunctions of atomic facts
over theoriesT1 andT2 respectively, andV is the set of all fresh
variables that occur inE1 or E2 (but do not occur inE). Further-
more,E1 ∧E2 is aconservative extensionof E, i.e., for all factsf
that do not involve variables inV , the following holds:

E
T1∪T2⇒ f iff E1 ∧ E2

T1∪T2⇒ f

Purification (i.e., the operationPurifyT1,T2
(E)) decomposes a

conjunction of atomic facts over combined theoryT1 ∪ T2 into
conjunctions of atomic facts, each of which is either over theory
T1 or over theoryT2. The purification ofE involves introducing a
fresh variable for each alien term inE. For example, consider the
conjunction of atomic factsE in Figure 2. PurifyT1,T2

(E) is ob-
tained fromE by introducing new variablest1 andt2 to represent
the alien terms ofE.

The NOSaturationT1,T2(E1, E2) operator takes as input two
conjunctions of atomic factsE1 andE2 over theoriesT1 andT2

respectively, and returnsE′
1 andE′

2 that are obtained fromE1 and
E2 respectively by saturating them with variable equalities that are
implied byE1 ∧ E2.

E′
1 = E1 ∧ E

E′
2 = E2 ∧ E

E =
^

P (x,y)

x = y

whereP (x, y) is the following predicate:

(x, y ∈ Vars(E1 ∧ E2)) ∧ (E1 ∧ E2
T1∪T2⇒ x = y)

E can be computed by repeatedly sharing variable equalities be-
tweenE1 andE2. For example, consider the conjunction of atomic
factsE1 andE2 over theoriesT1 andT2 respectively inFigure 2.
E′

1 andE′
2 are obtained fromE1 andE2 by sharing variable equal-

ities between them as follows:

E2
x1=x2−−−−−→ E1

x1=t1−−−−−→ E2
x1=t2−−−−−→ E1

x1=x3−−−−−→ E2

A corollary of the correctness of the Nelson-Oppen combination
method [19] is that theNOSaturationT1,T2 operator has the fol-
lowing interesting property when theoriesT1 andT2 areconvex,
stably infiniteanddisjoint.

PROPERTY1 (NOSaturationT1,T2). Let T1 and T2 be two con-
vex and stably infinite theories that are disjoint. LetE be any
conjunction of atomic facts overT1 ∪ T2. Let f be any atomic
fact overT1. Let 〈V, E1, E2〉 = PurifyT1,T2

(E) and〈E′
1, E

′
2〉 =

NOSaturationT1,T2(E1, E2). Then,

E
T1∪T2⇒ f iff E′

1
T1⇒ f

A theory T is convexiff for every quantifier-free formulaφ,

φ
T⇒
W
i

xi = yi impliesφ
T⇒ xj = yj for somej. A theoryT is

stably infiniteiff for every quantifier-free formulaφ, φ is satisfiable
in T iff φ is satisfiable in an infinite model ofT. Two theoriesT1

and T2 are disjoint if their signaturesΣT1 andΣT2 are disjoint,
while ignoring the equality symbol. For example, the theories of
uninterpreted functions, linear arithmetic, and lists are all disjoint
with respect to each other. In contrast, the theories of parity and

E1 = (x = a) ∧ (y = b)

E2 = (x = b) ∧ (y = a)

JL1(E1, E2) = (x + y = a + b)

JL2(E1, E2) = true

E1 ∨E2
T1∪T2⇒

^
c

F (x + c) + F (y + c) = F (a + c) + F (b + c)

L1: logical lattice over theory of linear arithmetic (T1)
L2: logical lattice over theory of term algebra (T2)

Figure 3. This figure demonstrates why the implication relation-
ship over finite conjunctions of atomic facts in the combined the-
ory of linear arithmetic and term algebra does not form a lattice.
Note thatx + y = a + b is the only (independent) atomic fact that
is implied by bothE1 andE2 over the theory of linear arithmetic.
Hence the join (i.e., least upper bound) ofE1 andE2 in the logi-
cal latticeL1, denoted byJL1(E1, E2), is x + y = a + b. Also,
note that there is no atomic fact over uninterpreted functions that
is implied by bothE1 andE2. However, over the combined theory
of linear arithmetic and term algebra, there are infinite number of
atomic facts that are implied by bothE1 andE2; one such infinite
family is: F (x + c) + F (y + c) = F (a + c) + F (b + c) for all
linear arithmetic constantsc.

sign are not disjoint. However, all of these five theories are convex
and stably infinite.

3. Logical Lattices and Their Combination
A lattice L consists of a setDL and a partial order�L among
elements ofDL. In this paper, we consider logical lattices, as
defined below.

DEFINITION 1 (Logical Lattice).A lattice L is a logical lattice
over some theoryT if DL is the set of all finite conjunctions
of atomic facts from theoryT, and the partial order�L is the

implication relationship
T⇒ in theoryT, i.e.,E �L E′ iff E

T⇒ E′.

Any abstract domain can be viewed as a logical lattice over an
appropriate theory. (However, the theory may not be convex or sta-
bly infinite, which are the assumptions required to guarantee the
precision of our combination methodology.) For example, the ab-
stract lattice used for discovering linear equalities between program
variables [16, 10, 18] is a logical lattice over the theory of linear
arithmetic with only equality, while the one used for discovering
linear inequality relationships [7] is over the general theory of lin-
ear arithmetic. The abstract lattice used for global value numbering
for discovering Herbrand equivalences [11, 12] is a logical lattice
over the theory of term algebra.

The implication relation in any theoryT always defines a semi-
lattice. A sufficient condition for this semi-lattice to be a lattice is
thatT have afinite basis property, that is, every infinite conjunction
of atomic formulas over a finite number of variables be equivalent
to a finite conjunction in the theory.

Let L1 and L2 be two logical lattices over theoriesT1 and
T2 respectively. In the next section, we describe algorithms that
perform abstract interpretation over the semi-lattice induced by
T1 ∪ T2. SinceT1 ∪ T2 need not induce a logical lattice even if
T1 andT2 do, seeFigure 3for example, we precisely characterize
the power of our combination algorithms by introducing the notion
of logical product of lattices induced by convex, stably infinite, and
disjoint theories.

a< b
FalseTrue

x := F(a+1);
y := a,

x := F(b+1);
y := b,

Assert(x = F(y+1));
Assert(F(a)+F(b) = F(y)+F(a+b-y));

Figure 4. This program illustrates the difference between preci-
sion ofstrict logical product combination and logical product com-
bination of lattices (over linear arithmetic and uninterpreted func-
tions). Abstract interpretation over strict logical product combina-
tion can verify both assertions because the join ofx = F (a +
1) ∧ y = a andy = F (b + 1) ∧ y = b includes equalities in
both assertions. (This involves representing and manipulating infi-
nite conjunctions of atomic facts, which is inefficient.) On the other
hand, abstract interpretation over the logical product combination
can verify only the first assertion because the result of the join is
x = F (y + 1).

DEFINITION 2 (Logical Product of Logical Lattices).Let T1 and
T2 be two convex, stably-infinite, and disjoint theories. The logical
product of the two logical latticesL1 and L2 over theoriesT1

and T2 respectively is defined to be the latticeL1 on L2 where
DL1onL2 is the set of all finite conjunction of atomic facts from
theoryT1 ∪ T2, and�L1onL2 is the following partial order:

E �L1onL2 E′ def
= (E

T1∪T2⇒ E′) ∧
(AlienTermsT1,T2(E

′) ⊆ TermsT1,T2(E))

For any conjunction of factsE in combination of two theoriesT1

andT2, we defineTermsT1,T2(E) to be the following set.

TermsT1,T2(E) = {t | ∃t′ ∈ Vars(E) ∪AlienTermsT1,T2(E)

such thatE
T1∪T2⇒ t = t′}

It would have been more natural to define�L1onL2 to be simply
T1∪T2⇒ ; but then as mentioned above, unfortunately,

T1∪T2⇒ does not
necessarily form a lattice even when�L1 and�L2 define a logical
lattice. One way to solve this problem would be to relax the domain
DL1onL2 to also include infinite conjunction of atomic facts; in that

case the choice of
T1∪T2⇒ as�L1onL2 defines a lattice (and we refer

to this as thestrict logical product combination). However, this is
not a good practical solution because we now need to represent
and manipulate infinite conjunctions of atomic facts. Our recent
results [13] on hardness of assertion checking for programs that
involve only linear arithmetic and uninterpreted functions imply
that there cannot be any efficient data structure and algorithms to
reason about such infinite conjunctions of atomic facts in general
(unless P=coNP).1

1 We have shown that the problem of assertion checking in programs
whose expressions involve linear arithmetic and uninterpreted functions,
and whose conditionals have been abstracted as non-deterministic branches,
is coNP-hard. This problem can be solved by performing abstract interpre-
tation over the lattice whose elements are (potentially infinite) conjunctions
of atomic facts over the combined theory of linear arithmetic and uninter-
preted functions, and whose partial order is the implication relationship.
This implies that there cannot be any data-structures and algorithms that

Our solution to solve the above problem is to define�L1onL2

to have an additional restriction that is as weak as possible and
along with the implication relationship defines a lattice. This ad-
ditional restriction isAlienTermsT1,T2(E

′) ⊆ TermsT1,T2(E).
The failure ofE1 andE2 (as defined inFigure 3) to have a least
upper bound under the implication relationship can be attributed
to the fact that the number of alien terms that can be constructed
over combination of two theories, even with a finite number of
program variables, is unbounded. Considering that, the restric-
tion AlienTermsT1,T2(E

′) ⊆ TermsT1,T2(E) in the definition
of�L1onL2 is quite natural; it has the effect of including only those
atomic facts in the least upper bound ofE and E′ whose alien
terms occur semantically in both elementsE andE′. By seman-
tic (as opposed to syntactic) occurrence of an alien termt of E′

in E, we mean that there is some variable or alien termt′ in E

such thatE
T1∪T2⇒ t = t′, i.e., t ∈ TermsT1,T2(E) (as opposed

to t ∈ AlienTermsT1,T2(E)). The program inFigure 4illustrates
the differences between the precision ofstrict logical product com-
bination and logical product combination of lattices.

Note that the syntactic restrictiont ∈ AlienTermsT1,T2(E)
would have been an (unnecessarily) stronger restriction compared
to the semantic restrictiont ∈ TermsT1,T2(E). For example,
consider the factsE1 = (x = F (a+1))∧(y = a) andE2 = (x =
F (b + 1))∧ (y = b) over the combined theory of linear arithmetic
and uninterpreted functions. The result of join ofE1 and E2 is
x = F (y + 1) under our definition of�L1onL2 , while it is true in
case of the stronger syntactic restrictionAlienTermsT1,T2(E

′) ⊆
AlienTermsT1,T2(E). This is because the alien termy + 1 in

x = F (y+1) belongs toTermsT1,T2(E1) (sinceE1
T1∪T2⇒ y+1 =

a + 1 anda + 1 is an alien term inE1) andTermsT1,T2(E2) but it
is not an alien term inE1 or E2.

The following theorem states that�L1onL2 as defined in Defin-
ition 2 indeed defines a lattice.

THEOREM 1. The partial order�L1onL2 between finite conjunc-
tions of facts from theoryT1 ∪ T2 defines a lattice under the as-
sumptions made in Definition2.

The proof ofTheorem 1follows from the fact that any two
elementsE, E′ ∈ DL1onL2 have a least upper bound (which is
computed by the algorithm described inFigure 6(a)) and a greatest
upper bound (which isE ∧ E′).

4. Abstract Interpreter for Combination of
Logical Lattices

Let L1 andL2 be some logical lattices over theoriesT1 andT2

respectively. In this section, we show how to efficiently combine
the abstract interpreters that operate over the latticesL1 andL2

to obtain an abstract interpreter that operates over the combined
lattice L1 on L2. Our combination methodology yields the most
precise abstract interpreter for the combined latticeL1 on L2 when
(a) the theoriesT1 andT2 are convex, stably infinite, and disjoint,
and (b) the individual abstract interpreters that operate over the
latticesL1 andL2 are most precise themselves. The key idea of our
combination methodology is to combine the corresponding transfer
functions of the abstract interpreters that operate over the lattices
L1 andL2 to yield the transfer functions of the abstract interpreter
that operates over the latticeL1 on L2.

An abstract interpreter performs a forward analysis on the pro-
gram computing invariants (which are elements of the underlying
lattice over which the analysis is being performed) at each pro-
gram point. The invariants are computed at each program point

can represent and perform abstract interpretation operations on infinite con-
junctions of atomic facts in polynomial time unless P=coNP.

(c) Conditional Node

p
True False

E

E1 E2

(a) Join Node

x := e;

E 0

E

(b) Assignment Node

E2

E

E1

Figure 5. Flowchart Nodes.

from the invariants at the preceding program points in an itera-
tive manner using appropriate transfer functions. The abstract in-
terpreter that operates over the latticeL1 on L2 uses the following
transfer functions to compute these invariants across the different
flowchart nodes shown inFigure 5.

• Join Node. SeeFigure 5(a).
The elementE after a join node is obtained by computing the
least upper bound of the elementsE1 andE2 before the join
node (in the latticeL1 on L2).

E = JL1onL2(E1, E2)

The join operatorJL for any latticeL takes as input two el-
ementsE1 and E2 from DL and computes their least upper
bound (under the partial order�L). In Section 4.1, we show
how to obtainJL1onL2 from JL1 andJL2 .

• Assignment Node. SeeFigure 5(b).
First note that an assignmentx := e is general enough to model
any programming language assignment. Memory, for example,
can be modeled using array variables and select and update
expressions, without losing any precision.

The elementE after an assignment nodex := e is the strongest
postcondition of the elementE′ before the assignment node.
It is computed by using an existential quantification operator
QL1onL2 as described below.

E = QL1onL2(E1, {x′})
whereE1 = E′[x′/x] ∧ E′

1

andE′
1 =

(
x = e[x′/x] if Symbols(e) ⊆ ΣT1∪T2

true otherwise

The existential quantification operatorQL for any latticeL
takes as input an elementE from DL and a set of variablesV ,
and produces the least upper bound ofE (in the latticeL) that
does not involve any variables inV . In Section 4.2, we show
how to obtainQL1onL2 from QL1 andQL2 .

• Conditional Node. SeeFigure 5(c).
The elementsE1 andE2 on the two branches of a conditional
are obtained by computing the meet (i.e., the greatest lower
bound) of the elementE before the join node with any atomic
fact over the theoryT1 ∪ T2 that is implied by the conditional
on the corresponding branch.

E1 = ML1onL2(E, E′
1)

E′
1 =

(
p if p is an atomic fact over theoryT1 ∪ T2

true otherwise

JL1onL2(E
`, Er) =

1 〈V `, E`0
1 , E`0

2 〉 := PurifyT1,T2
(E`);

2 〈E`1
1 , E`1

2 〉 := NOSaturationT1,T2(E
`0
1 , E`0

2);
3 〈V r, Er0

1 , Er0
2 〉 := PurifyT1,T2

(Er);
4 〈Er1

1 , Er1
2 〉 := NOSaturationT1,T2(E

r0
1 , Er0

2);
5 V := {〈x, y〉 | x ∈ V ` ∪Vars(E`), y ∈ V r ∪Vars(Er)};
6 E`2 :=

V
〈x,y〉∈V

x = 〈x, y〉 ;

7 Er2 :=
V

〈x,y〉∈V

y = 〈x, y〉 ;

8 E1 := JL1(E
`1
1 ∧ E`2, Er1

1 ∧ Er2);
9 E2 := JL2(E

`1
2 ∧ E`2, Er1

2 ∧ Er2);
10 E := QL1onL2(E1 ∧ E2, V);
11 return E;

Inputs:
E` = (u = F (w)) ∧ (w = v + 1)
Er = (u = F (u)) ∧ (v = F (u)− 1)

Trace ofJL1onL2(E1, E2):
〈V `, E`0

1 , E`0
2 〉 = 〈{}, w = v + 1, u = F (w)〉

〈E`1
1 , E`1

2 〉 = 〈w = v + 1, u = F (w)〉
〈V r, Er0

1 , Er0
2 〉 = 〈{b}, v = b− 1, b = F (u) ∧ u = F (u)〉

〈Er1
1 , Er1

2 〉 = 〈v = b− 1 ∧ u = b, b = F (u) ∧ u = F (u)〉
V = {〈w, b〉, 〈w, u〉, 〈w, v〉, 〈u, b〉, 〈u, u〉, 〈u, v〉, . . .}

E`2 = (w = 〈w, b〉) ∧ (w = 〈w, u〉) ∧ (w = 〈w, v〉) . . .
Er2 = (b = 〈w, b〉) ∧ (u = 〈w, u〉) ∧ (v = 〈w, v〉) . . .
E1 = (v = 〈w, b〉+ 1)
E2 = (u = F (〈w, b〉))
E = (u = F (v + 1))

(a) Algorithm (b) Example

Figure 6. This figure describes the algorithm for join operator for combined latticeL1 on L2 in terms of the join operators for the lattices
L1 andL2 along with an example.

Similarly,

E2 = ML1onL2(E, E′
2)

E′
2 =

(
¬p if ¬p is an atomic fact over theoryT1 ∪ T2

true otherwise

HereML1onL2 denotes the meet operator for the latticeL1 on
L2 and can be implemented simply as a conjunction operator.

ML1onL2(E
′, E′′) = E′ ∧ E′′

In presence of loops in programs, the abstract interpreter goes
around each loop until a fixed point is reached. A fixed point is said
to be reached when the elements at any program point inside the
loop in two successive iterations of that loop represent the same
lattice element. We show inSection 4.3that the number of steps
required to reach a fixed point across a loop (when the analysis
is performed over the latticeL1 on L2) is linear in the number
of steps required to reach a fixed point across that loop when the
analysis is performed over the latticesL1 or L2. If the latticesL1

or L2 have infinite chains above a given element, then fixed point
for a loop may not be reached in a finite number of steps. In that
case, a widening operation may be used to over-approximate the
analysis results at loop headers. A widening operator for a latticeL
takes as input two elements fromDL and produces an upper bound
of those elements (which may not necessarily be the least upper
bound). A widening operator has the property that it guarantees
fixed point computation across loops terminates in a finite number
of steps even for infinite height lattices. A widening operator for
the latticeL1 on L2 can be constructed from widening operators
for the latticesL1 andL2 respectively in exactly the same way as
JL1onL2 is constructed fromJL1 andJL2 . Section 4.3discusses
these issues in more detail.

4.1 Combining Join Operators

The join operatorJL for a latticeL takes as input two elementsE1

andE2 from DL and computes the least upper bound ofE1 and
E2 with respect to the partial order�L. The following definition
makes this more precise.

DEFINITION 3 (Join OperatorJL). LetE = JL(E1, E2). Then,

• Soundness:E1 �L E andE2 �L E.

• Completeness: IfE′ is such thatE1 �L E′ and E2 �L E′,
thenE �L E′.

Figure 6shows how to implement the join operatorJL1onL2 for
the combined latticeL1 on L2 using the join operatorsJL1 andJL2

for the logical latticesL1 andL2. Lines1 and 2 perform purifica-
tion and NO-saturation of the inputE`. Purification ofE` (which
involves atomic facts over combination of two theoriesT1 ∪ T2)
serves the purpose of splitting the inputE` into two partsE`0

1 and
E`0

2 each of which involves facts over eitherT1 or T2, and hence
can be understood by eitherJL1 or JL2 . The NO-saturation ofE`0

1

andE`1
2 serves the purpose of sharing information betweenE`0

1

andE`1
2 so that each of them can independently imply the atomic

facts in corresponding theories that are implied byE` (Property1).
Similarly, lines3 and4 perform purification and NO-saturation of
the other inputEr.

Lines 5 through7 introduce some dummy variables and defi-
nitions for purpose of creating variable names for some potential
alien terms in the output. If we leave out lines5 through7 in the
combination algorithm, then we simply obtain a join operator for
the reduced product combination of latticesL1 and L2 because
both E1 and E2 are atomic facts involving only those variables
that occur inE` andEr. However, presence of these dummy vari-
ables and definitions allow the individual join operatorsJL1 and
JL2 to output result in terms of these dummy variables along with
their definitions. Elimination of these dummy variables in line10
(using the existential quantification operatorQL1onL2 described in
the next section) results inmixedfacts over the combined theory
T1 ∪T2. In the example inFigure 6(b), v + 1 is such an alien term
in the output, which is represented by the dummy variable〈a, b〉 in
E`1

1 ∧ E`2 as well as inEr2
1 ∧ Er2.

The operatorNOSaturationT1,T2 involves sharing variable
equalities between its input elements until no more equalities can
be shared. It can be implemented using an operatorVET that takes
as input a conjunction of atomic facts in theoryT and discovers all
variable equalities implied by it. TheVET operator for any theory
T is theoretically at most as hard as the join operatorJL for the
logical latticeL over theoryT, as is exhibited by the following
construction.

QL1onL2(E, V) =

1 〈V 0, E0
1 , E0

2〉 := PurifyT1,T2
(E);

2 〈E1
1 , E1

2〉 := NOSaturationT1,T2(E
0
1 , E0

2);
3 V 1 := V 0 ∪ V ;

4 〈V 2, Defs〉 := QSaturationT1,T2
(E1

1 , E1
2 , V 1);

5 E2
1 := QL1(E

1
1 , V 2);

6 E2
2 := QL2(E

1
2 , V 2);

7 E3
1 := E2

1 [Defs(y)/y] for all y ∈ V 2 − V 1;

8 E3
2 := E2

2 [Defs(y)/y] for all y ∈ V 2 − V 1;

9 return E3
1 ∧ E3

2;

QSaturationT1,T2
(E1

1 , E1
2 , V 1) =

1 V 2 := V 1;
2 Defs := ∅;
3 repeat

4 for all y ∈ V 1

5 t := AlternateT1(E
1
1 , y, V 2);

6 if t = ⊥, then t := AlternateT2(E
1
2 , y, V 2);

7 if t 6= ⊥, then Defs := Defs ∧ y = t;
8 V 2 := V 2 − {y};
9 until no change in V 2;

10 return 〈V 2,Defs〉;

Inputs:
E = (x ≤ y) ∧ (y ≤ u) ∧ (x = F (F (1 + y))) ∧ (v = F (y + 1))
V = {x, y}

Trace ofQL1onL2(E, V):
〈V 0, E0

1 , E0
2〉 = 〈{a}, x ≤ y ∧ y ≤ u ∧ a = 1 + y ∧ b = y + 1,

x = F (F (a)) ∧ v = F (b)〉
〈E1

1 , E1
2〉 = 〈x ≤ y ∧ y ≤ u ∧ a = 1 + y ∧ b = y + 1,

x = F (F (a)) ∧ v = F (b) ∧ a = b〉
V 1 = {x, y, a, b}

〈V 2, Defs〉 = 〈{y, a, b}, x = F (v)〉
E2

1 = x ≤ u
E2

2 = true
E3

1 = F (v) ≤ u
E3

2 = true

(a) Algorithm (b) Example

Figure 7. This figure describes the algorithm for existential quantification operator for combined latticeL1 on L2 in terms of the existential
quantification operators for the latticesL1 andL2 along with an example.

VET(E) = JL(E, E′)

whereE′ =

k̂

i=1

x0 = xi

and{x0, . . . , xk} = Vars(E)

However, for several theories, theVET operator for a theory can
be implemented in a simpler and more efficient manner than the
join operator for the corresponding logical lattice. For example,
the VET operator for the theory of uninterpreted functions can
be implemented using congruence closure algorithm, while the
join operator for the theory of uninterpreted functions is based
on automata intersection [15]. The VET operator for the theory
of linear arithmetic with only equality (i.e., no inequalities) can
be implemented simply using Gaussian elimination, while the join
algorithm is more involved [16].

The following theorem states that our algorithm for the join
operatorJL1onL2(E

`, Er) (as described inFigure 6(a)) computes
an upper bound ofE` andEr.

THEOREM 2 (Soundness ofJL1onL2 algorithm). If E =
JL1onL2(E

`, Er), thenE` �L1onL2 E andEr �L1onL2 E.

The proof ofTheorem 2is not difficult and can be found in the full
version of this paper [14].

The following theorem states that the upper bound computed by
our algorithm for the join operatorJL1onL2(E

`, Er) is least if the
underlying theories are convex, stably infinite, and disjoint.

THEOREM 3 (Completeness ofJL1onL2 algorithm).Suppose the
theoriesT1 and T2 are convex, stably infinite and disjoint. Let
E = JL1onL2(E

`, Er). Let E′ be such thatE` �L1onL2 E′ and
Er �L1onL2 E′. ThenE �L1onL2 E′.

The proof ofTheorem 3is non-trivial and is given in the appendix.

4.2 Combining Existential Quantification Operators

QL(E, V) computes the best approximation to the existentially
quantified element∃xE (whereV is some set of variables) in the
latticeL. The following definition makes this more precise.

DEFINITION 4 (Existential Quantification OperatorQL). LetE′ =
QL(E, V). Then,

• Soundness:E �L E′ andVars(E′) ∩ V = ∅
• Completeness: IfE′′ is such thatE �L E′′ andVars(E′′) ∩

V = ∅, thenE′ �L E′′.

Figure 7shows how to combine existential quantification op-
erators for logical lattices. Lines1 and 2 perform purification
and NO-saturation of the inputE (for the same reasons as in
case of our algorithm forJL1onL2 operator). Purification intro-
duces some new variablesV 0, which also need to be eliminated.
V 1 on line 3 represents the set of all variables that need to be
eliminated. We first filter out those variables fromV 1 that have
some definitiont such thatVars(t) ∩ V ′ = ∅ using the oper-
ator QSaturationT1,T2

(E1, E2, V
1). The following claim states

this more formally.

CLAIM 1. Let (V 2, Defs) = QSaturationT1,T2
(E1

1 , E1
2 , V 1),

whereE1
1 andE1

2 are purified and NO-saturated. IfE1
1 ∧E1

2
T1∪T2⇒

y = t andVars(t) ∩ V 1 = ∅, theny 6∈ V 2.

In lines5 and6, we use the existential quantification operators for
the individual lattices to eliminate the variablesV 2 from E1

1 and
E1

2 . We then eliminate all variables in the setV 1−V 2 by replacing
them by their definitions (lines7 and8).

The implementation ofQSaturationT1,T2
operator makes use

of operatorsAlternateT1 andAlternateT2 . AlternateT(E, y, V)

returns a termt (if it exists) such thatE
T⇒ y = t andVars(t) ∩

(V ∪ {y}) = ∅. If no such term exists, thenAlternateT(E, y, V)
returns⊥. The implementation ofAlternateT operator is theory-

specific. For example, theAlternateT operator for the theory of
uninterpreted functions involves constructing a congruence closed
EDAG representingE, erasing all variables inV ∪ {y} from
the EDAG, and then returning any termt from the equivalence
class ofy. TheAlternateT operator for the theory of linear arith-
metic can be implemented by discovering all equalities implied
by E (by using a linear inequalities reasoning algorithm like sim-
plex or ellipsoid algorithm), eliminating all variables inV us-
ing Gaussian elimination, and then returning any termt from any
equality that involves variabley. We do not know of any general al-
gorithm for implementingAlternateT, however we conjecture that
theAlternateT operator for any theoryT is at most as hard as the
existential quantification operatorQL for the corresponding logical
latticeL sinceQL(E, V ∪ {y}) should ideally replace all occur-
rences ofy in E by the desired termt (if it exists) unless it rewrites
the facts in a different manner.

The following theorem states that our algorithm for the existen-
tial quantification operatorQL1onL2(E, V) (as described inFig-
ure 7(a)) computes an upper bound ofE that does not involve any
variables inV . The proof of this theorem is not difficult and can be
found in the full version of this paper [14].

THEOREM 4 (Soundness ofQL1onL2 algorithm).LetE′ =
QL1onL2(E, V). Then,E �L1onL2 E′ andVars(E′) ∩ V = ∅.

The following theorem states that the upper bound ofE com-
puted by our algorithm for the existential quantification operator
JL1onL2(E, V) is least if the underlying theories are convex, stably
infinite, and disjoint.

THEOREM 5 (Completeness ofQL1onL2 algorithm).Suppose the
theoriesT1 and T2 are convex, stably infinite and disjoint. Let
E′ = QL1onL2(E, V). Let E′′ be such thatE �L1onL2 E′′ and
Vars(E′′) ∩ V = ∅. Then,E′ �L1onL2 E′′.

The proof ofTheorem 5is non-trivial and can be found in the full
version of this paper [14]. Figure 8describes an example that illus-
trates why the completeness of our combination algorithm for exis-
tential quantification operator relies on the fact that the underlying
theories are disjoint. This example is adapted from Cousots’ early
work [6] in which they argued that it is not possible to combine
abstract interpreters for any two arbitrary abstractions in a black-
box manner to obtain the most precise abstract interpreter for the
combined lattice. The example used to illustrate this point was the
computation of strongest postcondition ofeven(x) ∧ positive(x)
with respect to the assignmentx := x− 1. The abstract interpreter
operating over the parity abstraction will computeodd(x) while the
abstract interpreter operating over the sign abstraction will compute
true, and there is no way to combine the results of these abstract
interpreters in a black-box manner to generate the most precise re-
sult, which isodd(x) ∧ positive(x).

It is interesting to note that if we defineV 2 on line4 to beV 1

(and not invoke theQSaturationT1,T2
operator), then we obtain

an existential quantification operator for the reduced product com-
bination of latticesL1 andL2.

4.3 Fixed Point Computation

In presence of loops, the abstract interpreter goes around each loop
until a fixed point is reached. The number of times a nodeη inside
a loop is processed is bounded above by the maximum number of
elements aboveE along any chain in the latticeL1 on L2, where
E is the element before the nodeη when it is first processed. Let
HL(E) denote the maximum number of elements aboveE in any
chain in any latticeL. The following theorem specifies a bound on
HL1onL2(E) in terms ofHL1(E1) andHL2(E2), whereE1 and
E2 are obtained by purification and NO-saturation ofE.

E1 = even(x′) ∧ x = x′ − 1

E2 = positive(x′) ∧ x = x′ − 1

QL1(E1, {x′}) = odd(x)

QL2(E2, {x′}) = true

QL1onL2(E1 ∧ E2, {x′}) = odd(x) ∧ positive(x)

Figure 8. This figure illustrates the incompleteness of our algo-
rithm for QL1onL2 in presence of theories that share common func-
tion symbols. Since,E1∧E2 is already purified and NO-saturated,
and QSaturationT1,T2

does not return any definitions, our al-
gorithm for QL1onL2(E1 ∧ E2, {x′}) outputsQL1(E1, {x′}) ∧
QL2(E2, {x′}), i.e., odd(x), which is less precise than the re-
sult odd(x) ∧ positive(x). The example in this figure is adapted
from [6].

THEOREM 6. LetE ∈ DL1onL2 , 〈V, E0
1 , E0

2〉 = PurifyT1,T2
(E),

and〈E1, E2〉 = NOSaturationT1,T2(E
0
1 , E0

2). Then,

HL1onL2(E) ≤ HL1(E1) + HL2(E2) + |AlienTermsT1,T2(E)|

whereE1 andE2 are obtained by purification and NO-saturation
of E. |AlienTermsT1,T2(E)| denotes the size of the set
AlienTermsT1,T2(E).

The proof ofTheorem 6is non-trivial and is given in the appendix.
It follows from Theorem 6that the number of times each node

inside a loop is processed is linear in the number of times each
node is processed when analysis is done over the latticesL1 and
L2. However, if the latticeL1 (or L2) has infinite chains above
some elements, then fixed point may not be reached across the
loop in a finite number of steps when the analysis is performed
over the latticeL1 on L2 or even the latticeL1 (or lattice L2).
In that case, a widening operation is needed to over-approximate
the analysis results at loop headers. A widening operator for the
latticeL1 on L2 can be constructed from the widening operations
for the latticesL1 andL2 using the same algorithm that combines
join operators (described inFigure 6). The proof of correctness of
the construction of the widening operator is same as the soundness
proof of the combination of join algorithms.

4.4 Complexity

Let TJL(n), TQL(n), TML(n) andTAT(n) denote the time taken
by the join operatorJL, existential quantification operatorQL,
meet operatorML andAlternateT operator respectively to operate
on inputs of sizen. It follows from reduction ofNOSaturationT1,T2

operator in terms of the join operatorsJL1 andJL2 (as described
in Section 4.1) that the complexity ofNOSaturationT1,T2 opera-
tor (for two input elements of sizen over theoriesT1 andT2 is at
mostn times the sum ofTJL1

(n) + TJL2
(n). It now follows from

Figure 6andFigure 7that:

TJL1onL2
(n) = O(TJL1

(n2) + TJL2
(n2) + TQL1onL2

(n2))

TQL1onL2
(n) = O(TQL1

(n) + TQL2
(n) + n× TAT1

(n) +

n× TAT2
(n) + n× TJL1

(n) + n× TJL2
(n))

TML1onL2
(n) = O(n)

Above we use the fact that complexity ofNOSaturationT1,T2

operator on inputs of sizen is O(n × TJL1
(n) + n × TJL2

(n)),
which is alsoO(TJL1

(n2) + TJL2
(n2)).

5. Applications of Combination Methodology
The obvious application of our combination methodology to com-
bine abstract interpreters for given lattices is to analyze programs
over the logical product combination of those lattices. However,
there is another interesting application of this combination method-
ology. It turns out that certain latticesL can be reduced to strict log-
ical product combination of some other lattices, which may be un-
related toL. If analyses for those other lattices are already known,
then the analyses can be combined using our combination method-
ology to construct an analysis forL 2. We next describe some lat-
ticesL that can be reduced to strict logical product combination of
other (unrelated) lattices.

5.1 Commutative Functions

Commutative functions are useful in modeling binary program
operators that are commutative, e.g. floating-point addition and
multiplication. Note that these floating-point operators should not
be abstracted as linear arithmetic operators since they do not obey
associativity because of overflow issues.

The lattice of commutative functions can be reduced to the strict
logical product combination of the lattice of single unary uninter-
preted function and the linear arithmetic lattice. This can be done
by using some injective mapping to transform terms that use com-
mutative functions to terms that use a single unary uninterpreted
function and linear arithmetic as described below.

Consider the following language of terms that use commutative
functions. Herex denotes some variable, whileGi denotes some
uninterpreted function.

t ::= x | Gi(t1, t2)

The following mappingM maps these terms that use commutative
functionsGi’s to terms that use a single uninterpreted functionF
and linear arithmetic.

M(x) = x

M(Gi(t1, t2)) = F (i + M(t1) + M(t2))

The following claim implies that the mappingM is injective
and equivalence preserving. Hence, this transformation of lattices
(obtained by mapping terms) is both sound and complete.

CLAIM 2. t1 = t2 iff M(t1) = M(t2)

Claim 2can be proved by induction on structure of terme.

5.2 Uninterpreted Functions

Uninterpreted functions are commonly used to model programming
language operators that are otherwise hard to reason about. They
are also used to abstract procedure calls with no side-effects.

The lattice of uninterpreted functions can be reduced to the
strict logical product of the lattice of a single unary uninterpreted
function and the linear arithmetic lattice. For this purpose, we
describe a transformation that converts terms involving (potentially
multiple) uninterpreted function symbols of any finite arity to terms
that use only one unary uninterpreted function symbol.

Consider the following language of terms. Herex denotes some
program variable, whileGa

i denotes some uninterpreted function
of arity a.

t ::= x | Ga
i (t1, . . . , ta)

2 The analysis thus obtained forL is not the most precise one since our
reduction is in terms of strict logical product combination, while the combi-
nation methodology yields an analysis for the logical product combination,
which is less precise than the strict logical product combination.

The following mappingM maps these terms to terms that use a
single uninterpreted functionF and linear arithmetic.

M(x) = x

M(Ga
i (t1, . . . , ta)) = F (i + 21M(t1) + . . . + 2aM(ta))

Claim 2holds for this mapping too. Hence, this transformation of
lattices is both sound and complete.

6. Related Work
The problem of combining abstract interpreters for combination of
abstract lattices was first considered by Cousot and Cousot [6, 4].
They defined different notions of combination of lattices: the di-
rect product and the more precise reduced product. The notion of
reduced product of combination of lattices does not specify any au-
tomatic way to construct the abstract interpretation operations for
the combined lattice. In this paper, we introduce a new notion of
combination of lattices called logical product, which is more pow-
erful than the reduced product. We also describe algorithms to au-
tomatically construct the abstract interpretation operations for the
logical product lattice from the abstract interpretation operations
for the individual logical lattices. Our algorithms can be simplified
to yield abstract interpretation operations for the reduced product
of the underlying logical lattices.

An abstract lattice can be lifted to its powerset lattice (called
disjunctive completion), which is more precise since there is no loss
of information in join computations [6]. It is interesting to note that
the precision of logical product combination is incomparable with
the disjunctive completion of a reduced product combination. The
former yields more precise information across assignment nodes
since it can represent atomic facts that involve combination of
signatures of the individual lattices. The latter yields more precise
information across join points since it can represent disjunction of
atomic facts (each of which is pure though).

Codish et. al. [2] have studied the problem of automatically
generating abstract interpretation for reduced product combination
of lattices. However, their work has focused on logic programs,
while we are concerned with imperative programs. Also, their com-
bination methodology does not provide any precision guarantees
with respect to the reduced product lattice. On the other hand, our
combination methodology gives precision guarantees over reduced
product (in fact, even over a more precise logical product) combi-
nation of a general class of lattices.

Chang and Leino [1] have presented preliminary results on com-
bining a given abstract domain with the domain of uninterpreted
symbols, but do not define and prove correctness for their combi-
nation. They point out several subtleties that can arise when deal-
ing with the semi-lattice induced by uninterpreted symbol (see
also [15]). Our results here consolidate and build a nontrivial frame-
work under which to define and modularly prove correctness of
these past approaches.

Lerner, Grove and Chambers have described how to automat-
ically combine dataflow analyses in the context of compiler op-
timizations [17]. Their technique involves implicit communica-
tion between the individual components of a super-analysis based
on graph transformations. They have shown that under a certain
monotonicity condition, their combination algorithm produces no
worse results than running arbitrarily iterated sequences of the in-
dividual analyses.

Reps, Sagiv and Yorsh [21] show that an abstract interpreter
can be constructed using only a decision procedure (that can also
producemodels) and a join operator. This suggests that abstract
interpreter for combination lattices can be constructedassuming
a combination decision procedure and a join algorithm for the
combined lattice. In our work, we make no such assumptions.

Also, unlike our algorithms, the complexity of the procedure for
computing meet and SP suggested by Reps et. al. is linear in the
height of the lattice, which is usually unbounded in rich domains.

The idea of decomposing a lattice into a reduced product of
simpler lattices has been formally studied by Cortesi et. al. [3].
However, the results in Section5 present nontrivial reductions of
some specific lattices intological productsof other (unrelated)
lattices.

7. Conclusion and Future Work
This paper describes how to automatically combine the power
of abstract interpreters in a non-trivial manner. We define a no-
tion of logical product of lattices, which is more precise than the
commonly known reduced product. Our combination methodology
yields the most precise abstract interpreter for the logical product
combination of lattices, when the individual lattices are over theo-
ries that are convex, stably infinite, and disjoint. In other cases, our
combination methodology acts as an efficient heuristic to combine
the power of given abstract interpreters in a non-trivial manner.

The process of analyzing a program using abstract interpreta-
tion over a given abstract domain involves two main steps: design-
ing the abstract interpretation operators for the abstract domain,
and implementing them. The combination methodology described
in this paper helps in modularizing both these steps. A user can
focus on designing and/or implementing abstract interpreters for
potentially simple domains, and then use our combination method-
ology to automatically construct abstract interpreter for the combi-
nation of those domains, which is more precise than the individual
domains.

The concept of logical product suggests several directions for
future work. It may be worthwhile to explore logical products and
compare them to reduced products in the framework of abstract do-
mains and closures [8, 9]. The conditions under which our combi-
nation methodology generates the most precise abstract interpreter
over logical product are inherited from the Nelson-Oppen combi-
nation result for combining decision procedures. It would be useful
to see if our results can be extended to perform a precise analy-
sis for non-convex theories (e.g., the theory of arrays), or combi-
nation of non-disjoint theories. There has been a lot of work in
the theorem-proving community to extend Nelson-Oppen combi-
nation methodology for decision procedures to reason about non-
convex or non-disjoint theories that could also be relevant here. On
the other hand, it would be interesting to experimentally evaluate
the imprecision of our combination methodology in reasoning over
combination of non-convex or non-disjoint theories. Since the no-
tion of logical product is more precise than reduced product and
direct product, another interesting piece of experimentation would
be to compare the cost and precision of an analysis over logical
product as opposed to direct product or reduced product.

Acknowledgments
We thank the anonymous reviewers of this paper for their useful
and insightful comments.

References
[1] E. Chang and R. Leino. Abstract interpretation with alien expressions

and heap structures. InVMCAI, volume 3385 ofLNCS, pages 147–
163. Springer, 2005.

[2] M. Codish, A. Mulkers, M. Bruynooghe, M. G. de la Banda, and
M. Hermenegildo. Improving abstract interpretations by combining
domains. ACM Transactions on Programming Languages and
Systems, 17(1):28–44, 1995.

[3] A. Cortesi, G. Fiĺe, R. Giacobazzi, C. Palamidessi, and F. Ranzato.
Complementation in abstract interpretation.ACM Trans. Program.
Lang. Syst., 19(1):7–47, 1997.

[4] P. Cousot. Iterative reduced product, Lecture Notes on Abstract
Interpretation, Available at http://web.mit.edu/16.399/www/. 2005.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In4th ACM Symposium on POPL,
pages 234–252, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In6th ACM Symp. on POPL, pages 269–282, 1979.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In5th ACM Symposium on POPL,
pages 84–97, 1978.

[8] R. Giacobazzi and F. Ranzato. Refining and compressing abstract
domains. InProc. 24th ICALP, volume 1256 ofLNCS, pages 771–
781, 1997.

[9] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract
interpreters complete.J. of the ACM, 47(2):361–416, 2000.

[10] S. Gulwani and G. C. Necula. Discovering affine equalities using
random interpretation. In30th ACM Symposium on POPL, pages
74–84. ACM, Jan. 2003.

[11] S. Gulwani and G. C. Necula. Global value numbering using random
interpretation. In31st ACM Symposium on POPL, pages 342–352,
Jan. 2004.

[12] S. Gulwani and G. C. Necula. A polynomial-time algorithm for global
value numbering. In11th Static Analysis Symposium, volume 3148
of LNCS, pages 212–227. Springer-Verlag, Aug. 2004.

[13] S. Gulwani and A. Tiwari. Assertion checking over combined
abstraction of linear arithmetic and uninterpreted functions. In15th
European Symposium on Programming, volume 3924 ofLNCS.
Springer, Mar. 2006.

[14] S. Gulwani and A. Tiwari. Combining abstract interpreters. Technical
Report MSR-TR-2006-25, Microsoft Research, Mar. 2006.

[15] S. Gulwani, A. Tiwari, and G. C. Necula. Join algorithms for the
theory of uninterpreted symbols. InConf. on Foundations of Software
Tech. and Theor. Comp. Sci., FST&TCS ’2004, volume 3328 ofLNCS,
pages 311–323, 2004.

[16] M. Karr. Affine relationships among variables of a program. InActa
Informatica, pages 133–151. Springer, 1976.

[17] S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses
and transformations. In29th ACM Symposium in POPL, pages 270–
282, 2002.

[18] M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. InICALP,
pages 1016–1028, 2004.

[19] G. Nelson and D. Oppen. Simplification by cooperating decision
procedures.ACM Transactions on Programming Languages and
Systems, 1(2):245–257, Oct. 1979.

[20] F. Nielson, H. Nielson, and C. Hankin.Principles of Program
Analysis. Springer-Verlag, 2005.

[21] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the
best transformer. InVMCAI, volume 2937 ofLNCS, pages 252–266.
Springer, 2004.

A. Proof of Theorem 3
Let 〈{z1, . . . , zm}, E′

1, E
′
2〉 = PurifyT1,T2

(E′). SinceE` �L1onL2

E′, we have thatE` T1∪T2⇒ E′ and AlienTermsT1,T2(E
′) ⊆

TermsT1,T2(E
`). This implies that there exist variablesx1, . . . , xm

in V ` ∪Vars(E`) such that

E`0
1 ∧ E`0

2
T1∪T2⇒ (E′

1 ∧ E′
2)[x1/z1, . . . , xm/zm]

It follows from Property1 (property ofNOSaturationT1,T2) that

E`1
1

T1⇒ E′
1[x1/z1, . . . , xm/zm]

E`1
2

T2⇒ E′
2[x1/z1, . . . , xm/zm]

Similarly, there exist variablesy1, . . . , ym ∈ V r ∪Vars(Er) s.t.

Er1
1

T1⇒ E′
1[y1/z1, . . . , ym/zm]

Er1
2

T2⇒ E′
2[y1/z1, . . . , ym/zm]

Hence,

E`1
1 ∧ E`2 T1⇒ E′

1[〈x1, y1〉/z1, . . . , 〈xm, ym〉/zm]

E`1
2 ∧ E`2 T2⇒ E′

2[〈x1, y1〉/z1, . . . , 〈xm, ym〉/zm]

Er1
1 ∧ Er2 T1⇒ E′

1[〈x1, y1〉/z1, . . . , 〈xm, ym〉/zm]

Er1
2 ∧ Er2 T2⇒ E′

2[〈x1, y1〉/z1, . . . , 〈xm, ym〉/zm]

It follows from completeness of join algorithmsJL1 andJL2 that

E1
T1⇒ E′

1[〈x1, y1〉/z1, . . . , 〈xm, ym〉/zm] (1)

E2
T2⇒ E′

2[〈x1, y1〉/z1, . . . , 〈xm, ym〉/zm] (2)

Hence,E1 ∧ E2
T1∪T2⇒ E′. It now follows from the completeness

of QL1onL2 that

E
T1∪T2⇒ E′

We now show thatAlienTermsT1,T2(E
′) ⊆ TermsT1,T2(E).

Consider anyt ∈ AlienTermsT1,T2(E
′). ∃i s.t.1 ≤ i ≤ m and

E′
1 ∧ E′

2
T1∪T2⇒ zi = t (3)

It follows from Equation 1, Equation 2, andEquation 3that

E1 ∧ E2
T1∪T2⇒ 〈xi, yi〉 = t

This implies that the variable〈xi, yi〉 does not belong to the setV2

(on Line4) in our algorithm of the operatorQL1onL2 whenQL1onL2

is called from withinJL1onL2 . Hence,QL1onL2 eliminates variable
〈xi, yi〉 in E1 ∧ E2 by substitution with some termt′. Note that

E1 ∧ E2
T1∪T2⇒ t = t′. The variablezi (introduced during the

purification step) occurs in a non-trivial manner in bothE′
1 and

E′
2 and hence it follows fromEquation 1andEquation 2that the

variable〈xi, yi〉 occurs in bothE1 andE2. This implies that the
term t′ occurs in bothE3

1 andE3
2 (as defined on Lines7 and8 in

pseudo-code ofQL1onL2) and hencet′ ∈ TermsT1,T2(E) (note

thatE = E3
1 ∧ E3

2). SinceE1 ∧ E2
T1∪T2⇒ t = t′, we have that

E
T1∪T2⇒ t = t′. Thus,t ∈ TermsT1,T2(E).

B. Proof of Theorem 6
Let E′ be such thatE �L1onL2 E′ andE′ 6�L1onL2 E. Let E′

1

andE′
2 be obtained by purification and NO-saturation ofE′. Since

AlienTermsT1,T2(E
′) ⊆ TermsT1,T2(E), we can assume with-

out loss of generality thatE′ has been purified using the variables
and definitions used to purifyE. It suffices to show the following.
(i) E1 �L1 E′

1 andE2 �L2 E′
2.

(ii) Either E′
1 6�L1 E1 or E′

2 6�L2 E2 orAlienTermsT1,T2(E
′) ⊂

AlienTermsT1,T2(E).
We first prove (i). LetDefs be the conjunction of definitions

required for purification ofE. SinceE
T1∪T2⇒ E′, we have that:

E ∧ Defs
T1∪T2⇒ E′ ∧ Defs (4)

Note thatE∧Defs T1∪T2⇐⇒ E1∧E2, andE′∧Defs T1∪T2⇒ E′
1∧E′

2.
Hence, it follows from Eq.4 that

E1 ∧ E2
T1∪T2⇒ E′

1 ∧ E′
2 (5)

SinceE1 andE2 are NO-saturated, it follows from Eq.5 that

E1
T1⇒ E′

1 and E2
T2⇒ E′

2

We now prove (ii). Suppose for the purpose of contradiction that

E′
1 �L1 E1 and E′

2 �L2 E2 (6)

AlienTermsT1,T2(E
′) = AlienTermsT1,T2(E) (7)

SinceE ∧ Defs
T1∪T2⇐⇒ E1 ∧ E2, andE′ ∧ Defs

T1∪T2⇒ E′
1 ∧ E′

2,
it follows from Equation 6that

E′ ∧ Defs
T1∪T2⇒ E ∧ Defs (8)

SinceDefs is simply a conjunction of definitions for variables that
do not occur inE′ andE, it follows from Equation 8that

E′ T1∪T2⇒ E (9)

It follows from Equation 7and Equation 8that E′ �L1onL2 E.
This is a contradiction.

	Introduction
	Background
	Logical Lattices and Their Combination
	Abstract Interpreter for Combination of Logical Lattices
	Combining Join Operators
	Combining Existential Quantification Operators
	Fixed Point Computation
	Complexity

	Applications of Combination Methodology
	Commutative Functions
	Uninterpreted Functions

	Related Work
	Conclusion and Future Work
	Proof of Theorem 3
	Proof of Theorem 6

