
TomML: A Rule Language For Structured Data

Horatiu Cirstea, Pierre-Etienne Moreau, and Antoine Reilles

Université Nancy 2 & INRIA & LORIA
BP 239, F-54506 Vandoeuvre-lès-Nancy, France

first.last@loria.fr

Abstract. We present the Tom language that extends Java with the
purpose of providing high level constructs inspired by the rewriting com-
munity. Tom bridges thus the gap between a general purpose language
and high level specifications based on rewriting. This approach was mo-
tivated by the promotion of rule based techniques and their integration
in large scale applications. Powerful matching capabilities along with a
rich strategy language are among Tom’s strong features that make it
easy to use and competitive with respect to other rule based languages.
Tom is thus a natural choice for querying and transforming structured
data and in particular XML documents [1]. We present here its main
XML oriented features and illustrate its use on several examples.

1 Introduction

Pattern matching is a widely spread concept both in the computer science com-
munity and in everyday life. Whenever we search for something, we build a
so-called pattern which is a structured object that specifies the features we are
interested in. Mathematics makes a full use of patterns, some quite elaborated,
and this is similar in logic and computer science.

The complexity of the matching process obviously depends on the complexity
of the objects it targets. Matching a shape in a picture is significantly more dif-
ficult than recognizing a word in a text. There is also a compromise between the
complexity of the data and the facility to manipulate it. The eXtensible Markup
Language (XML) is a specification language that proved to be an excellent op-
tion for describing data since it allows the description of complex structures in
a computer friendly format well suited for matching and transformation. In par-
ticular, XML data is organized in a tree structure having a single root element
at the top and this is exactly the kind of objects manipulated in classical pattern
matching algorithms and corresponding tools.

Of course, matching is generally not a goal by itself: if matching is done, this
is because we want to perform an action. Typically, if we have detected that zero
is added to some number, we would like to simplify the expression, for example
by replacing 7 + 0 by 7. Similarly, XML documents are often transformed into
HTML documents for a better presentation in web pages. This transformation
can be naturally described using rewriting that consists intuitively in matching
an object and (partially) replacing it by another one.



2 H. Cirstea, P.-E. Moreau, A. Reilles

The rewriting concept appears from the very theoretical settings to the
very practical implementations. Several rewriting languages, like ASF+SDF [2],
Elan [3] and Maude [4], have been developed on top of efficient pattern-
matching algorithms and use sophisticated techniques for optimizing the (strate-
gic) rewriting computations. Nevertheless, the libraries and facilities (e.g. in-
put/output, threads, interfaces, etc.) are relatively limited compared to largely
used languages like Java, for example. The language Tom (tom.loria.fr) im-
plements the concept of Formal Island [6] that consists in making a specific
technology available on top of an existing language. In the case of Tom [5] this
technology is the strategic term rewriting and the existing language is Java
(although the connection is also possible with potentially any other language).

The Tom programs have a clear semantics based on term rewriting and thus
can be subject to formal analysis using the tools available in the domain and,
on the other hand, a great potential for cross-platform integration and usability.
We recover the portability and re-usability features of XML and Tom looks thus
a natural choice when one wants to query and transform XML documents.

We present here an extension of Tom, called TomML, that makes available
all the Tom features into a syntax adapted to XML document manipulation. In
fact, this extension can be easily adapted to accommodate any other structured
data provided that a tree representation can be obtained out of it.

We briefly introduce Tom in the next section. In Section 3 we illustrate
via several examples the main pattern-matching features of TomML and in
Section 4 we show how strategies can be used to give more expressive power to
the formalism. We finish with a brief comparison with similar tools and some
concluding remarks.

2 Tom in a nutshell

As we have already said, Tom is an extension of Java which adds support for al-
gebraic data-types and pattern matching. One of the most important constructs
of the language is %match, a pattern matching construct which is parametrized
by a list of objects, and contains a list of rules. The left-hand sides of the rules are
pattern matching conditions (built upon Java class names and variables), and
the right-hand sides are Java statements. Like standard switch/case construct,
patterns are evaluated from top to bottom, firing each action (i.e. right-hand
side) whose corresponding left-hand side matches the objects given as arguments.

For instance, assume that we have a hierarchy of classes composed of Account
from which inherit CCAccount (credit card account) and SAccount (savings ac-
count), each with a field owner of type Owner. Given two objects s1 and s2, the
following code prints the owner’s name if it is the same for the two accounts and
if these accounts are of type CCAccount, respectively SAccount, and just prints
the text "CCAccount" if both accounts are of type CCAccount:
%match(s1,s2) {

CCAccount(Owner(name)),SAccount(Owner(name)) -> { print(name); }

CCAccount(_),CCAccount(_) -> { print("CCAccount"); }

}



TomML: A Rule Language For Structured Data 3

In the above example, name is a variable. Notice the use of the non-linearity
(i.e. the presence of the same variable at least twice in the pattern) to denote
concisely that the same value is expected. The “_” is an anonymous variable
that stands for anything. The equivalent Java code would be:
if (s1 instanceof CCAccount) {

if (s2 instanceof SAccount) {

Owner o1=((CCAccount)s1).getOwner();

Owner o2=((SAccount)s2).getOwner();

if (o1 != null && o2 != null) {

if ((o1.getName()).equals(o2.getName())) {

print(o1.getName());

}

}

} else { if (s2 instanceof CCAccount) { print("CCAccount"); } }

}

Besides matching simple objects, Tom can also match lists of objects. For in-
stance, given a list of accounts (List<Account> list), the following code prints
all the names of the credit card accounts’ owners:
%match(list) {

AccountList(X*,CCAccount(Owner(name)),Y*) -> { print(name); }

}

AccountList is a variadic list operator, the variables suffixed by * are in-
stantiated with lists (possibly empty), and can be used in the action part:
here X* is instantiated with the beginning of the list up to the matched ob-
ject, whereas Y* contains the tail. The action is executed for each pattern
that matches the subject (assigning different values to variables). Patterns can
be non-linear: AccountList(X*,X*) denotes a list composed of two identical
sublists, whereas AccountList(X*,x,Y*,x,Z*) denotes a list containing two
occurrences of one of its elements. Another feature of Tom patterns that is
worth mentioning is the possibility to embed negative conditions using the
complement symbol “!” [7]. For instance, a so-called anti-pattern of the form
!AccountList(X*,CCAccount(_),Y*) denotes a list of accounts that does not
contain a credit card account. Similarly, !AccountList(X*,x,Y*,x,Z*) stands
for a list containing only distinct elements, and AccountList(X*,x,Y*,!x,Z*)
for one that has at least two distinct elements. There is no restriction on pat-
terns, including complex nested list operators combined with negations. This
allows the expression of different algorithms in a very concise and safe manner.

Since its first version in , Tom itself has been written using Tom. The
system is composed of a compiler and a library which offers support for prede-
fined data-types such as integers, strings, collections, and many other Java data-
structures. The compiler is organized, in a pure functional style, as a pipeline of
program transformations (type inference, simplification, compilation, optimiza-
tion, generation). Each phase transforms a Java+Tom abstract syntax tree
using rewrite rules and strategies. At the end a pure Java program is obtained.

The complete environment is integrated into Eclipse (www.eclipse.org) pro-
viding a simple and efficient user interface to develop, compile, and debug rule
based applications. It has been used in an industrial context to implement sev-



4 H. Cirstea, P.-E. Moreau, A. Reilles

eral large and complex applications, among them a query optimizer for Xquery
and a platform for transforming and analysing timed automata using XML ma-
nipulation. On several classical benchmarks Tom is competitive with state of
the art rule-based implementations and functional languages.

3 TomML, an extension for XML manipulation

One of the main objectives of Tom is to be as generic as possible. The im-
plementation of the handled data-structures is not hard-wired in the system
but becomes a parameter of the compiler. For that, we have introduced the
notion of formal anchor, also called mapping, which describes how a concrete
data-structure (i.e. the trees which are transformed) can be seen as an algebraic
term. This idea, related to P. Wadler’s views, allows Tom to rewrite any kind
of data structure, and in particular XML trees, as long as a formal anchor is
provided.

There are two possible approaches for using Tom. Either we start from an
existing application that is improved with new functionalities implemented using
the rewriting features of Tom, and in this case the data-structure used by the
application is already defined: we just have to define a mapping from this data-
structure to Tom.

Alternatively, we can abstract on the data-structure by using the data-
structure generator integrated in Tom. Given a signature, Tom generates a
set of Java classes that provide static typing. A subtle hash-consing technique
is used to offer maximal sharing [8]: there cannot be two identical terms in mem-
ory. Therefore, the equality tests are performed in constant time, which is very
efficient in particular when non-linear rewrite rules are considered.

In this section, we show how this general approach can be tailored to trans-
form XML documents in both an expressive and a theoretically grounded way.
Although the extension we present here is completely integrated in Tom we use
the name TomML to refer to the syntax features and standard libraries specific
to XML document manipulations.

For the rest of the paper we consider the following XML document:
<Bank name="BNP">

<Branch name="Etoile">

<CCAccount id="12">

<Owner gender="M">Bob</Owner>

<Balance>10000</Balance>

</CCAccount>

<SAccount rate="4">

<Owner gender="M">Bob</Owner>

<Owner gender="F">Alice</Owner>

<Balance>100000</Balance>

</SAccount>

</Branch>

<Branch name="Lafayette">

<CCAccount id="23">

<Owner gender="M">John</Owner>

<Balance>10000</Balance>

</CCAccount>

<CCAccount id="6">

<Owner gender="M">Bob</Owner>

<Balance>6000</Balance>

</CCAccount>

</Branch>

</Bank>

A bank consists of several branches, each of them containing different types
of accounts. Whatever the representation the XML document is (DOM for in-



TomML: A Rule Language For Structured Data 5

stance), it can be seen as a tree built out of (XML) nodes. For the scope of this
paper we consider the following meta-model:
TNode = ElementNode(Name:String, AttrList:TNodeList, ChildList:TNodeList)

| AttributeNode(Name:String, Specified:String, Value:String)

| TextNode(Data:String)

| CommentNode(Data:String)

| CDATASectionNode(Data:String)

| ...

TNodeList = concTNode(TNode*) // denotes a list of TNode

An ElementNode has a name and two children: a list of attributes, and a list
of nodes. A formal anchor is materialized by a file which describes the Tom
view of the corresponding XML document implementation1 and, for the pur-
pose of this paper, we have considered a correspondence between the algebraic
sort TNode and the Node class from the w3c.dom package. This mapping is
available in the standard TomML libraries and specifies, for example, how the
name of an ElementNode of the Tom model can be retrieved (using the method
getNodeName of the DOM class for instance). Once we have defined this map-
ping, the abstract notation can be used to match an XML document and print
the name of all the branches of a bank:
%match(xmlDocument) {

ElementNode("Bank",_, //_ means that any list of attributes is accepted

concTNode(_*,

ElementNode("Branch",concTNode(_*,AttributeNode("name",_,bname),_*),_),

_*)) -> { System.out.println("branch name: " + bname); }

}

We consider in this section that xmlDocument corresponds to the Tom encoding
of the XML document given above and, in this case, the application of this
code prints the strings “branch name: Etoile” and “branch name: Lafayette”
and corresponds intuitively to the following XSLT template:
<xsl:template match="Bank/Branch">

branch name: <xsl:value-of select="@name"/>

</xsl:template>

The interest of this approach is that the semantics of the match construct
is theoretically well grounded and based on associative-matching with neutral
element. The above pattern is rather complex partly because of the highly dec-
orated XML syntax but Tom provides an alternative and much simpler XML
tailored syntax. For example, the above match construct can be written:
%match(xmlDocument) {

<Bank><Branch name=bname></Branch></Bank> -> {

System.out.println("branch name: " + bname);

}

}

Note that XML nodes can be directly used and that the extension variables
(identified by “ *” previously) not used in the right-hand side are left implicit
in the left-hand side. The semantics of these match constructs is exactly the one
provided by Tom, and thus can deal with nested patterns, non-linear variables,

1 see http://tom.loria.fr for more details



6 H. Cirstea, P.-E. Moreau, A. Reilles

anti-patterns, etc.. For example, in order to print the name of all clients who
own two credit-card accounts in two different branches of the bank, i.e. to match
a template of the form:

Bank

rreeeeeeeeeeeeeeeeeeeeeeeee

uujjjjjjjjjj

�� ))TTTTTTTTTT

,,YYYYYYYYYYYYYYYYYYYYYYYYY

. . . Branch

��

. . . Branch

��

. . .

CCAccount

��

CCAccount

��
Owner

��

Owner

��
name name

a simple non-linear pattern can be used in TomML:
void ownerInTwoBranches(TNode xmlDocument) {

%match(xmlDocument) {

<Bank>

<Branch name=bname1><CCAccount><Owner>name</Owner></CCAccount></Branch>

<Branch name=bname2><CCAccount><Owner>name</Owner></CCAccount></Branch>

</Bank> -> {

System.out.println(name + " in " + bname1 + " and " + bname2);

}

}

}

As expected, this method prints the string “John in Etoile and Lafayette”. A
similar behavior is obtained for the following XSLT code
<xsl:template match="Bank/Branch/CCAccount">

<xsl:for-each select="preceding::CCAccount[Owner=current()/Owner]">

<xsl:value-of select="Owner" /> in

<xsl:value-of select="../@name" /> and

<xsl:value-of

select="following::CCAccount[Owner=current()/Owner]/../@name"/>

</xsl:for-each >

</xsl:template>

which is clearly less intuitive than the corresponding Tom code and becomes
even more elaborated when negative conditions like the ones below are needed.

The anti-patterns are convenient if we want to specify concisely definitions of
relatively complex patterns implying negative conditions. The branches whose
clients are all mutually different can be printed using the following method:
void branchWithNoMultipleOwner(TNode xmlDocument) {

%match(xmlDocument) {

<Bank>

branch@!<Branch> <_><Owner>o</Owner></_>

<_><Owner>o</Owner></_> </Branch>

</Bank> -> { printXMLFromTNode(branch); }

}

}



TomML: A Rule Language For Structured Data 7

The variable branch can be seen as alias for the whole term matched by the pat-
tern following the “@” operator; this is of course just syntactic sugar allowing for
concise definitions of the consequent actions. The function printXMLFromTNode
available in the standard TomML libraries prints a TNode using an XML syntax.

The above pattern corresponds to an “all-different” constraint but other con-
straints like “all-equal” can be easily expressed.

4 Strategies

When programming using functions, pattern matching constructs, and more
generally the notion of transformation rule, it is common to introduce extra
functions that control their application. In the case of rewriting, this control
describes how and when the rules should be applied. This control can be defined
in the right-hand side of the rules but this is usually a bad practice since it makes
the rules more complex, specific to a given application, and thus not reusable.

Rewriting based languages provide more abstract ways to express the control
of rule applications, either by using reflexivity as in Maude, or the notion of
strategy for Elan, Stratego [9], or ASF+SDF. Strategies such as bottom-up, top-
down or leftmost-innermost are higher-order features that describe how rewrite
rules should be applied. This compares to some extent to the “//” operator of
XPath which corresponds to a depth-search. Tom offers a flexible and expressive
strategy language where high-level strategies are defined by combining low-level
primitives. Among these latter primitives, we consider the sequence (denoted ;),
the choice (denoted <+), and two generic congruence operators called All and
One. A rewrite rule is also an elementary strategy that can be applied on a term
(i.e. a tree).

As for the %match construct, a user defined strategy is defined by a pattern
and an action but, additionally, it also specifies a default behaviour for the
case when the pattern does not match. This default behaviour can be either
the Identity meaning that no action is performed or Fail in which case an
exception is raised when the pattern does not match. For example, when applying
the strategy
%strategy printOwner() extends Identity() {

visit TNode {

<Owner gender="M">#TEXT(name)</Owner> -> {

System.out.println(name);

}

}

}

to the term <Owner gender="M">Bob</Owner> the string “Bob” is printed, while
applying it to <CCAcount><Owner gender="M"> Bob </Owner></CCAccount>
leads to no action since the pattern does not match at the root position and
the default behavior is the Identity.

The strategy can be fired on the variable xmlDocument by the Java state-
ment printOwner().visit(xmlDocument). It is important to understand that
with such a statement the strategy is only applied on the root node of the



8 H. Cirstea, P.-E. Moreau, A. Reilles

corresponding document and that there is no automatic recursive application
that would search for a convenient sub-tree. In Tom, the control is explicit
and should be specified by an appropriate strategy built using the available
strategy primitives. Nevertheless, such higher-level strategies can be easily de-
fined and all the classical strategies are already available in the Tom stan-
dard library. For instance, the top-down strategy can be recursively defined by
TopDown(s)

4
= s;All(TopDown(s)) where s1;s2 means that, first, s1 is applied,

and then s2 is applied on the result of s1. It fails if s1 or s2 fails. The All(s)
combinator applies s to all the immediate children of a given node. TopDown(s)
corresponds thus to the application of s followed by a recursive application of
TopDown(s) to all the immediate children. This strategy fails if the application
of s fails. Note that the application of All(s) to a constant (i.e. a leaf of the
tree) does not fail but it simply does nothing.

The execution of TopDown(printOwner()).visit(xmlDocument) prints the
names of all the account owners in a bank (independently of the branch). Using
other combinators such as <+2 and One3, it is easy to define other general pur-
pose strategies such as BottomUp, Innermost, etc. More complex tasks can be
accomplished by strategies using elaborated non-linear patterns involving (ex-
plicit) list matching. For example, if we want to update the initial document and
give a 15% bonus to all account owners that have opened a savings account in
the same branch then, the following strategy can be used:
%strategy bonus() extends Identity() {

visit TNode {

<Branch> (A1*,

<CCAccount>

(X1*,owner,X2*,<Balance>#TEXT(bal)</Balance>,X3*)

</CCAccount>,

A2*,

sa@<SAccount>owner</SAccount>,

A3*)

</Branch> -> {

TNode newbal =

xml(<Balance>#TEXT(Double.parseDouble(bal)*1.15)</Balance>;

return xml(<Branch> A1*

<CCAccount>X1* owner X2* newbal X3*</CCAccount>

A2* sa A3* </Branch>);

} } }

In this example we have used explicit lists of the form (X1*,...,X2*,...,X3*)
to retrieve the context information (i.e. the other XML nodes) needed in order
to build the XML tree in the right-hand side of the rule. The Tom construct
xml(...) can be used to build a tree (a DOM object in our case) using an XML
notation. Once again, the notation sa@... indicates that the matched node is
stored in the variable sa and thus, this variable can be used in the right-hand
side of the strategy. Due to lack of space, this has not be exemplified, but note

2 s1<+s2 tries to apply s1; if it succeeds, the result is returned, otherwise s2 is applied
3 One(s) searches for an immediate children where s can be applied



TomML: A Rule Language For Structured Data 9

that the right-hand side of a rule is an arbitrary list of Java and Tom statements
and therefore, recursive function calls as well as nested calls to strategies can be
freely used.

5 Comparison with similar tools

There exist numerous languages aiming at manipulating XML documents. We
briefly present some of them and emphasize the main differences with respect to
the Tom approach.
XPath is a language providing a concise and efficient syntax for selecting parts
of an XML document and querying XML documents. It can be used to describe
the search of a particular node in the document in breadth and arbitrary depth.
All XPath queries can be encoded within a Tom strategy. However, it is not
possible with XPath to have full control over the way the document is explored,
as it is with Tom strategies.
XSLT [10, 11] is a transformation language for XML, aiming at describing trans-
formations from one XML dialect to another. It uses XPath to select part of the
original document and query it, and offers only functional features, thus one can
only loop over the results of an XPath query. The result of the application of
an XSLT template on a document may only be another document. Contrary to
Tom, it is not possible to execute arbitrary actions when examining the initial
documents.
The OCamlDuce system [12] is a modified version of the OCaml functional
language which integrates XDuce features, such as XML expressions, regular
expression types and patterns, iterators. OCamlDuce fully integrates XML ma-
nipulations in the OCaml language, providing static type inference for XML
expressions, by the mean of regular expression types. This provides a static in-
surance that a program will produce values of a given XML type. The integration
of XML manipulation in Tom cannot provide such guarantee. On the other side,
a main advantage of Tom is to be fully integrated in a Java environment.
The Java standard library provides a DOM implementation, that enables ma-
nipulation of XML documents through the DOM API. Additionally, the pack-
age javax.xml.xpath does provide an XPath implementation, that enables the
Java programmer to evaluate XPath expressions over DOM documents. How-
ever, this approach is purely interpreted, and does not provide any guarantee on
the transformation.

6 Conclusion

We have presented Tom, an extension of Java which adds support for alge-
braic data-types, pattern matching and strategic rewriting, focusing essentially
on the XML related features of the language. The powerful pattern-matching
construct of Tom allows one to express relatively complex matching conditions
using concise and natural patterns. The strategies add more expressive power by



10 H. Cirstea, P.-E. Moreau, A. Reilles

providing a simple method for the traversing structured data. We should point
out that all the rules as well as the corresponding guiding strategies should be
explicitly given and thus no ambiguity concerning their application is possible.

Besides its strong expressive power and its solid semantics, the approach
guarantees the portability of the applications that can be executed on top of
any Java environment. We have mainly shown examples for querying XML
documents but, as we have seen in the last example of Section 4, the xml(...)
construct can be used to modify and build XML documents.

The applications developed in Tom are independent of the data structure
implementation given that a mapping between the respective internal imple-
mentation and the Tom representation is given. The TomML standard libraries
already provide this kind of mapping for DOM classes but new mappings can
be easily integrated.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Eve Maler, F.Y., Cowan, J.: Exten-
sible markup language (XML) 1.1 (second edition). Technical report, W3C (2006)
http://www.w3.org/TR/2006/REC-xml11-20060816/.

2. Brand, M., Deursen, A., Heering, J., Jong, H., Jonge, M., Kuipers, T., Klint,
P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The
ASF+SDF Meta-Environment: a Component-Based Language Development En-
vironment. In Wilhelm, R., ed.: Compiler Construction. Volume 2027 of LNCS.,
Springer-Verlag (2001) 365–370

3. Kirchner, H., Moreau, P.E.: Promoting rewriting to a programming language: A
compiler for non-deterministic rewrite programs in associative-commutative theo-
ries. Journal of Functional Programming 11(2) (2001) 207–251

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In Nieuwenhuis, R., ed.: Proceedings of RTA 2003.
Volume 2706 of LNCS., Springer-Verlag (2003) 76–87

5. Moreau, P.E., Ringeissen, C., Vittek, M.: A Pattern Matching Compiler for Mul-
tiple Target Languages. In Hedin, G., ed.: 12th Conference on Compiler Construc-
tion, Warsaw (Poland). Volume 2622 of LNCS., Springer-Verlag (2003) 61–76

6. Balland, E., Kirchner, C., Moreau, P.E.: Formal islands. In: Proceedings of AMAST
2006. LNCS (2006) 51–65

7. Kirchner, C., Kopetz, R., Moreau, P.E.: Anti-pattern matching. In: Proceedings of
the 16th European Symposium on Programming. Volume 4421 of LNCS., Springer
Verlag (2007) 110–124

8. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.: Efficient annotated
terms. Software-Practice and Experience 30 (2000) 259–291

9. Visser, E., Benaissa, Z.e.A., Tolmach, A.: Building program optimizers with rewrit-
ing strategies. In: Proceedings of the 3rd ACM SIGPLAN International Conference
on Functional Programming, ACM Press (1998) 13–26

10. Kay, M.: XSL transformations (XSLT) version 2.0. Technical report, W3C (2007)
http://www.w3.org/TR/2006/REC-xml11-20060816/.

11. Kay, M.: XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer to Pro-
grammer). Wrox Press Ltd., Birmingham, UK, UK (2008)

12. Frisch, A.: Ocaml + xduce. In Castagna, G., Raghavachari, M., eds.: PLAN-X,
BRICS, Department of Computer Science, University of Aarhus (2006) 36–48


