
Maintenance and Agile Development:
Challenges, Opportunities and Future Directions

Geir K. Hanssen(1,2), Aiko Fallas Yamashita(3,4), Reidar Conradi(1) and Leon Moonen(3)

(1) Norwegian University of Science and Technology, Trondheim, Norway
(2) SINTEF ICT, Trondheim, Norway

(3) Simula Research Laboratory, Oslo, Norway
(4) Department of Informatics, University of Oslo, Oslo, Norway

ghanssen@sintef.no, aiko@simula.no, reidar.conradi@idi.ntnu.no, leon.moonen@computer.org

Abstract

Software entropy is a phenomenon where repeated

changes gradually degrade the structure of the system,
making it hard to understand and maintain. This
phenomenon imposes challenges for organizations that
have moved to agile methods from other processes,
despite agile’s focus on adaptability and responsiveness
to change. We have investigated this issue through an
industrial case study, and reviewed the literature
addressing software entropy, focusing on the detection
of “code smells” and their treatment by refactoring. We
found that in order to remain agile despite of software
entropy, developers need better support for
understanding, planning and testing the impact of
changes. However, it is exactly work on refactoring
decision support and task complexity analysis that is
lacking in literature. Based on our findings, we discuss
strategies for dealing with entropy in this context and
present avenues for future research.

1. Introduction

One major challenge when adopting agile software
development is the interplay between an increasingly
complex code base and the high-pace development
demanded by the agile workflow. When this interplay
is not handled properly, it decreases the productivity of
the team and the product quality. Currently, there is
limited understanding of the particular challenges that
software entropy1 entails when software maintenance is
performed under agile methods [1]. We investigated the
challenges within the aforementioned context by
conducting a case study on a company that currently
uses the Evo method [2]. In addition to the case study,
we conducted a literature review on tools, methods and

1 Software entropy is known under different names such as code
decay, software rot, or software erosion

knowledge available for detection and refactoring of
code smells. Space limitations prevent us from
presenting the complete results of the review (which
will be reported in a separate publication) but we
include relevant work in the discussion below. The
remainder of this paper is structured as follows: Section
2 describes the methodology and findings from the case
study, Section 3 discusses the findings and potential
solutions to the identified issues, and Section 4
concludes with directions for future research.

2. Case study

2.1. Context and methodology

(a) Context of study. CSoft (an anonym) is a
medium-sized Norwegian software company that
develops, maintains and markets a product line. The
development in CSoft evolved thirteen years ago from
“creative chaos” to a waterfall-inspired process and
about 5 years ago they adopted Evo [2], an agile method
comparable to the better-known Scrum method [3].
Currently, development is done in short iterations, open
to changes in requirements and design, aims at
delivering working software after each iteration, and
lead users are invited to participate in the process.

(b) Case study protocol. First, we collected data by
means of a workshop with CSoft and Patrick Smacchia
(an external consultant) where CSoft’s source code was
analyzed with Smacchia’s tool NDepend. Next, we
conducted an in-depth interview with two architects
from CSoft, and analyzed the transcripts.

(c) Technical properties of the system. The system
has been under constant development for the last

thirteen years, entangling solutions in ASP, COM+,
VB6 and other legacy technologies. Today, most new

code is developed in C#, distributed over
approximately 160 .Net assemblies. The product has a
three-tier architecture with a clean separation between
the presentation and the business layer. The main
problem in the software is what the architects refer to
as the Blob: a very large assembly, central to the
system (and aptly named Core), which consists of
approximately 150K lines of code in 144 namespaces,
many of them displaying cyclical dependencies.

2.2. Findings

We summarize the problems that are experienced

during development by distinguishing four aspects:
(a) Analyzability and comprehensibility. The

complexity of the system (specially the Core
component) makes it difficult to understand the
structure and behavior of the code. Thus, new
developers joining R&D have a steep learning curve
and require close follow-up over a long period of time
by more experienced developers. Also, there is a lack
of documentation or models that explain the structure
of the system, even though this clearly would be highly
beneficial, both to existing and new developers.

Comprehension issues lead to a fear of changing the
code, both for adding new features and for refactoring.
The unclear internal structure creates a cognitive
overload that is in practice generally avoided by code
duplication: instead of modifying or reusing existing
code, developers create their own copy over which
they have full control. This increases the cognitive
overload for other developers, creating a vicious circle.

(b) Modifiability and deployability. As a result of
the duplication and entanglement of code, developers
frequently need to perform so-called shotgun surgery,
where even the modification of a small detail requires
identifying and modifying many code segments. This
problem slows down the development and increases
the potential for errors, since developers may overlook
changes in one or more locations. Also, deployment of
the product is affected since the Core component
aggregates features and functionality for every possible
configuration of the product. This forces the release of
the product as a whole, though only a fraction of the
functionality is needed for a particular configuration.

(c) Testability and stability. Due to the size of the
code and the amount of cross-references, there are too
many paths through the code to test them all
systematically. Test coverage is not considered high
enough and existing tests have shown to be unstable
and inconsistent (e.g., same tests running on similar
systems produce different outcomes that are hard to
explain). The existing tests are extremely large, thus
hard to maintain and use. When a test fails, the
corrective task effort is high. Although the test sets are

supposed to act as a safety net (similar to regression
tests), in practice this safeguard is not trusted. The
unforeseeable effects of changes and the potentially
high corrective maintenance effort increase the
fear/reluctance to change existing code.

(d) Organization and process. As both the
business domain and the system are highly complex,
each of the development teams (4-6 developers)
contains an expert, the so-called guru. This guru is
technically skilled and has long experience with the
code, which is vital for the team to solve the tasks.
This represents a high vulnerability for the
organization, as the knowledge of the system is not
evenly spread.

The development process is based on two-week
iterations, with a strong focus on delivering working
software by the end of each iteration. However, a
negative effect of this focus is that the quality of
software is at times traded in for creating a working
version. Each iteration ends with a review, but the high
velocity typically does not give enough time to catch
all issues. This results in a high workload close to a
product release, when the system needs to be
thoroughly tested as a whole.

The development teams are set up to have separate
areas of concern, each team being responsible for a
part of the total product (e.g., the reporting solution or
the data storage). The rationale is to build competence
around a well-defined part of the product. However,
the structure of the system does not reflect this
organization in practice, as functionality is spread
throughout the entire code. This forces the teams to
operate outside their area of concern, which has shown
to negatively affect their ability to produce sufficient
new and improved features of the product in their
releases, leading to constant delays in their delivery.

3. Discussion

In this section we analyze the results from the
case study and, drawing from our literature review,
discuss strategies for addressing the issues identified:

(a) Analyzability and comprehensibility. We
observe that most agile methods assume that
development starts from scratch and ends with a
release – post- release maintenance is not covered.
In our case, the system was already very complex
when Evo was adopted, and although agile methods
promote communication over documentation, the lack
of adequate documentation holds back the
comprehension of such a system. While agile methods
like to state that “the code is the documentation”,
there is no guarantee that the code can serve this
purpose if the system was originally developed using
different methods. Van Deursen remarks that pair

programming is one of the particular agile practices
that support comprehension [4]. However, in the case
of CSoft, the limited number of ‘experts’, the high
number of new coming developers, and the urgent
demands on new functionality, makes that pair
programming is not considered a very practical nor
scalable solution for spreading knowledge. To
improve program comprehension and overcome “the
fear of change”, we suggest introducing semi-
automatic code inspections like those in [5], potentially
extended with visualizations and analyses from [6-8].
In addition, refactorings to untangle crosscutting
concerns will improve the comprehensibility [9] as
they help to distinguish code for various business
segments and separate business and platform code.

(b) Modifiability and deployability. According to
Martin [10], dependency problems, like the ones
observed in our case study, largely relate to two design
smells: rigidity and immobility. Rigidity meaning that a
change in the system implies a cascade of changes in
other modules, and immobility refers to the inability of
the system to encapsulate components that can be
reused, because it implies too much effort or risk. If the
smells are all over the system, high-level restructuring
it is required to remove unwanted dependencies. One
immediate consequence of these dependency issues is
the violation of the Interface Segregation Principle
[10], explaining most of the difficulties in the
deployment stage. The analysis (and reduction) of
module dependencies [11, 12] can help to revise these
interfaces. In addition, specific refactorings to reduce
architectural violations [13] will help to further
improve modifiability and deployability.

(c) Testability and stability. Unit testing is one of
the important components of agile methods. In the
context of our case, the sheer size combined with a
large amount of dependencies in the code hinders the
definition of unit tests and high levels of coverage. Due
to the high pace of development, there is little room for
regression, integration and system testing during the
iterations and CSoft mainly relies on the customer for
external quality checks. Recent work has focused on
methods and techniques for improving unit test suits
[14-16], alongside with empirical studies on defects
prediction [17] that aid planning. However, there are
still various challenges to agile testing that go beyond
unit testing that are not completely understood [18,
19]. Although we consider visualization and analysis
tools to be useful, we know that non-trivial refactorings
are risky and time consuming due to the unstable
characteristic of the system. The current lack of
understanding of the effects of given code smells and
refactorings makes this task very challenging [20].

(d) Organization and process. The strong focus

on rapid and continuous delivery of features at CSoft
has lead to the construction of teams with defined
areas of concern. We conjecture that an important
reason for delays on the incorporation of new
features is due to the system not reflecting the same
separation of concerns as the development tasks/teams.
The resulting entanglement of crosscutting concerns
is a common problem with software maintenance. As
discussed above, refactoring towards an aspect-
oriented version could help to restructure the code
according to the areas of concern [9], but this area is
relatively new and tools have only recently been
presented [21, 22]. The lack of adequate information
to perform the planning could be another reason for
delays. Planning of iterations could be enhanced by
considering additional information, such as
complexity analysis of the tasks to improve on
estimations obtained from planning poker. However,
such complexity analysis may still have limited effect
in practice, as there is not enough empirical evidence
on the impact of different refactorings [20]. These
uncertainties could be compensated by continuous
quality monitoring, for example by combining
evolution monitoring [23-26] and semi-automatic
code inspections [5] to analyze metrics and code
smells using a tools like NDepend. This analysis is
best incorporated in the development workflow to
detect and repair issues as soon as possible. In such a
setting, detection of defect or performance issues in
the system [27, 28] could be used as a prioritization
mechanism for refactorings.

4. Concluding remarks

In this paper, we have presented some of the
problems agile practitioners face when dealing with
software entropy in large projects. We found that, to
keep agile responsiveness in the presence of software
entropy, better support is needed for understanding,
planning and testing the impact of changes. Moreover,
we found that there is relatively little empirical
evidence and methods for refactoring decision support.
Code smells themselves are indicators that refactoring
is needed, but after analyzing code smells, one also
needs guidance to drive refactoring in a cost-effective
way. Detection answers the question “where are the
code smells?” but more support is needed to answer
questions like “which code smells should we refactor
first?” and “which combination of refactorings has the
best overall effect?” We underline the statement by
Counsell that assessing the cost-benefits of different
refactorings is still largely an open area for research
[20].

Finally, our literature review indicated that most of
the methodological and tool contributions were still in
their development stage. More relevant case studies
and better evaluations of the available tools are needed,
so practitioners can evaluate the different solutions and
adopt the most appropriate ones to their context. Mealy
et al. [29] have suggested a set of usability
requirements for refactoring tools. In addition,
evaluation frameworks like the one suggested by
Maletic et al. [30] are needed to assure comparable
results.

5. References

[1] Rajlich, V., Changing the paradigm of software
engineering, in Comm. ACM. 2006. p. 67-70.
[2] Gilb, T., Competitive Engineering: A handbook for
systems engineering, requirements engineering, and software
engineering using Planguage. 2005: Elsevier.
[3] Schwaber, K., Beedle, M., Agile Software Development
with Scrum. 2001: Prentice Hall.
[4] van Deursen, A., Program comprehension risks and
opportunities in extreme programming, in Working Conf. on
Reverse Eng. 2001, IEEE. p. 176-185.
[5] van Emden, E. and L. Moonen, Java quality assurance by
detecting code smells, in Working Conf. on Reverse Eng.
(WCRE). 2002. p. 97-106.
[6] Parnin, C., C. Görg, and O. Nnadi, A catalogue of
lightweight visualizations to support code smell inspection,
in Symp. on Softw. Visualization (SOFTVIS). 2008, ACM.
[7] Trifu, A. and U. Reupke, Towards Automated
Restructuring of Object Oriented Systems, in Conf. on Softw.
Maintenance and Reengineering (CSMR). 2007, IEEE. p. 39-
48.
[8] van den Brand, M.G., et al., Using The Meta-
Environment for Maintenance and Renovation, in Conf. on
Softw. Maintenance and Reengineering (CSMR).2007, IEEE.
[9] Moonen, L., Dealing with Crosscutting Concerns in
Existing Software, in Intl Conf. on Softw. Maintenance -
Frontiers of Softw. Maintenance (ICSM/FoSM 2008).
2008, IEEE. p. 68-77.
[10] Martin, R.C., Agile Software Development, Principles,
Patterns and Practice. 2002: Prentice Hall.
[11] Arevalo, G., S. Ducasse, and O. Nierstrasz, Discovering
Unanticipated Dependency Schemas in Class
Hierarchies, in Conf. on Softw. Maintenance and
Reengineering (CSMR). 2005. p. 62-71.
[12] Leitch, R. and E. Stroulia, Assessing the Maintainability
Benefits of Design Restructuring Using Dependency
Analysis, in Intl Symp. on Softw. Metrics (METRICS) 2003.
[13] Bourqun, F. and R.K. Keller, High-impact Refactoring
Based on Architecture Violations, in Conf. on Softw.
Maintenance and Reengineering (CSMR). 2007. p. 149-158.

[14] Guerra, E.M. and C.T. Fernandes, Refactoring Test
Code Safely, in Intl Conf. on Softw. Eng. Advances. 2007.
[15] van Deursen, A., et al., Refactoring test code, in extreme
Programming Perspectives, M. Marchesi, et al., Editors.
2002, Addison-Wesley.
[16] van Rompaey, B., et al., On The Detection of Test
Smells: A Metrics-Based Approach for General Fixture and
Eager Test. TSE, 2007. 33(12): p. 800-817.
[17] Li, W. and R. Shatnawi, An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution. JSS, 2006. 80(7): p. 1120-1128.
[18] Pettichord, B., Agile Testing Challenges, in Pacific
Northwest Softw. Quality Conf. (PNSQC). 2004. p. 481.
[19] Talby, D., et al., Agile Software Testing in a Large-
Scale Project. IEEE Softw., 2006. 23(4): p. 30-37.
[20] Counsell, S., et al., The Effectiveness of Refactoring,
Based on a Compatibility Testing Taxonomy and a
Dependency Graph, in Testing: Academic & Industrial Conf.
on Practice And Research Techniques (TAIC- PART). 2006,
IEEE.
[21] Binkley, D., et al., Tool-supported refactoring of
existing object-oriented code into aspects. TSE, 2006. 32(9):
p. 698-717.
[22] Marin, M., et al., An integrated crosscutting concern
migration strategy and its semi-automated application to
JHotDraw. JASE, 2009.
[23] D'Ambros, M., Supporting software evolution analysis
with historical dependencies and defect information, in Intl
Conf. on Softw. Maintenance (ICSM). 2008, IEEE. p. 412-
415.
[24] Jermakovics, A., M. Scotto, and G. Succi, Visual
identification of software evolution patterns, in Intl Ws.
Principles of Softw. Evolution (IWPSE). 2007, ACM. p. 27-
30.
[25] Kiefer, C., A. Bernstein, and J. Tappolet, Mining
Software Repositories with iSPAROL and a Software
Evolution Ontology, in Intl Ws. Mining Softw. Repositories
(MSR). 2007.
[26] Xing, Z., Analyzing the Evolutionary History of the
Logical Design of Object-Oriented Software. TSE, 2005.
31(10): p. 850-868.
[27] Chaabane, R., Poor Performing Patterns of Code:
Analysis and Detection, in Intl Conf. on Softw. Maintenance
(ICSM). 2007.
[28] Wasylkowski, A., A. Zeller, and C. Lindig, Detecting
object usage anomalies, in European Softw. Eng. Conf.
& Symp. on the Foundations of Softw. Eng. (ESEM/FSE).
2007, ACM. p. 35-44.
[29] Mealy, E., Improving Usability of Software Refactoring
Tools, in Australian Softw. Eng. Conf. (ASEC). 2007. p.
307-318.
[30] Maletic, J.I., A. Marcus, and M.L. Collard, A Task
Oriented View of Software Visualization, in Intl Ws.
Visualizing Softw. For Understanding and Analysis
(VISSOFT). 2002, IEEE.

