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Weight estimation in aircraft design is very challenging due to the high number of 
variables involved in the creation of an accurate weight model, the numerous relationships 
between them and the high degree of uncertainty associated with the problem itself. This 
paper discusses a preliminary study on the use of fuzzy logic as an aid to the knowledge 
capture phase of the weight estimation process for aircraft structures.  The results highlight 
the importance of multidisciplinary analysis in weight estimation from the preliminary 
stages of the aircraft design process. 

Nomenclature 
( iii cba ,, )  = adaptable parameter set associated with layer 1 of adaptive network 

iA  = defined fuzzy set associated input x  
CA /  = aircraft 

ANFIS = Adaptive Network-based Fuzzy Inference System 
iB  = defined fuzzy set associated with input y 

CAD  = computer aided design 
fuelF  = total fuel load 

hydF  = total axial load due hydraulic system installation 
FIS  = Fuzzy Inference System 

rF  = resultant hinge load 
FZ  = aerodynamic load applied on rib upper section  
h  = spar height at the rib location 
I  = second moment of area 
IFTE  = Inboard Fixed Trailing Edge 
l  = hinge line location with respect to spar datum 
LSM  = Least Squares Method 
MFTE  = Midboard Fixed Trailing Edge 

hydn  = number of hydraulic system attachment points on rib structure 
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j
iO  = membership function associated with rule i and layer j 

OFTE  = Outboard Fixed Trailing Edge 
( iii rqp ,, )  = parameter set associated with layer 3 of adaptive network 

rP  = aerodynamic load applied on rib lower section 

ar  =  distance from a data point to the main cluster center  
RMSE  =  Root Mean Square Error 
TSK  = Tagaki-Sugeno-Kang type of Fuzzy Inference System 

iw  = rule firing strength 

iw  = normalized firing strength 
yx,  = set of inputs 

z  = fuzzy output set 
µ  =  shape of membership function  

THσ  = thermal stress 

I. Introduction 

T he success of a new aircraft program is defined by the ability of the new design to satisfy the operational needs 
and requirements set by the customers. In addition to being reliable and technically robust, the aircraft needs to 

be able to justify its selling price and operating costs by providing adequate performance levels.  The preliminary 
stage of the design of a new aircraft, in particular, is one of the most critical points for the attainment of the required 
commercial competitiveness.  It is at this time that the design team determines whether the agreed operational 
capabilities are technically feasible and defines the 
best combination between performance and cost 
within the limits of available technology and other 
constraints. 

Weight control, namely “the process by which 
the lightest possible airplane is derived within the 
constraints of the design criteria”,1 is an essential 
part of the design process of any aerospace vehicle.  
As a consequence, the fundamental task in a weight 
control program is weight estimation.  Accurate 
estimations of aircraft weight are vital in the early 
stages of an aircraft design process.  They drive all 
the major choices in configuration and layout as 
well as being the main foundation of performance 
predictions. An overestimate of Maximum Take-Off 
Weight (MTOW) will result in the aircraft not being 
competitive enough on the market.  Conversely, an underestimation of the aircraft weight at the beginning of the 

design process could cause the manufacturers to incur financial 
penalties at production stage, due to both the time spent on the 
post-production weight reduction program and to the failure of the 
design to meet its targets. Overall, the key point in the design of a 
new vehicle is that an increase in MTOW will ultimately mean 
that the aircraft will not be able to carry its agreed payload 
according to the buyer’s needs and requirements. 

 
Figure 1: Influence of weight on range for propeller
driven aircraft.2 

 
Figure 2: Aircraft empty weight
breakdown. Pie chart illustrating the empty
weight breakdown for a commercial aircraft
with the greatest contribution from structural
and system weight. 

Figure 1 shows how weight can affect the range in the case of 
a propeller driven aircraft.2 As an example, an aircraft, which is, 
at production stage, 20 percent heavier than expected will incur 
up to 10 percent reduction in available range. This value could 
double in the case of commercial jets.2 Conversely, a 20 percent 
reduction in weight could result in up to 15 percent increased 
maximum range attainable by the design. 
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Structures and systems account for 75 percent of the total empty weight of a commercial aircraft, Fig. 2, a 
fraction which increases in the case of military designs. As a consequence, any inaccuracy in the prediction of their 
combined weight will have a snowball effect on a number of performance parameters, from maximum operative 
ceiling and endurance to maximum payload capacity.  These, however, are also the two areas in which weight 
prediction is most challenging, due to the high number of variables involved in the analysis.  

This paper presents an initial assessment of an approach to identify key weight estimation parameters at the 
preliminary stages of the aircraft design process. The methodology will focus on capturing driving parameters in the 
design of aircraft structures, as well as the effects of system installation on structural design from an MDO point of 
view.  

II. Weight Estimation for Aircraft Design 
Weight estimation has acquired considerably greater relevance in the aerospace industry from the moment it 

emerged as an individual analysis field in the 1930s. In recent years, the effort towards more effective and precise 
weight estimation methodologies has also been spurred on by an increasing demand for designs which are 
simultaneously cost effective as well as more environmentally friendly. The aerospace industry has, therefore, 
redirected its focus towards new configurations, weight saving materials and alternative production methods in order 
to satisfy the market demand.3,4 As a result, traditional approaches to weight prediction are becoming limited in their 
reliability and accuracy.  

The majority of current methodologies are of an empirical nature, since they are based on formulations which are 
statistically drawn from databases. As a consequence, their results tend to embody characteristics of conventional 
configurations and designs as well as established technologies rather than new trends.5-8    

In order to improve weight estimation capabilities, empirical techniques have, therefore, been substituted by or 
combined with more accurate analytical and semi-analytical formulations, integrating load analysis with statistical 
techniques to encompass in greater detail the nature of aerospace designs and reduce the error in the prediction of 
their weight.9-11 Initially these methods used to be stand-alone processes, aimed at generating final weight 
breakdowns for the purpose of performance estimation. This has changed considerably in the past few years when 
the analytical equations for weight derivation have started being linked to structural analysis,12-16 and CAD modeling 
programs.17 

Throughout the design cycle, however, these methods are never used separately. Empirical and semi-analytical 
formulations dominate the conceptual and preliminary stages, where the knowledge of the design is limited. At this 
stage the formulae tend to be simple and the weight being analyzed is related to a limited number of parameters.18-20 
This allows them to be well suited to provide rapid weight evaluation for different configurations and a quick 
definition of the design space. On the other hand, this constrains the level of accuracy that can be expected as a 
result of these types of analysis.  

Analytical formulations and computational techniques 
appear in the later phase of the preliminary design stage, 
where a final configuration has been selected and 
component level information is available.  Although these 
methods allow for improved accuracy in the estimation of 
weight, they can only be applied late in the process where 
the cost for any redesign will have increased significantly 
compared to the concept phase, Fig. 3. As a consequence, it 
would be harder and less effective at this stage to apply any 
weight-saving modifications in the configuration. 

The current trend is converging towards a more 
concurrent and multidisciplinary approach to the design 

process as a whole. Weight estimation has, therefore, acquired increased importance not only as the link between the 
various discipline areas but also a driver for the development of weight optimization techniques. An accurate and 
rigorous weight prediction is, as a consequence, the starting point for an optimal design. Clear identification and 
traceability of the sources of weight inefficiencies can focus the efforts on their elimination or substitution with a 
more efficient feature/component, for a reduction in the overall assembly weight and consequent performance 
enhancement. 

Figure 3: Design cost curve. Graph showing the
increase in cost penalties for design changes along
the design process for a new aircraft. 21 
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III. Fuzzy Reasoning Approach to Weight Estimation 
In order to successfully carry out the weight estimation task, it is important to be able to acquire adequate 

knowledge of the system being considered, as well as being able to “know what is not known” and account for it, 
Fig. 4. 

The knowledge acquisition task needs to be comprehensive and allow the representation of different aspects of 
the system, ranging from materials and manufacturing 
processes to the understanding of the impact of different 
solutions on the final assembly/component weight. The 
increased knowledge of the design parameters and their 
effect on the overall solution not only results in greater 
accuracy in the weight prediction, but also in added 
confidence for the design team in the decision making 
process. Complete knowledge of the system, however, will 
never be possible. The number of variables and the nature of 
the design process itself permeate the weight estimation task 
with a certain degree of uncertainty which grows with the 
amount of innovation characterising the vehicle. 

The main problem, therefore, is to be able to learn in an 
environment of uncertainty and imprecision. The field of soft com
type of task.  Techniques in this area have proved to be:22,23 

F
D
e

1) tolerant of imprecision, uncertainty and approximations 
2) robust to noisy environments 
3) able to combine symbolic and linguistic attributes  (i.e. 

reasoning 
4) able to provide explanation to reasoning strategies 
5) flexible for modifications and extensions. 

One of such tools that has been identified so far as a promi
fuzzy logic, through the combined use of fuzzy reasoning and Fu
this technique lies in its ability to extract the rules driving the
translating them into a knowledge base that the design team can

can aid visualization of the effects of several different combina
well as allowing the accuracy of the solution to grow in paralle
stages of the concept definition, in fact, the fuzzy sets will be larg
increased definition of the design, the rule patches will get smalle

Figure 5: Fuzzy approximations. Schematic representation
of the evolution of fuzzy rules in the design process and its
impact on the accuracy of system approximation. 

For the successful application of fuzzy logic, the set of rules 
from the onset. In preliminary aircraft design stages, however, su
is therefore vital to have a system that is capable of deriving its o
the description and approximation of the system. Adaptive Net
tool which is capable of constructing a set of if-then rules, w
relationships existing between given input and output data pa
inference system can be constructed and subsequently optimized 
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igure 4: The weight estimation problem.
iagram showing the decomposition of the weight

stimation problem in its two main tasks. 
puting appears to provide appropriate tools for this 

definition of problem variables) with mathematical 

sing technique for solving this kind of problem is 
zzy Inference Systems (FIS). The attractiveness of 
 behavior of the system under consideration and 

 work with. The aim of this study is to explore the 
feasibility of its application as an aid to the weight 
estimation process. 

Fuzzy reasoning allows the description and 
approximation of a system by modeling it through 
a set of rules, defined via Boolean logic operators. 
Compared to conventional computing rules where 
“if” conditions trigger the applicability of the rule 
itself, fuzzy conditions provide definitions that 
can be partially true. This is well suited for trade 
studies on the design space at the preliminary 
stage where the boundaries of the sets of variables 
are imprecise. This representation of the system 

tions of design parameters on the final solution as 
l to the design process itself. 24 At the very early 
e and able to approximate the system loosely. With 
r, leading to improved approximations, Fig. 5. 
by which the system is modeled needs to be known 
ch information may not necessarily be available. It 
wn sets of fuzzy rules, which in turn can be used in 
work-based Fuzzy Inference System (ANFIS) is a 
ith appropriate membership functions, to map the 
irs.25, 26 For a given data set, this type of fuzzy 
by adaptive learning.  

s and Astronautics 



A. Adaptive Network-based Fuzzy Inference System (ANFIS) Modeling 
Fuzzy Inference Systems are used in the formulation of fuzzy relationships between a given input and output by 

combining membership functions together with fuzzy operators and if-then rules.27 The process is made up of four 
functional blocks, Fig. 6. The knowledge base 
block comprises the rule-base and database, 
with the rule-base containing the number of 
fuzzy if-then rules and the database defining the 
membership functions of the fuzzy sets used in 
the fuzzy rules. Membership functions define 
the degree to which an input is associated to a 
specific fuzzy set. The ‘fuzzification’ interface 
uses these membership functions to convert the 
set of numerical inputs into fuzzy inputs. The 
decision-making unit then selects the 
appropriate rules to apply based on the fuzzy 
inputs provided. The process ends with the conversion of the fuzzy result into a numerical output through the 
‘defuzzification’ interface. 25  

Figure 6: Fuzzy Inference System. Block diagram illustrating
the FIS modeling process.25 

FIS can be categorized into three main types depending on the type of rules adopted and how they are applied, 
Fig 7. For both type 1 and type 2, the partial output is a product or minimum of the degrees of match of the fuzzy 
inputs. However, type 1 systems tend to have the overall output represented as a weighted average of each rule’s 
partial fuzzy output, whereas type 2 FIS derive their overall output by applying a “max” operation to the qualified 
partial fuzzy output. In Type 3 systems, also known as Tagaki-Sugeno-Kang (TSK) FIS, the overall output is still 
computed as weighted average of each rule’s output as in Type 1 FIS, however each rule’s partial output is a linear 
combination of the input variables plus a constant term. Of all the fuzzy inference types, the TSK FIS is the only 
system that is capable of working efficiently with adaptive techniques due to the nature of its partial outputs.  
Figure 7:  Types of Fuzzy Inference Systems. Schematic drawing showing the three types of FIS and their
calculated fuzzy output. 25 
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Adaptive techniques are aimed at changing some 
parameters of FIS in order to better reflect the relationships 
existing in a given set of data through supervised learning. 
This is achieved by linking the FIS to a multilayered feed 
forward network made up of nodes and directional links, 
Fig 8.25,28 Each node performs a particular function based 
on incoming signals as well as a set of parameters 
pertaining to that node. The nodes can either be adaptive 
(i.e. square in shape with associated parameters) or fixed 
(i.e. circular in shape). The parameters associated with the 
adaptive nodes can be updated using back propagation and 
hybrid learning techniques in order to match a given 
training data set.  

 
Figure 8: Adaptive network. Example layout of a TSK
FIS adaptive network with two sets of inputs. 25, 28 
 

The method by which the adaptive process is conducted can be illustrated with the example below. A network 
with two sets of inputs x and , and an outputy z , which contains two TSK type fuzzy rules of the form: 

Rule 1: if x  is  and is , then ,1A y 1B 1111 ryqxpz ++=  
Rule 2: if x  is  and is , then ,2A y 2B 2222 ryqxpz ++=  

can be represented by the structure in Figure 8. The adaptive (square) nodes occur in layers 1 and 4, and the fixed 
(circular) nodes in layers 2, 3 and 5.  

In layer 1, the adaptive node yields a nodal output given by: 
( )xO

iAi µ=1  (1) 

where is the membership function which determines the degree to which a given input (1
iO x ) belongs to a defined 

fuzzy set 
iAµ is associated with the shape of the membership being used.25, 27, 28 The shape of the membership 

function can include triangular, trapezoidal, Gaussian and bell shaped functions. For example, a bell shaped 
membership function with a maximum and minimum input of 1 and 0 can be represented by:  

( )
( )[ ] i

i

i
i b

a
cxA x

21

1
−+

=µ  (2) 

where  is the adaptable parameter set associated with this layer.  { iii cba ,, }
The fuzzy rules are then applied in layer 2 and fired based on their individual firing strength, which is calculated 

by multiplying the single incoming signals given by:  
( ) ( )yxw

ii BAi µµ ×= , 2,1=i  (3) 

The normalized firing strength ( iw ), which is the weight of the rule based on the structure of the entire network, is 
then calculated in layer 3, based on the individual firing strengths, 

21 ww
ww i

i +
= , 2,1=i  (4) 

The outputs of layer 3 are then fed into layer 4 and the corresponding partial nodal output calculated, 
( )iiiiiii ryqxpwzwO ++==4  (5) 

where ( ) is the adaptable parameter set associated with each square node in this layer.   The overall output 
(layer 5) is then computed as a summation of all the incoming signals, 

iii rqp ,,

∑
∑∑ ===

i i

i ii

i
i

ii w

zw
zwoutputoverallO5  (6) 

 
This final output however, may not necessarily provide an accurate representation of the training data set in the 

first instance. In such cases, the adaptable parameters sets associated with layers 1 and 4 can be changed to improve 
the quality of the approximation. ANFIS is a type of fuzzy TSK model with the ability to learn from a given set of 
training data and adapt its set of parameters to match the system through a hybrid learning technique, which 
combines gradient based and least squares methods.25, 27, 28 Each step (epoch) of the hybrid learning cycle comprises 
two phases: a forward pass and a backward pass. In the forward pass, the input data and functional signals are sent 
forward and used in the calculation of the node output. The parameter set associated with the calculated output node 
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is then evaluated using least squares method. The functional signal is then carried forward throughout the network 
until the error measure is calculated. The derivative of the error measure with respect to the parameters in each 
output node (error rates) is then calculated and propagated from the output end towards the input end (back 
propagation) and the parameters set updated accordingly using gradient based optimization methods.25,28 The 
parameters can be updated either after the complete training data set has been submitted known as the batch or 
offline learning, or they can be updated after each input-output pair has been presented. 

B. Variable Selection 
One of the major issues regarding the acquisition of knowledge of a system in the weight estimation environment 

is the large number of associated variables. Fuzzy models have the capability of dealing with multiple combinations 
of input variables. However, with such capabilities come associated problems, including overcomplicated models, 
which are computationally expensive. It is crucial, therefore, from the modeling perspective, to be able to reduce the 
number of parameters to an optimum, by eliminating variables that have little or no impact on the performance of 
the model itself. This not only makes the model much simpler, but also improves its usability and reliability.  

One way of selecting the 
appropriate input variables for the 
problem in hand has been illustrated 
by Chiu.29 The process is initiated with 
the development of an initial fuzzy 
model containing all possible input 
variables through subtractive 
clustering. This method generates rules 
in the locations where there is a cluster 
of data. Each data point is considered 
as a potential cluster center, with the 
value of its potential dependent on the 
number and Euclidean distance, , of 
neighboring data points. The data 
point with the highest potential is then 
selected as the main cluster center and 
the value of the remaining ones is 
subtracted as a function of the potential 
associated rule parameters, which can in 
error (RMSE) of the output with respe
determined by the systematic eliminatio
performance of the whole model to be ana

ar

1) Performance evaluation on check
2) Performance evaluation with sys
3) Identification of most efficient p
4) Subsequent variable elimination 
5) Choice of best performing variab

A final fuzzy model can then be generated
best performing set of variables as inputs 
  

IV. Application of Fuzzy Mode
The wing is one of the most comple

houses numerous vital systems and stru
primary structures making up the wingbo
housed in both its leading and trailing e
remaining 25 percent comprises fixed sec

The size and function of the wingbox 
as FEA and complex modeling technique
the behavior of these components is being
estimation process. The methods applied f

American
Figure 9: Variable selection process. Method of systematic variable
selection proposed by Chiu. 29
main center cluster. This method determines the number of rules and the 
turn be tuned or optimized using ANFIS to minimize the root mean square 
ct to the checking data. The importance of each input variable is then 
n of variables and their associated rules. This allows the effect on the 
lyzed. This process is deployed in five main steps, Fig. 9:29 
ing data RMSE of initial model with all candidate input variables 

tematic variable removal 
artial set 
and re-iteration of step 3 
le set based on the minimum RMSE calculated across the various models.  
 using subtractive clustering in conjunction with ANFIS based only on the 

to the system. 

ling for Aircraft Structural Weight Estimation Problems 
x and critical components of an aircraft. It is the main source of lift and 
ctural subassemblies. Approximately 55 percent of its weight comprises 
x, 15 percent can be traced back to the various types of moveable surfaces 
dge and 5 percent of miscellaneous items (i.e. paint, sealant, etc.). The 

ondary structures. 
primary structures justify the use of computationally expensive tools, such 
s, from the onset of the design process. As a result, greater knowledge of 
 acquired in early design stages, allowing higher confidence in the weight 
or the derivation of weight of the secondary structures, and in particular of 
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the fixed trailing edge, however, are still highly empirical even in the later stages of design, resulting in a higher 
degree of uncertainty in the results. The development of analytical methods, which are able to represent both the 
numerous functions covered by the secondary structures and the complex integration with the systems housed in it, 
is very challenging. At the same time, it is currently infeasible to apply FEA to these subassemblies from the onset 
of the design process, from both a cost-to-weight point of view and its limited capability to fully include system 
installation issues. The application of ANFIS is one of the possible answers to the solution of this complex problem. 

A. Wing Fixed Trailing Edge Structure 
The fixed trailing edge is the section of the wing extending aft of the rear spar and acts as support for ailerons, 

spoilers, shroud box and shroud panels. It is mainly made up of ribs which are designed to transmit the aerodynamic 
loads acting on the moveable surfaces and panels to the rear spar. It can be split into three sections: 

1) Inboard Fixed Trailing Edge (IFTE), which houses landing gear attachments and false rear spar assembly 
2) Midboard Fixed Trailing Edge (MFTE), which comprises spoiler and flap track attachments 
3) Outboard Fixed Trailing Edge (OFTE), which includes aileron supports and outer falsework. 

m
re
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a
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a
su

a
b
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c
d
d
e
lo
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(
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                                                   (a)                                                                                            (b) 
Figure 10: MFTE assembly. Figure showing a general MFTE assembly (a), highlighting spoiler attachment ribs
and their nomenclature (b). 
For the purpose of this study only spoiler hinge attachment ribs in the MFTE have been considered, Fig. 10. The 
ain function of spoiler hinge ribs is to provide fixed attachment points for the spoilers. The individual ribs create a 
straint for the moveable surface in the hinge line direction as well as in the two axes perpendicular to it. Each 
oiler is moved by a single actuator, fixed to the rear spar by an actuator bracket and supported on each side by an 

ctuator hinge rib. Hinge ribs between spoilers are used as a common attachment point to the adjacent moveable 
rfaces. Critical spoilers have failsafe ribs to prevent the detachment of the spoiler in case of failure of any of the 

ctuator hinge ribs. Typical spoiler attachment ribs are “A” shaped, allowing the aerodynamic contour of the upper 
rface to be preserved as well as providing space allocation for systems and system support.  

 

In order to make the weight model representative of the real structure, it is important to be able to embody the 
ctual design of the component/assembly being evaluated. In the case of spoiler hinge ribs, the design is driven by 
oth loading consideration as well as the need to maintain the aerodynamic integrity of the wing.  Figure 11 shows a 
hematic representation of the positive loads acting on a spoiler hinge rib. Aerodynamic load ( ) is applied on 
e upper section of the rib via direct attachment to the upper skin panel and on the lower section via a strut 

onnecting it to the lower skin panel ( ). The resultant load from the axial hinge force components ( ) is applied 
irectly on the spoiler hinge line. In the case of a composite wing spar, vertical stiffeners appear on its aft side. The 
esign of spoiler hinge ribs located where a stiffener would be present, include a vertical section, which replaces the 
xternal integral spar stiffener. In order to ensure that the weight model is able to represent this design feature, fuel 
ads ( ) acting on the spar at the location of rib attachment have been included where applicable.  

aeroF

rP rF

fuelF
System installation considerations has been included in the analysis by considering the total axial load resulting 

om system attachment ( ) on individual ribs as well as the number of attachment points on the rib structure 
). For the purpose of this study, only hydraulic installation has been taken into account due to the greater 

roportion of its loading on the rib structure compared to other systems. 

hydF

hydn
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To account for the effects of differences in thermal expansion at composite to metal interfaces, an applied 
thermal stress ( THσ ) of 20MPa was added as an input to the structure. 

       
Figu
sche
para

B. Model Development 
In order to achieve the overall aim of identifying the effect design parameters have on the component structural 

weight, the initial parameterization of the problem for ANFIS modeling was developed by considering three main 
parameter classifications: 

1) Global variables 
2) Local variables 
3) Loads. 

Spar height ( ) at the individual rib location and hinge line 
datum ( l ), Fig 11, were chosen as global geometric definition of 
the fixed trailing edge. These variables would be readily available 
from the onset of the design as soon as the team has agreed on a 
wing geometrical definition. Moreover, they would be able to link 
the rib to a specific spanwise location and an unambiguous rib type 
by considering geometry and location of the individual spoilers. 
Second moments of areas have been selected as variables to locally 
define the different rib sections: ,  and  represent sectional 
properties for top, bottom and vertical section respectively. This has 
been preferred to the geometrical definition of individual flanges in 
order to both reduce the number of variables to a minimum and 
allow the design to be more generic. 

h

1I 2I 3I

The different loads acting simultaneously on the ribs have all 
been included as variables. Their values are the maximum that the 
structure would be designed for, including retracted and extended 
spoiler setting as well as intact and failed conditions where 
applicable. 

Two weight models were created. Model A evaluates the rib 
weight without considering the impact of system loads, whilst 
model B includes variables linked to loads due to hydraulic system 
installation. As a consequence, model A was initialized with 10 
input variables while model B with 12, Table 1. The ANFIS toolbox 
in Matlab27 was used for the development of both FIS structures. 
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Table 1. Input variables for fuzzy 
models. The table shows the variables 
used for the initialization of model A and 
model B.  

 MODEL 
A 

MODEL 
B 

l  l  GLOBAL 
h  h  

1I  1I  

2I  2I  
 

LOCAL 

3I  3I  
 

aeroF  

aeroF  rF  

rF  fuelF  

fuelF  rP  

rP  THσ  

THσ  hydF  

 
 
 
 

LOADING 

 hydn  
 

 
                         (a)                                                                                                (b) 
re 11: Idealization of a spoiler attachment rib. The figure shows a spoiler attachment rib (a) and its
matic representation, showing the three sections, the positive forces applied on it and it global geometrical
meters. 
 Astronautics 



The reference database was built on 36 examples of spoiler attachment ribs, related to two aircraft models. The first 
design considered (Aircraft 1) is representative of a long-range civil transport. Its wing is of a traditional layout, 
with composite wing panels and metallic spars. In the case of Aircraft 2, both wing covers and spars are of 
composite design. The reference database was split into 25 examples for model training and 11 for validation of the 
optimized model structure.   

C. Variable Selection Process 
The method of variable selection proposed by Chiu was applied for the optimization of the two fuzzy models, 

with checking error on the testing database as the selection criterion. Subtractive clustering was preferred for the 
derivation of the model structure due to the large number of inputs required for the analysis. A cluster radius of 

 with accept and reject ratio of 0.5 and 0.15 was used for both model A and B since it allowed for a good 
compromise between accuracy of solution and overall model complexity. 

4.0=ar

 
 
Figure 12: Process of variable removal for model A. The chart shows the variable removal process for model A.
Each bar indicates the normalized checking error associated with the removal of a specific variable at each stage
of the analysis, as annotated. The first bar represents the model at the last stage of the process after the
elimination of variable l, leaving h as the only input. 

An initial checking RMSE of 0.144 on the initialized model A was achieved, which was reduced to 0.050 at 8 
variables, Fig. 12. The optimum model was attained by removing both thermal effects and strut loads from the initial 
input variable set, thus defining them as the least influential parameters. This is reasonable if related to the design 
process of the component, which is primarily driven by spoiler loads. This is also confirmed by the results of the 
model optimization process, where hinge load is the last loading variable eliminated. From the point of view of the 
geometrical definition of the ribs, the most significant parameter for the evaluation of the weight is the spar height, 
being the last parameter left after the removal of the hinge line location.  

Model B, on the other hand, showed a better initial performance, with a checking RMSE of 0.077 on the full set 
of 12 inputs, Fig. 13. This was reduced to an optimum value of 0.056 with 9 inputs. In this case, the optimum model 
was obtained by subsequent removal of three variables, namely thermal effect, and second moment of area for 
bottom and vertical section. The small relative importance of these parameters is understandable. In a similar way to 
model A, thermal loading is not a design driver for the component. In addition to this, the vertical section only 
appears in a limited number of examples and its properties are relatively minor compared to the other two sections. 
The results of the optimization process also suggest the smaller influence of the bottom section of the rib on the final 
design weight, mainly due to the fact that the load sustained by this part of the structure is comparatively less to that 
on the top section. The most significant parameter was found to be the hinge load, as it had the greatest impact on 
model accuracy.  
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ure 13: Process of variable removal for model B. The chart shows the variable removal process for
del B. Each bar indicates the normalized checking error associated with the removal of a specific variable
each stage of the analysis, as annotated. The first bar represents the model at the last stage of the process
er the elimination of variable nhyd, leaving Fr as the only input. 
lthough the best performance occurs with 8 input variables for model A and 9 for model B , it can be seen from 
sults that 7 and 8 variables for A and B respectively are still capable of achieving a relatively accurate 
ximation. A compromise can therefore be made between accuracy of results and model simplicity based on the 
ation at hand at the time of the analysis. In the case of the selection of a simpler model, this process allows 
antification of the error resulting from the choice of a smaller variable set, therefore enabling the designer to 

ensate for this in weight estimation process. 

he Final Models 
gure 14 shows the individual results from model A and B on hinge ribs from the two representative transport 
ft. The addition of system integration considerations in the model, although slightly increasing its complexity, 
proved its generalization capabilities. As shown, both models have been able to approximate the ribs closely, 

he exception of Aircraft 2 hinge rib spoiler 1 inboard, hinge ribs spoiler 3 inboard and outboard. This can be 
uted to the simplistic way thermal effects have been accounted for. A constant thermal stress of 20MPa was 
d to all the ribs without considering the proportion of their areas interfacing with a composite component. 
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Figure 14: Error on elements of testing database. The chart shows the percentage error on the individual
ribs in the testing database for both model A and B. 

For example, in the case of Aircraft 1 only the skin panels are composite while the rear spar is of metallic design. 
This results in the top surface of the rib top section being in full contact with a composite skin panel and the bottom 
section being attached to it only via a small fraction of its lower area. In the case of the Aircraft 2 on the other hand, 
both skins as well as the rear spar are composite which results in the addition of a vertical component where spar 
stiffening is required. As a consequence, a higher fraction of the rib is subjected to thermal effects. This, however, 
has not been fully accounted for in the fuzzy model, which may be the cause of the higher discrepancies in the 
estimated results. Had this been represented more accurately rather than with a constant value, the system would 
have recognized its impact on the final design weight, yielding improved performance in both models.  

Both models have managed to accurately capture existing relationships between the different variables and the 
final output. The addition of the hydraulic system installation parameters, however, has impacted the degree with 
which the chosen variables affect the rib weight. Figure 15 shows the combined effect of rib height and length on the 
component weight. In both cases, the direct proportionality between the input variables and the output has been 
identified, however the proportion to which they impact the output has diminished in model B. In terms of weight 
prediction, the results show that, for the same applied loading, model A attributes a maximum of 20 percent 

          
 
                                          (a)                                                                                          (b) 
Figure 15: Rib weight vs. rib height and length. The figure shows the variation in spoiler attachment rib weight
with respect to rib height and length for model A (a) and model B (b). 
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additional weight to the structure, a proportion which relates to the impact of hydraulic system loads on the final 
component weight. 

Hinge load is the loading parameter which affects the rib weight the most. Model B is able to represent this more 
closely as shown in Figure 16: both rib height and hinge loading, in fact, contribute to the increase in the final output 
however the representation of the true impact of the loading is more closely embodied in model B than model A, 
where the proportion of the rib weight associated to its height is much higher. 

 

Model B has also been able to capture a more representative picture of the role that the different types of loading 
play on the structure. Aerodynamic and hinge load influence the majority of the structure. For a rib with spar height 
equal to hinge line datum, an increase of both loading will result in the increase of the structural weight of the 
component with a greater weight impact attributed to hinge loading, Figure 17. Model A, however, erroneously 
applies an additional 8 percent of structural weight on the rib from this types of loading, which in model B is related 
to systems being attached to the structure itself.   

 

   
                                      (a)                                                                                            (b) 
Figure 17: Rib weight vs. aerodynamic and hinge loads. The figure shows the variation in spoiler attachment
rib weight with respect to hinge and aerodynamic loading for model A (a) and model B (b). 
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                                              (a)                                                                                        (b) 
Figure 16: Rib weight vs. aerodynamic load and rib height. The figure shows the variation in spoiler attachment
rib weight with respect to hinge aerodynamic loading and rib height for model A (a) and model B (b). 
 
Overall, model B provides a better representation of the multidisciplinary nature of the problem. The addition of 

stem installation parameters allows a more complete understanding of the sources of weight inefficiencies. During 
e design process, the design of the structures tends to be conducted separately from that of the system architecture 

nd it assumes an overall greater importance. From Fig. 18, however, it is possible to note how hinge load and the 
ad resulting from hydraulic installation impact rib weight. The impact of system loading on the rib structural 
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weight, although not as considerable as that resulting from hinge loading conditions, is still noticeable and 
neglecting it would result in an incomplete and unrepresentative estimation of the component weight. 

 
 

Figure 18: Rib weight vs. hinge load and hydraulic system load. The figure shows the variation in spoiler
attachment rib weight with respect to hinge loading and hydraulic system loading for model B. 

 

V. Conclusion 
Weight estimation in aircraft design is very challenging due to the high number of variables involved in the 

creation of an accurate weight model, the numerous relationships between them and the high degree of uncertainty 
associated with the problem itself. This paper discusses the results of a preliminary study on the use of fuzzy logic as 
aid to the knowledge capture phase of the weight estimation process for aircraft structures.  

Adaptive Network-based Fuzzy Inference System combined with subtractive clustering techniques was applied 
to the development of a weight model due to its capability of dealing with a high number of variables in a highly 
uncertain environment. In addition to this, the adaptive nature of this tool made it highly suited for the analysis of a 
system where knowledge of its driving rules is unavailable. 

Spoiler attachment ribs in the fixed trailing edge were chosen as initial test cases for this study. The weight 
estimation of these types of structure is highly representative of the complex interactions existing between structural 
and system architectures. For this reasons, two distinctive fuzzy models were created, one analyzing the structure in 
isolation and the other including the effects of system installation on the component weight.  

The results from this preliminary study show the importance of a multidisciplinary approach to weight 
estimation and its applicability at early design stages. The addition of system installation parameters in the analysis 
not only improved the generalization capabilities of the fuzzy model, but also allowed a more realistic visualization 
of the causalities between the variables.   

Future work will focus on expanding the applicability of this approach to a global scale. In terms of individual 
components, the model could be restructured to provide both weight and sizing information. This could be achieved 
by splitting the task into two separate modules: a sizing module and a weights module. Using the loads information 
as input parameters, the minimum sectional properties of the rib beams capable of withstanding the given loads will 
be determined. These properties can then be combined with other geometric and material properties as input 
variables in a weight estimation module to determine the structural weight of the rib. This method could be further 
expanded to include the analysis of the whole fixed trailing edge, including the effects of the different types of 
systems. Ultimately, the approach could be used in reverse to investigate the effects of structural arrangements on 
systems weight. 
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