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Abstract

Reconfigurable Architectures are good candidates for
application accelerators that cannot be set in stone at pro-
duction time. FPGAs however, often suffer from the area
and performance penalty intrinsic in gate-level reconfig-
urability. To reduce this overhead, coarse-grained reconfig-
urable arrays (CGRAs) are reconfigurable at the ALU level,
but a successful design needs more than computational
power—the main bottleneck usually being memory trans-
fers. Just like the integration of hardwired multiplier and
memory blocks enabled FPGAs to efficiently implement dig-
ital signal processing applications, in this paper we study a
customizable architecture template based on heterogeneous
processing elements (multipliers, ALU clusters and memo-
ries) that provides enough flexibility to realize fast pipelined
implementations of various loop kernels on a CGRA.

1. Introduction

The push toward better performance and higher power
efficiency, and the ever-increasing cost of ASIC manufac-
turing, have highlighted the attractiveness of reconfigurable
architectures for applications that benefit from hardware
spatial execution and need the flexibility of software im-
plementations. Therefore, the applicability of FPGAs has
advanced from glue-logic and custom peripherals, to the im-
plementation of Systems on a Programmable Chip (SoPC)
that embed computational cores on reconfigurable fabric.

This achievement has been made possible by technology
scaling that allowed to integrate, on a single die, a huge
sea of logic elements with hardwired multipliers and mem-
ory blocks. Thanks to these special functional units, to-
day’s FPGAs can efficiently implement digital signal pro-
cessing applications [19]. Most other data-intensive appli-
cations, however, do not achieve the same satisfying per-
formance results when mapped in traditional, fine-grained
reconfigurable architectures, as the bit-level reconfigurabil-
ity of FPGAs’ logic elements comes with a high area and
speed penalty.

For this reason, a different class of architectures (Coarse-
grained reconfigurable arrays, CGRAs) has been pro-
posed [12]; these architectures rely on coarser-grained cells,
usually in the order of an ALU [17], as logic elements, thus
reducing the area and delay overhead intrinsic in reconfig-
urability.

Coarse-grained reconfigurable arrays can be integrated
with a processor, treating them as accelerators that can im-
plement complex applications-specific functional units. In
this way, the CGRA can speed up the execution of fre-
quently occurring pieces of code. This approach is partic-
ularly attractive in the embedded systems domain, as soft-
ware spends most of the time in relatively small code sec-
tions; however, memory transfers between the array and
the host processor are a bottleneck unless the accelerator
is given its own fast internal memory storage [7].

Also because of the small memory footprint of kernels
in most embedded applications, including local memory el-
ements into custom functional units has been shown to be
beneficial by previous studies on automatic identification of
instruction-set extensions [3]. In this paper we investigate
the benefits of integrating storage and multiplication units
into an existing coarse-grained architecture template, the
EGRA[2] (Expression Grain Reconfigurable Array). The
accelerator proposed here exhibits a very high computation
density by achieving high speedups (up to 22x) with a very
limited area (up to1.2mm2).

If the CGRA is able to execute all the operations in a
loop (memory loads, arithmetic calculations, and memory
stores), it is possible to go beyond the customizable pro-
cessor model, and to offload execution control to the ac-
celerator in order to aggressively pipeline the loop [14].
Therefore, we also outline the design of a control unit
that efficiently supports the execution of modulo-scheduled
loops.

In order to get insights on the tradeoffs involved in het-
erogenous, embedded memory CGRA design, we concen-
trated our attention not on a particular architecture, but on a
template—the EGRA [2]—from which a number of archi-
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tectural instances were derived, either generic or tailored to
implement the loop kernels of a particular benchmark. As
detailed in the following sections, these case studies hint
that combining scratchpad memories with arithmetic clus-
ters and multipliers offers the flexibility needed to imple-
ment a wide variety of kernels. This work can then be seen
also as an explorative step towards the design of an efficient,
compact accelerator, that can be reconfigured to suit a wide
range of applications.

The remainder of the paper is structured as follows. Sec-
tion 2 describes related work on coarse-grained reconfig-
urable architectures. Section 3 describes the architectural
template structure and features, detailing themachine de-
scription parameters used to obtain different architecture
instances. Section 4 describes the kernels used to investi-
gate the proposed approach, the array instances used to map
the kernels and the performance numbers obtained from
synthesis (area and critical path) and from kernel mapping
(speedup and parallelism). Finally, Section 5 concludes the
paper and presents possible future work.

2. Related work

Reconfigurable accelerators, coupling software-like pro-
grammability and hardware-like spatial execution abilities,
have been proposed as a valid platform for SoC develop-
ment. However, implementing an entire system on reconfig-
urable hardware may have disappointing performance and
power consumption. For this reason, FPGA vendors have
proposed boards where reconfigurable logic coexists with
hardwired processors [19].

These advances, however, are often insufficient to ac-
celerate applications substantially, especially in the absence
of a fast connection between the host processor and mem-
ory. Hence, most available customizable processors still tar-
get ASICs [10, 18] or are provided as soft cores for less
performance-demanding applications [1].

Attempts to overcome these difficulties resulted in a se-
ries of proposals forcoarse-grainedreconfigurable archi-
tectures, that sacrifice bit-level reconfigurability of FPGAs
to achieve satisfying performance. A common trait of these
architectures, which usually are designed as coprocessors,
is the presence of local storage connected to the datapath
by a high-bandwidth bus. This memory component can be
a small general-purpose scratchpad, as in DREAM [7] and
in our proposed architecture, or a buffer interface sitting be-
tween the computational cells and the system RAM, as in
MorphoSys [17].

Our proposal differs from DREAM in that scratchpad
memory is scattered around the array, in the form of spe-
cialized memory cells. By splitting different arrays on dif-
ferent cells, we limit the I/O requirements (number of ports)
of the memories. Furthermore, we can reuse the array inter-
connect as a data/address bus for memories, removing the

need for a separate connection between the computational
and storage elements of the array.

Two notable coarse grained architectures that embed
RAM within the array are MORA (a homogeneous ar-
ray in which each cell is composed of a memoryand an
ALU [13]), and PACT-XPP (a heterogeneous architecture
where one of the cell templates also includes both mem-
ory and an ALU [15]). Our design differs from the above-
mentioned ones by decoupling storage and computation, as-
signing these functionalities to different cells; this choice
leads to a more flexible design space.

The design of CGRAs cells varies greatly in the archi-
tectures proposed in literature. In some of them, such as
ADRES or RAW, cells are close to being general-purpose
processors or DSPs. ADRES, for example, has a VLIW in-
struction set with predicated execution. More commonly,
however, cells are purely arithmetic components, possibly
including up to 4–6 ALUs or multiply-accumulate units [8].
The homogeneous EGRA [2] belongs to the latter family.
In this paper, we augment the EGRA model with heteroge-
neous processing elements, enabling accelerated execution
of a wider range of applications.

The modular nature of CGRAs makes possible for whole
families of parameterized architectures to be constructed
from a template. Indeed in this paper we consider a fam-
ily of architectures and, together with a generic accelerator
design that applies equally well to different applications, we
also study specific instances that are tailored to a particular
benchmark. This approach is somehow similar to the explo-
ration of the ADRES template undergone by Bouwens [6],
even if the focus of our work is on the cells’ structure, as
opposed to mesh topology and interconnect.

Effective pipelining of the loop, enabling different parts
of multiple iterations to execute simultaneously, is key to
extract performance from CGRAs. The mapping technique
we present is based on modulo scheduling [16], a software
pipelining technique supporting resource constraints, such
as the number of I/O ports on a scratchpad memory or the
number of multipliers in the cell. The same technique is
used for instance in DRESC [14], and can be applied to
other arrays that support MIMD execution.

3. Architecture description

In this section we present an extension of the architec-
ture introduced in [2], supporting heterogeneous cells. In
addition to detailing the operation of the processing ele-
ments, we present a control unit that supports the execution
of loops entirely in the array, and overview how the pro-
posed architecture is interfaced with the host processor.

3.1. Cells architecture

The functional units in the array architecture constitute a
mesh of cells of three different types: ALU clusters, mem-
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Figure 1. EGRA instance example

ories and multipliers. The number and placement of cells
for each type is part of the architecture parameter space.
As such, it is decided at design time and can vary for dif-
ferent instances of the EGRA. Cells are connected using
both nearest-neighbour connections and horizontal-vertical
buses, with one such bus per column and row of the array.

The architecture of a cell can be roughly split in three
parts: an I/O interface, identical for all cell types, a context
memory, and a core, that implements the specific function-
ality of the cell.

The interface part takes care of the communications be-
tween cells, and between each cell and the control unit. It
is in charge of connecting the datapath with the outside of
the cell. As shown in Figure 2, it sends inputs to the data-
path, provides values from the registers and the datapath to
the neighbours, and places them on the row-column buses
if requested.

The context memory is where cells store their configura-
tion; the word size and format of the context memory varies
with the type of cell. For example, multipliers have a fixed-
function unit, and consequently the configuration word only
has to specify the routing of data for the interface part.

Each cell can store more than one configuration word,
so that the entire array can hold severalcontexts; the num-
ber of contexts is also part of the architectural specification
that is given at design-time. Each context is composed of a
configuration word per cell; the control unit can activate a
different context on every clock cycle.

The rest of the cell is the actual implementation of the
datapath and/or storage. For memory cores, this also in-
clude an address generation unit, so that multiple arrays can
be mapped in the same memory cell in different areas; dif-
ferent data widths are supported (from 4- to 32-bit accesses)
and are selected at reconfiguration time, while memory size
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Figure 2. Block scheme of the interface of
computational cells (fixed-function multipli-
ers and clusters of ALUs). For memories, the
stall signal is replaced by a write-enable sig-
nal.

is instead specified at design time. For cells that are clus-
ters of ALUs, the arithmetic units in the cluster are orga-
nized in rows, with full connectivity between adjacent rows
to enable efficient mapping of complex expression on the
EGRA [2]. The design space of ALU-cluster cells includes
the width and number of ALU rows, and which operations
(logical, addition-subtraction, shift-rotation or any combi-
nation of these) will be supported by which rows; all ALUs
can also act as multiplexers in order to implement condi-
tional execution efficiently. The configuration word of these
cells defines the operation executed and how data is routed
through the switchboxes.

Non-memory cells also have a small local storage ele-
ment in the form of output registers. The initial content of
the registers can be set at reconfiguration time.

3.2. Control unit

The control unit is explicitly designed to support mod-
ulo scheduling [16], a software pipelining technique that
increases inter-iteration parallelism and cell utilization by
allowing different iterations of the loop to partially overlap.

Modulo-scheduled loops present a prologue part, an iter-
ated steady state part and an epilogue part. The host proces-
sor communicates the desired number of iterations to the
accelerator. The control unit’s program counter is incre-
mented on every clock cycle until it completes the prologue
and the first iteration of the steady state, then it loops back
at the start of the steady state (Figure 3).

On every clock cycle, one or more input or output val-
ues must be exchanged between the processing elements of
the accelerator. To this end, several control signals are dis-
tributed to the cells at every clock cycle: the id of the con-
text being executed, a per-cell bit to disable cells stuck in a
pipeline bubble, a write-enable signal for memory cells. In
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Figure 3. EGRA control unit

addition, each row in the control unit specifies one cell out-
put that is connected to the processor data bus, so that scalar
outputs can be communicated back to the host processor.

More than one loop can be programmed on the EGRA
by storing control information in different regions of the
control unit memory, and possibly using different contexts
in the cells. To this end, the host processor communicates
the range of rows containing the desired loop when starting
the accelerator.

Few conditions must be verified for a loop to be mapped
on the array, the most stringent of them is that the number
of iterations must be known before the loop starts. This
condition leads to a small and efficient control unit, and is
usually met for kernels in the embedded systems domain.

3.3. EGRA operation

The EGRA can be set in two operational modes: DMA
mode and execution mode. DMA mode is used to transfer
data in bursts to the EGRA, and is used both to program
the cells (including the output registers) and to read/write
from scratchpad memories. These operations take advan-
tage of the full bandwith available between the EGRA and
the host processor, resulting in a limited overhead compared
to execution time. Scratchpad memory transfers can hap-
pen either around a loop, or at program initialization if the
scratchpads are used to store read-only look-up tables.

In execution mode, the control unit orchestrates the data
flow between the cells as explained earlier in this section.
It is possible to interface the EGRA with an extensible host
processor, such as the Tensilica Xtensa, using custom in-
structions. Most such processors support variable-latency
custom instructions; in this case, after execution mode is
triggered by invoking a special instruction on the host pro-
cessor, the host processor can stall until the loop is com-
pleted and the EGRA asserts a ”done” signal. By embed-
ding input and output vectors entirely in scratchpad mem-
ories, the whole kernel can be run with a single special in-
struction, possibly surrounded by DMA transfers.

4. Experimental results

To analyze the performance of the architecture template
we presented in Section 3, we implemented and validated
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a design for the cells and control unit. We then explored
the performance of various EGRA instances using Synop-
sys Design Compiler to map them on TSMC 90nm front-
end cell libraries.

We used loop kernels from seven benchmarks:aifirf,
autcor, fbital, viterb, fft from the EEMBC automo-
tive and telecommunications suites [11],rawdaudio from
MiBench [9], life from MIT bitwise benchmarks [4].

We choose loops simple enough to be scheduled by hand,
and yet illustrative of applications from different fields and
with different memory and computational requirements.
For example,fft requires the highest number of multipliers,
viterb makes good use of multiple memories, whileraw-
daudio andlife include mostly arithmetic operations.

For each benchmark, a custom-tailored EGRA was de-
signed; Table 1 shows the characteristics of each of these
specific architectures: the number of cells in the array, their
type (ALU clusters, multipliers or memories), the type of
ALU cluster used, the total amount of memory present in
the array, and the total area and critical path of the de-
sign. These architectures were instrumental in validating
the EGRA model and to obtain initial indications on the
EGRA capabilities.

The last row of Table 1 shows the characteristics of a
generic EGRA, i.e., an array that was designed so that
all benchmarks kernels analysed could be mapped onto it.
Such array configuration is actually the one shown in Fig-
ure 1 and consists in a 5x5 mesh, with an area of1.2mm2.
The difference in performance of generic and specific archi-
tectures is quantified and discussed later in this section.



Benchmark mesh size cells typea ALU cluster typeb memory (bits) area (µm2) crit. path(ns)
aifirf 3x3 6 C 1 MU 2 M 3-AL 2-SL 1 024 x 2 299 095 3.85
autcor 2x3 4 C 1 MU 1 M 3-ASL 2-AL 128 103 695 3.90
fbital 3x3 6 C 3 M 3-AL 2-ASL 4 096 x 3 565 420 1.79
fft 5x3 9 C 4 MU 2 M 2-AL 2-ASL 4 096 x 2 571 331 4.05
life 4x4 15 C 1 M 3-ASL 2-AL 4 096 387 351 1.93
rawdaudio 5x3 14 C 1 M 2-ASL 1-L 2 048 179 616 1.45
viterb 5x3 9 C 6 M 3-ASL 2-ASL 512 x 6 313 382 1.41
generic 5x5 15 C 4 MU 6 M 3-ASL 2-ASL 4 096 x 6 1 199 903 4.05

aC: ALU clusters; MU: multipliers; M: scratchpad memories
bALUs in each row and supported operations. A: arithmetic; S: shift-rotate; L: bitwise logical. For example, 2-AL represent a row with 2 ALUs

supporting arithmetic and logic operations, but no shifts/rotates.

Table 1. Characteristics of EGRAs optimized for different benchmarks

Benchmark II avg. active
cells/cycle

avg.
ops/cycle

rawdaudio 16 2.6 5.2
fft 3 5 8
life 8 8.25 16.25
fbital 3 3.33 5
autcor 2 4 5.5
aifirf 2 4.5 7.5
viterb 3 5.6 10

Table 2. Parallelism achieved by loop kernels on
the EGRA
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Figure 5. Speedup obtained on the EGRA

To map these kernels into specific and generic architec-
tures, we extracted their most intensive loops; these repre-
sented 80% to 99% of the execution time of the whole ap-
plication in the test cases considered in this paper. We then
grouped the arithmetic-logic operations so that every group
could be mapped onto one ALU cluster cell, and performed
modulo scheduling (Figure 4). While performed manually
in this study, algorithms exist for these steps to be auto-
mated [5, 14].

The effectiveness of the acceleration is heavily depen-
dent on the degree of parallelism of the benchmarks. This
in turn depends on the presence of dependencies in the loop,
as well as on the distribution of the different operation types.
The amount of parallelism obtained is shown by the average
number of cells or operations that are active at any clock
cycle. This data, and the initiation interval (II) obtained in
each mapping, is summarized in Table 2.

In order to obtain speedups of EGRA-accelerated ex-
ecution, as opposed to microprocessor-only, we ran each
benchmarks through SimpleScalar/ARM, tuned to simulate
an XScale processor with a 750 MHz clock1. We then com-

1An XScale executes a multiplication in 3 cycles, and the latency of
a multiplier in our design is approximately 4 ns, which correspond to
250 MHz.

pared the number of cycles needed to run the kernels on the
XScale, with those needed on various EGRA architectures.
Figure 5 shows the speedup obtained by running bench-
marks on a processor powered either with the application-
specific EGRAs of Table 1 (labeledspecific) or with the
generic one of Figure 1.

As it can be observed, speedups as high as 22x can be ob-
tained on the application-specific architecture. Speedups on
the generic architectures are lower for benchmarks that do
not need multiplications because of the higher clock cycle.
These results indicate that a pipelined multi-cycle multiplier
could improve the speedups for this particular experimental
setting. This however is not necessarily true if the clock pe-
riod cannot be arbitrarily high, for example due to power
considerations; in this case, the baseline processor’s clock
frequency will also decrease and expected speedups will be
higher.

For three specific kernels,fbital, autcor andaifirf, we ad-
ditionally compared the architectures of Table1 with limited
architectures, in order to assess the advantage provided by
the characteristics of the EGRA. In particular, we tried sub-
stituting ALU clusters with single-ALU cells, and avoiding
the usage of memory cells. The former shows the advan-
tages of evaluating whole expressions in a cell as opposed
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to single operations; the latter causes all communication to
go through the host processor and allows to assess the ben-
efit of embedding memory in the array.

The results, plotted in Figure 6, show that either ALU
clusters or scratchpad memories are necessary to achieve
speedups on most benchmarks. In the absence of those, the
net result is a slowdown due to the higher critical path of the
EGRA. On the other hand, the two features are substantially
orthoghonal. Clustered cells have the advantage of allowing
complex operations to be executed in a single clock cycle;
complementarily, memory-capable EGRAs fare better com-
pared to memory-less templates thanks to the parallelization
of load/store operations on different scratchpads. There-
fore, depending on the benchmark, one, the other or both
can help improve the speedups obtained by the EGRA. This
is true either when kernels are mapped to custom-tailored
instances or to the generic one represented in Figure 1.

5. Conclusion

This work describes the architectural template of a het-
erogeneous coarse-grained reconfigurable array, supporting
local storage of data and efficient pipelining of loops. Fea-
tures such as the size of the mesh, the placement of cells of
different kinds, and the complexity of each cell can be de-
fined parametrically; this gives the designer the freedom to
derive specialized architecture instances for higher perfor-
mance, or to design a CGRA that works well across a wide
spectrum of applications.

Experimental results over different test cases show that
meshes composed by heterogeneous cells can accomo-
date computational kernels with different characteristics.
Thanks to its support for efficient loop pipelining, the
EGRA makes it possible to achieve notable parallelism and
speedups.

The EGRA template can be further expanded to accomo-
date other kinds of fixed-function units, and to include lay-
out considerations. For example, irregular mesh topologies
could be devised automatically in the presence of different-
size processing elements.

The evolution of coarse-grained architectures should not
happen in isolation. Together with architectural advance-
ments, research should also focus on developing the com-
piler infrastructure to allow automated extraction of accel-
erated kernels from high-level language code.
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