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Abstract—Computational gaming requires the automatic gen-
eration of virtual opponents for different game levels. We fave
turned to artificial evolution to automatically generate such
game players. In particular, we have used Genetic Programmig
to automatically evolve computer programs for computer gam
ing. With Genetic Programming, in theory, it is possible to gn-
erate any kind of program. The programs are not constrained a
much as they are in other computational learning approaches
e.g. neural networks. We show how Genetic Programming
improved upon a manually crafted race car driver (proportional
controller). The open race car simulator TORCS was used to
evaluate the virtual drivers.

I. INTRODUCTION AND MOTIVATION

For computational games it is very important to be able
to create a diverse range of interesting opponents agairg
which a game player can measure its abilities. If the ardifici
game player is too easy to outperform, the actual player may .
quickly lose interest in the game. He may also lose interest '9- - Screenshot from the open source race car simula@RAS.
if the virtual opponent is too good at playing the game. Such
virtual game players can of course be constructed manual
However, we have turned to artificial evolution to automati

I t | ing Genetic P ing ({1 . . !
cally generate game players using Genetic Programming [ nd O'Riordan [19] evolved team behaviors for combative

[2], [3]. Humans, after all, are product of natural evolutio ‘ Agapitos et al. [20 d Genetic P
which created game playing ability in the first place. with-Omputer games. Agapitos et al. [20] used Genetic Program-

this contribution we show how artificial evolution was able™"9 evolve controller representations for a simulatad c

to improve upon a hand crafted virtual driver. racing game. They also compared the performance of the
é/lolved controllers to neural network controllers e.g. tinul

Genetic programming has already been used by seve .
researchers ingthe conq[ext of gamg playing. Reynyolds [%yer perceptrons [21]. Agapitos et al. found that the nleura
etwork controllers performed better and generalizecebett

evolved corridor following behavior for a vehicle driving i : . _ ) .
a 2D world. He also used coevolution to evolve players fo'll'ogehus et al. [22] experimented with multi-populatiomeo
etitive coevolution within the same simulation enviromne

the game of tag [5]. Siegel and Chaffee [6] evolved progra . ST o
which could play Tetris. Koza [1] and Rosca [7] evolve gapnos _et_ al. .[23] used- mglu-objecnve (_)ptlmlzauon to
programs which could control an agent in the Pac Man ga intly optimize different objectives such as distancedtad,

Schloman and Blackford [8] evolved player strategies fopérformance relative to qompetitors number of collisions
Quake 2. Anderson [9] evolved control algorithms for the" sp_eed. Tanev f'md Shimohara [24] used _strongly typed
netic programming to evolve parameters which are used to

arcade game Asteroids. Additional 2D space game behavidls ol el ted | del of Th trol
were addressed by Jackson[10] and Francisco and dos R pgitrot a remotely operated scale modet of a car. The contro
[11], [12]. algorithm was first evolved in simulation and then ported to

Ciesielski et al. [13] used Genetic Programming to evolvg"e real car. Tanev and Shimohara report human competitive

different behaviors for the RoboCup tournament. Bajurno erformance of the qpt|m|zed driver when compared to a
uman controlled radio car.

and Ciesielski [14] suggested to use layered learning

evolve more complex behaviors. Corno et al. [15] evolved Il. TORCS —A VIRTUAL ENVIRONMENT FOR TESTING

assembly language programs for the game of corewar. RACE CAR DRIVERS

Crawford-Marks et al. [16] developed a Quidditch simulator

and coevolved teams for this game using the stack-basedror our experiments, we have used the open source race

programming language Push. Langdon and Poli [17] evolveg#r simulation TORCS t¢rcs.sourceforge.net )-

players for the game of pong which outperformed humahORCS was created by Eric Espié and Christophe Guion-
neau. The current maintainer of the project is Bernhard

Marc Ebner and Thorsten Tiede are with the Eberhard Karlsdysiiat Wymann. The TORCS simulator provides 30 different tracks
Tibingen, Wilhelm Schickard Institut fur Informatik, AbRechnerachitek-

tur, Sand 1, 72076 Tubingen, Germany, (phone: +49-70718298; fax: on which driving ab_i”ties can be compared. A player can
+49-7071-29-5091; emaimarc.ebner@wsii.uni-tuebingen.de ). choose one of 42 different cars and and he can also choose

ly.
[},Iayers. Shichel et al. [18] evolved Robocode players which
ished third place in a competition of 27 players. Doherty



pedal (gas pedal). It is decelerated via the brake peddt€bra
pedal). The driver can also set the gear (gear). All effactor
are listed in Table Il. The client sends the values for these
effectors to the server. This process continues until thetro
either finishes the race or the car leaves the race track.

We have built upon the client which was supplied for the
WCCI 2008 competition [27]. Loiacono et al. [26] summa-
rize the results of the WCCI 2008 competition. Apart from
a neural network controller, all other submissions were rul
based controllers. We try to evolve computer programs using
simulated evolution. In particular, we have used Genetic
Fig. 2. The race car is equipped with 19 senséyawith i € {0,...,18}  Frogramming which allows us to evolve arbitrary computer

arranged around a half circle. Each sensor returns thendestm meters to programs.
the track boundary. Distances larger than 100 are clipped@mn.

IIl. EVOLUTION OF VIRTUAL RACE CAR DRIVERS

Genetic Programming [1], [2], [3] is an automatic
among 50 opponents to race against. The virtual car camethod to automatically generate computer programs. For
be steered using a joystick, an actual steering wheel @ur experiments we have used the Evolutionary Com-
supported), the mouse or the keyboard. The graphics outguitation in Java (ECJ) package developed by Luke et
is in 3D featuring lighting, smoke, skidmarks on the road andl. (www.cs.gmu.edu/"eclab/projects/ec; ). We
glowing brake disks (Figure 1). Up to four different playersstart off with a population of possible solutions to our
can race against each other using a split screen mode. Itpi®blem. Our problem is to complete the race in the shortest
possible for users to develop their own robots which can emount of time. Therefore, each solution is a race car driver
used to drive a car by following the TORCS guidelines. Given two race car drivers, the race car driver who has

Loiacono et al. [25] have developed a race car client for thignished the track in the shortest amount of time is clearty th
WCCI 2008 competition. This car racing competition softbetter driver. If both drivers steer off the track, the driwéo
ware extends TORCS with a client-server architecture th#gaves the track last is the better driver. Given a populatio
separates the development of car controllers from TORCSf race car drivers of varying expertise (some may not be
Participants in the competition can develop different tsbo able to drive successfully at all), we select the driversolhi
by simply modifying the client side. They do not have to fullyperform best. The drivers are selected using the Darwinian
understand how TORCS works. The server-robot module fginciple “survival of the fittest”. The successful drivease
integrated into TORCS. It is used to read out the curremhen modified slightly to create a new population of drivers
state of the car's sensors and also has access to additiomadl the process is repeated. Over several generations, this
information from TORCS. Table | gives an overview abouprocess causes the drivers to adapt to the problem (finishing
the different sensors which are available from the car.  the race).

Data include the current orientation of the car along the For our experiments we have used tree-based Genetic Pro-
track (), the distance of the car measured from the stagramming [1], [2]. With tree-based Genetic Programming,
line (distFromStart) , the total distance traveled (dist¥), programs are represented as trees. Each tree consists of
the time which has elapsed on the current tratknby), internal and external nodes. The external nodes are used to
the time it took to complete the last lapéuay and the provide input to the program. Each tree computes an output
current position in the race (racePos). Additional datacWwhi based on the input supplied through the external nodes.
is available is the total damage which has been incurreégince each car is basically controlled by turning the stegri
to the car (damage), the remaining fuel (fuel), the currentheel and by specifying whether it should accelerate or
gear (gear), the rounds per minute of the engine (rpm), tllecelerate we have decided that a car driving programi.e. a
velocity of the car in the direction of the track.{, the individual of the population, consists of two trees. Thetfirs
velocity of the car perpendicular to the direction of theckra tree computes the steering direction of the steering wheel.
(vy) as well as the velocity of the four wheelgneej With  The second tree computes whether the car should accelerate
i € {1,2,3,4}. Each car is also equipped with 19 distancer decelerate. The gear is set automatically depending on
sensor which measure the distance from the car to the edgetloé rpm of the motor. Table Il shows the set of terminal
the track G; with i € {0, ...,18}). Sensors are also availablesymbols (external nodes) and the set of elementary furetion
to measure the distance to other cars in the r&gewith  (internal nodes) which are used for the first tree. The set of
ie{l,..,18}). terminal symbols and elementary functions which are used

All of these data fields are periodically sent from the serveor the second tree are shown in Table IV. Steering and
to the client. The client reacts to these data and tries tp kethe acceleration/deceleration can be controlled indepmahd
the car on the track and finish the race as number one. Thimce we use two separate trees for each. However, the
car can be steered by specifying the position of the steerimgceleration/deceleration tree has access to terminddagm
wheel (steering). It can be accelerated by pushing the gas (velocity of the car) and also the difference between the



TABLE |
SENSORS AVAILABLE FROM A SIMULATED CAR OF THE RACING SIMULATGR TORCS [26].

Name Range/Units Description

« [—m, m]/rad orientation of car relative to the current street degan

distFromStart [0, co]/m distance from start line to current position of car meedualong race track
distRaced [0, co]/m total distance traveled since beginning of race

teurLap [0, 00]/s elapsed time on current lap

tiastLap [0, o0] time elapsed for last lap

racePos 1,2, .. current rank of car in race

damage [0, oo]/point total dame incurred to car

fuel [0, ool fuel left in fuel tank

gear {-1,0,1,...,6} current gear position (-1: backwards, 0: neutral)

rpm [2000—7000]/rpm  rounds per minute of the motor

dy [-1,1] displacement of car from center of track (normalized to 1)

Vg [0, oo}/%m velocity of car in track direction

vy [—o0, oo}/%" velocity of car perpendicular to track direction

Vwheel [0, 0] /2 velocity of wheeli € {1,2,3,4}

S [0,100]/m dist. to track boundary measured by 19 sensa#s{0, ..., 18} as shown in Figure 2
O; [0,100]/m distance to opponents measured by 18 senserg1, ...,18}

TABLE Il
ACTUATORS OF A SIMULATED CAR OF THE RACING SIMULATORTORCS [26].

Name Range Description

gas pedal [0,1] acceleration

brake pedal [0,1] brake (0: don't brake, 1: full brake)

steering [-1,1] orientation of steering wheel (-1: maximum left, 1: maximuight)
gear -1,0,1,...,6 shift into gear as specified

meta control 0,1 meta control flag (0: do nothing, 1: restace)

TABLE IlI

SET OF TERMINAL SYMBOLS AND ELEMENTARY FUNCTIONS OF TREEL WHICH WAS USED TO STEER THE CAR
Name Arguments  Description

ERC1 0 ephemeral random constant with rafigé, 1]

ERC150 0 ephemeral random constant with rahg&50, 150]

cp 0 constant for hand-crafted proportional controllgr= —0.0234

LRO 0 average difference between left and right track sen$0615 + S14) — 3(Ss + Sa)
abs 1 identity function (should have been absolute value)

+ 2 sum of both arguments

- 2 difference of both arguments

* 2 product of both arguments

/ 2 protected division

TABLE IV
SET OF TERMINAL SYMBOLS AND ELEMENTARY FUNCTIONS OF TREE2 WHICH WAS USED TO OPERATE GAS AND BRAKES

Name Arguments  Description

ERC1 0 ephemeral random constant with rafigé, 1]

ERC50 0 ephemeral random constant with rafig&50, 150]

c1 0 first constant (used by hand-crafted gas/brake contyaller= —0.022

co 0 second constant (used by hand-crafted gas/brake cenfrejl = 100

LR1 0 difference between left and right front facing tracks@s(Ss — S10)

So 0 front facing sensor

Vg 0 velocity of car
1
2
2
2
2

abs identity function (should have been absolute value)
+ sum of both arguments

difference of both arguments

product of both arguments

*
/ protected division



steering angle gas/brake pedal

[ initialize population]

[ evaluate individua@

generate new population of individuals filled J
with elite individuals from the previous populati

#

[ select genetic operator ]

select one select two

individual individuals

(@) (b) [ add offspring to new populatioﬁ
Fig. 3. Sample individual. Manually constructed using teeaf terminal ‘
symbols and the set of elementary functions shown in Tablandl Table lati |
IV. (a) tree which controls the steering angle of the car. t(e which [new population complet o
controls the gas/brake pedal. ‘
yes
[ evaluate individuals}
front facing sensorsSs and Sio. Therefore it is possible ‘
to evolve a correlated steering and acceleration/dedilara no _
behavior. end of algorithm? ]
The idea behind the set of terminal symbols and the ‘ yes

set of elementary functions which were used for the two
trees is that evolution would build or improve a proportiona

controller [28]. We evolve the error expression used by the
proportional controller. The goal of the steering con&pls  Fig. 4.  Outline of the evolutionary algorithm which we usedevolve
that it should keep the car in the middle of the road. The car igce car drivers. Starting from an initial population ofiinduals, a new

: . - : eneration of individuals is created by selecting highlyirfividuals and
exactly in the middle of the road if the left and right sensorg _- applying the genetic operators mutation (Figure 5) erabsover

show approximately the same measurements. In order to g&bure 6). This process is repeated until a maximum numbgenerations
reliable measurements, we averaged the sensor dataSfrpm has been reached.
and Sq4 to get a reading towards the right hand side of the
car. We averaged the sensor data from sensgrand S,
to get a reading towards the left side of the car. Both arg@put from the terminal node LRO and transforms this data
subtracted from each other to obtain an error measure whighHo an output value. This output value is used to provide
is available through a terminal symbol (LRO). Such an errdhe angle of the steering wheel for the next iteration. For
measure allows easy control of a vehicle to steer toward tig@ach time step of the simulation this tree is evaluated and
center of the track and is reminiscent of a Braitenberg Vehicissues the desired steering angle to the robot server. The
[29]. Braitenberg showed how crossed connections from tr&eceleration/deceleration command is issued in the sanee ti
sensors to the actuators can be used to steer a vehicle. Btep but is computed by the second tree.
other symbols (ephemeral constants and arithmetic fumgXio The nodes which are available to construct the tree to
were supplied to fully construct a proportional controlleraccelerate or decelerate include sensors which are adiente
An ephemeral random constant is selected once the nodedsvard the front of the car. The function LR1 provides the
generated from the allowed range and then stays constalifference between the sensdtsandsS;o. The frontal sensor
during the life of the node. The constagt was useful for S, is also included in the set of functions. In order to react
a manually constructed controller that's why we included ito the current speed of the car, the current velocity of the
in the set of elementary functions. car was also includedvf). We again included arithmetic
Figure 3(a) shows a tree which actually steers the cémnctions and constants which we thought would be useful.
and was constructed manually using the nodes from Tab@onstantsc; and ¢, were used for a manually constructed
lll. This tree is evaluated in the car client. It receives itdree which controls the speed of the car as shown in Figure

[ output best individua]




operator selects two individuals and then exchanges two

random subtrees between these two individuals to generate

two offspring. Internal nodes are selected with a probibili
Fig. 5. Mutation operator. A randomly selected node is maaby a Of 90% and external nodes are selected with a probability of
newly generated subtree. 10%.

IV. EXPERIMENTS AND RESULTS
Crossover /\) We conducted four experiments. Each experiment starts off
with a population of 200 individuals. We first tried to impev
i> upon a manually constructed individual. For this experitnen

one of two operators (mutation and crossover) to selected
Mutation individuals. Each operator is applied with a probability of

50%. The mutation operator selects a random node of the
i> tree and generates a new random subtree. The crossover

1, we inserted the manually constructed individual which is
shown in Figure 3 into the first generation. We also tried to
Fig. 6.  Crossover operator. Two subtrees are exchangedeéetwvo evolve a successful ContrO”e_r from S.CratCh (experiment 2)
selected individuals. We repeated these two experiments with an extended function
set (experiments 3 and 4). For these experiments we added
two elementary functionsum andlast . The functionsum
3(b). The output of this tree is used to specify the value ahkes a single argument and sums up this argument over all
the desired acceleration (gas pedal) if the value retursedtime steps. For each time step, the current sum is returned.
positive. Otherwise the absolute value of the tree output ihe functionlast stores the argument and returns the value
used to specify the value of the brake (brake pedal). which was computed during a previous evaluation of the
The evolutionary algorithm which we use to evolve suchode. By adding these two elementary functions which also
individuals is shown in Figure 4. The randomly generateflave side effects it is possible to evolve PID controllers in
individuals of the first generation are generated using Emp experiments 3 and 4.
half and half initialization using a minimum depth of 2 and  For each experiment, we conducted five runs with different
a maximum depth of 6 [1]. Maximum depth of generatedtarting seeds. Figure 8 shows the fitness statistics. The
trees during evolution is limited to 17. Each individual istop four graphs show the minimum fitness for experiments
evaluated on five different tracks which are shown in Figure-4. The bottom four graphs show the average fitness.
7. We initially used only a single track to evolve race caExperiments 1 and 3 created the best car drivers after 50
drivers. However, the drivers did not generalize very We|@enerations_ For these experiments, the manually consttuc
to unknown tracks. The first and fourth track feature a lef¢ontroller was added to the initial population. Artificiaice
turn at the beginning of the race track. The second, third angtion was able to considerably improve upon the manually
fifth track feature a right turn at the beginning of the trackconstructed controller. Evolution was not able to evolve a
The five tracks also differ in the length of the straight partomparable controller from scratch within the same number
of the track before the first turn shows up. The manuallgf generations and a population size of 200 individuals. We
constructed driver is able to stay on two of the tracks foiised a t-test to investigate statistical significance betvike
the allotted time steps. The fitnegsof an individual is the four experiments. Starting from an entirely random popula-
average of the performangg with i € {1,2,3,4,5}. Each tion made the problem more difficult (statistically sigréfit
individual is evaluated for 1000 time steps on each track. N@ith a confidence of 94.7%). Making the set of elementary
other drivers are present on the track during evolution. Thignctions more powerful by adding elementary functions
fitness on each track is given as which also allow the evolution of PID controllers did not
i = duax— d 1) help. _There is no statistical significant difference betwee
b e experiments 1 and 3 and also not between 2 and 4.
whered is the distance traveled along the track. The distance The performance of the best evolved driver on tracks (a),
is subtracted from the maximum possible distance which tHe), and (e) is shown in Figure 9. The plots show the lateral
car can drive along the track within 1000 time steps and isffset of the car along the track. The steering angle and the

computed usin@lmax = &%ndvm” wherevmax i desired acceleration (gas pedal) and the desired dedeterat
the maximum velocity of the car. (brake pedal) of the driver are also shown. The plots show the

We have used tournament selection with a tournameperformance of the best evolved driver of generation 0, 10,
size of 7. The best 3 individuals are always copied int@0, 30, 40, and 50. The best car at generation 0 left the track
the next generation. Since the fithess may vary slightlwhen evaluated on tracks (c), (d), and (e). The plots clearly
from one evaluation to the next, we maintain a runninghow the driver improved during the course of evolution. In
average of all evaluations of an individual. The remainingeneration 50, the driver is able to keep the car on the track
individuals of the next generation are filled by applyingand actually manages to drive in the center of the track for



()

Fig. 7. Track (a)-(e) were used to evaluate the performamdheoevolved drivers. The starting position along the tracklso shown.

Experiment 1 - Minimum Fitness Experiment 2 - Minimum Fitness Experiment 3 - Minimum Fitness Experiment 4 - Minimum Fitness
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Fig. 8. Fitness statistics for experiments 1-4. The minimfitness for each generation is shown in the top four graphs. &erage fitness for each
generation is shown in the bottom four graphs.

most of the simulation. Whenever the car drifts off to thesensor with the largest response as suggested by Butz and
left, the evolved driver steers the car to the right and vicednneker [30].

versa. What can also be seen nicely in the plots showing Agapitos et al. [20] noted that evolved neural network
the performance of generation 50 is that the evolved drivaeind genetic programming drivers tend to oscillate quickly
anticipates that the car is about to veer of the track. Itallstu between different driving commands. In contrast to the
brakes slightly before the car is about the leave the ceffiter experiments by Agapitos, with our representation, it stioul
the track. be noted that the evolved drivers show rather smooth stgerin

At the first generation, the best individual is able to drivé®&havior on tracks (a)-(d). Agapitos et al. also compared
for a maximum distance of 498m (on track (b)). At thethe performance of stateless and stateful controllers and

end of evolution the best individual was able to cover f0ted that they did not find any difference between these
distance of 642m for this same track. On track (e), thiwo representations._ In our exper_ime_nts it seems that l_Jsing
best controller from generation 0 actually left the tractenf Stateful controllers, i.e. those which included the funisi
only 66m. However, after generation 50, it was able to drivé&Um andlast ) made the problem more difficult.

for 624m on track (e) without leaving the track. The best
evolved controller uses only the current speed and the front
facing sensor §y) to control the acceleration of the car. It We have used Genetic Programming to evolve symbolic
is currently not able to compete with other more elaboratexpressions which provide an error measure to control a
manually constructed drivers. However such drivers uguallirtual car (proportional controllers). Evolution was akb
have access to knowledge about the track curvature. It magprove upon a manually constructed controller. Each car
be possible to evolve better controllers using a differerdontroller consisted of two symbolic expressions, the first
representation, e.g. by supplying the angle to the distancentrolling the steering angle and the second controlliveg t

V. CONCLUSIONS
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acceleration/deceleration of the car. The symbolic exgimes [14] A. Bajurnow and V. Ciesielski, “Layered learning foraving goal
were represented as trees which were constructed by the
Genetic Programming paradigm. In our experiments we
found that it was particularly important to evaluate a singl[15]
controller in different situations, i.e. on different tkac in
order to obtain a reliable assessment of the quality of the

individual’s ability to drive the car. Individuals evalat only

[16]

on single tracks tended to be overfitted to the track which
was used during evolution.

(1]

(2]
(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

[11]

[12]

(13]

REFERENCES [17]

J. R. Koza,Genetic Programming. On the Programming of Computers
by Means of Natural SelectionCambridge, Massachusetts: The MIT
Press, 1992. (18]
——, Genetic Programming Il. Automatic Discovery of Reusable
Programs Cambridge, Massachusetts: The MIT Press, 1994.

W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francoi&gnetic
Programming - An Introduction: On The Automatic Evolutiof o
Computer Programs and Its ApplicatiansSan Francisco, California:
Morgan Kaufmann Publishers, 1998.

C. W. Reynolds, “Evolution of corridor following behaui in a
noisy world,” in From animals to animats 3: Proceedings of the
Third International Conference on Simulation of AdaptivehBvior,
Brighton, England, 1994D. CIiff, P. Husbands, J.-A. Meyer, and S. W.
Wilson, Eds. The MIT Press, 1994, pp. 402-410.

——, “Competition, coevolution and the game of tag,” Artificial
Life 1V, July 6-8 R. A. Brooks and P. Maes, Eds. Cambridge, MA:
The MIT Press, 1994, pp. 59-69.

E. V. Siegel and A. D. Chaffee, “Genetically optimizinget speed of
programs evolved to play tetris,” kdvances in Genetic Programming
2, P. J. Angeline and K. E. Kinnear, Jr., Eds. Cambridge, MATMI
Press, 1996, pp. 279-298.

J. P. Rosca, “Generality versus size in genetic programgrhin Ge-
netic Programming 1996: Proceedings of the First Annual fémnce,
Stanford University, CAJ. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo, Eds. MIT Press, 28-31 Jul. 1996, pp. 381-387.

J. Schloman and B. Blackford, “Genetic programming eesl a
human competitive player for a complex, on-line, interggtimulti-
player game of strategy,” iGenetic and Evolutionary Computation
Conference. Proceedings of the Genetic and Evolutionarp@dation
Conference, July 7-11, San Francisco, CaliforniaNew York, NY:
ACM, 2007, pp. 1951-1958.

E. F. Anderson, “Off-line evolution of behaviour for amomous
agents in real-time computer games, Harallel Problem Solving from
Nature - PPSN VII, September 7-11, Granada, SpdinJ. Merelo-
Guervos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-\dltas, and
H.-P. Schwefel, Eds. Berlin: Springer-Verlag, 2002, ppo-&&09.

D. Jackson, “Evolving defence strategies by genetagmmming,” in
Proceedings of the 8th European Conference on Genetic Bnogning,
Lausanne, Switzerland, March 3d. Keijzer, A. Tettamanzi, P. Collet,
J. I. van Hemert, and M. Tomassini, Eds. Berlin: Springeradg
2005, pp. 281-290.

T. Francisco and G. M. J. dos Reis, “Evolving combat gtgms to
control space ships in a 2D space simulation game with chséen
using genetic programming and decision trees,Pinceedings of the
Genetics and Evolutionary Computation Conference Workshm-
ceedings: Defense Applications of Computational Intetice (DAC),
Atlanta, GA, July 12-16 New York, NY: ACM, 2008, pp. 1887-1892.
——, “Evolving predator and prey behaviours with co-eimn using
genetic programming and decision trees,Piroceedings of the Genet-
ics and Evolutionary Computation Conference Workshop &dings:
Defense Applications of Computational Intelligence (DAG}anta,
GA, July 12-16 New York, NY: ACM, 2008, pp. 1893-1900.

V. Ciesielski, D. Mawhinney, and P. Wilson, “Genetiogramming for
robot soccer,” inRoboCup 2001: Robot Soccer World Cup V, Seattle,
Washington A. Birk, S. Coradeschi, and S. Tadokoro, Eds. Berlin:
Springer-Verlag, 2002, pp. 319-324.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]

scoring behavior in soccer players,” Rroceedings of the 2004 IEEE
Congress on Evolutionary Computation, June 20-23, Podtl&dregon
IEEE Press, 2004, pp. 1828-1835.

F. Corno, E. Sanchez, and G. Squillero, “On the evolutib corewar
warriors,” in Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, June 20-23, Portland, OregonlEEE Press, 2004, pp.
133-138.

R. Crawford-Marks, L. Spector, and J. Klein, “Virtualitehes and
warlocks: A quidditch simulator and quidditch-playing nes coe-
volved via genetic programming,” ibate Breaking Papers at the 2004
Genetic and Evolutionary Computation Conference, July S€attle,
Washington M. Keijzer, Ed., 2004.

William B. Langdon and R. Poli, “Evolutionary solo porgayers,”
in IEEE Congress on Evolutionary Computation September 2d5, E
inburgh, UK |EEE Press, 2005, pp. 2621-2628.

Y. Shichel, E. Ziserman, and M. Sipper, “GP-robocodsind genetic
programming to evolve robocode players,” Rmoceedings of the 8th
European Conference on Genetic Programming, Lausannez&wi
land, March 30 M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert,
and M. Tomassini, Eds. Berlin: Springer-Verlag, 2005, p43-1154.
D. Doherty and C. O'Riordan, “A phenotypic analysis oP@&volved
team behaviours,” inGenetic and Evolutionary Computation Con-
ference. Proceedings of the 9th annual conference on Geaeiil
Evolutionary Computation, July 7-11, London, EnglandNew York,
NY: ACM, 2007, pp. 1951-1958.

A. Agapitos, J. Togelius, and S. M. Lucas, “Evolving tatiers for
simuated car racing using object oriented genetic progragynin
Genetic and Evolutionary Computation Conference. Proiegd of
the 9th annual conference on Genetic and Evolutionary Cdatioun,
July 7-11, London, England New York, NY: ACM, 2007, pp. 1543-
1550.

D. E. Rumelhart, J. L. McClelland, and the PDP Researchuf,
Parallel Distributed Processing, Explorations in the Mistructure of
Cognition, Volume 1: Foundations Cambridge, Massachusetts: The
MIT Press, 1986.

J. Togelius, P. Burrow, and S. M. Lucas, “Multi-popiidet competitive
co-evolution of car racing controllers,” iFEEE Congress on Evolu-
tionary Computation September 25-28, Singap@e Srinivasan and
L. Wang, Eds. |IEEE Press, 2007, pp. 4043-4050.

A. Agapitos, J. Togelius, S. M. Lucas, J. Schmidhubed &. Kon-
stantinidis, “Generating diverse opponents with muléckiye evolu-
tion,” in Proceedings of the 2008 IEEE Symposium on Computational
Intelligence and Games, December 15-18, Perth, AustralitEEE,
2008.

I. Tanev and K. Shimohara, “Evolution of agent, rempteperating
a scale model of a car through a latent video feedbadtirnal of
Intelligent Robotic Systemso. 52, pp. 263-283, 2008.

D. Loiacono, J. Togelius, and P. L. Lanflar Racing Competition
WCCI2008. Software ManuaRfpr. 2008.

D. Loiacono, J. Togelius, P. L. Lanzi, L. Kinnaird-Heet, S. M.
Lucas, M. Simmerson, D. Perez, R. G. Reynolds, and Y. S. (2008
“The wcci 2008 simulated car racing competition,” Fmoceedings of
the 2008 IEEE Symposium on Computational Intelligence azohé3,
December 15-18, Perth, Australia IEEE, 2008.

T. Tiede, Evolution eines Algorithmus zur Steuerung eines virtaelle
Fahrzeugs in einer Rennsimulation Studienarbeit, Eberhard
Karls Universitat Tuibingen, Wilhelm-Schickard-Institfiir Informatik,
Lehrstuhl Rechnerarchitektur, Jun. 2009.

J. J. Craig,Introduction to Robotics: Mechanics and Contr@hd ed.
Reading, Massachusetts: Addison-Wesley Publishing Coynpi®89.
V. Braitenberg,Vehicles: Experiments in Synthetic Psychologgam-
bridge, Massachusetts: The MIT Press, 1984.

M. V. Butz and T. D. Lonneker, “Optimized sensory-motmuplings
plus strategy extensions for the torcs car racing challgrigePro-
ceedings of the 2009 IEEE Symposium on Computationalireatte
and Games, Milano, ltaly IEEE, 2009, p. (in print).



