
Towards a Formal Treatment of Secrecy

against Computational Adversaries

Angelo Troina1, Alessandro Aldini2, and Roberto Gorrieri3

1 Dipartimento di Informatica, University of Pisa,
Via F. Buonarroti 2, 56127 - Pisa, Italy

troina@di.unipi.it
2 Istituto STI, University of Urbino,

Piazza della Repubblica 13, 61029 - Urbino, Italy
aldini@sti.uniurb.it

3 Dipartimento di Scienze dell’Informazione, University of Bologna,
Mura Anteo Zamboni 7, 40127 - Bologna, Italy

gorrieri@cs.unibo.it

Abstract. Polynomial time adversaries based on a computational view
of cryptography have additional capabilities that the classical Dolev-Yao
adversary model does not include. To relate these two different models of
cryptography, in this paper we enrich a formal model for cryptographic
expressions, originally based on the Dolev-Yao assumptions, with com-
putational aspects based on notions of probability and computational
power. The obtained result is that if the cryptosystem is robust enough,
then the two adversary models turn out to be equivalent. As an appli-
cation of our approach, we show how to determine a secrecy property
against the computational adversary.

1 Introduction

The recent literature concerning the analysis of security protocols reveals an in-
creasing interest towards the compatibility problem between the computational
approach, followed by the cryptography community, and the approach based on
the Dolev-Yao model, which is instead followed by the formal methods commu-
nity (see, e.g., [2, 5, 11, 22, 15, 14, 18, 6]). In particular, it has been widely recog-
nized that a sort of computational view of cryptography must be introduced in
the formal approaches to security analysis based on a purely formal treatment
of cryptographic operations. The classical Dolev-Yao model, which is based on
the perfect cryptography assumption and the restricted expressive power of the
adversary [8], favours a convenient application of formal methods that treat
cryptographic operations as purely formal. In this view, an encrypted message,
which is a formal expression, can be suitably analyzed through techniques bor-
rowed from the fields of, e.g., modal logic and process algebra [16, 12, 10, 19, 17,
9]. On the contrary, such a model does not take into account that the adversary
has (limited) computational resources which can be exploited to obtain data in
a way that cannot be captured by, e.g., standard inference rules. The adversary
advantage is instead based on notions of probability and computational power.

On the basis of such considerations, we aim at relaxing the strict requirements
of the Dolev-Yao approach to cryptography. In order to overcome the limitations
of such requirements, we take into account the probability for a polynomial
time adversary of attacking with success a message encrypted with a secret
key. While in a Dolev-Yao setting such a possibility is simply disregarded – a
message encrypted with an unknown key is a black box – in a real scenario
an adversary with a suitable knowledge may have a good chance of obtaining
useful information from a ciphertext that, from a purely formal standpoint, is
considered to be a black box. By considering the probability of cryptanalyzing a
ciphertext, we compare cryptographic expressions through a suitable notion of
indistinguishability, which has been introduced in [21]. Such a notion, which is
based on a similarity relation, states whether a polynomial time adversary with
a certain initial knowledge has a non-negligible probability of distinguishing two
different cryptographic expressions. As a simple example, expressions {M}K and
{rubbish}K are almost the same if K is secret and the encryption scheme is ideal
according to a computational view of what, in practice, perfect cryptography
stands for (see, e.g., [2, 11]).

In this paper, we show that the definition of similarity for cryptographic
expressions corresponds to the classical Dolev-Yao based notion of equivalence
in the case a suitably defined encryption scheme is used that, intuitively, turns
out to be robust against any cryptanalysis attack conducted by a polynomial-
time adversary. In practice, the intuition is that if the cryptosystem is robust
enough, then a computational adversary with a limited amount of resources has
the same expressive power of an adversary that does not use cryptanalysis to
obtain data. As an application, we show that our notion of similarity can be used
to determine the secrecy degree of a message within an encrypted expression.

The rest of the paper is organized as follows. First, we describe how we
extended the Dolev-Yao formal model with probabilistic information used to
estimate the probability for a polynomial-time adversary of obtaining meaningful
information from a ciphertext (Sect. 2). Then, we show a similarity relation
that allows cryptographic expressions to be compared from the viewpoint of a
polynomial-time adversary (Sect. 3). Afterwards, we present the main theorem
showing that such a similarity relation corresponds to the equivalence relation
of the Dolev-Yao model in the case the encryption scheme is robust enough
(Sect. 4). As an example, we show an application of such an approach to a
secrecy problem in system security analysis (Sect. 5). Finally, we conclude the
paper by discussing some related work (Sect. 6) and future work (Sect. 7).

2 Equivalence and Computational Adversary

We base our formal model on the Dolev-Yao encryption model defined by Abadi
and Rogaway [2]. In this setting, we formulate an extension of the classical equiv-
alence relation among cryptographic expressions that allows for relating those
expressions that yield the same information obtained with the same probability

even through cryptanalysis attempts. Therefore, we abandon the usual Dolev-
Yao abstraction and we take into account cryptanalysis attacks.

2.1 Setting the Context

As a preliminary to our extension, we now introduce the machinery needed to
compare cryptographic expressions. We use String to denote a finite set of
plaintext messages, i.e. the set of binary strings of a fixed length (ranged over by
m,n, . . .), Keys to denote a fixed, non-empty set of key symbols (ranged over
by K,K ′,K ′′, . . . and K1,K2,K3, . . .), such that Keys and String are disjoint,
and Exp to denote the set of expressions defined by the grammar:

M,N ::= expressions
K key (for K ∈ Keys)
m string (for m ∈ String)
(M,N) pair
{M}K encryption (for K ∈ Keys)

Intuitively, (M,N) represents the pairing of M and N , and {M}K represents
the encryption of M under K via a symmetric encryption algorithm. Pairing
and encryption can be nested, like, e.g., in ({(m,K)}K1

,K1).

The entailment relation M 7→ N says that N can be derived from M . For-
mally, such a relation is inductively defined as the least relation satisfying the
following properties:

M 7→M

M 7→ N1 ∧ M 7→ N2 ⇒M 7→ (N1, N2)
M 7→ (N1, N2) ⇒M 7→ N1 ∧ M 7→ N2

M 7→ N ∧ M 7→ K ⇒M 7→ {N}K
M 7→ {N}K ∧ M 7→ K ⇒M 7→ N

In essence, M 7→ N expresses what the adversary obtains from M without
any prior knowledge of its content. For instance, ({{K1}K2

}K3
,K3) 7→ K3, and

({{K1}K2
}K3

,K3) 7→ {K1}K2
, but ({{K1}K2

}K3
,K3) 67→ K1. The entailment

relation models the expressive power of the adversary based on the Dolev-Yao
model and includes all the operations that such an adversary can execute to
construct ciphertexts or extract plaintexts.

Our extension consists in taking into account the possibility for an adversary
of obtaining meaningful information from a ciphertext {M}K without knowing
the key K. To this purpose, we introduce the probabilistic pattern P.p, which
represents an expression P that does not contain undecryptable blocks and is
associated with a parameter p ∈]0, 1], which models the probability of getting
the plaintext contained in P . Formally, we define the set pPat of probabilistic

patterns with the grammar:

P.p, Q.p ::= probabilistic patterns
K.p key (for K ∈ Keys)
m.p string (for m ∈ String)
(P.p, Q.p).p pair

p ∈]0, 1]

A probabilistic pattern associated to a ciphertext is obtained by substituting ev-
ery ciphered block with the corresponding expression in clear associated with the
probability of obtaining information about it. Given a computational polynomial
time adversary A and an initial knowledge G, the probabilistic pattern associ-
ated with expression {m}K is expressed in terms of the probability of obtaining
information about m, denoted by m.pdec({m}K , G). Function pdec({m}K , G) re-
turns the probability of obtaining meaningful information from the ciphertext
{m}K by exploiting the initial knowledge G. More formally, an adversary A
with polynomially timed resources and knowledge G has a probability Pr at
most equal to the value expressed by pdec of retrieving K from {m}K :

Pr [K ← A({m}K , G)] ≤ pdec({m}K , G) for all A

Note that the outcome of pdec is a value strictly greater than 0, because, even if
with small probability, an adversary may randomly guess the key. Besides, the
value of pdec depends on the knowledge G exploited to conduct the cryptanalysis
attempt. Intuitively, we could figure out the adversary as an arbitrary (proba-
bilistic) algorithm, executing in polynomial time, that makes computations on
ciphered blocks in order to get information about the ciphering key and the
contained plaintext (see, e.g., [11]). Note that the classical Dolev-Yao adversary
obtains K from {m}K if and only if K can be derived from G: If G 7→ K, then
pdec({m}K , G) = 1. On the other hand, in a computational model assuming
ideal encryption [11] or type-0 secure encryption scheme [2], pdec is a negligible
function, as it turns out that the probability of guessing information that cannot
be derived through the Dolev-Yao model of cryptography is negligible. In the
following we will consider a formal definition of negligible function and we will
show that if pdec is negligible, then it holds that the expressive power of the
computational adversary is limited by that of the Dolev-Yao adversary and vice
versa.
The outcome of function pdec represents the starting point for the compu-

tation of the probability of cracking a ciphered block. Consider, e.g., expres-
sion ({{m}K1

}K2
, {(K1,K2)}K). What is the probability of getting information

about m in the case no prior knowledge is available? An immediate answer could
be pdec({{m}K1

}K2
)·pdec({m}K1

) 4, that is the probability of sequentially crack-
ing the two keys K2 and K1. However, we observe that if K is a weak key, then

4 For the sake of simplicity, we omit the knowledge G whenever either G is equal to
the empty set or the content of G is clear from the context.

information about K1 and K2 can be easily derived from {(K1,K2)}K and, as
a consequence, the cryptanalysis of {{m}K1

}K2
may be simplified. Hence, the

probability of success may vary according to the strategy adopted by the adver-
sary. By considering the worst case, we always associate to a ciphered block the
maximum probability of getting information about it, i.e. we take into account
the best cryptanalysis strategy from the adversary standpoint. To this end, we
analyze all the possible cryptanalysis paths that the adversary can follow. In the
next section, we describe through an illustrative example the structures and the
functions used to determine the best cryptanalysis strategy [21].

2.2 Cryptanalyzing a ciphertext

The methodology that aims at turning an expression N into a probabilistic
pattern N.p consists of four steps. In this section we illustrate each step of
the methodology through an illustrative example. We consider the expression
N = ({{m}K1

}K2
, {(K1,K2)}K) and we assume that the initial knowledge G

does not allow the adversary to derive any information from N through the
entailment relation.

The first step of our methodology consists in computing the keys that can be
obtained from the expression, possibly with (without) cryptanalysis attempts. In
our example, by hypothesis it is not possible to obtain keys through the entail-
ment relation. In other words, the expression is a black box from the viewpoint
of a classical Dolev-Yao adversary. In fact, we have that K can be derived with
a probability based on pdec({(K1,K2)}K). Through such a single cryptanaly-
sis, the adversary obtains K1 and K2 too. Alternatively, the adversary may
try to obtain K2 by attacking {{m}K1

}K2
with a success probability equal to

pdec({{m}K1
}K2
). Afterwards, {m}K1

may be cracked in a similar way, and so
on. In essence, several different strategies can be adopted to derive the keys con-
tained in N – K,K1, and K2 – from N itself, and each of such strategies must
be evaluated.

Formally, given an expression M and the initial knowledge G, we denote
by pKeysGM a set of pairs of the form T.p, where T ⊆ Keys is a set of keys
syntactically occurring inM , and p ∈]0, 1] is the probability of retrieving the keys
contained in T through a certain strategy. Set pKeysGM is generated through
the following two-phase algorithm:

pKeysGM = {initKeys((M,G)).1};
addKeys((M,G), 1);

In the first phase, pKeysGM is initialized with the set of keys that can be derived
from M and G without cryptanalysis attempts. Formally, initKeys : Exp →
P(Keys) takes an expression L and returns the set of keys recoverable from L

through the entailment relation. Hence, initKeys(L) = {K ∈ Keys | L 7→ K}.
Then, in the second phase, the probabilities of retrieving the remaining keys
contained in M are calculated. Formally, addKeys(H, p), with H ∈ Exp and

p ∈]0, 1], is defined through the following algorithm:

addKeys(H, p) ::=
∀ {N}K : (H 7→ {N}K ∧ H 67→ K) do begin

p′ = p · pdec({N}K , H)
L = (H,K)
T = {K ∈ Keys | L 7→ K}
pKeysGM = pKeysGM ∪ {T.p′}
addKeys(L, p′)

end

At each step of the algorithm above, a cryptanalysis is performed that reveals,
with a certain probability, new keys obtained from M . In particular, for each
cryptanalysis strategy, pKeysGM contains the set of keys violated by following
that strategy and the probability of cracking such keys.
The second step of our methodology consists in computing the maximum

probability of retrieving from an expression a given set of keys by following the
best cryptanalysis strategy. In our example, the maximum probability of guess-
ing K is equal to the probability of cracking {(K1,K2)}K , because this is the
only strategy that can be followed to obtain K. On the other hand, the maxi-
mum probability of guessing K2 is the maximum between pdec({{m}K1

}K2
) and

pdec({(K1,K2)}K), which are the probabilities associated with the two possible
strategies that can be followed to obtain K2.
Formally, given an expression M , the initial knowledge G, and a set T of

keys included in M , we denote by pGuessGM (T) the maximum probability of
cracking all the keys in T according to the best cryptanalysis strategy that
can be followed to attack M . Denoted Keys(M) the set of keys occurring in
M and given the set DpGuessG

M

= {T ⊆ Keys | T ⊆ Keys(M)}, we define

pGuessGM : DpGuessG

M

→]0, 1] as:

pGuessGM (T) = max{p | J.p ∈ pKeys
G
M ∧ T ⊆ J}.

Note that pGuessGM (∅) = 1 since initKeys((M,G)).1 ∈ pKeysGM and ∅ ⊆
initKeys((M,G)).
The third step of our methodology consists in computing the maximum prob-

ability of retrieving all the information contained in a ciphertext. In our example,
that means we want to evaluate the maximum probability of getting m, K, K1,
and K2. As it is easy to see, such a probability is equal to pdec({(K1,K2)}K),
because through such a single cryptanalysis it is possible to obtain all the keys
used within N .
Formally, given an expression M and the initial knowledge G, we denote by

pMaxGM the maximum probability of getting the information contained in M :

pMaxGM = pGuessGM (Keys(M)).

The fourth step of our methodology consists in turning each ciphered block
of an expression into a probabilistic pattern. The obtained probabilistic patterns

associate each plaintext with the maximum probability of obtaining it. In our
example, the ciphertext {(K1,K2)}K is turned into the probabilistic pattern
(K1.p,K2.p).p where p = pGuessGM ({K}) = pdec({(K1,K2)}K) and the cipher-
text {{m}K1

}K2
is turned into the probabilistic pattern m.pGuessG

M
({K1,K2}).

Formally, given an expression M , the initial knowledge G, and an expres-
sion M ′ contained in M , we denote by pPG

M (M
′, T) a function that (i) re-

turns in T the set of keys needed to obtain the plaintext contained in M ′

and (ii) associates to such a plaintext the maximum probability of obtaining
it through the best cryptanalysis strategy that can be applied to M . Function
pPG

M : Exp×DpGuessG

M

→ pPat is defined inductively as follows:

pPG
M (K,T) = K.pGuessG

M
(T) (K ∈ Keys)

pPG
M (m,T) = m.pGuessG

M
(T) (m ∈ String)

pPG
M ((N1, N2), T) = (pP

G
M (N1, T), pP

G
M (N2, T)).pGuessG

M
(T)

pPG
M ({N}K , T) = pPG

M (N,T ′) (T ′ = T ∪ {K})

Finally, given an expression M and the initial knowledge G, the probabilistic
pattern associated to M is given by pPG

M (M, ∅). In the following, we use the
abbreviation pPG

M (with no arguments) to stand for pPG
M (M, ∅).

The values pMaxGM and pPG
M yield different information that are both mean-

ingful to relate cryptographic expressions. Consider the following expressions:

M = ({m}K , {n}K) and N = ({m}K , {n}K′), with K 6= K ′.

which yield the same probabilistic patterns. Indeed 5:

pPM = (m.p̂, n.p̂).1,

where p̂ = pGuessM ({K}) = max{pdec({m}K), pdec({n}K)}. The intuition is
that an adversary can crack M by guessing K, which is used to cipher both
blocks. However, if pGuessM ({K}) = pGuessN ({K}) = pGuessN ({K

′}) we
also have that:

pPN = (m.p̂, n.p̂).1.

Hence, M and N have the same probabilistic pattern, even if to get in clear the
whole expression N an adversary should guess two different keys, namely K and
K ′. Such a difference is captured by the fact that:

pMaxM = pGuessM ({K}) = p̂ 6= p̂2 = pGuessN ({K,K ′}) = pMaxN .

Therefore, pMaxGM is needed to express the overall probability of getting the
whole plaintext, while pPG

M is needed to associate each piece of information
contained in an expression with the probability of getting it in clear.
In the following, we show how the information computed through the method-

ology surveyed above can be exploited to compare cryptographic expressions.

5 We assume an empty knowledge and omit G.

2.3 Probabilistic Equivalence

Given the expressions M and N and an initial knowledge G, we say that M and
N are probabilistically equivalent (M ≈G N) if they yield the same probabilistic
pattern and if pMaxGM and pMaxGN are equal.

Definition 1. M ≈G N ⇔ pPG
M = pPG

N ∧ pMaxGM = pMaxGN .

Example 1. Consider the expressions N = ({{m}K1
}K2

, {(K1,K2)}K) andM =
({m}K1

, {(K1,K2)}K), and assume an empty initial knowledge. If K is weaker
thanK1, we have that pdec({m}K1

) ≤ pdec({(K1,K2)}K) and pGuessM ({K1}) =
pGuessM ({K}) = pdec({(K1,K2)}K). Therefore, given p̂ = pdec({(K1,K2)}K),
we have pPM = (m.p̂, (K1.p̂,K2.p̂).p̂).1. On the other hand, from the previous
examples and from the condition pdec({m}K1

) ≤ pdec({(K1,K2)}K), we obtain
the probabilistic pattern pPN = (m.p̂, (K1.p̂,K2.p̂).p̂).1 and, since pMaxM =
pMaxN = p̂, we also obtain M ≈ N . In conclusion, we observe that ciphering
the first block m of N with both keys K1 and K2 is not meaningful, since N is
probabilistically equivalent to an expression where this information is ciphered
with one of those keys only. Indeed, an adversary can gain information about m
by cryptanalyzing the second block {(K1,K2)}K .

3 Indistinguishability

The notion of equivalence presented above is not adequate to state the indis-
tinguishability among cryptographic expressions. On the one hand, it is not
realistic to require that the same ciphered blocks have to be decrypted exactly
with the same probability. On the other hand, it is not worth considering those
blocks that can be decrypted with negligible probability, since essentially they
are almost equivalent to a black box.

In order to relax the notion of equivalence for cryptographic expressions, we
introduce a relation, called ε−probabilistic similarity (≈ε), which (i) approx-
imates the equivalence by introducing a tolerance to small differences of the
probabilistic parameters that are associated with the probabilistic patterns, and
(ii) allows for equating the black box and those ciphertexts that can be decrypted
with a negligible probability.

Given an initial knowledge G, we say that M and N are ε−probabilistically
similar (M ≈G

ε N) if pMaxGM and pMaxGN are almost the same up to the toler-
ance ε and ifM andN are ε−compatible according to the notion of compatibility
∼ε specified below.

Definition 2. M ≈G
ε N ⇔ pPG

M ∼ε pP
G
N ∧ |pMaxGM − pMaxGN | ≤ ε.

The compatibility relation ∼ε for probabilistic patterns expresses when two
probabilistic patterns are indistinguishable. Formally, it is defined as follows:

P.p ∼ε Q.p′ if p, p′ ≤ ε P.p, Q.p′ ∈ pPat
K.p ∼ε K.p′ if |p− p′| ≤ ε K ∈ Keys
m.p ∼ε m.p′ if |p− p′| ≤ ε m ∈ String
(P.p1

, Q.p2
).p3
∼ε (P

′.p′
1
, Q′.p′

2
).p′

3
if |p3 − p′3| ≤ ε ∧

P.p1
∼ε P

′.p′
1
∧ Q.p2

∼ε Q
′.p′

2

P.p1
, Q.p2

, P ′.p′
1
, Q′.p′

2
∈ pPat

Note that two different pieces of information are indistinguishable if they
are associated with probabilistic parameters that are smaller than the given
tolerance ε, i.e. in practice both of them are considered to be a black box.

For instance, according to such a notion of probabilistic similarity, the ex-
pressions M = {m}K and N = {n}K′ are indistinguishable if – given G = ∅,
pPM = m.p1

, pPN = n.p2
, and a fixed threshold ε – the probabilities p1 and p2

are equal or smaller than ε. Also the expressions M = {m}K and N = {m}K′

are indistinguishable if p1 = pdec({m}K) and p2 = pdec({m}K′) are similar (even
if not exactly the same). In practice, if |p1 − p2| ≤ ε, then M ≈G

ε N .

Proposition 1. Given M,N ∈ Exp it holds that:

M ≈G N ⇒ M ≈G
ε N ∀ε ∈ [0, 1[.

Proof. See [21].

Proposition 2. Given M,N ∈ Exp it holds that:

M ≈G N ⇔ M ≈G
0 N.

Proof. A trivial consequence of the definition of compatibility relation.

Finally, note that the case ε = 1 is not considered, since it is trivial to see
that in such a case it follows ∀M,N ∈ ExpM ≈G

1 N .

4 Relating the Probabilistic and the Dolev-Yao Models

In this section we show how our notion of similarity is related to a classical Dolev-
Yao equivalence relation defined in an environment where perfect cryptography
is assumed. In particular, given a notion of ideal encryption, we will show that
two expressions are equivalent within a Dolev-Yao model that relies on perfect
cryptography if and only if the two expressions are probabilistically similar under
the ideal encryption assumption.

4.1 Equivalence within Perfect Cryptography

We start by introducing a notion of equivalence for cryptographic expressions
that relies on the perfect cryptography assumption. Such a notion is inspired by
that defined in [2]. First, we define a variant of the set of expressions, called Pat,
which does not contain ciphertexts and includes the new symbol ⊗ (representing
a ciphertext that cannot be decrypted by the adversary).

P,Q ::= patterns
K key (for K ∈ Keys)
m string (for m ∈ String)
(P,Q) pair
⊗ undecryptable text

Intuitively, a pattern is an expression that does not contain encrypted terms and
that may contain some part that an adversary cannot decrypt. Now, we define
a function p that, given a set of keys T and an expression M , computes the
pattern that an adversary can obtain from M if the initial knowledge is the set
of keys T .

p(K,T) = K (for K ∈ Keys)
p(m,T) = m (for m ∈ String)
p((M,N), T) = (p(M,T), p(N,T))

p({M}K , T) =

{

p(M,T) if K ∈ T
⊗ otherwise

Then, given an initial knowledge G, we define function patG(M), which ex-
presses the pattern obtained from an expression M by exploiting the knowl-
edge G, as patG(M) = p(M, initKeys((M,G))). For example, if G is empty,
patG(({{K1}K2

}K3
,K3)) = (⊗,K3).

Finally, given an initial knowledge G, we say that two expressions are equiv-
alent if they yield the same pattern.

Definition 3. M ∼=G N ⇔ patG(M) = patG(N).

For example, if G is empty, we have ({{K1}K2
}K3

,K3) ∼= ({{m}K1
}K3

,K3)
since both expressions yield the pattern (⊗,K3).

4.2 Ideal Encryption

The notion of ideal encryption intuitively assumes that it should be hard for the
adversary to decrypt a message ciphered with an unknown key. In other words,
the probability of breaking an encrypted message that cannot be derived in the
classical Dolev-Yao model should be small. We formalize the concept of small
probabilities by introducing the definition of negligible function (see, e.g., [11]).

Definition 4. A function f : IN → IR is negligible, if for any polynomial q,
∃η0 ∈ IN : f(η) ≤

1
q(η) ∀η > η0.

Then, the ideal encryption hypothesis assumes that pdec must be a negligible
function.

Definition 5. An encryption scheme is ideal if and only if

∀{N}K ∈ Exp,∀G ∈ Exp : G 67→ K,∀ polynomial q : ∃η0 ∈ IN such that
pdec({N}K , G) ≤

1
q(η) ∀η > η0.

As a consequence, if the assumption of ideal encryption holds, from the definition
above we also have that ∀A and ∀G ∈ Exp : G 67→ K:

Pr[K ← A({N}K , G)] ≤
1

q(η)
∀η > η0.

By following an approach also used in [22], we show that a result holding in the
perfect cryptography scenario also holds in our probabilistic model (and vice
versa) if the ideal encryption assumption is taken.

Theorem 1. Given M,N ∈ Exp, if the assumption of ideal encryption holds
for a polynomial q and a natural η0, then, for each η > η0:

M ∼=G N ⇔ M ≈G
ε N ∀ε ∈]

1

q(η)
, 1−

1

q(η)
[.

Proof. ⇒) A proof of the statement is in [21].
⇐) The statement derives by structural induction on the expression M and by
observing that, by hypothesis, M ≈G

ε N ⇒ pPG
M ∼ε pP

G
N . In the following, we

denote by TM the set initKeys((M,G)) and by TN the set initKeys((N,G)).

1. pPG
M ∼ε pP

G
N = K.1 K ∈ Keys

⇒
p(M,TM) = p(N,TN) = K ⇒ patG(M) = patG(N)⇒M ∼=G N

2. pPG
M ∼ε pP

G
N = m.1 m ∈ String

⇒
p(M,TM) = p(N,TN) = m⇒ patG(M) = patG(N)⇒M ∼=G N

3. pPG
M = P.p ∼ε Q.p′ = pPG

N p, p′ ≤ ε P.p, Q.p′ ∈ pPat
⇒
p(M,TM) = p(N,TN) = ⊗ ⇒ patG(M) = patG(N)⇒M ∼=G N

4. pPG
M = (pPG

M (L1, ∅), pP
G
M (L2, ∅)).1 ∼ε (pP

G
N (L

′
1, ∅), pP

G
N (L

′
2, ∅)).1 = pPG

N ⇒
pPG

M (L1, ∅) ∼ε pP
G
N (L

′
1, ∅) ∧ pPG

M (L2, ∅) ∼ε pP
G
N (L

′
2, ∅)

⇒ by induction hypothesis
p(L1, TM) = p(L′

1, TN) ∧ p(L2, TM) = p(L′
2, TN)⇒

p(M,TM) = (p(L1, TM), p(L2, TM)) = (p(L
′
1, TN), p(L

′
2, TN)) = p(N,TN)⇒

patG(M) = patG(N)⇒M ∼=G N

Under the assumption of ideal encryption, the four cases above include all the
interesting situations in which two probabilistic patterns are compatible according
to ∼ε. In particular, the condition |p− p′| ≤ ε is always true if p, p′ 6= 1. Indeed,
thanks to the ideal encryption assumption stating that p, p′ ≤ 1

q(η) , if p, p
′ 6= 1,

we have that p, p′ < ε. Therefore, the three cases K.p ∼ε K.p′ , m.p ∼ε m.p′ and
(P.p1

, Q.p2
).p ∼ε (P

′.p′
1
, Q′.p′

2
).p′ collapse into the case P.p ∼ε Q.p′ , p, p

′ ≤ ε

(case 3 of the proof of ⇐)), when p, p′ 6= 1.
Finally, note that we did not consider the cases in which P.p ∼ε Q.p′ for some

P,Q ∈ pPat with p = 1 (p 6= 1) and p′ 6= 1 (p′ = 1). In such cases, the condition
|1−p′| ≤ ε (|1−p| ≤ ε) does not hold, since, by the ideal encryption assumption,
p′ ≤ 1

q(η) (p ≤ 1
q(η)) and, by the premises of the theorem, ε < 1 − 1

q(η) . As

a consequence, it is impossible to find a case in which P.p ∼ε Q.p′ for some
P,Q ∈ pPat with p = 1 (p 6= 1) and p′ 6= 1 (p′ = 1).

5 Secrecy against the Computational Adversary

In this section we introduce a notion of secrecy of some information within a
given expression. Consider for example the expression M = ({m}K , {n}

′
K). We

are interested in evaluating whether the expressionM maintains a given secretm
assuming that the expression G models the actual knowledge of an adversary6.
In particular, we are also interested in evaluating the degree of secrecy of m
within M . Intuitively, we observe that a certain secret m is private in M if
the expression N , obtained by substituting every occurrence of m in M with
m′ 6= m, is similar to M . More formally, we provide the following definition.

Definition 6. Given a knowledge modeled by the expression G, a certain secret
α such that α ∈ Keys or α ∈ String, a parameter ε ∈ [0, 1[and an expression
M ∈ Exp such that α occurs in M , we say that α is εG-secret in M iff the
expression N obtained by substituting every occurrence of α in M with the key
K 6= α (if α ∈ Keys) or with the string m 6= α (if α ∈ String) is such that
M ≈G

ε N .

Intuitively, Definition 6, inspired by [1], states that a certain secret α is
private within an expression M if an adversary is not able to distinguish M

from the expression N obtained by substituting in M every occurrence of α
with α′ 6= α. In a sense, that means the adversary is not able to extract α
from M with a probability greater than ε. Therefore, if α is εG-secret in M , we
can deduce that the adversary with knowledge G can extract α from M with a
success probability equal or smaller than ε.

Example 2. Consider the expression M = ({m}K1
, {K}K2

) and a knowledge
G = K1.
On the one hand, we obviously have that m is not εG-secret in M for any

ε ∈ [0, 1[. Given N = ({m′}K1
, {K}K2

) we have that M 6≈G
ε N , in fact pPG

M =
(m.1,K.p) where p = pdec({K}K2

, (M,G)) = pdec({K}K2
, (N,G)) and pPG

N =
(m′.1,K.p). Since m 6= m′ we obviously have that pPG

M 6∼ε pPG
N so that, in

practice, M 6≈G
ε N .

6 The expression G models, for example, the sequence of messages exchanged within
the network until a certain moment, and the set of keys known by the adversary.

On the other hand, we have that K is εG-secret in M for any ε ∈ [p, 1[.
Given N = ({m}K1

, {K ′}K2
) we have that M ≈G

ε N for any ε ∈ [p, 1[, in
fact pPG

M = (m.1,K.p) and pPG
N = (m.1,K

′.p). Since ε ≥ p we have that the
adversary is not able to distinguishK fromK ′ (pPG

M ∼ε pP
G
N), so that in practice

we have that M ≈G
ε N .

5.1 An Application

We apply the notion of secrecy within an expression in a very simple real case.
Consider a protocol where a server S could be asked to generate a secret key
and then send it back to the entity A that applied the request. The server also
monitors and keeps track of all the messages exchanged in the network.
Assuming that an authentication phase precedes the protocol, we denote with

KSA a key shared between the server S and the entity A. Finally, we use t to
denote a time stamp. The protocol can be described as follows (with the standard
notation A→ B :Msg we denote a messageMsg sent by A and received by B):

1. A→ S : {request, A, S, t}KSA

2. S → A : {K,S,A, t}KSA

where K is the secret key generated by the server.
We now translate the messages exchanged by the protocol into cryptographic

expressions, by assuming that KSA,K ∈ Keys and that request, A, S, t cor-
respond to r, a, s, t ∈ String, respectively. Hence, we have that the protocol
exchanges the following expressions:

1. {(r, ((a, s), t))}KSA

2. {(K, ((s, a), t))}KSA

Now, assume that all the messages exchanged in the network are modeled by the
formal expression G. Then, we apply our notion of secrecy within expressions in
order to check whether the expression {(K, ((s, a), t))}KSA

ensures a given degree
ε of secrecy for K. To this end, what the server needs to do is to check whether
K is εG-secret in {(K, ((s, a), t))}KSA

. The parameter ε is fixed by the server and
represents the security threshold needed to guarantee the secure execution of the
protocol. Note that, as the traffic of information within the network increases
and the amount of messages ciphered with the shared key KSA gets larger, the
server may not guarantee the εG-secrecy anymore. Our notion of secrecy within
expressions is able to capture situations of this kind. Therefore, if at a certain
instant of time K is not εG-secret in {(K, ((s, e), t))}KSA

anymore, the server
may, for example, activate a procedure generating a new shared key with the
entity A and then send the secret to A encrypted with the fresh key.

6 Related Work

The treatment of cryptographic operations within formal models is covered by
a quite large body of literature, but most of these efforts do not consider cryp-
tographic operations in an imperfect cryptography scenario.

This work represents a step toward the definition of a formal language with
cryptographic primitives and conditional statements for analyzing both unwanted
disclosure of data due to the nature of the protocols and information leakage due
to the nature of the cryptographic means. In the literature, both probability and
computational complexity are studied in formal settings.
Process algebra and computational view of cryptography are combined in [14]

where, in the setting of a subset of asynchronous π-calculus, an asymptotic no-
tion of probabilistic equivalence is defined. The observational equivalence defined
in terms of such a notion can be related to polynomial time statistical tests, i.e.
equivalent processes are indistinguishable from the viewpoint of polynomial time
adversaries. Security is then stated in terms of indistinguishability between the
protocol under analysis and an idealized protocol specification. More recently, a
definition of probabilistic noninterference which includes a computational case
has been defined in [5] in the setting of asynchronous probabilistic reactive sys-
tems. In particular, computational noninterference means that the advantage of
the external observer (which interacts with the system under analysis) for a cor-
rect guess of the interfering adversary behavior is a negligible function. A formal
notion of computational indistinguishability is also defined in [13] on the basis of
a simple model where public outputs are observed in order to infer the content
of secret inputs. Finally, [22] compares the classical Dolev-Yao adversary with
an enhanced computational adversary which can guess the key for decrypting
an intercepted message (albeit only with negligible probability). The two adver-
saries are shown to be equivalent with respect to a secrecy property. Moreover,
in [22] the authors define a function similar to our pdec in order to model the
probability for a computational adversary of guessing a key. However they ab-
stract away from the particular ciphertext in which the key to be guessed is used
as the ciphering key, and from the knowledge the adversary gets. As we do, they
also abstract away from how the probability pdec({m}K) could be computed.
We finally point out that probabilistic notions of security as well as approx-

imate security properties can be found in the literature (see, e.g., [10, 7, 4, 3]),
but they do not relate probability and cryptographic primitives.

7 Conclusion

In this paper we proved that a standard notion of Dolev-Yao adversary equates
the expressive power of a computational adversary in the case ideal encryption is
assumed. This is done in a formal framework where indistinguishability among
cryptographic expressions is defined by means of a notion of probabilistic simi-
larity taking into account computational poly-time adversaries.
The formal comparison among cryptographic expressions and its application

to the verification of security properties represents an important step towards
the definition of a formal framework for modelling cryptographic protocols and
analyzing their robustness against malicious parties. In particular, the robustness
of a system can be evaluated both in terms of absence of (probabilistic) covert
channels and in terms of effectiveness of cryptanalysis attacks. While the first

kind of attack has been deeply analyzed in the literature (see, e.g., [7, 4] and the
references therein), in this paper we concentrated on the second type of security
problem and we proposed an approach, which, as a further line of investigation,
aims at putting the basis for a formal framework where both families of security
flaws can be attacked in an integrated way.

References

1. M. Abadi, A. D. Gordon, “A Calculus for Cryptographic Protocols: The Spi Cal-
culus”, Information and Computation, 148(1):1–70, 1999.

2. M. Abadi, P. Rogaway, “Reconciling Two Views of Cryptography (The Compu-
tational Soundness of Formal Encryption)”, in Proc. of 1st IFIP Int. Conf. on
Theoretical Computer Science, Springer LNCS 1872:3-22, 2000.

3. A. Aldini, M. Bravetti, A. Di Pierro, R. Gorrieri, C. Hankin, H. Wiklicky, “Two
Formal Approaches for Approximating Noninterference Properties”, Foundations
of Security Analysis and Design II, R. Focardi and R. Gorrieri, eds., Springer
LNCS 2946:1-43, 2004.

4. A. Aldini, M. Bravetti, R. Gorrieri, “A Process-algebraic Approach for the
Analysis of Probabilistic Non-interference”, Journal of Computer Security,
vol. 12(2):191-245, IOS Press, 2004.

5. M. Backes, B. Pfitzmann, “Computational Probabilistic Non-interference”, in
Proc. of 7th European Symposium on Research in Computer Security, Springer
LNCS 2502:1-23, 2002.

6. A. Datta, R. Kusters, J. C. Mitchell, A. Ramanathan, V. Shmatikov, “Unifying
Equivalence-Based Definitions of Protocol Security”, in Proc. of Workshop on
Issues in the Theory of Security, WITS’04, 2004.

7. A. Di Pierro, C. Hankin, H. Wiklicky, “Approximate Non-Interference”, in Proc.
of 15th Computer Security Foundations Workshop, IEEE CS Press, pp. 1-17,
2002.

8. D. Dolev, A. Yao, “On the Security of Public-key Protocols”, IEEE Transactions
on Information Theory, 29:198-208, 1983.

9. A. Durante, R. Focardi, R. Gorrieri, “A Compiler for Analysing Cryptographic
Protocols Using Non-Interference”, ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 9(4):489-530, 2000.

10. J. W. Gray III, “Toward a Mathematical Foundation for Information Flow Se-
curity”, Journal of Computer Security, 1:255-294, 1992.

11. J. Herzog, “A Computational Interpretation of Dolev-Yao Adversaries”, in Proc.
of 3rd Int. Workshop on Issues in the Theory of Security (WITS’03), 2003.

12. R. A. Kemmerer, “Analyzing Encryption Protocols using Formal Verification
Techniques”, IEEE Journal on Selected Areas in Communications, 7(4):448-457,
1989.

13. P. Laud, “Semantics and Program Analysis of Computationally Secure Informa-
tion Flow”, in Proc. of 10th European Symposium on Programming (ESOP’01),
Springer LNCS 2028:77-91, 2001.

14. P. Lincoln, J. C. Mitchell, M. Mitchell, A. Scedrov, “A Probabilistic Poly-Time
Framework for Protocol Analysis”, in Proc. of 5th ACM Conf. on Computer and
Communications Security, ACM Press, pp. 112-121, 1998.

15. D. Micciancio, B. Warinschi, “Completeness Theorems for the Abadi-Rogaway
Language of Encrypted Expressions”, in 2nd ACM SIGPLAN and IFIP WG 1.7
Workshop on Issues in the Theory of Security (WITS’02), Portland (OR), 2002.

16. J. K. Millen, S. C. Clark, S. B. Freedman, “The Interrogator: Protocol Security
Analysis”, IEEE Transactions on Software Engineering, SE-13(2):274-288, 1987.

17. L. C. Paulson, “The Inductive Approach to Verifying Cryptographic Protocols”,
Journal of Computer Security, 6(1-2):85-128, 1998.

18. A. Ramanathan, J. Mitchell, A. Scedrov, V. Teague, “Probabilistic Bisimula-
tion and Equivalence for Security Analysis of Network Protocols”, to appear in
Foundations of Software Science and Computation Structures (FOSSACS’04),
Springer Verlag, 2004.

19. S. Schneider, “Security Properties and CSP”, in IEEE Symposium on Security
and Privacy, IEEE CS Press, pp. 174-187, 1996.

20. A. Troina, A. Aldini, R. Gorrieri, “A Probabilistic Formulation of Imperfect Cryp-
tography”, in Proc. of 1st Int. Workshop on Issues in Security and Petri Nets,
WISP’03, 2003.

21. A. Troina, A. Aldini, R. Gorrieri, “Approximating Imperfect Cryptography in a
Formal Model”, in Proc. of Mefisto Project Final Workshop, Elsevier ENTCS,
to appear, available at http://mefisto.web.cs.unibo.it/pubbl.html.

22. R. Zunino, P. Degano, “A Note on the Perfect Encryption Assumption in a Pro-
cess Calculus”, to appear in Foundations of Software Science and Computation
Structures (FOSSACS’04), Springer Verlag, 2004.

