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Abstract—This paper provides a functional analysis perspective
of information-theoretic learning (ITL) by defining bottom-up a
reproducing kernel Hilbert space (RKHS) uniquely determined by
the symmetric nonnegative definite kernel function known as the
cross-information potential (CIP). The CIP as an integral of the
product of two probability density functions characterizes simi-
larity between two stochastic functions. We prove the existence
of a one-to-one congruence mapping between the ITL RKHS and
the Hilbert space spanned by square integrable probability den-
sity functions. Therefore, all the statistical descriptors in the orig-
inal information-theoretic learning formulation can be rewritten as
algebraic computations on deterministic functional vectors in the
ITL RKHS, instead of limiting the functional view to the estima-
tors as is commonly done in kernel methods. A connection between
the ITL RKHS and kernel approaches interested in quantifying the
statistics of the projected data is also established.

Index Terms—Cross-information potential, information-theo-
retic learning (ITL), kernel function, probability density function,
reproducing kernel Hilbert space (RKHS).

I. INTRODUCTION

A
reproducing kernel Hilbert space (RKHS) is a special

Hilbert space associated with a kernel such that it re-

produces (via an inner product) each function in the space or,

equivalently, a space where every point evaluation functional is

bounded. Let be a Hilbert space of real-valued functions on a

set , equipped with an inner product and a real-valued

bivariate function on . Then the function

is said to be nonnegative definite if, for any finite point set

and for any not all zero corresponding

real numbers

Any nonnegative definite bivariate function is a repro-

ducing kernel because of the following fundamental theorem.
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Theorem 1 (Moore–Aronszajn): Given any nonnegative def-

inite function , there exists a uniquely determined (pos-

sibly infinite dimensional) Hilbert space consisting of func-

tions on such that

Then is said to be a reproducing kernel Hilbert space

with reproducing kernel . Property II is called the reproducing

property of in .

The existence of a reproducing kernel Hilbert space corre-

sponding to any symmetric and nonnegative definite kernel

function is one of the most fundamental results [1]. The re-

producing kernel Hilbert space framework was instrumental to

providing practical solutions to a class of differential equations

(Green’s functions). But it was not until 1943 that Aronszajn

systematically developed the general theory of RKHS and

coined the term “reproducing kernel” [2].

The RKHS framework also provides a natural link between

stochastic process and deterministic functional analysis. It

was Parzen who first introduced the RKHS methodology

in statistical signal-processing and time-series analysis in

the late-1950s. The essential idea is that there exists a

congruence map between the RKHS of random variables

spanned by the random process and its covariance function

, which determines a unique RKHS,

denoted as . Note that the kernel includes the second-order

statistics of the data through the expected value (a data-de-

pendent kernel) and Parzen clearly illustrated that the RKHS

offers an elegant functional analysis framework for minimum

variance unbiased estimation of regression coefficients, least

squares estimation of random variables, detection of signals

in Gaussian noise, and others [3]–[5]. In the early 1970s,

Kailath et al. presented a series of detailed papers on the RKHS

approach to detection and estimation problems to demonstrate

its superiority in computing likelihood ratios, testing for non-

singularity, bounding signal detectability, and determining

detection stability [6]–[10]. RKHS concepts have also been

extensively applied to a wide variety of problems in optimal

approximation including interpolation and smoothing by spline

functions in one or more dimensions (curve and surface fitting)

[11]. De Figueiredo took a different approach to apply RKHS in

nonlinear system and signal analysis [12]. He built the RKHS

bottom-up using arbitrarily weighted Fock spaces that played

an important role in quantum mechanics [13]. The spaces are

composed of polynomials or power series in either scalar or

multidimensional variables. The generalized Fock spaces have
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been also applied to nonlinear system approximation, semicon-

ductor device characteristics modeling, and neural networks

[12].

Recent work on support vector machines by Vapnik rekin-

dled the interest in RKHS for pattern recognition [14], [15] but

with a different twist. Here RKHS is used primarily as a high-di-

mensional feature space where the inner product is efficiently

computed by means of the kernel trick. A nonnegative definite

kernel function (e.g., Gaussian, Laplacian, polynomial, and

others [16]) nonlinearly projects the data sample-by-sample into

a high-dimensional RKHS, denoted as , induced by . For

separability (Cover theorem [17]) it is advantageous to consider

the learning problem in the RKHS because of its high dimen-

sion. When learning algorithms can be expressed in terms of

inner products, this nonlinear mapping becomes particularly in-

teresting and useful since kernel evaluations in the input space

implicitly compute inner products of the transformed data in

the RKHS without explicitly using or even knowing the non-

linear mapping. Therefore, exploiting the linear structure of the

RKHS, one can elegantly build a nonlinear version of a linear

algorithm based on inner products and short circuit the need

for iterative training methods as necessary in artificial neural

networks. Essentially a kernel method is a shallow (one layer)

neural network whose parameters can be analytically computed

given the training set data. Numerous kernel-based learning al-

gorithms have been proposed in machine learning [18]. For ex-

ample, kernel principal component analysis [19] and kernel in-

dependent component analysis [20] are some of the most well-

known kernel-based learning methods. However, this RKHS

structure is given by the kernel and is therefore data inde-

pendent, unlike .

More recently, a research topic called information-theoretic

learning (ITL) has emerged independently [21], [22]. ITL is an

optimal signal-processing technique that combines information

and adaptive filtering theories to implement new cost functions

for adaptation that lead to “information filtering” [22] without

requiring a model of the data distributions. ITL builds upon the

concepts of Parzen windowing applied to Rényi’s entropy [23]

to obtain a sample by sample estimator of entropy directly from

pairs of sample interactions. By utilizing the quadratic Rényi’s

measure of entropy and approximations to the Kullback–Leibler

divergence, ITL proposes alternate similarity metrics that quan-

tify higher order statistics directly from the data in a nonpara-

metric manner. ITL has achieved excellent results on a number

of learning scenarios such as clustering [24], [25], feature ex-

traction [26], function approximation [27], and blind equaliza-

tion [28]. The centerpiece in all these engineering applications

is the information potential (IP) estimator, which estimates the

argument of the logarithm of Rényi’s quadratic entropy using

Parzen window kernels. However, its direct relation to entropy

[and therefore to the probability density function (pdf) of the

data] and the Cauchy–Schwarz divergence between pdfs eval-

uated in RKHS [29] indicates that it may be alternatively for-

mulated as a data-dependent kernel transformation that trans-

fers the statistical properties of the data to a different RKHS as

Parzen’s does.

The main focus of this paper is exactly to construct an RKHS

framework for information-theoretic learning (ITL RKHS). The

ITL RKHS is directly defined on a space of pdfs with a kernel

defined by inner products of pdfs. Since all the statistical infor-

mation of the input is represented in its pdf, the ITL RKHS will

be data dependent and is suitable for directly obtaining statistics

from the data using inner products. Moreover, it still takes full

advantage of the kernel trick to evaluate IP directly from data

and the other descriptors of ITL.

The remainder of this paper is organized as follows. In

Section II, we briefly introduce the concept of information-the-

oretic learning and relevant statistical descriptors. We then

propose the ITL RKHS framework in Section III. The new un-

derstanding and the ITL descriptors are rewritten in the RKHS

framework in Section IV. A theoretical lower bound for the

information potential is proved in Section V. We further con-

nect ITL RKHS to the statistics in kernel space in Section VI.

We discuss some specific issues in Section VII and conclude in

Section VIII.

II. INFORMATION-THEORETIC LEARNING

The initial goal of ITL was to propose alternative cost func-

tions for adaptive filtering that would quantify higher order

moments of the error sequence [27]. Since entropy character-

izes the uncertainty in the error, it was judged a good candidate.

The difficulty of Shannon’s entropy resides on nonparametric

estimation within the constraints of optimal filtering (e.g.,

smooth costs). For this reason, we embraced a generalization

of Shannon’s entropy proposed by Rényi [22]. Rényi’s entropy

definition is based on the so called quasi-linear mean, which

is the most general mean compatible with Kolmogorov’s ax-

iomatics [30]. It is a parametric family of entropies given by

where is the pdf of the continuous random variable . It

is easy to show that the limit of 1 yields Shannon’s entropy

and [23] shows that the singularity is not essential. Perhaps a

more insightful interpretation is to observe

i.e., the argument of the logarithm of Rényi’s entropy is the -

order moments of the pdf of the data.

The initial interest of Rényi’s definition for ITL was the ex-

istence of a practical nonparametric estimator for the quadratic

Rényi’s entropy defined as

(1)

i.e., the of the first moment of the pdf. Since the loga-

rithm function is monotonic, the quantity of interest in adaptive

filtering is the first moment of the pdf itself

(2)
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which is called the information potential,1 so named due to a

similarity with a potential field in physics [21].

A nonparametric asymptotically unbiased and consistent es-

timator for a given pdf is defined as [31]

(3)

where is called the Parzen window, or kernel. Here the

Parzen kernel will be chosen as a symmetric nonnegative def-

inite function just like in kernel-based learning theory, such as

the Gaussian, polynomial, etc. [16]. Then by evaluating the ex-

pectation of Parzen’s pdf approximation in (2), the integral can

be directly estimated from the data as

(4)

where is the data sample and is the total number,

which is the estimator for IP. The concept and properties of

information potential (and its estimator) have been mathemat-

ically studied and a new criterion based on information poten-

tial proposed, called the minimization error entropy (MEE), to

adapt linear and nonlinear systems [27]. MEE serves as an al-

ternative cost function to the conventional mean square error

(MSE) in linear/nonlinear filtering with several advantages in

performance when the error distribution is not Gaussian. If we

think for a moment, we see the big difference between MSE and

MEE: MSE is the second-order moment of the data and MEE is

the first moment of the pdf of the data. Since all the information

contained in the random variable is represented in its pdf, we

can expect better performance from the latter than from MSE.

In information theory, mutual information is used to quantify

the divergence between the joint pdf and the product of mar-

ginal pdfs of two random variables. Another well-known diver-

gence measure is the Kullback–Leibler divergence [32]. How-

ever, both are difficult to estimate in practice without imposing

simplifying assumptions about the data. Numerical methods are

required to evaluate the integrals. This IP and two divergence

measures among pdfs, one based on their Euclidean distance

and the other on Cauchy–Schwarz inequality, have been pro-

posed to surpass these limitations [21].

Given two probability density functions and , their

Euclidean divergence is defined as

(5)

1Note that in previously published papers, we called the estimator for this
quantity (4) as the information potential. In this paper, we generalize the concept
and call the statistical descriptor behind it (2) as the IP and refer to (4) as the
estimator of IP. The physical interpretation still holds.

The divergence measure based on Cauchy–Schwarz inequality

is given by

(6)

Notice that both and are greater than or

equal to zero, and the equality holds if and only if .

Notice the form of the integrals. We have in both the first mo-

ment of each pdf and a new term that is the first

moment of the pdf over the other pdf (or vice versa),

which is called the cross-information potential (CIP) [21]. CIP

measures the similarity between two pdfs as can be expected

due to its resemblance to Bhattacharyya distance and other dis-

tances, as explained in [24]. CIP appears both in Euclidean and

Cauchy–Schwarz divergence measures. If one substitutes

by in CIP, it becomes the argument of Rényi’s quadratic

entropy. As expected, all these terms can be estimated directly

from data as in (4).

The Euclidean (5) and Cauchy–Schwarz divergence (6) can

be easily extended to two-dimensional random variables. As a

special case, if we substitute the pdfs and in (5) and (6)

by the joint pdf and the product of marginal pdfs

for random variables , , respectively, we ob-

tain the Euclidean quadratic mutual information as [21]

(7)

and the Cauchy–Schwarz quadratic mutual information as [21]

(8)

If and only if the two random variables are statistically inde-

pendent, then (and also ).

The appeal of these four divergences is that every term in the

equations can be directly estimated, yielding again practical al-

gorithms. Hence, their manipulation can be used for unsuper-

vised learning algorithms such as independent component anal-

ysis [33] and clustering [34].

The IP estimator (4) can be interpreted in an RKHS.

Indeed, using the reproducing property of , any sym-

metric nonnegative definite kernel function can be written

as , where is the nonlinearly

transformed data in the RKHS induced by the kernel
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function and the inner product is performed in . Therefore,

we can rewrite (4) as

Similar interpretations of the Cauchy–Schwarz divergence in

were developed in [36]. As pointed out in the previous sec-

tion, the RKHS is data independent since the kernel is pre-

designed and acts on individual data samples, which means that

extra computation involving functional evaluations in is re-

quired when statistical quantities are estimated. The example of

the IP estimator is still pretty simple and can exploit the kernel

trick, but in general this may not be the case. The difficulty is

that the inner product structure of is not translating the statis-

tics of the data. This difficulty is not peculiar to ITL but extends

to any of the kernel-based machine-learning algorithms. For in-

stance, the estimator of kernel ICA can be estimated in but

the covariance of the projected data is very hard to estimate [20].

Therefore, we conclude that it is unclear how to induce a gen-

eral RKHS where the definition of inner products incorporating

the statistical descriptors of the data will allow signal processing

from basic principles. is a step in this direction, but it only

applies to Gaussian processes and is a linear mapping of the

input data space, as will be discussed later.

III. RKHS FRAMEWORK FOR ITL

From the various definitions in information-theoretic learning

summarized above, we see that the most general quantity of in-

terest is the integral of the product of two pdfs ,

which we called the CIP. Therefore, this will be our starting

point for the definition of the ITL RKHS that will include the

statistics of the input data in the kernel.

A. The Space of PDFs

Let be the set that consists of all square integrable one-

dimensional probability density functions, i.e., ,

, where and is an index set. We then form a

linear manifold

(9)

for any countable and . Complete the set in (9)

using the metric

(10)

and denote the set of all linear combinations of pdfs and its limit

points by . is an space on pdfs. Moreover, by

the theory of quadratically integrable functions, we know that

the linear space forms a Hilbert space if an inner product

is imposed accordingly. Given any two pdfs and in

, we can define an inner product as

(11)

Notice that this inner product is exactly the CIP. This defini-

tion of inner product has a corresponding norm of (10). Hence,

equipped with the inner product (11) is a Hilbert space.

However, it is not an RKHS because the inner product is not re-

producing in , i.e., the point evaluation of any element in

cannot be represented via the inner product between two

functionals in . Next we show that the inner product (11)

is symmetric nonnegative definite, and by the Moore–Aronszajn

theorem it uniquely defines an RKHS.

B. RKHS Based on

First, we define a bivariate function on the set as

(12)

In RKHS theory, the kernel function is a measure of similarity

between functionals. Notice that (12) corresponds to the defini-

tion of the inner product (11) and the cross-information potential

between two pdfs; hence it is natural and meaningful to define

the kernel function as . Next, we show that (12) is sym-

metric nonnegative definite in .

Property 1 (Nonnegative Definiteness): The function (12) is

symmetric nonnegative definite in .

Proof: The symmetry is obvious. Given any positive in-

teger , any set of and any not

all zero real numbers , by definition we have

Hence, is symmetric nonnegative definite, and it is

also a kernel function.

According to the Moore–Aronszajn theorem, there is a

unique RKHS, denoted by , associated with the symmetric

nonnegative definite function (12). We construct the RKHS

bottom-up. Since the bivariate function (12) is symmetric

and nonnegative definite, it also has an eigendecomposition by

Mercer’s theorem [35] as

(13)

where and are se-

quences of eigenfunctions and corresponding eigenvalues of the

kernel function , respectively. The series above con-

verges absolutely and uniformly on [35].
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Then we define a space consisting of all functionals

whose evaluation for any given pdf is defined as

(14)

where the sequence satisfies the following

condition:

(15)

Furthermore, we define an inner product of two functionals in

as

(16)

where and are of form (14) and and satisfy (15).

It can be verified that the space equipped with the kernel

function (12) is indeed a reproducing kernel Hilbert space and

the kernel function is a reproducing kernel because of

the following two properties.

1) as a function of belongs to for any

given because we can rewrite as

That is, the constants become the eigen-

functions in the definition of .

Therefore

2) Given any , the inner product between the repro-

ducing kernel and yields the function itself by the defi-

nition (16)

This is called the reproducing property.

Therefore, is an RKHS with the kernel function and inner

product defined above.

By the reproducing property, we can rewrite the kernel func-

tion (13) as

(17)

The reproducing kernel linearly maps the original pdf into

the RKHS .

We emphasize here that the reproducing kernel is

deterministic and data-dependent, by which we mean the norm

of the transformed vector in the RKHS is dependent on the

pdf of the original random variable because

This is very different from the reproducing kernel used

in kernel-based learning theory. The norm of nonlinearly pro-

jected vector in the RKHS does not rely on the statistical

information of the original data since

if we use translation-invariant kernel functions [16]. Moreover,

if is a random variable, is also a random variable in the

RKHS . The value of is a constant regardless of the orig-

inal data. Consequently, the reproducing kernel Hilbert spaces

and determined by and , respectively,

are very different in nature.

C. Congruence Map Between and

We have presented two Hilbert spaces: the Hilbert space

of pdfs and the RKHS . Even though their elements

are very different, there actually exists a one-to-one congruence

mapping (isometric isomorphism) from RKHS onto

such that

(18)

Notice that the mapping preserves isometry between and

since by definitions of inner product (11) in and

(17) in

That is, the mapping maintains the inner products in both

and .

In order to obtain an explicit representation of , we define an

orthogonal function sequence satisfying

and

(19)

where and are the eigenvalues and eigenfunc-

tions associated with the kernel function by Mercer’s

theorem (13). We achieve an orthogonal decomposition of the

probability density function as

(20)
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The normality condition is fulfilled by (19).

Note that the congruence map can be characterized as the

unique mapping from into satisfying the condition

that for every functional in and every in

(21)

It is obvious that in (18) fulfills (21). Then the congruence

map can be represented explicitly as

(22)

where satisfies condition (15).

To prove the representation (22) is a valid and unique map,

substituting (20) and (22) into (21), we obtain

In summary, we provide an explicit representation for the

congruence map from RKHS into . These two

spaces are equivalent in this geometrical sense. However, it

should be emphasized that the constituting elements are very

different in nature. The RKHS isometry framework offers a

natural link between stochastic and deterministic functional

analysis. Hence, it is more appealing to use RKHS for

information-theoretic learning, as we will show in the next

section.

D. Extension to Multidimensional pdfs

Extension of to multidimensional pdfs is straightfor-

ward since the definitions and derivations in the previous

section can be easily adapted into multidimensional proba-

bility density functions. Now let be the set of all square

integrable -dimensional probability density functions,

i.e., , and , where

and is the index set.

We need to change the definition of kernel function (12) to

Then every definition and derivation might as well be modi-

fied accordingly in the previous section. Let denote the

RKHS determined by the kernel function for -dimensional

pdfs. The proposed RKHS framework is consistent with the di-

mensionality of the pdfs.

The CIP based on the multidimensional pdfs characterizes the

information among different random variables whose domains

might not necessarily be the same in the whole space. In partic-

ular, the two-dimensional pdf CIP can be used to quantify the

divergence or the cross-covariance between two random vari-

ables because the joint pdf can be factorized into a product of

two marginal pdfs as a special independent case. This is exactly

what the definitions of Euclidean quadratic mutual information

(7) and Cauchy–Schwarz quadratic mutual information (8) are

based on. We will use the two-dimensional pdf CIP to reformu-

late these two quantities in the following section.

IV. ITL DESCRIPTORS IN THE ITL RKHS FRAMEWORK

In this section, we will elucidate the added insight that the

ITL RKHS brought into the picture of ITL, the Parzen

RKHS. We will also reexamine the ITL descriptors introduced

in Section II.

First, as the kernel function in is defined as the

CIP between two pdfs, immediately we have

(23)

That is, the CIP is the inner product between two transformed

functionals in the RKHS . The inner product quantifies the

similarity between two functionals, which is consistent with the

definition of CIP. The IP (first moment of the pdf) can thus be

specified as the inner product of the functional with respect to

itself

(24)

The IP appears as the norm square of nonlinearly transformed

functional in . Therefore, minimizing the error entropy in

ITL turns out to be the maximization of the norm square in ,

as seen in (1). One can expect that the norm maximization will

include the information regarding the pdf. This has been recog-

nized in ITL [27] by applying the Taylor series expansion for

the Gaussian kernel used in the IP estimation (4)

But notice that this result depends on the kernel (the Gaussian

kernel just provides sums of even-order moments, a polynomial

kernel will create a finite sum of moments, etc.), while now we

have a clean statement that derives from the use of the first mo-

ment of the pdf in . Moreover, the nonlinearly transformed

functional is deterministic in . Hence, the proposed

RKHS framework provides a link between a stochastic and a

deterministic transformation.

The conventional mean square error has also been rewritten

as the norm square of projected vectors in the RKHS in-

duced by the covariance function [3]. But the RKHS is re-

stricted to second-order statistics, i.e., the mean square error that

is optimal for Gaussian processes, while the RKHS embeds

the higher order statistics. Finally, works with statistical in-

formation in the joint space of different lags, while would

be the product of marginals at two lags. In order to access the

joint space, another ITL function called correntropy is neces-

sary [37], but it will not be covered in this paper.
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Compared to the RKHS induced by the predesigned

kernel function used in the machine learning, our framework is

more elegant because it corresponds to the direct definition of

the RKHS based on the first moment of the pdf without ever

talking about a kernel-based pdf estimator. However, there is a

close relationship between and statistics estimated in ,

as will be fully addressed in Section VI.

Based on the reformulations of cross-information poten-

tial (23) and information potential (24) in RKHS , we

are ready to rewrite the one-dimensional Euclidean (5) and

Cauchy–Schwarz divergence measures (6) in terms of opera-

tions on functionals in . First

(25)

That is, the Euclidean divergence measure is in fact the norm

square of the difference between two corresponding functionals

in , which is much more satisfying than the original descrip-

tion (5). The Cauchy–Schwarz divergence measure can be pre-

sented as

where is the angle between two functional vectors

and . Therefore, the Cauchy–Schwarz divergence mea-

sure truly depicts the separation of two functional vectors in the

RKHS . When two vectors lie in the same direction and the

angle , . If two vectors are perpendic-

ular to each other , . The RKHS

supplies rich geometric insights into the original definitions

of the two divergence measures. The same conclusion has been

reached by Jenssen [29] when he used the kernel estimators of

and , which shows again the close rela-

tionship between ITL RKHS and statistics evaluated in .

To extend the same formulation to the Euclidean and

Cauchy–Schwarz quadratic mutual information (7) and (8),

consider the product of marginal pdfs as a special

subset of the two-dimensional square integrable pdfs set ,

where the joint pdf can be factorized into product of marginals,

i.e., . Then both measures characterize different

geometric information between the joint pdf and the factorized

marginal pdfs. The Euclidean quadratic mutual information (7)

can be expressed as

where is the functional in corresponding to the

joint pdf and is for the product of the

marginal pdfs . Similarly, the Cauchy–Schwarz

quadratic mutual information can be rewritten as

(26)

The angle is the separation between two functional vec-

tors in . When two random variables are independent

( and ), and the

divergence measure since two sets are equal.

If , two vectors in are orthogonal and the joint

pdf is singular to the product of marginals. In this case, the

divergence measure is infinity.

The proposed RKHS framework provides an elegant and

insightful geometric perspective towards information-theoretic

learning. All the ITL descriptors can now be reexpressed in

terms of algebraic operations on functionals in RKHS . The

proposed RKHS is based on the well-behaved square-integrable

pdfs; therefore it excludes nonsquare-integrable pdfs. But since

all the cost functions in ITL are based on square-integrable

pdfs, the proposed RKHS framework is suitable for ITL and

for most of statistical learning.

V. A LOWER BOUND FOR INFORMATION POTENTIAL

Based on the proposed RKHS framework for the information-

theoretic learning, we derive a lower bound for the IP (2). First

we cite the projection theorem in Hilbert space that we will use

in the following proof.

Theorem 2 (Projection in Hilbert Space): Let be a Hilbert

space, be a Hilbert subspace of spanned by linearly

independent vectors , be a vector in , and

be a quantity such that

Then there exists a unique vector, denoted as , in

such that

(27)

where is the Gram matrix whose is given

by . The projected vector also satisfies the fol-

lowing conditions:

(28)

(29)

The geometrical explanation of the theorem is straightfor-

ward. Readers can refer to [38] for a thorough proof. Now we

state the proposition on a lower bound for the information po-

tential as a statistical estimator.

Proposition (Lower Bound for the Information Potential):

Let be a vector in the RKHS induced by the kernel

and be a subspace of spanned by linearly indepen-

dent vectors . Then

(30)

where is the Gram matrix whose term is

defined as .
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Fig. 1. The relationship among the sample space, pdf space, proposed ITL RKHS � , and RKHS � . The sample space and � are connected via the nonlinear
transformation � ���. The pdf space and � are connected via the feature map ���� ��. A realization of a pdf in pdf space corresponds to a set of points in the
sample space. The ensemble average of functionals in � corresponds to one functional in � . The kernel methods and ITL are related via the Parzen window.

Proof: By the projection theorem (27), we can find the or-

thogonal projection of onto the subspace as

Since the Gram matrix is positive definite for linear independent

vectors, the inverse always exists. Next, we calculate the norm

square of the projected vector by (29)

(31)

On the other hand, the projection residual defined in (28) satis-

fies

(32)

Combining (31) and (32), we come to the conclusion of our

proposition (32).

The proposition generalizes the Cramér–Rao inequality in

statistical estimation theory that only involves the variance of

the estimator. It can also be viewed as an approximation to the

functional norm by a set of orthogonal bases. Equation (30) of-

fers a theoretical role for the IP in statistics.

VI. CONNECTION BETWEEN ITL AND KERNEL

METHODS VIA RKHS

In this section, we connect ITL and kernel methods via the

RKHS framework. As we have mentioned in the previous sec-

tion, because the RKHS is induced by the data-independent

kernel function, the nonlinearly projected data in are still

stochastic, and statistical inference is required in order to com-

pute quantities of interest. For instance, in order to compute the

statistics of the functionals, the mean and covariance are re-

quired. The expected value of functionals in the RKHS is

defined as . The cross-covariance is defined as a unique

operator such that for any functionals and in

The mean and cross-covariance operators as statistics of func-

tionals in become intermediate steps to develop algorithms

such as the maximum mean discrepancy (MMD) [39], kernel

independent component analysis (kernel ICA) [20], and others.

However, the proposed ITL RKHS is based on the CIP (in-

tegral of product of pdfs); therefore the transformed functional

in is deterministic and only algebra is needed to carry out

statistical inference in ITL RKHS. Hence our proposed RKHS

offers simplicity and elegance in dealing with data statistics.

The RKHS and the RKHS are related via the ex-

pectation operator. In order to justify this statement, Parzen’s

nonparametric asymptotically unbiased and consistent pdf

estimator (3) is employed to estimate those pdfs used in the

ITL descriptors [29]. The Parzen window evaluates the pdfs in

the sample space. Provided one chooses a nonnegative definite

kernel function as the Parzen window, it connects the RKHS

to the RKHS used in the kernel methods. As illustrated

in Fig. 1, the feature map nonlinearly projects the sample

space into a stochastic RKHS . Alternatively, the feature

map transforms the pdf space into a deterministic RKHS

. Hence the stochasticity is implicitly embedded into the

feature map, and immediate algebraic operation can be applied

to compute statistics. However, the methodology has to

rely on intermediate steps by defining mean and covariance

operators.

Next we examine two kernel-based statistical methods,

MMD [39] and kernel ICA [20], from the information-theoretic

learning perspective. We show here that MMD is equivalent to

the Euclidean divergence measure and that kernel ICA is equiv-

alent to the Cauchy–Schwarz quadratic mutual information.

The statistical computations in the RKHS have corre-

sponding algebraic expressions in the RKHS . However,

note that not all kernel method algorithms can be interpreted in

the ITL-RKHS framework.
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A. ITL Perspective of Maximum Mean Discrepancy

The MMD [39] is a statistical test based on kernel methods to

determine whether two samples are from different distributions.

Theoretically, if the expected value of for an arbitrary mea-

surable function is the same for both random variables, the two

distributions are identical. Since it is not practical to work with

such a rich function class, MMD restricts the function class to a

unit ball in an RKHS that is associated with a kernel .

This leads to the following quantity:

(33)

where and are the underlying random variables of the two

distributions and is the family of measurable functionals in the

unit ball of the RKHS .

The kernel trick can be employed here to compute MMD, that

is

(34)

Substituting (34) into the definition of MMD (33), we obtain

where and are the statistical

expectations of the functionals and in . Applying

and , an

empirical estimate of MMD can be obtained as

(35)

where and are two sets of data samples.

The estimate of MMD provides a statistical test to determine

whether two sets of data samples are from the same distribution.

We now prove that MMD is equivalent to the Euclidean diver-

gence measure. To transform the Euclidean divergence measure

(5) to the sample space, we use the Parzen window (3) to esti-

mate the pdfs given two sets of samples and

to obtain an empirical value as

(36)

Comparing (35) and (36), we observe that

. Since the Euclidean divergence measure can be

rewritten as the norm square of difference between two func-

tionals in the RKHS (25), we obtain

(37)

The left-hand side is the norm square of difference between

two functional expectations in the RKHS . Since the func-

tional is still stochastic in , the expectation operation

is necessary to carry out the computation. On the other hand,

the right-hand side is the norm square of difference between

two functionals in the RKHS (25). Because the functional

is deterministic, the computation is algebraic. The fea-

ture map for the RKHS is equivalent to the expec-

tation of the feature map for the RKHS . Therefore,

the proposed RKHS framework provides a natural link between

stochastic and deterministic functional analysis. The MMD in

kernel methods is essentially equivalent to the Euclidean diver-

gence measure in ITL.

B. ITL Perspective of Kernel ICA

Kernel ICA is a novel independent component analysis

method based on a kernel measure of dependence [20]. It

assumes an RKHS determined by the kernel and

the feature map . The feature map can be derived

from the eigendecomposition of the kernel function

according to Mercer’s theorem and forms an orthogonal basis

for the RKHS . Then the -correlation function is defined

as the maximal correlation between the two random variables

and , where and range over

(38)

Obviously, if the random variables and are independent,

then the -correlation is zero. The converse is also true provided

that the RKHS is large enough. This means that

implies and are independent.

In order to obtain a computationally tractable implementation

of -correlation, the reproducing property of RKHS (i.e., kernel

trick) (34) is used to estimate the -correlation. The nonlinear

functionals and can be represented by the linear combina-

tion of the basis in which is empirical

observations of random variable . That is

and (39)

Substituting (39) and (34) into (38) and using the empirical data

to approximate the population value, the -correlation can be

estimated as

(40)

where and are the Gram matrices associated with the

data sets and defined as .

Because the cost function in (40) is not a numerically stable

estimator in general, regularization is needed by penalizing the

RKHS norms of and in the denominator of (40). The reg-

ularized estimator has the same independence characterization

property of the -correlation as (40), since it is the numerator
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in the -correlation that characterizes the indepen-

dence property of two random variables. The difference between

the direct estimator (40) and the regularized version is only the

normalization.

We prove here the equivalence between the cost function used

in kernel ICA (40) and the Cauchy–Schwarz quadratic mutual

information (8). To prove the equivalence, we use the weighted

Parzen window, which is defined as

(41)

where is a normalization term such that the integral of

equals one.

When the Cauchy–Schwarz quadratic mutual information (8)

is used as a contrast function in ICA, it should be minimized so

that the mutual information between random variables is also

minimized. As the logarithm is a monotonic function, mini-

mizing the Cauchy–Schwarz quadratic mutual information is

equivalent to maximizing its argument. Therefore, by approx-

imating the population expectation with sample mean for the

argument in (8) and estimating the joint and marginal pdfs with

weighed Parzen window (41), we obtain

(42)

where , , and

.

Comparing (40) and (42), we notice that they have the

same numerators and different normalizations. As we already

pointed out, it is the numerators in the kernel ICA and the

Cauchy–Schwarz quadratic mutual information that charac-

terize the dependence measure of two random variables. The

denominators only provide normalization. Hence we conclude

that the Cauchy–Schwarz quadratic mutual information, esti-

mated via weighed Parzen window, is equivalent to the kernel

ICA. Moreover, the coordinates of the nonlinear functionals

and in the RKHS (39) have corresponding terms in the

weighted Parzen window (41).

In summary, the feature map works with individual data

samples and transforms each datum into the RKHS induced

by the kernel . For applications involving statistical in-

ference on the transformed data, extra operators such as the

mean and covariance are required. On the other hand, the fea-

ture map deals with the pdf directly and transforms each

pdf into the RKHS determined by the kernel . If the

applications are based on the statistics of the transformed func-

tionals, only algebraic computation is needed without defining

any extra operators as required in RKHS . Therefore the pro-

posed RKHS framework provides a direct and elegant treatment

of statistical inference using the RKHS technique. Certainly, the

RKHS is more flexible in other applications beyond statis-

tical inference since it is based on the available data samples.

The RKHS is built directly upon pdfs and requires Parzen

window to evaluate the overall cost functions from samples.

VII. DISCUSSIONS

In this section, we relate our work to the concepts of infor-

mation geometry and probability product kernels.

A. Nonparametric Versus Parametric Modeling

The RKHS framework presented in this paper elucidates the

geometric structure on the space of finite square integrable prob-

ability density functions. Since no model for the pdf is assumed,

it is nonparametric and infinite-dimensional. In statistics, infor-

mation geometry studies the intrinsic geometry in a finite-di-

mensional parametric statistical manifold formed by the pdfs

[40]. Extension to infinite-dimensional nonparametric submani-

fold has been made [41]. For finite-dimensional parametric fam-

ilies of pdfs, the only invariant metric to the tangent space is the

Riemannian structure defined by the Fisher information [40],

[42]

in the component form. The Riemannian metric coincides lo-

cally (infinitesimally) with the double of the Kullback–Leibler

divergence. More interestingly, the Fisher information is a sym-

metric nonnegative definite function defined in the parameter

space. Therefore, it also uniquely determines a reproducing

kernel Hilbert space. But, it is very different from our ap-

proach because the ITL RKHS framework is model free, i.e.,

it does not assume a parametric family of probability density

functions. The nonnegative definite kernel function (12) is

defined directly in the pdf space; however, the kernel function

in information geometry is defined in parameter space since it

aims at estimating model parameters from data. Hence, both

methodologies define nonparametric and parametric repro-

ducing kernel Hilbert spaces, respectively, to tackle problems

of interest from different perspectives.

B. Kernel Function as a Similarity Measure

The kernel function we defined characterizes relationships

between probability density functions. For instance, the one-di-

mensional kernel function quantifies how similar one

pdf is to the other. The two-dimensional function

specifies the relationship between the joint pdf and the product

of marginal pdfs. Therefore it also measures how dependent one

random variable is on the other. The Cauchy–Schwarz quadratic

mutual information (26) was applied to independent component

analysis based on this interpretation [33]. Using probability dis-

tributions to measure similarity is nothing new. One customary

quantity is the Kullback–Leibler divergence. However, it is not

positive definite nor symmetric, and hence does not have an

RKHS associated with it. Therefore, Kullback–Leibler diver-

gence lacks the geometric advantage of RKHS that our kernel

function possesses.

Recently, several probability product kernels have been pro-

posed in machine learning to use ensembles instead of indi-

vidual data to capture dependence between generative models

[43]. It is shown that the Bhattacharyya coefficient defined by
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is a reproducing kernel [44]. The expected likelihood kernel in

[44] is exactly the CIP, but since it was proposed purely from a

machine learning point of view, it failed to elucidate its broader

information-theoretic underpinning. With our approach to pro-

pose an RKHS framework for information-theoretic learning,

construct the RKHS bottom-up, and prove its validity mathe-

matically, the kernel function embodies a rich information-theo-

retic interpretation. Moreover, as ITL is mainly applied in adap-

tive signal processing, a nonparametric method is employed to

compute the CIP kernel and other quantities without an explicit

probability density function estimation. However, previous ap-

proaches assume a parametric generative model in order to cal-

culate the kernel in their approach [43], [44].

A family of Hilbertian metrics has also been proposed re-

cently for probability measures induced from nonnegative ker-

nels [45]. The divergence measures we presented are related to

some of the members; however, the space of probability mea-

sures is not explicitly manipulated as an RKHS. Thus this work

would shed light on the understanding of the Hilbertian met-

rics. The family also includes various other possibilities for di-

vergence measures and Hilbert spaces for the pdfs, but not all

of them have efficient estimators from samples as our method

provides.

VIII. CONCLUSION

In this paper, we present a geometric structure for the in-

formation-theoretic learning methodology. The proposed repro-

ducing kernel Hilbert space framework is determined by the

symmetric nonnegative definite kernel function, which is de-

fined as the cross-information potential. The kernel function

quantifies the similarity between two transformed functionals in

the RKHS . We can rewrite the ITL descriptors of entropy

and divergence and associated cost functions in terms of alge-

braic operations on the functionals in the proposed RKHS. This

formulation offers a solid foundation and rich geometry for the

original information-theoretic learning algorithms. Compared

to the previous RKHS frameworks, the proposed ITL RKHS

is built directly on the probability density functions and con-

tains the statistical information of the data. Hence, the RKHS

provides an elegant geometric structure intrinsic to the data.

We also elucidate the natural link between ITL and the kernel

methods via the proposed ITL RKHS framework. Future work

will include deriving least projection theorem in RKHS so

that we might present minimum information potential estimator

and others directly from the functionals. Another central issue

in kernel methods is related to kernel design. The ITL RKHS

may provide another avenue to specify the kernel properties re-

quired to conduct statistical inference and address the funda-

mental problem of dependence measures.
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