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Abstract—We study intrusion response in access control
systems as a resource allocation problem, and address it
within a decision and control framework. By modeling the
interaction between malicious attacker(s) and the intrusion
detection system (IDS) as a noncooperative non-zero sum game,
we develop an algorithm for optimal allocation of the system
administrator’s time available for responding to attacks, which
is treated as a scarce resource. This algorithm, referred to as
the Automatic or Administrator Response (AOAR) algorithm,
applies neural network and LP optimization tools. Finally, we
implement an IDS prototype in MATLAB based on a game
theoretical framework, and demonstrate its operation under
various scenarios with and without the AOAR algorithm. Our
approach and the theory developed are general and can be
applied to a variety of IDSs and computer networks.

I. INTRODUCTION

One of the primary objectives of enterprise networks is to
make information and services available only to authorized
users. The increasing complexity and global scale of collab-
oration between organizations and economic entities results
in strict security requirements on contemporary networks.

Moreover, current networks need to be dynamic, dis-
tributed, and scalable in order to serve the needs of these
collaborating entities. Unfortunately, the distributed nature
and complexity of computing and communication networks
prevent administrators and organizations from maintaining
absolute control over their systems. This leads to an ongoing
confrontation with the malicious attackers who aim to com-
promise the security of the system and gain unauthorized
access to information and services.

Meanwhile, the resources allocated towards responding to
attacks, such as IT security personnel, firewalls, and patch
management systems, are growing slowly. This creates a
widening gap between the resources required to respond to
attacks and the resources available. In particular, network ad-
ministrators and security personnel can easily become over-
whelmed with the volume of attack responses required [1].

Computing and communication networks also need in-
trusion detection systems (IDSs) as an integral part of
their operation, as static protective measures are no longer
sufficient. IDSs enhance security by monitoring the events
in the networked system and analyzing them for signs of
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security problems [2]. Many IDSs have an automatic re-
sponse component, where the IDS takes some action against
detected attacks. Thus attacks can be handled automatically
or by administrators.

In order to address the resource allocation problems iden-
tified above, the actions and strategies of the intruders must
be taken into account, which naturally leads to a game
theoretical analysis. Game theory is directly applicable to
ID, and several studies have proposed that it be used to
theoretically understand and analyze ID [3]-[5]. The game
theoretical approach is promising in the context of intrusion
detection and response in access control systems, where it is
possible to utilize it in attack modeling, analysis of detected
threats, and decision on response actions [6], [7].

Access control and authentication systems, such as the pol-
icy and role based access control (PR-BAC) server developed
by the Boeing company, are the type of computer networks
that will be explicitly discussed in this paper. The results
however apply to the security of most computer networks.

In this paper, we utilize an existing game theoretical model
of an IDS in an access control system [7] to introduce,
investigate, and simulate an algorithm for allocating the time
a system administrator has available to respond to attacks.
This algorithm is entitled the Automatic or Administrator Re-
sponse (AOAR) algorithm. We demonstrate the algorithm’s
performance through simulations in MATLAB.

The rest of this paper is organized as follows: In the next
section we review the game theoretical model for analyzing
an IDS operating in an access control system developed
in [7]. Section III introduces the AOAR algorithm and
reviews the tools (neural networks and LP) that it utilizes.
An implementation of the IDS in MATLAB and simulations
are presented in Section IV, and the paper concludes with
some remarks in Section V.

II. GAME THEORETICAL MODEL

This analysis of intrusion response as a resource allocation
problem was performed by utilizing a modified version of the
game theoretical model of the interaction between an IDS
and attacker presented in [7].

A. Continuous Security Game

The model in [7] sets up cost functions that consider the
costs of attacking and responding to attacks for the attacker
and IDS, respectively. Suppose that there are A, Strategies
available for attacking a computer network such as an access
control system. Clearly it is not possible to enumerate all
attacks, so instead we enumerate the output of the IDS by



simply referring to its alarm characteristics. We later model
the imperfections in the particular IDS in use.

Also, suppose that there are R,,,, attack responses avail-
able to the IDS or system administrator. Let the strategy
space of the attacker be U4 = {u? C RAmae : y# >
0, i=1,...,Ama} and let the strategy space of the IDS
and the administrator be Ul = {u! C Rftmas . uf >
0, j =1,..., Rmax}- The quantities uf and uj‘ represent
the magnitude of response and attack at strategies ¢ and j,
respectively.

The model in [7] makes use of a matrix P to capture
the imperfections in the sensor network and to map attacker
actions to sensor outputs. In the case of ideal sensors, P
corresponds to the identity matrix because then each attacker
action perfectly maps to a corresponding sensor output.
Moreover, the paper defines

Pi=py) = {79 Py =g (M
pij =Di ifiF]
for notational convenience.

Successful attacks are costly to the owners of information
or resources in an access control system and lead to a gain
for the attacker. The vectors ¢’ := [¢],...,c; | and
cAi=[cf,. .., cﬁmw] represent these costs and gains. Also
associated with each attack and response strategy is a cost
of effort. Attacking a network takes time and effort, and re-
sponse strategies usually involve some negative externalities.
The cost of responding to an attack is captured in the vector
a := [a1,...,ag,,,,] and the cost of attempting an attack
is captured in the vector 3 := [(1,...,84,,..]-

Due to conscious decisions or security imperfections,
systems are more vulnerable to some attacks than others.
The nonnegative matrix ) with diagonal entries greater than
or equal to 1 captures this vulnerability. The @ matrix
correlates response strategies to the attack strategies they
confront; it is made up of ones and zeros and is of dimension
Apaz X Rimaz. Finally, the scalar + represents the relative
value of various cost terms in the equations for the cost for
the IDS, J!(u#,ul, P), and the attacker(s), J*(u?,ul, P),
which are

JH(uA ul, P) = y(u?)T PQu! + (u)"diag(a)u'
+e! (Qut — Qu),
2

and

JAuA ul, P) = —y(u)TPQu’! + (u!)"diag(f)u?
+CA (Qul - QuA)a
3)
where ()7 represents the transpose of = and diag(z) refers
to a diagonal matrix with diagonal entries containing the
corresponding entries in vector .

The first terms in these equations are zero-sum and rep-
resent the cost of false-alarms and benefit of detection for
the IDS and the cost of capture and benefit of deception for
the attacker. The second terms characterize the cost of effort
associated with responding to or generating an attack. The

actual benefit or cost of a successful attack is represented in
the third of the three terms.

By minimizing the strictly convex cost functions (2)
and (3), one can determine the IDS and attacker re-
sponse functions. They are uniquely given by u!(u?, P) =
[wi,...,uk |7 and ut(u!,P) = [uf,...,ug 7, re-
spectively, where

u! (u?, P) = [diag(20)] " [Q7(c)T —4Q"PTur] " (4)

. _ ~ 11+
u’(u’, P) = [diag(20)] " [QT(cM)T +1PQuT] . (5)
Note that [z]T maps all negative values of z to zero.

B. Discretized Security Game

As indicated earlier, this paper focuses on the allocation of
the scarce resource of the system administrator’s time. The
administrator’s time is actually allocated in the decision of
whether to send an alarm to the administrator or to allow the
automatic response to respond to the alarm. This decision
is most naturally analyzed for alarms one at a time, so
the continuous security game presented in Section II-A was
discretized using thresholding. A few other modifications
were also introduced, and therefore the final product is not
exactly a game theoretical model, but rather a discrete model
inspired by a continuous game.

Recall that the quantities u! and uj‘ represent the mag-
nitude of response and attack at strategies ¢ and j, re-
spectively. More concretely, a particular response strategy ¢
could refer to “stop user John Doe from accessing forbidden
documents”. A low u! might mean that a warning email
is sent to John Doe, but a high u! might mean that John
Doe is forbidden from accessing the network at all until
some action is taken. An even higher u! could indicate
that a particular server or resource should be temporarily
shut down to prevent damage or data theft. Suppose there
are DT and D* levels of actual response for each u! and
uj‘, respectively, and that appropriate threshold values have
been set to discretize u! and w4 values into a particular
dft = 1,...,D% and d* = 1,..., D4, respectively. Let
u! and u? denote IDS or administrator strategies and
attacker strategies that have been discretized in this way. For
simulation purposes, time varying quantities will be updated
at finite time steps. Let u![¢] and @ [t] denote response and
attack strategies that have been discretized both in time and
in intensity of action.

Assume also that u/ and u# have been discretized such
that if an attack of intensity d;“ is responded to with a
response d¥ with the same or greater magnitude, then the
attack will be thwarted and not inflict any damage. Let a/ [t]
be the attacks that are attempted in a given time step t. Then
a“[t] represents the attacks that survived the response and
actually were executed.

This  discretized system also leads to new
cost equations. The discretized cost for the IDS,
JE@l [, ul[t], 04[], D[t + 1], and  attacker,

[t
JA(@l[t], uZM[t], D[t])[t + 1], respectively satisfy

a



) +
(@) DRuE" + (@) diag(a)u' + ¢'Qut(6)

and

JA@l ad, D)t + 1]:=
—y(u)"DQu'+ (uy)"diag(B)uy — ¢ Qkcuy (7)

where the [t] notation has been suppressed to improve
readability.

The value computed in each equation is discretized into
D% and D4 levels, respectively, using the thresholds men-
tioned above. These equations have a few minor differences
from the continuous equations that inspired them. Instead of
the P matrix, they include a new term D[t], the distortion
caused by the sensor network. This replaces the P matrix
but it only captures the distortion of the sensor network. Like
P, D has entries with magnitude between 0 and 1 and has
negative entries on the diagonal. It distorts the u[t] vector,
representing the operation of an imperfect sensor network.
Also, the final term in (7) does not use @* but rather the
attacker’s estimate of this value, which is based on the k.
“confidence constant” (0 < k. < 1). The product of k. and
the attempted attacks ﬁf yields the attacker’s estimate of
a*, or how successful the attacks will be. By introducing
this constant, one can differentiate J! with respect to ﬁf,
allowing for optimization with respect to u/.

The discretized reaction functions are given by
al (a[t], D)) [t + 1] and 2 (al[t], D[t])[t + 1], where

a

+

o' (u), D)t + 1] = [—7[diag(20)] 'Q"D Y] (®)

al (al, D)[t+1] = [diag(28) ! [kQ(c™) +DQu']] " .

(C))
Once again the [t] notation has been suppressed to enhance
readability.

These reaction functions uniquely minimize the strictly
convex cost functions (6) and (7). After discretization, this
becomes an integer optimization problem, so solving it as
if it were continuous is only an approximation. When the
administrator responds to an attack, the response vector is
denoted by ul, . (w2[t])[t + 1] and satisfies

admin

@l AT+ 1] = [y[diag(2a)]'QTal[t]] T. (10)

admin

Where D was in (8) is now the negative of the identity
matrix. This captures the assumption that the administrator
can tell perfectly what is happening in the network.

III. AUTOMATIC OR ADMINISTRATOR RESPONSE
ALGORITHM

System administrators’ investigation time and effort per
incident is one of the major constraints of any IDS. Although
often overlooked in the design of IDSs, this limitation will

continue to exist until the development of systems with some
of the functionality we associate with “intelligence”. For this
reason and because attacks themselves are designed by hu-
man intelligence, contemporary IDSs have to rely on human
intervention for decisions in at least a subset of incidents. On
the other hand, forwarding every anomaly or suspected attack
reported by the sensors to the system administrator is not
realistic, and practically ignores the mentioned constraints.
Therefore an automated decision process, however imperfect,
is needed. The AOAR algorithm describes one way to decide
which attacks are forwarded to the administrator and which
ones are not.

More specifically, the AOAR algorithm is based on the
classification of attacks into those that resemble previous
successful attacks and those that do not. Game theoretical
analysis demonstrates that system characteristics and vulner-
abilities will be taken advantage of by attackers [7], leading
to more intense attacks on certain systems. By monitoring
attacks that repeatedly survive the automatic response, and
forwarding such attacks to the system administrator, an IDS
using AOAR can better allocate the system administrator’s
scarce time than if attacks are randomly selected to be
forwarded to the administrator.

A. Self-Organizing Maps

The AOAR algorithm uses attack classification to deter-
mine which attacks to forward to the administrator. Essen-
tially, attacks are classified into two categories: those that
resemble previous successful attacks and those that do not.
Attacks with different strategies uf >0,1=1,...,Amaz
can be sorted into d dimensions of nj elements each, such
that szl ny = Amae. For example, attack strategies could
be broken down into categories such as resource under attack,
IP address of attacker, or time of day of attack.

Using these attack characteristics, attack classification is
achieved with Kohonen self-organizing maps (SOM) [8].
The SOMs are trained using a standard Kohonen learning
rule. Intuitively, “training the network™ refers to placing a
specified number of neurons on the d dimensional map such
that frequent successful attack strategies are more likely
to have a neuron near them than strategies that are rarely
successful. Neurons are thus nothing more than “cluster
centers” for successful attack strategies, and are potentially
the result of a particularly valuable resource, an easy attack
strategy to attempt, or systematic problems with the IDS. For
further details on SOM implementation and training we refer
to [9].

A very simple one-dimensional example of neuron place-
ment is shown in Fig. 1. The bars represent the number of
successful attacks at each strategy over a period of time and
the circles on the horizontal axis are the neurons. Note that
few neurons are near infrequent attacks at strategies 4-6.

B. Minimization of Response Cost

We formulate the IDS decision on whether to alert the
system administrator or to make an automated decision re-
garding a reported incident as a resource allocation problem.
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Fig. 1. A bar chart of the one-dimensional attack frequencies and corre-
sponding neuron placement.

In order to optimally make this decision, relative costs are
assigned to the two options. C'; > 0 represents the cost
of making the decision automatically per incident, which
also includes the risk of making mistakes by the automated
decision process. The value C; > 0 quantifies the cost
of time and effort spent by the system administrator per
incident. The quantities J/ and j(fdmm, respectively, are
natural choices for these costs.

Let x> be the proportion of attacks that are randomly
forwarded to the system administrator and let x; represent
the proportion that are sent to the automatic response mech-
anism for further analysis and response. Of those sent to the
automatic response mechanism, let A be the proportion that
are chosen to be forwarded to the administrator. Finally, let
N be the number of incidents per time slot and let L be
the number of cases the system administrator can handle per
given time slot. The overall cost function is defined for a
given time slot as

J(xl,l'g) = NCEl[(l — )\)Cl + )\Cg] + NxoCy. (11)

Thus, we obtain the following constrained optimization
problem:
min J(z1,22) = Nz1[(1 — A\)C1 + AC2] + Nx2Co
T1,T2

such that N(Az1 + x2) < L
r1 + a0 = 1

x1, T2 > 0. (12)

C. The Algorithm

For notational convenience, let Z, denote the distance
from a particular attack u{' to the nearest neuron. A “time
slot” refers to a period of time in between the re-calibration
of the SOM and parameters in (12).

Algorithm 111.1. The dynamic algorithm to solve the opti-
mization problem (12) and to update its parameters is:

1) Choose the costs C; and Cs so that they accurately

represent the relative cost of allowing the automatic

response to respond to an attack as opposed to the
administrator. Start with best estimates for N and L
such that there is a feasible solution to (12).

2) When starting a new time slot, measure N and the Z,,
values from the last time dot. Use these N, L, the Z,,
values from the last time dot, and )\ to determine a
threshold value Z7. If necessary, update L in order to
ensure the existence of a feasible solution to (12).

3) Solve the optimization problem (12) using LP to obtain
the probabilities z; and z».

4) Forward each alarm from the sensors with probability
xo directly to the system administrator, and let the
automatic response decide how to respond with prob-
ability x;.

5) For incidents sent to the automatic response,

o If Z, < Z} then this attack is forwarded to the
administrator.

o Otherwise, the automatic response responds to this
attack.

Note that when the automatic response makes a decision
based on Z, < Z7, it is actually checking how similar this
new attack is to previous attacks. If the attack was a common
successful attack last time slot, then it is likely to be near a
neuron and fulfill Z, < Z.

Fig. 2 graphically depicts the operation of the AOAR
algorithm. Note that the solid lines represent attacks and the
dashed lines represent the corresponding responses.

ﬁ
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Fig. 2. A flow chart depicting the operation of the AOAR algorithm.

IV. SIMULATIONS

Some simulations will be used to demonstrate the op-
eration of the AOAR algorithm and to show its value in
a variety of situations. The value of the algorithm will
primarily be shown using the cost equations (6) and (7).
Also, the “value response ratio” (VRR), a simple metric,
will be used to show that the AOAR algorithm works by
having the administrator respond to more attacks that the
automatic response would not have stopped on its own,
thereby leading to less successful attacks. The VRR is
defined as VRR := Rggﬁgfn / Radmin, Where Rzgﬁgfn is the
number of “value responses” by the administrator: responses
where the administrator halts an attack that the automatic re-
sponse would not have halted. R, gynn is the total number of



administrator responses to attacks. A higher V RR indicates
that the administrator is stopping more attacks that would
have otherwise been successful.

To simulate the imperfections in and dynamics of the
sensor grid, the distortion matrix D is updated at every time
step. We define the random matrix W[t] := [wy;[t], @ =
1.0, Amaz, § = 1,..., Rmazr Hence, W models the
transients and imperfect nature of the sensor grid. Let us
also define an upper bound, dt,,., < 1, and a lower bound
dtmin, > 0 on the elements of D. In doing so we can
model the cases where sensors have a limited detection
capability. Finally, call € the “randomization coefficient.”
Then D evolves according to D[t + 1] = [D[1] + eW[t]],
where the normalization function [z]V maps entries of z
onto the interval [dt, i, dtmaz]. In order to generate more
realistic results, white noise was added in an identical fashion
to the attack vector u.

A simple scenario was constructed for simulation pur-
poses. In this scenario, A;qx = Rmee = 9 and each
attack corresponds exactly to one response (Q is the identity
matrix). Thresholds were established such that D¥ = D4 =
3. Also, v was set equal to 10. A uniform system (uniform
vulnerabilities, costs, etc.) would thus have ) :f(9), c! =
¢ =506(9), and a := 106(9) and 3 := 106(9). i(z) refers
to an = X x identity matrix and 0(z) refers to a one by x
vector of ones. The initial D has 0.75 as its diagonal elements
and 0.1 as its non-diagonal elements. The £ parameter is set
to 0.25. The parameters A and k. were set to 0.15 and 0.45,
respectively. The time slot length was set to 10 time steps,
and L was set such that the administrator was able to respond
to 10 time steps each time slot.

In order to have a control case to compare results against,
each simulation was run alongside a corresponding case
without the AOAR algorithm implemented. The system is
capable of determining z; and z2 such that the optimal
number of attacks are forwarded to the administrator, but
not choosing those attacks intelligently.

A. Variation in Vulnerability

The first simulation examines how the system responds
when the system is particularly vulnerable to one attack
strategy. To model this, one entry on the diagonal of () is set
to 3, while the rest are left at the value 1. In this scenario,
the AOAR should be helpful because the attacker will have
an incentive to attack the more vulnerable attack with greater
intensity and frequency. The automatic response was set
so that it usually would be unable to stop these attacks.
The AOAR algorithm detects this problem and forwards
the attacks on this vulnerable system to the administrator,
drastically improving the V RR. Table I shows the results of
this simulation.

The costs J! and J# are plotted in Fig. 3 (a) and (b),
respectively.

Fig. 4 shows the fate of attacks at each time step. Note
that the system not using AOAR (a) usually is unable to
stop one attack each time step. In most time steps, this is
the attack on the more vulnerable system. The administrator

TABLE I
RESULTS OF SIMULATION OF SYSTEM WITH VARYING

VULNERABILITIES
IDS No AOAR | AOAR | % Improvement
Jéug 376.69 228.35 39.39%
g 91.91 -86.47 -5.92%
VRR 0.4700 0.7451 58.53%
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Fig. 3. Costs for IDS (a) and attacker (b) with and without AOAR algorithm
when system has variations in its vulnerability to attack strategies

in the system using AOAR (b) typically stops this attack on
the more vulnerable system because the AOAR algorithm
recognizes it and forwards it.

B. Variation in Value

Here we simulate how the AOAR algorithm performs in a
situation where the costs resulting from attacks to the system
and the gain resulting from attacks for the attacker are not
uniform. More specifically, we alter both ¢! and ¢ to no
longer be 506(9), but instead have a value of 200 for one
strategy. Attacks on this strategy lead to particularly large
gains for the attacker and particularly large losses for the
systems under attack. See Table II for the results.
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Fig. 4. Breakdown of attack outcomes without AOAR (a) and with AOAR
(b).

TABLE II
RESULTS OF SIMULATION OF SYSTEM WITH VARYING VALUES

IDS No AOAR | AOAR | % Improvement
Il 529.55 315.45 40.43%
Jtﬁ,q -162.66 -154.05 -5.29%
VRR 0.5151 0.8224 59.64%

C. Variation in Costs of Actions

The effort required to perform a certain response or attack
can also vary. Suppose one of the costs in 3 is 2 while the
others remain at 10. This would mean that one particular
attack strategy is easy for an attacker. The results of this
simulation are shown in Table III. The IDS implementing
the AOAR algorithm again performs better than the IDS
not using the algorithm, particularly in its ability to increase
attacker costs.

V. CONCLUSIONS AND FUTURE WORK

We have utilized a game theoretical model of the in-
teraction between an IDS and attacker to investigate the
optimal allocation of the system administrator’s time. We

TABLE III
RESULTS OF SIMULATION OF SYSTEM WITH VARYING COSTS OF

ACTIONS
IDS No AOAR | AOAR | % Improvement
Jéﬂg 167.79 130.77 22.06%
J2, -23.83 -12.92 -45.77%
VRR 0.5268 0.6900 30.97%

presented the AOAR algorithm, which utilizes classification
of successful attacks with SOM and also LP optimization,
as a way to decide how to respond to each attack. The
performance of this algorithm was then simulated under a
variety of system and IDS circumstances. In each situation
investigated, an IDS implementing the AOAR algorithm
performed better than one not using the algorithm.

This work, while laying out a practical implementation of
an algorithm and demonstrating its utility, is lacking a formal
theoretical framework. Thus the resource allocation problem
studied here could be re-formulated as a formal optimal
control problem with more sophisticated cost structures and
constraints. The costs could be functions of not only the
current attacker and IDS actions but also past actions. This
algorithm could also be applied to more elaborate models
or to real IDS data. Furthermore, the algorithm itself should
be improved. More feedback loops could be simulated and
studied. Specifically, the A value could be updated dynami-
cally based on the relative performance of the automatic and
administrator responses. Learning algorithms could be used
to improve the mapping of attacks to automatic responses,
represented by the () matrix. Other classification schemes
(aside from SOMs) could be used to determine which attacks
should be forwarded to the administrator and which ones
should not. Finally, decentralized versions of some of the
ideas in this paper should be investigated.
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