
Tracking of Human Body Parts using

the Multiocular Contracting Curve Density Algorithm

Markus Hahn, Lars Krüger, Christian Wöhler
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Abstract

In this contribution we introduce the Multiocular Con-

tracting Curve Density algorithm (MOCCD), a novel

method for fitting a 3D parametric curve. The MOCCD

is integrated into a tracking system and its suitability for

tracking human body parts in 3D in front of cluttered back-

ground is examined. The developed system can be applied

to a variety of body parts, as the object model is replaceable

in a simple manner. Based on the example of tracking the

human hand-forearm limb it is shown that the use of three

MOCCD algorithms with three different kinematic models

within the system leads to an accurate and temporally sta-

ble tracking. All necessary information is obtained from

the images, only a coarse initialisation of the model pa-

rameters is required. The investigations are performed on

14 real-world test sequences. These contain movements of

different hand-forearm configurations in front of a complex

cluttered background. We find that the use of three cameras

is essential for an accurate and temporally stable system

performance since otherwise the pose estimation and track-

ing results are strongly affected by the aperture problem.

Our best method achieves 95% recognition rate, compared

to about 30% for the reference methods of 3D Active Con-

tours and a curve model tracked by a Particle Filter. Hence

only 5% of the estimated model points exceed a distance of

12 cm with respect to the ground truth, using the proposed

method.

1 Introduction

Today, industrial production processes in car manufac-

turing worldwide are characterised by either fully automatic

production sequences carried out solely by industrial ro-

bots or fully manual assembly steps where only humans

work together on the same task. Up to now, close collab-

oration between human and machine is very limited and

usually not possible due to safety concerns. Industrial pro-

duction processes can increase efficiency by establishing a

close collaboration of humans and machines exploiting their

unique capabilities. The recognition of interactions between

humans and industrial robots requires vision methods for

3D pose estimation and tracking of the motion of both hu-

man body parts and robot parts based on 3D scene analysis.

This paper addresses the problem of marker-less pose es-

timation and tracking of the motion of human body parts in

front of a cluttered background. A new 3D pose estimation

method, the Multiocular Contracting Curve Density algo-

rithm (MOCCD), is introduced and applied to track the 3D

pose of the hand-forearm limb with a traditional Kalman

Filter framework.

2 Related Work

Due to safety concerns in our application we re-

quire precise 3D pose estimation and reliable tracking

of human body parts. The Contracting Curve Density

Algorithm (CCD) [8] fits a parametric curve model to

an image by refining an initial parameter set. Due to its

short processing time the CCD algorithm is suitable for

real-time systems, and it is robust with respect to changing

backgrounds while achieving a high accuracy. Krüger and

Ellenrieder [10] introduce an approximate variant of the

CCD algorithm for an extension to multiple calibrated

cameras, such that 3D pose estimation becomes possible.

In this study we utilise the newly developed Multiocular

Contracting Curve Density algorithm (MOCCD) for ob-

taining 3D pose measurements.

Moeslund et al. [12] give a detailed introduction to and

overview about the large field of human motion capture.

Similar to [13, 14] we apply a multi-view 3D pose esti-

mation algorithm which is based on silhouette information.
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Plänkers and Fua [13] use 3D data generated by a stereo

camera to obtain a pose estimation and tracking of the hu-

man upper body. The upper body is modelled with implicit

surfaces, and silhouettes are used in addition to the depth

data to fit the surfaces. Rosenhahn et al. [14] track a 21

DOF 3D upper body model using a four-camera setup. The

pose estimation is based on silhouettes which are extracted

using level set functions. Tracking is performed by using

the pose in the last frame as initial pose in the current frame.

Under laboratory conditions with no cluttered background

they achieve a high metric accuracy, which is demonstrated

by comparison to a commercial marker-based tracking sys-

tem with eight cameras.

A common limitation of both approaches is the use of a

single pose which is updated at every timestep. To achieve

a more robust tracking, other approaches [3, 7, 15] use a

Particle Filter. This probabilistic framework employs the

Monte Carlo technique of factored sampling to propagate

a set of samples (particles) through state space in an effi-

cient manner. A problem in its application to tracking body

parts is the high number of DOF, since the required number

of particles rises exponentially with the dimension of the

state space. Deutscher et al. [7] extend the Particle Filter-

ing scheme. To avoid local minima of the state probability

they use additional resampling steps in a manner similar to

simulated annealing. With this modification, they are able

to track full body motion with 100 particles. They use edge

detection and background subtraction to weight their par-

ticles. Schmidt et al. [15] employ a Kernel Particle Filter

for 3D body tracking. They use 150 particles to track a 14

DOF 3D model of the upper body with a single uncalibrated

camera. The particles are weighted by the use of colour cues

that are combined with ridge and edge cues. In Stenger et

al. [16] a detailed 3D hand model composed of quadrics is

used to segment and track the human hand. The matching is

done by minimising the geometric error between the model

projection and the edges of the human hand in the image. It

is assumed that the hand posture does not change. An Un-

scented Kalman Filter is used to track a 6 DOF hand model.

Due to the limited resolution of our trinocular grey scale

camera setup it is infeasible in our system to model each

finger of the hand as it is done in [16]. Furthermore, a cylin-

drical model of the forearm like [15] is too coarse due to the

variability of human appearance, e.g. clothes. Our approach

is therefore based on a 3D hand-forearm model which rep-

resents the 3D contour by an Akima spline [1] using control

points defined by a parameter vector. The MOCCD algo-

rithm is computational too expensive to use it in a Particle

Filter framework. Hence we integrate the MOCCD algo-

rithm in a traditional Kalman Filter based tracking frame-

work which estimates more than one pose hypothesis at a

single timestep.

3 Theoretical Background

3.1 The CCD Algorithm

The real-time CCD algorithm [8] fits a parametric curve

c(α,Φ) to an image I. The parameter α ∈ [0, 1] increases

monotonically along the curve, and Φ denotes a vector con-

taining the curve parameters to be optimised. The principle

of the CCD algorithm is depicted in Fig. 1. The input values

of the CCD are an image I and the Gaussian a priori distri-

bution p(Φ) = p(Φ|m̂Φ, Σ̂Φ) of the model parameters Φ,

defined by the mean m̂Φ and the covariance Σ̂Φ. The CCD

algorithm estimates a model pose by computing the maxi-

mum of the a posteriori probability (MAP) according to

p(Φ|I) = p(I|Φ) · p(Φ) . (1)

In Eq. (1) p(I|Φ) is approximated by p(I|S(mΦ,ΣΦ)),
with S(mΦ,ΣΦ) representing the pixel value statistics

close to the curve. The maximisation of Eq. (1) is performed

by iterating the following two steps until the changes of mΦ

and ΣΦ fall below a threshold or a fixed number of itera-

tions is completed. The procedure starts from the user sup-

plied initial density parameters (m̂Φ, Σ̂Φ).

1. Compute the pixel value statistics S(mΦ,ΣΦ) on both

sides of the curve. For grey scale images this proce-

dure amounts to computing a mean and a standard de-

viation of the pixel grey values on either side of the

curve.

2. Refine the curve density parameters (mΦ,ΣΦ) to-

wards the maximum of Eq. (1) by performing one step

of a Newton-Raphson optimisation procedure. This

step moves the segmentation boundary such that the

image content (grey values) conforms better with the

pixel statistics, i.e. towards an edge.

A numerically favourable form of Eq. (1) is obtained by

computing the log-likelihood

X = −2 ln
[
p (I|S(mΦ,ΣΦ)) · p(Φ|m̂Φ, Σ̂Φ)

]
. (2)

In terms of image processing this procedure can be seen

as follows: The sum of Gaussian probability densities

p (I|S(mΦ,ΣΦ)) is an edge detector along the curve nor-

mal, i.e. if the curve is at the edge, the function value is

maximal. In contrast to classical edge detectors (e.g. Sobel,

Prewitt) the kernel size is adaptive and the function is spa-

tially differentiable. These properties are the main reasons

for the robustness and accuracy of the CCD algorithm.

3.2 The MOCCD Algorithm

We extend the CCD algorithm to multiple calibrated

cameras by projecting the boundary of a 3D contour model
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Figure 1. The principle of the CCD algorithm.

Fitting the segmentation boundary (bold line)
to the image grey values (solid line) by esti-

mating the mean (dashed line) and standard

deviation (dotted line) on either side of the
assumed boundary. The boundary is moved

such that the image grey values have the
highest probability according to the means

and standard deviations.

into each image. The intrinsic and extrinsic parameters of

the camera model [4] are obtained by multiocular camera

calibration [11]. An arbitrary number of images Nc can be

used for this projection. We maximise the joint probability

p(Φ|I1, . . . , INc
) =

[∏Nc

c=1 p(Ic|Sc(mΦ,ΣΦ))
]
·

p(Φ|m̂Φ, Σ̂Φ)
(3)

with Sc(mΦ,ΣΦ) representing the grey value statistics

close to the projected curve in image Ic. The underlying as-

sumption is that images are independent random variables.

Like in the original CCD framework, there is a numerically

favourable form of Eq. (3) obtained by computing the log-

likelihood. The MOCCD performs an implicit triangulation

and is summarised in Algorithm 1.

Algorithm 1 Pseudo code of the MOCCD algorithm

Input: images I1, . . . , INc
, a priori density (m̂Φ, Σ̂Φ)

Output: refined model parameters (mΦ,ΣΦ)
for iter = 1 to maxIter do

for c = 1 to Nc do

Project the 3D contour to its 2D representation.

Compute the statistics Sc(mΦ,ΣΦ) in image Ic.

end for

Refine the parameters (mΦ,ΣΦ) towards the maxi-

mum of Eq. (3) by one Newton-Raphson step.

end for

This evaluation scheme is an improvement over [10],

where the 3D contour model is projected to Nc individual

Figure 2. 3D hand-forearm model.

2D curves which are matched individually in 2D. At a later

stage the individual curves are integrated to an update of

the 3D model by means of a 2D-3D pose estimation. The

advantage of the improvement presented here is that spa-

tial constraints are handled directly in the optimisation pro-

cedure instead of the 2D-3D pose estimation. Hence the

model shape is optimised to fit all images equally well in-

stead of allowing arbitrary 2D deformations as in [10].

4 3D Tracking of the Human Hand-Forearm

Limb

4.1 Modelling the Hand-Forearm Limb

We use an analytical 3D model of the human hand-

forearm limb, a kinematic chain connecting the two rigid

elements forearm and hand. The model consists of five trun-

cated cones and one complete cone (Fig. 2). Fig. 3 (left)

depicts the definition of the cones by the following nine pa-

rameters:

Φ = [p1x, p1y, p1z, α1, β1, α2, β2, r1, r4]
T . (4)

The 3D point p1 defines the beginning of the forearm and

is part of the parameter vector Φ. The wrist (p2) and fin-

gertip (p3) positions are computed by

p2 = p1 + RZ(β1) · RY(α1) · lforearm · [1, 0, 0]
T

(5)

p3 = p2 + RZ(β2) · RY(α2) · lhand · [1, 0, 0]
T

, (6)

where lforearm and lhand are the defined lengths of the hu-

man hand-forearm limb. The matrix RY(α) represents the

rotation around the Y axis by the angle α and RZ(β) the

corresponding rotation around the Z axis. The radii of the

cones are computed by

r2 = 0.8 · r1

r3 = 0.65 · r1

r5 = 1.1 · r4

r6 = 0.026 m constant. (7)

The dependencies of the radii are derived from human

anatomy, see Fig. 3 (right). Only r1 and r4 are part of the
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Figure 3. Left: Definition of the cones. Right:
Dependencies of the radii derived from hu-

man anatomy.

parameter vector Φ. As the MOCCD algorithm adapts a

model curve to the image, the silhouette of the 3D model

in each camera coordinate system has to be extracted. Thus

a vector from the origin of each camera coordinate system

to the point in the wrist is computed, e.g. pC1

2 for cam-

era 1. This vector and the direction vector of the forearm

p1p2 span a plane which is intersected with the 3D model

to yield the 3D outline. The extracted 3D contour model for

the given camera — consisting of 13 points — is projected

in the pixel coordinate system of the camera. The 2D con-

tour model is computed by an Akima interpolation [1] along

the curve distance with the 13 projected points as control

points. Fig. 4 depicts the extraction and projection of the

3D contour model for camera 1.

4.2 System Overview

We have developed a generic recognition system (Fig. 5)

consisting of three components: N instances of the

MOCCD algorithm, a subsystem to find the best measure-

ment of the different MOCCD instances (Winner-Takes-

All) and N Kalman Filters associated with the MOCCD in-

stances. The input images are obtained from a grey scale

Digiclops camera with VGA resolution manufactured by

Point Grey. The following algorithm outlines the interac-

tion of the different components:

1. Initialisation.

2. For all MOCCDs: compute the measurement in t.

3. Find the best of these measurements in t.

Figure 4. Extraction and projection of the 3D
contour model.

Figure 5. Generic recognition system.

4. For all Kalman Filters: compute their prediction using

the best measurement.

In the initialisation step the parameter vector Φ(t = 1),
which describes the position of the hand-forearm limb at

the first timestep t = 1, is defined. After initialisation the

developed system is able to track the human hand-forearm

limb in 3D. The tracking is realised by steps 2 through 4.

In the second step the measurements of all N MOCCDs in

timestep t are computed. The measurement of MOCCD i

for the parameter vector Φ consists of (m
(i)
Φ

(t),Σ
(i)
Φ

(t)).
The measurement of a MOCCD is based on the Gaussian

a priori distribution p(Φ) = p(Φ|m̂Φ, Σ̂Φ) of the model

parameters Φ, which are refined according to Sec. 3.2. At

timestep t = 1 the Gaussian a priori distribution is user

defined and in all other timesteps it is computed by the pre-

diction of the tracker associated with the MOCCD. To se-

lect starting parameters for Algorithm 1 the mean m̂
(i)
Φ

(t) of

MOCCD i at timestep t is obtained from the predicted pa-

rameter vector Φ̂(i)(t). The covariance Σ̂
(i)
Φ

(t) is assumed

to be a constant matrix.

After all MOCCD measurements are computed, the best

measurement Φ(t) of the parameter vector Φ at timestep t

is extracted based on a Winner-Takes-All approach with re-
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spect to (m
(1)
Φ

(t),Σ
(1)
Φ

(t)), . . . , (m
(N)
Φ

(t),Σ
(N)
Φ

(t)).
As criteria for the measurement quality, we utilize (i) the

confirmation measurement of the MOCCD, (ii) the quality

of the prediction, and (iii) the difference of the grey value

statistics along the model curve.

The confirmation measurement is introduced by

Hanek [9] and is an indicator of the convergence of the

MOCCD. The second criterion describes how similar

the prediction of the tracker and the measurement of the

MOCCD are. With the third criterion it is ensured that the

MOCCD separates grey value statistics along the projected

curve. A measurement that is better than any other in at

least two criteria is deemed the winner.

In the fourth step of the algorithm the best measure-

ment Φ(t) is used in each Kalman Filter to produce the

prediction of the parameter vector Φ. These N predic-

tions Φ̂(1)(t + 1), . . . , Φ̂(N)(t + 1) are used to produce the

measurements in t + 1.

4.3 Kinematic Models

We investigate three different kinematic models [2]

to find the best compromise between computational ef-

fort and tracking capabilities: (i) a single Kalman Filter

with a constant-velocity model, (ii) two Kalman Filters

with constant-acceleration and constant-velocity models,

and (iii) three Kalman Filters with constant-acceleration,

constant-velocity, and constant-position models.

Each of the Kalman Filters implements a different kine-

matic model, assuming a different object motion. Thus if

three Kalman Filters are used, three different motion models

are evaluated simultaneously. The Winner-Takes-All com-

ponent will then select the best-fitting model in the next

timestep. The idea behind this kinematic modelling is to

provide a sufficient amount of flexibility for changing hand-

forearm motion. It is required for correctly tracking revers-

ing motion, e.g. occurring during tightening of a screw.

5 Experimental Investigations

The system is evaluated on 14 real-world test sequences.

These sequences contain movements of different hand-

forearm configurations of four different test persons in front

of complex cluttered background. Each sequence contains

at least 100 image triples and the mean distance of the test

persons to the camera system varies from 0.85 m to 1.75 m.

5.1 Ground Truth

The ground truth consists of three points in the world

coordinate system (Fig. 6). These three points correspond

to the points p1, p2, and p3 of the 3D model of the hu-

man hand-forearm limb (Sec. 4.1). To compute the ground

Figure 6. Determination of the ground truth.

truth three markers were fixed to the tracked limb. These

markers were manually labelled in the three images of the

camera system and the 3D coordinates were computed by

minimisation of the Euclidean backprojection error [17].

5.2 Results

The results of a system variant are depicted as a his-

togram (Fig. 7). We computed the Euclidean distance to the

ground truth at every timestep for the estimated points p1,

p2, and p3 of the 3D model. The mean Euclidean distance

of the three points to the ground truth for a single sequence

is computed, and the results of all sequences are arranged as

a histogram. The abscissa of the histogram is divided from

the left to the right into five intervals:

• very good: [0, 0.03[ m

• good: [0.03, 0.06[ m

• satisfactory: [0.06, 0.09[ m

• sufficient: [0.09, 0.12[ m

• insufficient: [0.12, ∞[ m.

The choice of the intervals is justified by the system con-

cept. A distance of 12 cm is the upper limit, as this range

can be covered by close range sensors on the robot. On the

ordinate the number of sequences — whose mean Euclidean

distance to the ground truth for the respective point falls into

the defined bucket — is depicted.

The histogram of the system variant using a single

Kalman Filter with a constant-velocity model is depicted in

Fig. 7. Many sequences fall into the “insufficient” bucket.

This behaviour is due to false predictions of the Kalman Fil-

ter during motion reversal, e.g. when the test person tight-

ens a screw. The false predictions result from the inadequate

motion model, leading to poor convergence of the MOCCD

algorithm during the subsequent timesteps. If the mispre-

diction exceeds the convergence radius of the MOCCD, the
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Figure 7. Results of a single Kalman Filter
with a constant-velocity model.
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Figure 8. Results of two Kalman Filters with
constant-acceleration and constant-velocity

models.

MOCCD can not compensate the too large distance between

the depicted object and its assumed position.

The use of two Kalman Filters with constant-

acceleration and constant-velocity kinematic models im-

proves the system performance (Fig. 8), as only a fifth of

all sequences falls into the “insufficient” interval. The mea-

surement selection component is able to recognise false pre-

dictions and therefore the tracking is more stable than with

only one Kalman Filter.

The use of three Kalman Filters with the different kine-

matic models constant-acceleration, constant-velocity, and

constant-position leads to a further improvement (Fig. 9)

and is the best system variant obtained in this investigation.

Only two sequences fall into the “insufficient” interval and

most of the sequences fall into the “good” bucket. This

yields an error rate of about 5%. The remaining 95% of

the sequence have a maximal error of less than 9 cm. This

is one fourth better than required in our system concept and

will lead to a better stability of the overall system as the

close range sensors will rarely have to stop the robot. With

our Matlab implementation, the time required for this sys-

tem variant is 0.2 frames per second on a 3 GHz P4. Fig. 13

shows some short scenes taken from the sequences and the
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Figure 9. Results of three Kalman Filters rep-
resenting constant-acceleration, constant-

velocity, and constant-position models.

Figure 10. Stable, but somewhat inaccurately

tracked sequence.

corresponding result of the best system variant.

In the result histogram of the best system variant (Fig. 9)

one can see that two sequences still fall into the “insuffi-

cient” bucket. The reason is the coarse symmetric model of

the hand-forearm limb. The arising silhouette of the point-

ing hand can not be represented by the present hand-forearm

model. The system estimates the elbow point (p1) too far

towards the hand (Fig. 10) as the overall scaling of the arm

depends on the scaling of the hand. The estimated model

likelihood is nearly constant when shifting the outline of

the forearm model along the depicted forearm. Thus it does

not stop the MOCCD from shrinking the model. However,

even in presence of such input images violating the assumed

geometry of the model the tracking does not fail for the

whole sequence.

With another experiment we examined the importance

of using three cameras. Although the system is still capable

of triangulation, the performance decreases because about

50% of the sequences fall into the “insufficient” bucket. The

reason is that the MOCCD is strongly affected by the aper-

ture problem in one direction due to the elongated shape of

the hand-forearm limb. With the use of the third camera in

Fig. 9 the ambiguities are avoided, resulting in good trian-

gulation in both directions.
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Figure 11. Results of the Particle Filter based
curve model approach [3].
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Figure 12. Results of the 3D Active Contour

experiment [6].

To compare our tracking system we applied two avail-

able approaches — a curve model tracked by a Particle Fil-

ter [3] and 3D Active Contours [6] — which yields good

results in former applications. The Particle Filter based ap-

proach in [3] was extended to use 3D measurements by pro-

jecting a 3D model curve to the three images. Furthermore

we extended the 3D Active Contours in [6] by a tracking

system using the same three Kalman Filter framework as

for the MOCCD.

Processed with the Particle Filter based ap-

proach (Fig. 11), about 70% of the sequences fall

into the “insufficient” bucket. Although we used 10000

particles at 9 DOF, the algorithm gets stuck at edges due to

the cluttered background and shading-related edges. This

result illustates the higher robustness of the MOCCD due

to the fact that it adapts to the spatial scale of an edge.

Analysing the sequences using 3D Active Contours

(Fig. 12) yields a similar error rate of about 70% of the

sequences in the “insufficient” bucket. The algorithm gets

stuck in background and shading-related edges that have

a sufficient strength. Again the adaptive behaviour of the

MOCCD proves to be superior compared to edge extrac-

tion methods on fixed scales, regardless of the subsequent

recognition method.

6 Summary and Conclusion

Our experiments with the 14 real-world test sequences

have shown that the use of three MOCCD algorithms with

three different kinematic models within the tracking system

leads to a reasonably accurate and temporally stable system.

Only coarse information about the test person is neces-

sary: the lengths of forearm and hand as well as the initial

position. The test sequences include the following hand-

forearm configurations: an outstretched hand, a fist, a hand

holding a cup, a hand holding a wrench, and a pointing

hand. It is possible to track the motion of different hand-

forearm configurations: reversing motion, e.g. tightening of

a screw, movement of the hand in depth with a constant

forearm position, lateral movement of the complete hand-

forearm limb, and pointing gestures. The system is able to

track them in a temporally stable manner.

A possible improvement is the use of colour cameras.

The MOCCD can be easily applied to colour images, which

may overcome problems with grey value statistics. A pos-

sible extension of our system may include the modelling of

the whole upper body with complex kinematic chains and a

hierarchical tracking like in [5] .
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