
Ontology Engineering and Evolution
in a Distributed World Using DILIGENT

H. Sofia Pinto1, C. Tempich2, and Steffen Staab3

1 Dep. de Engenharia Informática, Instituto Superior Técnico, Av. Rovisco Pais,
1049-001 Lisboa, Portugal, sofia.pinto@dei.ist.utl.pt

2 Institute AIFB, University of Karlsruhe (TH), 76128 Karlsruhe, Germany,
tempich@aifb.uni-karlsruhe.de

3 ISWeb, University of Koblenz Landau, 56016 Koblenz, Germany,
staab@uni-koblenz.de

Summary. Existing mature ontology engineering approaches are based on some
basic assumptions that are often neglected in practice.

Ontologies often need to be built in a decentralized way, ontologies must be
given to a community in a way such that individuals have partial autonomy over
them, ontologies have a life cycle that involves an iteration back and forth between
construction/modification and use and ontologies should support the participation
of non-expert users in ontology engineering processes.

While recently there have been some initial proposals to consider these issues,
they lack the appropriate rigor of mature approaches. i.e. these recent proposals lack
the appropriate depth of methodological description, which makes the methodology
usable, and they lack a proof of concept by concrete cases studies. In this paper, we
describe the DILIGENT methodology that takes decentralization, partial autonomy,
iteration and non-expert builders into account and we demonstrate its proof-of-
concept in two real-world organizational case studies.

1 Introduction and Motivation

Ontologies are used to improve the quality of communication between com-
puters, between humans and computers as well as between humans. Therefore
an ontology should result from an agreement between its different stakeholders
and this agreement must be reached in a comprehensive ontology engineering
process. There are several mature methodologies that have been proposed to
structure this process and thus to facilitate it (cf. chapter “Ontology Engineer-
ing Methodology” and [4,17,24]) and their success has been demonstrated in
a number of applications. Nevertheless, these methodologies make some basic
assumptions about the way the ontology engineering process takes place and

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 153
on Information Systems, DOI 10.1007/978-3-540-92673-3,
c© Springer-Verlag Berlin Heidelberg 2009



154 H.S. Pinto et al.

about the way the resulting ontologies are used. In practice, we thus observe
that these methodologies neglect some important issues:

1. Decentralization: Existing methodologies do not take into account that
even a medium size group of stakeholders of an ontology is often quite
distributed and does not necessarily meet often or easily. These methodolo-
gies approach ontology engineering in the same style that knowledge-based
systems were approached in the past: while the user group of a resulting
ontology may be large, its development is performed by a comparatively
small group of (1) domain experts who represent the user community and
(2) ontology engineers who help structuring that knowledge.
In contrast, we have observed that ontology-based applications tend to
be built and used in a more widely distributed fashion. By distributed
we mean, not only geographically dispersed, but also involving a large
number of interested parties from different organizations, with different
areas of expertise and competence, different kinds of users with different
requirements, etc. For instance, the Gene Ontology (GO), as reported in
its web page,1 is a result of a consortium with 99 members from 18 or-
ganizations distributed worldwide, and statistics show above 1,000 hits
per week of the GO download web page, on average. Therefore, it almost
seems a characteristic of ontologies, that they are more useful if the sys-
tems that they support are reaching out over several locations, several
independent information systems and several, if not many, independent
groups of users. However, applications that are heavily distributed, e.g.
applications for virtual organizations2 or ontology-based Peer-to-Peer ap-
plications3 or Semantic Web applications, have people and organizations
frequently leaving or joining a network. Therefore, ontology engineering
processes targeting more traditional, centralized knowledge structures do
not provide a representative picture of what the stakeholders of the ontol-
ogy require. In such a scenario, the ontology development process needs
to integrate a wider group of stakeholders, and take into account that
stakeholders will hardly ever gather in one place – not even in a virtual
space.
Therefore, ontology engineering methodologies need to consider decentral-
ization in depth and provide corresponding methodological support.

2. Partial Autonomy : We have had the experience that potential users of an
ontology are typically forced to use an ontology as is, but that they are
commonly not able to influence its development and have to forget about
it if it does not fit their needs exactly. A typical situation that we have
encountered was that people want to retain a part of the shared ontology
and modify it locally, i.e. personalize it [13].

1 http://www.geneontology.org
2 http://www.virtuelle-fabrik.com
3 http://swap.semanticweb.org



Ontology Engineering and Evolution 155

There have been very few approaches that have touched upon the issue of
adaptation to individual purposes [10,14]. Most of these approaches have
targeted this question by considering the re-use of (parts of) ontologies
for constructing a new and rather independent ontology, while in the set-
ting of individual adaptation one rather needs to construct a living view
onto an existing ontology that is augmented by individual, idiosyncratic
extensions.
Thus, existing methodologies have not really dealt with users adapting
ontologies for personal use.

3. Iteration: Existing ontology engineering methodologies mention the prob-
lem of evolving the ontology, but the actual cases that support the method-
ologies are typically cases where the ontology construction phase strictly
precedes its usage phase.
In contrast, we often see the need for interleaving ontology construction
and use [13]. Moreover, there is a lack of case studies that support hy-
potheses about how to iterate in the ontology evolution process.
Therefore, evolution needs to be addressed in real, and long run case
studies.

4. Non-expert builders: Existing ontology engineering methodologies have
been derived in a style useful for knowledge engineers. These methodolo-
gies propose check lists to guide the engineering process which have been
shaped by the needs of knowledge engineers to cope with a complex pro-
cess and to come up with an often intricate resulting system or ontology.
In contrast, in the distributed, evolving cases we consider, the participa-
tion of a knowledge engineer is often restricted to a, possibly complex,
core ontology. Beyond the core, typical application cases involve extensive
participation and, comparatively simple, concept formation by domain
experts and/or users. Support for their participation is mostly lacking in
these methodologies.

These issues arise naturally for many ontologies, e.g. [15] or GO and one
might claim for all ontologies in the Semantic Web! Recently a number of other
approaches that touch these issues have been proposed [1, 6]. However, none
goes very far from a methodological point of view, namely they do not provide
elaborated methodological support, or were extensively used in concrete case
studies with regard to these four issues, such as actions to take, their input
and output, etc.

Therefore, to account for some of the differences between classical knowl-
edge engineering and ontology engineering methodologies derived from there,
we thus have started to develop DILIGENT, a methodology for:

1. DIstributed
2. Loosely-controlled, and
3. evolvInG Engineering of oNTologies that is able to
4. support non-expert ontology builders



156 H.S. Pinto et al.

While developing DILIGENT, we also had to consider two general method-
ological objectives:

First, we wanted to provide guidance to the knowledge engineer, the on-
tology engineer and the non-expert ontology builders that was as fine-grained
as possible to make the sequence of tasks as concrete and re-producible by
novices as possible.

Second, we needed to check DILIGENT by some concrete case studies to
show that it can live up to its promises. Clearly, it is very difficult to near
impossible to match any methodology, which constitutes an abstraction of
many processes, onto an instantiated process in detail. Nevertheless without
a reasonable substantiation of the proposed steps in concrete case studies a
proposal like DILIGENT would remain vacuous.

We will therefore describe DILIGENT in detail and some experiences
where it was shown how it maps onto comprehensive case studies. Neverthe-
less, it will not be possible to describe the finest grain size of DILIGENT. At
the finest grain size of methodological support, we have proposed an argumen-
tation framework, an argumentation ontology, technical support and several
case studies to investigate only these aspects. Including all these investigations
in depth as required by a sound scientific presentation would have doubled
the size of this paper, hence we only refer to this work here [12,19,20,23] and
sketch it briefly in Sect. 4.

In the following, we present our ontology engineering methodology, DILI-
GENT. In Sect. 2 we give an overview of how we have proceeded to design
and validate DILIGENT. In Sect. 3 we describe DILIGENT elaborating the
hierarchical task structure in detail. In Sect. 4, we briefly describe how we
have applied DILIGENT in some comprehensive case studies, i.e. a distributed
knowledge management scenario supported by an ontology-based peer-to-peer
knowledge sharing platform and supported by wikis. Eventually, we compare
with related work in Sect. 5 and conclude.

2 Developing the DILIGENT Ontology Engineering
Methodology

In order to arrive at a sound Ontology Engineering (OE) methodology we
have proceeded in five steps to develop DILIGENT.

Around 2000, ontology engineering efforts with a clear distributed, loosely-
controlled and dynamic flavor were taking place. For instance SUMO4 was
being collaboratively developed by a group of worldwide distributed re-
searchers, in a loosely-controlled and evolutionary fashion. No particular
methodologies were being followed to control these new features, but these pro-
cesses were clearly following different process models from the ones that were
being tackled by the methodologies available at that time. These new efforts
[13] provided the initial ideas to conceive our initial DILIGENT framework.
4 http://suo.ieee.org/



Ontology Engineering and Evolution 157

Second, the first step in DILIGENT consists of the construction of a core
ontology (cf. Sect. 3). In this step DILIGENT does not introduce any special
or new requirements for the core ontology when compared to the ones dealt
with by existing methodologies (cf. Sect. 1). Therefore, with regard to this
step, we have decided not to develop a new methodology, but to borrow from
existing work. We expect that any mature methodology can be used. In our
case studies, we have exploited the OTK-methodology (chapter “Ontology
Engineering Methodology”).

Third, in order to validate the combined methodology we proceed in two
fronts. On the one hand, we analyzed its potential for the past and ongo-
ing development process of the biological taxonomy of living species. When
we analyze its evolution since 1735 one can realize that it completely follows
the 5-step DILIGENT process, as briefly described in Sect. 3. On the other
hand, we conducted a lab experiment case study to specifically investigate
whether some argumentation structures dominate the progress in the ontol-
ogy engineering task and should therefore be accounted for in a fine-grained
methodology. Our experiments [12] provide strong indication – though not
full-fledged evidence – that a restriction of arguments can enhance the ontol-
ogy engineering effort in a distributed environment. Moreover it also shows
us that proper social management procedures and tool support helps to reach
consensus in a smoother way (cf. [2]).

Fourth, we started a real-life, cross-organizational case study in the tourism
industry. We reported about its initial state supporting means in [11]. In this
case study, the process template was realized in a decentralized, autonomous
and collaborative setting with high personalization requirements. The pro-
cess was supported by a peer-to-peer system and tools were specifically de-
veloped to support non-ontology engineering experts. Two rounds following
DILIGENT were monitored over a 3 month period.

Fifth, by the sum of these initial process templates,5 cases and experi-
ments, we arrived at the new and refined DILIGENT methodology that we
present here. The focus of the refinement has been on decentralization, itera-
tion and partial autonomy as well as on guiding users who are not ontology
engineering experts. The methodology has been validated by the iterative case
study presented in Sect. 4 and others reported in the literature [23,25]. Thus,
we have repeatedly switched between hypothesis formulation and validation.

3 The DILIGENT Methodology

In order to give the necessary context for the detailed process description as
described in Sect. 3.2 we start by summarizing the overall DILIGENT process
model.
5 In our terminology, a methodology for an engineering artefact is a tested and

validated process template abstracting over all possible successful engineering
processes for engineering the artefact.



158 H.S. Pinto et al.

The DILIGENT process [11] supports its participants, in collaboratively
building one shared ontology. In DILIGENT we assume that there are sev-
eral participants, with different and complementary skills, which, in most of
the cases, are geographically distributed, and which have genuine interest in
collaboratively building or using one ontology. For instance, in a virtual or-
ganization, the different participants may be in a “coopetition” relationship:
on the one hand they may be from different but similar organizations that
compete for the same resources, but on the other, to compete against exter-
nal threats, they should cooperate to improve their chances of success. In this
case, it may be important, for instance to promote interoperability between
their applications, that they all agree on a given ontology, the shared ontology,
and use it as a common ground of understanding.

There are different kinds of participants in the DILIGENT process: (1)
domain experts, that know about the domain that is targeted (2) ontology
engineers, that know how to build ontologies (3) knowledge engineers, that
know how to build knowledge or information systems based on ontologies, and
(4) users, that use the ontology resulting from the process in their systems for
their own uses. The participants directly involved in building the ontology,
may or may not use the ontology. However, most ontology users will typically
not build or modify the given ontology. DILIGENT supports trained ontology
engineers as well as typical users of information systems likewise. The ontol-
ogy engineers perform the defined activities with more accuracy and awareness
of the process, while the non-ontology-engineering-expert users will tend to
follow them implicitly guided by the provided tools. At some points of the pro-
cess there is a subset of participants that plays a special role and has added
responsibilities: the board. As in the other steps of the process, the composi-
tion of the board is not fixed, that is members can enter or leave, although it
should have a more stable composition than that of the participants involved
in the DILIGENT process. This board is responsible for the shared ontology:
in the beginning it builds the initial version of the ontology, in the iterations
that follow it is responsible for the evolution of the shared ontology.

3.1 General Process

The process comprises five main activities: (1) build, (2) local adaptation, (3)
analysis, (4) revision, (5) local update, Fig. 1. The process starts by having
domain experts, users, knowledge engineers and ontology engineers build ing
an initial ontology. The team involved in building the initial ontology should
be relatively small, in order to more easily find a small and consensual first
version of the shared ontology. At this point, it is not required to arrive at an
initial ontology that covers the complete domain.

Once the initial ontology is made available, users can start using it and
locally adapting it for their own purposes. Typically, due to new business
requirements or user and organization changes, their local ontologies evolve.



Ontology Engineering and Evolution 159

Fig. 1. Distributed, loosely controlled, evolving Ontology Engineering

In DILIGENT there are two kinds of ontologies: The shared ontology and
local ontologies. The shared ontology is available to all users and cannot be
changed directly except by the board. Users are free to change, in their local
environments, a copy of the shared ontology. The ontology resulting from the
changes of a user is the user local ontology.

A board of ontology stakeholders analyzes the local ontologies and the
users’ requests and tries to identify similarities in their ontologies. At this
point it is not intended to merge all local ontologies. Instead, changes to local
ontologies will be analyzed by the board in order to decide which changes
introduced or requested by the users should be introduced in the shared on-
tology. Therefore, a crucial activity of the board is deciding which changes are
going to be introduced in the next version. A balanced decision that takes into
account the different needs of user’s evolving requirements has to be found.

The board should regularly revise the shared ontology, so that the parts
of the local ontologies overlapping the domain of the shared ontology do not
diverge too far from it. Therefore, the board should have a well-balanced and
representative participation of the different kinds of participants involved in
the process, which includes ontology engineers, domain experts and users. Of
course, these are roles that may overlap.

Once a new version of the shared ontology is released, users can update
their own local ontologies to better use the knowledge represented in the new
version. The last four stages of the process are performed in a cyclic manner:
when a new common ontology is available a new round starts again.

There are evidences that this process template can be used in different
areas and therefore understanding and better supporting it is important. For
instance, the taxonomy of life on earth has been evolving since 1735 follow-
ing a DILIGENT like 5-step process. It was initially proposed by Linnaeus
(build) based on phenetics (observable features). Considering the “most gen-
eral” level, initially, two kingdoms were proposed: animals and plants. As more
and more detailed knowledge about them was discovered, new kingdoms were



160 H.S. Pinto et al.

proposed by its users and introduced by the boards controlling them once
some consensus was reached. For instance, when microorganisms were discov-
ered the moving ones were classified in the animals kingdom and the colored
(non-moving) ones in the plants kingdom (local adaptation). A few of them
were classified in both kingdoms. Users were locally adapting the taxonomy
for their own purposes. To more easily identify organisms in both classes,
Haeckel (1894) proposed a new kingdom to more easily identify them, the
Protista kingdom. This change was introduced by the board (analysis and re-
vision). This kingdom still exists today (locally update) and is used to gather
all organisms that do not belong to one of the other kingdoms. The major
force driving the reorganization of the taxonomy over time has been the iden-
tification of important classifying features and gathering all beings sharing a
given value for that feature into that class. The parallel between DILIGENT
template process and the development of the taxonomy of life on earth is far
more deep than described here. For other examples see [12].

3.2 DILIGENT Process Stages

In order to facilitate the application of DILIGENT ontology engineering pro-
cesses and provide guidance to its participants in real settings, DILIGENT
had to be more detailed. For this purpose, we have analyzed the different
process stages in detail. For each stage we have identified (1) major roles, (2)
input, (3) decisions, (4) actions, (5) available tools, and (6) output informa-
tion. One should stress that this elaboration is rather a recipe or check list
than an algorithm or integrated tool set. In different contexts it may have to
be adapted or further refined to fit particular needs and settings. Tools may
need to be integrated or customized to match requirements of the application
context. In Fig. 2 we sketch our results, which are presented in the following.
For the sake of brevity we refer the reader to [20] that includes an even more
detailed process description.

Build

As mentioned before, DILIGENT focuses on distributed ontology development
and ontology evolution, but borrows from established methodologies (chapter
“Ontology Engineering Methodology” and [4]). This is particularly true at
this stage. The goal is to quickly build an ontology that is going to be used
in an application. At this stage one can follow different approaches and even
approaches inspired from software engineering methodologies, such as rapid
prototyping, extreme programming and open source guidelines. The motto is:
get something small and useful and give it to the users, as early as possible.
Therefore, there is no need for completeness, although usability and usefulness
are crucial.

Roles: Usually, there are three roles: knowledge engineer, ontology engineer
and domain expert. The domain expert provides both knowledge and ontol-
ogy engineers with the required domain knowledge and knowledge sources.



Ontology Engineering and Evolution 161

11. Formalization 
of relevant 
changes

12. Aggregation 
of arguments

13. Documen-
tation

Local
Adaptation Analysis Revision

Local 
Update

2. Understand 
shared 
ontology

3. Identify 
communalities

4. Map equivalent

5. Identify missing

6. Change locally
7. Organize local 

knowledge

8. Gather 
updated 
ontologies

9. Analyze 
changes 
conceptually

10. Decide on 
changes to be 
made

14. Distribution of 
the new 
ontology

15. Tagging of the 
old ontology

16. Local inclusion 
of the update

17. Alignment of old 
and new 
versions

Build

1. Small group 
builds initial 
shared 
ontology 
according 
established 
methodologies

- Locally 
changed 

Ontologies
- Arguments

Initial
shared

Ontology

Shared 
ontology fits? Sufficient? 

List of 
conceptual 
changes

Documented 
new shared 

ontology

Most important 
changes? 

Consensual 
formalization? Update? 

Local 
ontology 

merged with 
new shared 

one

Fig. 2. Process stages (1–5), actions (1–17) and structures

The knowledge engineer creates a conceptual model of the domain from the
knowledge extracted from these sources. The ontology engineer generates a
machine readable ontology from the conceptual model. Quite often the knowl-
edge engineer and ontology engineer are roles performed by the same person.
Additionally to these classical roles we also propose the involvement of users.
At this stage, usually the actors involved as users are also involved in the
process in one of the other more classical roles. Most of those involved in the
build stage are initial board members.

Input : Since this stage borrows from traditional OE the usual pre-
development activities are performed. Given our analysis of existing method-
ologies [21] we recommend the adoption of the OTK methodology (chapter
“Ontology Engineering Methodology”, since it is the one providing more
guidance and has a more detailed and complete set of activities. However, the
use of other methodologies is not excluded.

Decisions: The usual decisions of a classical OE process need to be taken.
In contrast to common OE methodologies we do not require completeness of
the ontology at this stage. It is particularly important that the ontology is
clear and easily understandable by possible users.

Actions: As in classical OE development, common core activities are con-
ceptualization, formalization, and implementation.6 Integral activities like
knowledge acquisition, evaluation, reuse (comprising fusion and composition),
and documentation are complemented in DILIGENT with a recommendation
for Argument provision.

6 Maintenance is supported by later stages of DILIGENT.



162 H.S. Pinto et al.

Output : The result is an ontology with the main concepts of the domain.
Once an initial ontology is (1) built and released, users will start to adapt it
locally for their own purposes.

Local Adaptation

This is a use and personalization stage, therefore users use and adapt the
released ontology to their own needs. The idea is for users to understand the
shared ontology, use it in the context of their applications, eventually find some
problems in the shared ontology for their particular applications that require
customization on their local ontologies, and accordingly modify these to best
suit their needs. All changes should be justified with arguments. Their changes
will only apply to their local copies and not to the shared ontology that was
made available to all users. In ideal settings, users can also have access to
other users’ ontologies, when customizing the shared ontology (either under
the same framework or from external sources) therefore reuse of ontologies
may also be performed.7 One should stress that all traditional OE activities
are usually performed by the users at this stage, such as knowledge acquisition,
conceptualization, formalization, evaluation, integration, etc. Once in a while
a new shared ontology is made available to users.

Roles: The actors involved in the local adaptation step are users of the
ontology. However, they usually do not have an OE background. They use
the ontology, e.g. to retrieve documents which are related to certain topics
modeled in the ontology or more structured data like the projects an employee
was involved in.

Input : Besides the common shared ontology, in the local adaptation step
the information available in the local information space is used. This can be
existing databases, ontologies or folder structures and documents. Moreover,
external knowledge sources or ontologies can also be reused as well as other
user’s ontologies.

Decisions: The users decide which changes they want to make to their
local ontology, hence they must decide if and where new concepts are needed
and which relations a concept should have. They should provide reasons for
their changes.

Actions: To achieve the desired output the user performs different groups of
actions namely: Analyze the shared ontology; Change and integrate the shared
and local ontologies; and Use the shared ontology. The last two actions of the
process step are performed in a cyclic manner until a new shared ontology is
available and the entire process step starts again.

One important issue is the fact that this stage can either be performed
immediately after a build or after a local update stages. In both cases, the
shared ontology is available: in the first case, it is the only ontology users
have had so far, in the second they have already their own local ontologies

7 With naive users this usually does not occur often.



Ontology Engineering and Evolution 163

that were somewhat connected (or not) to the shared ontology. Users then
start adapting the shared ontology to their own purposes. Although these two
situations are not different from a conceptual point of view, from a practical
point of view they are different since in the second case users usually are not
going to simply discard their local ontologies and build them again so that
they can be connected to the new version of the shared ontology. Therefore,
it is important to assure that there can be a smooth transition.

We now describe in detail each one of the proposed actions:
The Analysis of shared ontology usually involves (2) Understand shared

ontology and (3) Identify similarities between own and shared conceptualiza-
tion. An ontology should represent a shared conceptualization of part of the
world. At this point the analysis is mainly the identification of similarities and
mismatches between the available shared ontology and either the conceptual
model of the domain users have in their minds or the local ontologies they
already developed in previous iterations of the process.

(2) Understand the shared ontology The user must learn where the dif-
ferent concepts are located in the ontology and how they are interrelated.
The ontology can be very complex, thus understanding the ontology depends
mainly on its visualization, and good naming conventions.

(3) Identify similarities between own and shared conceptualization Follow-
ing the comprehension of the ontology, the user can realize the similarities
and differences between the own and shared conceptualizations

Change and integration of shared and local ontologies usually involves (4)
Map equivalent conceptualizations of different actors (5) Identify mismatches
in conceptualizations, and (6) Change conceptualization.

(4) Map equivalent conceptualizations of different actors: After the iden-
tification of similarities they should be made explicit, otherwise the system
will not be able to make use of these findings in later stages. This is partic-
ularly important when the user is identifying similarities between his local
concepts and the new concepts in the shared ontology. Different implementa-
tions may add specialized adds-on. Mappings have the advantage, that they
leave the original local structures unchanged. Of course users may also decide
to change their local structures in favor of the common structure. In this case
the changes must be traceable, so that the user can retain his old version,
whenever he wants.

(5) Identify mismatches in conceptualizations: The techniques to identify
similarities can also be applied in the subsequent step to support the user in
identifying missing conceptualizations. Depending on the scenario, the user
might have access to other users’ ontologies and use their local adaptations
as further input to identify missing concepts in his own conceptual model.

(6) Change conceptualization: After identifying missing or unwanted con-
ceptualizations the user must be enabled to introduce them. This is a cus-
tomization phase and of course, evaluation is also performed here. Users should
assure that their changes are adequate both from a domain and a representa-
tion point of view. Since later on the board analyzes the changes performed



164 H.S. Pinto et al.

or requested by the users, users must provide reasons for each change and/or
request for change, so that the board can understand them. To support the
user in providing reasons, the argumentation framework focuses the user on
the relevant arguments, [19].

Ontology use typically involves that users (7) Organize local knowledge ac-
cording to the new conceptualization. At this point the local ontology should
reflect the user’s conceptualization. Now he can use the ontology in his applica-
tion. In our case studies ontologies were used in information retrieval scenarios
therefore, ontology use typically involved the organization of local knowledge
according to the local conceptualization. Therefore, the user instantiated the
ontology with the information available locally and hence contributed to the
collective knowledge.

Output : One output of the process step is a locally changed ontology
which better reflects the user’s needs. Each change is supported by arguments
explaining the reasons for a change. At this point changes are not propa-
gated to the shared ontology. Moreover, users can send requests for changes
directly to the control board, which should also be duly justified. Only in the
analysis step the board gathers all ontology changes and requests and their
corresponding arguments to be able to evolve the common shared ontology in
a user driven revision step.

Analysis

In this stage, the board analyzes incoming requests and observations of
changes.8 The idea is for the board to identify which changes should be made
to the ontology based on the changes made or requested by the users. The
frequency of this analysis is determined based on the frequency and volume of
changes to the local ontologies. The board analyzes and decides which changes
would the users most benefit from and would most like to see implemented. At
this stage the new requirements for the future version of the shared ontology
are identified. At this stage, work is conducted at a conceptual level. This
activity borrows from classical ontology reuse processes, but is simpler since
local ontologies are available in the same environment and language.

Roles: In the analysis stage we can distinguish three roles played by board
members: (1) The domain expert decides which changes to the common on-
tology are relevant from the domain point of view and which are relevant
for smaller communities only. (2) Representatives from the users explain dif-
ferent requirements from the usability perspective. (3) The ontology engi-
neers analyze the proposed changes from a knowledge representation point of
view foreseeing whether the requested changes could later be formalized and
implemented.9

8 Ideally the board should have access to all users’ ontologies. However, in some
settings it may only have access to requests for changes.

9 In the revision stage.



Ontology Engineering and Evolution 165

Input : The analysis stage takes as input the ontology changes requested
and/or made by the participating actors. To be able to understand their
changes and requests, users should have provided their reasons. Both manual
and automated methods can be used in the previous stages, therefore be-
sides of arguments by ontology stakeholders, one may here consider rationales
generated by automated methods, e.g. ontology learning. The arguments un-
derlying the proposed changes constitute important input for the board to
achieve a well balanced decision about which changes to adopt.

Decisions: The board must decide which changes to introduce into the new
shared ontology at the conceptual level. Metrics to support this decision are
(1) the number of users who introduced a change in proportion to all users
who made changes. (2) The number of queries including certain concepts. (3)
The number of concepts adapted by the users from previous rounds.

Actions: To achieve the desired output the board takes different actions
namely (8) Gather locally updated ontologies and corresponding arguments,
(9) Analyze the introduced changes and (10) Decide on changes to be made.

We now describe in detail each one of the proposed actions:
(8) Gather locally updated ontologies and corresponding arguments: De-

pending on the deployed application the gathering of the locally updated
ontologies can be more or less difficult. It is important that the board has
access to the local changes from users and their corresponding arguments to
be able to analyze them. It may also be interesting not only to analyze the
current users’ ontologies, but also its evolution. However, with an increasing
number of participants this in-depth analysis may be unfeasible. Since usually
analysis takes place at the conceptual level, reverse engineering is usually an
important technique to get the conceptual model from the formalized model
[4]. To support users providing their reasons, the argumentation framework
focuses the users on the relevant arguments, [19].

(9) Analyze introduced changes: In this action the board tries to identify
the parts of the shared ontology which should be modified. As the number
of change requests may be large and also contradictory, first the board must
identify the different areas in which changes took place. Within analysis the
board should bear in mind that changes of concepts should be analyzed be-
fore changes of relations and these before changes of axioms. Good indicators
for changes relevant to the users are (1) overlapping changes and (2) their
frequency. Furthermore, the board should analyze (3) the queries made to the
ontology. This should help to find out which parts of the ontology are more
often used. Since actors instantiate the ontology locally, (4) the number of
instances for the different proposed changes can also be used to determine the
relevance of certain adaptations.

(10) Decide on changes to be made: Having analyzed the changes and
having grouped them according to the different parts of the ontology they
belong to, the board has to identify the most relevant changes, that is iden-
tify changes presumably relevant for a significant share of all actors. Based
on the provided arguments the board must decide which changes should be



166 H.S. Pinto et al.

introduced. Depending on the quality of the arguments the board itself might
argue about different changes. For instance, the board may decide to introduce
a new concept that better abstracts several specific concepts introduced by
users, and connect it to the several specific ones. Therefore, the final decisions
entail some form of evaluation from a domain and a usage point of view.

Output : The outcome of this action is a reduced and structured list of
changes that are to be implemented in the shared ontology that were agreed
by the board. Arguments should be provided for each one of them. All changes
which should not be introduced into the shared ontology are filtered. Argu-
ments justifying the decisions to leave them out should also be provided. At
this stage it is not required to decide on the final modeling of the shared
ontology.

Revision

The revision and analysis stages are closely related. While in the previous
stage the new requirements for the shared ontology are identified, in this
stage they are formalized and implemented. In the end the new version of the
shared ontology is distributed to its users.

Roles: The ontology engineers from the board judge the changes from an
ontological perspective more exactly at a formalization level. Some changes
may be relevant for the common ontology, but may not be correctly formu-
lated by the users. The domain experts from the board should judge and
decide wether new concepts/relations should be introduced into the common
ontology even though they were not requested by the users

Input : The input for the revision phase is a list of changes at a concep-
tual level which should be included into the ontology and the arguments
underlying them.

Decisions: The main decisions in the revision phase are formal ones. All
intended changes identified during the analysis phase should be included into
the common ontology. In the revision phase the ontology engineer decides
how the requested changes should be formalized. Evaluation of the decisions
is performed by comparing the changes on the conceptual level with the final
formal decisions. The differences between the original formalization by the
users and the final formalization in the shared ontology should be kept to a
minimal basis.

Actions: To achieve the desired output the members of the board, mainly
its ontology engineers, perform different actions namely (11) Formalization
of the decided changes, (12) Aggregation of corresponding arguments, (13)
Documentation, and (14) Distribution of the new ontology to all actors.

We now describe in detail each one of the proposed actions:
(11) Formalization of the decided changes: As in classical OE development,

the requested changes must be formalized with respect to the expressivity of
the ontology representation language. Before their actual implementation, the
agreed changes should be analyzed from a knowledge representation point of



Ontology Engineering and Evolution 167

view. This evaluation is somehow similar to the one performed when reusing
an ontology according to classical reuse methodologies. The goal is to deter-
mine how the changes identified in the previous step should be formalized.
Once this is done, the actual changes are formalized and the quality of the
resulting ontology is again assured through evaluation. All required activities
are addressed by classical OE methodologies.

(12) Aggregation of arguments: As arguments play a major roll in the
decision process we expect that the changes which are eventually included into
the common ontology are supported by good arguments. One of the reasons
for keeping track of the arguments is to enable users to better understand why
certain decisions have been made. Therefore, the board should summarize and
aggregate understandable, pedagogical and the most convincing arguments
underlying each change. The user should be able to retrieve them.

(13) Documentation: With the help of the arguments, the introduced
changes are already well documented. However, we assume that some ar-
guments may only be understandable by the domain experts and not users.
Hence, we expect that the changes should be documented to a certain level.

(14) Distribution of the ontology to all actors: Analogously to stage (1) the
shared ontology must be distributed to the different participants. Depending
on the overall system architecture different methods can be applied here.
Moreover, the board should assure version and release management.

Output : The new version of the shared ontology together with its argu-
ments and documentation is the result of this stage. This documentation is
essential for users to understand the new shared ontology when a new cycle
begins.

Local Update

In the local update stage the new shared ontology is released and put to use
by its users. They decide which changes they will adopt. Part of this stage is
similar to local adaptation: users must get familiar with the new version and
identify which parts of their local ontologies they will discard in favor of the
new shared ontology and which ones they will retain.

Roles: The local update phase involves only users. They perform different
actions to include the new common ontology into their local system before
they start a new round of local adaptation.

Input : The new formalized shared ontology is the input for this step.
We also require as input the documentation and arguments justifying those
changes. For a better understanding the user should be allowed to request a
delta to the original version.

Decisions: The user must decide which changes he will introduce locally.
This depends on the differences between the own and the new shared con-
ceptualization. The user does not need to update his entire ontology. This
stage interferes a lot with the next local adaptation stage. We do not exclude



168 H.S. Pinto et al.

the possibility of conflicts and/or ambiguity between local and shared ontolo-
gies, which may entail reduced precision if the ontology is being used in IR
applications.10

Actions: To achieve the desired output the user takes different actions
namely Analysis of the new shared ontology ; and Integration of new shared
version with current user’s local one.

After the local update, the iteration continues with local adaptation. Dur-
ing the next analysis step the board reviews which changes were actually
accepted by the users.

We now describe in detail each one of the proposed actions:
Analysis of the new shared ontology : The goal is to understand the new

shared ontology. The user scans for the changes introduced by the board
that are relevant for his use, and controls whether his change proposals were
implemented. He must further identify wether the benefits of updating to
the new version outweight its effort. Issues to be analyzed include: concepts
introduced by other users, consistency of new shared version with local version,
maintenance of interoperability with other users.

Integration of new shared version with current user’s local one: In this
action the user reuses or not the new version of the shared ontology. If the
new shared ontology is not of use the system should allow the user to retain
the outdated version. In this case the user will have to perform (15) Tagging
of the outdated version. In case the user finds the new shared version of use
two further subactions can be performed: (16) Inclusion of the updated version
and (17) update local adaptations not included in the common ontology.

(15) Tagging of the outdated version: To ensure user satisfaction, the sys-
tem must enable the user to retain his old version of the ontology or parts of
it. The user may later realize that the new updated version of the common
ontology does not represent his needs anymore and thus want to leave the
update cycle out and return to the old version. To reach a better acceptance
this must be possible and is foreseen in the methodology. The user can always
balance between the advantages of using a shared ontology or using his own
conceptual model. Therefore, the old version should be stored for possible
later reuse.

(16) Inclusion of the updated version: The system must support the user
to easily integrate the new version into his local system. It must be guaranteed
that all annotations made for the old version of the ontology are available in
the new version. It may require restructuring and adaptation of instantiations
to stay in line with the new model.

(17) Update of local adaptations which are not included in the common
ontology : The update of the local ontology can lead to different kinds of con-
flict. Changes proposed by the user may indeed have found their way into
the common ontology. Hence, the user should be enabled to use from now on

10 Ideally one should be able to blacken out the ambiguous parts like in multilevel
databases. This has not been transferred to OE yet.



Ontology Engineering and Evolution 169

the shared model instead of his own identical model. Furthermore, the board
might have included a change based on arguments the user was bringing for-
ward, but has drawn different conclusions. Here the user can decide wether
he prefers the shared interpretation.

Other options may emerge in the course of further case studies.
Output : Ideally the output of the local update phase is an updated local

ontology which includes all changes made to the shared ontology. However,
since not all users may want to completely change to the new version, we
do not require the users to adopt all changes proposed by the board. So, the
output is not mandatory since the actors could change the new ontology back
to the old one in the local adaptation stage.

4 Applying DILIGENT in Case Studies

In this section we describe briefly how we specifically investigated how
a distributed, loosely controlled and evolving ontology engineering process
following DILIGENTcould be implemented. For more detailed descriptions
refer to the relevant bibliography referred in each subsection.

4.1 The IBIT Case Study

The first running case study took place under the SWAP project. In this
project, the challenges were how the process template could be implemented
in a multi-organizational setting with non-expert ontology engineering users,
and which finer grained support could be provided to these users.

In the SWAP project, the IBIT case study was in the tourism domain of the
Balearic Islands. The needs of the tourism industry there, which accounts for
80% of the islands’ economy, are best described by the term “coopetition”.
On the one hand the different organizations compete for customers against
each other. On the other hand, they must cooperate in order to provide high
quality for regional issues like infrastructure, facilities, clean environment, or
safety – that are critical for them to be able to compete against other tourism
destinations. To collaborate on regional issues a number of organizations now
collect and share information about indicators reflecting the impact of growing
population and tourist fluxes in the islands, their environment, and their in-
frastructures. Moreover, these indicators can be used to make predictions and
help planning. For instance, organizations that require Quality & Hospitality
Management use the information to better plan, e.g. their marketing cam-
paigns. As another example, the governmental agency IBIT,11 the Balearic
Government’s co-ordination center of telematics, provides the local industry
with information about New Technologies that can help the tourism industry
to better perform their tasks.

11 http://www.ibit.org



170 H.S. Pinto et al.

Due to the different working areas and goals of the collaborating organi-
zations, it proved impossible to build a centralized knowledge management
system or even a centralized ontology satisfying all user requirements. The
users emphasized the need for local control over their ontologies. They asked
explicitly for a system without a central server, where knowledge sharing was
integrated into the normal work, but where different kinds of information, like
files, emails, bookmarks and addresses could be shared with others. To this
end the SWAP consortium – including us at University of Karlsruhe, IBIT,
Free Univ. Amsterdam, Meta4, and Empolis – developed the SWAP generic
P2P platform and built a concrete application on top that allowed the satis-
faction of the information sharing needs just elaborated using local ontologies,
which were linked to a shared ontology. A case study was set up. The main
goals were the evaluation of the DILIGENT process and the developed peer-
to-peer platform. The case study lasted for 3 months. Moreover, a set of tools
were also specifically developed [18] to support the participants in the case
study. However, most of the tools were being developed at the same time as
the process was taking place. Therefore, the administrator had a major role
in bridging the gap between our real users and the weaknesses of the tools,
for instance by doing local adaptations for the users since the tools were not
error-proof.

Regarding the methodology we had four hypothesis: (1) DILIGENT sup-
ports collaborative development of a shared ontology; (2) ontologies in use
need to evolve; (3) non-ontology engineering experts can participate in ontol-
ogy engineering processes, and (4) the organizational structure DILIGENT
suggests fits the organizational setting found in the IBIT case study, a peer-
to-peer setting.

The first round of our OE process started with the distribution of the three
modules of the common ontology to all users. In both rounds, users – during
the local adaptation stage – and the board – in the revision stage – could
perform ontology change operations (concepts/relations/instances). Most fre-
quently the concept hierarchy was changed.

The first month of the case study, corresponded to the first round of the
DILIGENT process. One organization with seven peers participated. This
organization can be classified as a rather loose one. In the first round we
had seven users, six of which had no OE background. In general, the users
added concepts to the shared ontology to represent the topics of their core
working area. They did not share all their local information, but selected the
documents which they thought would be interesting for the group. In the
interviews they commented, that they would share more files at a later stage,
when they would feel more confident with the system. In this organization
most of the users were very active and did local adaptations to best serve
their own needs. They also add access to other user’s ontologies. Moreover,
the board received by e-mail requests to modify the shared ontology. The first
round of the process resulted in seven adapted ontologies.



Ontology Engineering and Evolution 171

In Analysis, the board consisted of two ontology engineers and two domain
experts/users, the same that were involved in the build stage. The local adap-
tations from seven users were collected. Additionally the board had access to
their folder structures. All changes introduced were motivated by the users’
requests and changes. They all made sense and were not contradictory on the
conceptual level. Then, the new shared ontology was distributed.

In Local update all users decided to use the new shared ontology as it
covered more domain knowledge and they found their requests integrated to
it. As a result of this stage the new shared ontology was commonly used and
the users’ folders were aligned with the new shared ontology.

In the second round the case study was extended to four organizations
with 21 peers. The users participating in the first round had more experi-
ence and were still active. One of the new organizations was very hierarchical.
None of the new 14 users had OE experience. The experienced users started
with the result of the local update stage, while the new users received only
the new shared ontology. All users shared the local information which they
thought relevant for the group. The new users behaved in a similar way as
the users in the first stage and did not share many folders, as they wanted to
gain confidence in the system first. The experienced users, however, published
more information, and adapted the local ontologies accordingly. The second
local adaptation stage resulted in 14 adapted ontologies. The rest of the users
did not make changes. Although, some did not change the shared ontology
directly, they submitted change requests to their supervisor, thus they dele-
gated the modeling task. The supervisor then communicated the requests to
the board.

In Analysis, in this round the board consisted of one domain expert and
two ontology engineers. Additionally two users were invited to answer ques-
tions to clarify the changes they introduced. The 21 local ontologies of the
users were the input to the second round. This time the board had to perform
reverse engineering on the formal local ontologies from users in order to get
their conceptual models. As in the first round the board included all change
requests from users. Again, as in the first round, only very few concepts in the
common ontology were never used. All conceptual requests could be modelled
in the ontology, providing the next version.

The case study ended after the distribution of the new shared ontology.
We collected feedback from the users w.r.t. to their impressions on the new
version. They emphasized that the new version represented their requirements
at that time. The users commented that they appreciated being involved in the
development process, although they recognized that they were not experienced
in ontology engineering. They did not object to the modeling decisions of the
board and understood the reasons for the differences between their change
requests and the final modeling.

However, updating to the new version was still a problem, since some in-
stances of the ontology might have to be newly annotated to the new concepts



172 H.S. Pinto et al.

of the shared ontology. In our case, documents needed a new classification.
This problem can be partly overcome with the help of technology [7].

For more detailed descriptions on this project refer to [20,21].

4.2 The Judges Case Study

The Judges case study took place under the SEKT project. It aimed at provid-
ing an intelligent Frequently Asked Questions system, Iuriservice, that offers
help to newly appointed judges in Spain. Although judges had a strong and
thorough education and became experts in their domain, they still often seek
the help of senior judges or tutors regarding procedural questions. The sys-
tem focuses on such procedural knowledge, which is often neglected, as it is
very hard to externalize. Examples for procedural questions are: How should
I organize a round of recognition of suspects if there are no people available?
Which are the actual functions and competences of the judge as compared to
those of the secretaries?

In this regard, the design of legal ontologies requires not only to represent
the legal, normative language of written documents (decisions, judgments,
rulings, partitions, etc.) but also those chunks of professional knowledge from
the daily practice at courts. One of the main features of this professional
legal knowledge is that it is context-sensitive. In this sense, it implies: (1) the
ability to discriminate among related but different situations; (2) the practical
attitude or disposition to rule, judge or make a decision; (3) the ability to
relate new and past experiences of cases; (4) the ability to share and discuss
these experiences with the group of peers.

In this case, the argumentation framework developed under the DILI-
GENTmethodology, together with a wiki system proved an invaluable tool
that promoted discussion and allowed finding good solutions for the problems
newly appointed judges faced.

For more detailed descriptions on this project refer to [20,22].

5 Related Work

In the past, there have been OE case studies involving dispersed teams, such
as (KA)2 ontology [1] or [13]. However, they usually involved tight control
of the ontology, of its development process, and of a small team of ontology
engineering experts that could cope with the lack of precise guidelines.

Established methodologies for ontology engineering summarized in [4, 17,
24], focus on the centralized development of static ontologies, i.e. they do
not consider iteration between construction/modification and use. METHON-
TOLOGY [4] and the OTK methodology [17] are good examples for this ap-
proach. They offer guidance for building ontologies either from scratch, reusing
other ontologies as they are, or re-engineering them. They divide OE processes
into several stages which produce an evaluated ontology for a specific domain.



Ontology Engineering and Evolution 173

Holsapple et al. [5] focus their methodology on the collaborative aspects of
ontology engineering but still aim at a static ontology. A knowledge engi-
neer defines an initial ontology which is extended and modified based on the
feedback from a panel of domain experts. HCOME is a methodology which
integrates argumentation and ontology engineering in a distributed setting
[6]. It supports the development of ontologies in a decentralized setting and
allows for ontology evolution. It introduces three different spaces in which
ontologies can be stored: In the Personal Space users can create and merge
ontologies, control ontology versions, map terms and word senses to concepts
and consult the top ontology. The evolving personal ontologies can be shared
in the Shared Space. The Shared Space can be accessed by all participants. In
the shared space users can discuss ontological decisions. After some discussion
and agreement, the ontology is moved into the Agreed space. However, they
have neither reported that their methodology had been applied in a case study
nor do they provide any detailed description of the defined process stages.

There are a number of technical solutions to tackle problems of remote
collaboration, e.g. ontology editing with mutual exclusion [3], inconsistency
detection with a voting mechanism [9], collaborative ontology editing [8, 16]
or evolution of ontologies by different means [7]. All these solutions address
the issue of keeping an ontology consistent. Obviously, none supports (and
do not intend to) the work process of the ontology engineers by way of a
methodology.

6 Conclusion

Decentralization can take different forms. One can have more loose or more
hierarchical organizations. We observed and supported both kinds of orga-
nizations. Therefore, the first finding is the fact that this process can be
adapted both to hierarchical and to more loose organizations. DILIGENT pro-
cesses cover both traditional OE processes and more Semantic Web-oriented
OE processes, that is with strong decentralization and partial autonomy
requirements.

The process helped non-OE-expert users to conceptualize, specialize and
refine their domain. The agreement met with the formalized ontologies was
high, as shown by people willing to change their folder structures to better use
the improved domain conceptualization. In spite of the technical challenges,
user feedback was very positive.

The DILIGENT process proved to be a natural way to have different people
from different organizations collaborate and change the shared ontology. The
set-up phase for DILIGENT was rather fast, and users could profit from their
own proposals (local adaptations) immediately. The result was much closer
to the user’s own requirements. Moreover, other users profited from them
in a longer term. Finally, the case studies clearly have shown the need for
evolution. Users performed changes and adaptations.



174 H.S. Pinto et al.

The development of ontologies in centralized settings is well studied
and there are established methodologies. However, current experiences from
projects suggest that ontology engineering should be subject to continuous im-
provement rather than a one-time effort and that ontologies promise the most
benefits in decentralized rather than centralized systems. To this end we have
conceived the DILIGENT methodology. DILIGENT supports domain experts,
users, knowledge engineers and ontology engineers in collaboratively building
a shared ontology in a distributed setting. Moreover, the methodology guides
the participants in a fine grained way through the ontology evolution process,
allowing for personalization. We have demonstrated the applicability of our
process model in a cross-organizational case study in the realm of tourism in-
dustry and another in the judicial domain. Real users were using the ontology
to satisfy their information needs for an extended period of time.

References

1. V. R. Benjamins, D. Fensel, S. Decker, and A. Gómez-Pérez. (KA)2: Building
ontologies for the internet. International Journal of Human-Computer Studies
(IJHCS), 51(1):687–712, 1999.

2. K. Dellschaft, H. Engelbrecht, J. M. Barreto, S. Rutenbeck, and S. Staab.
Cicero: Tracking design rationale in collaborative ontology engineering. In
ESWC, volume 5021 of Lecture Notes in Computer Science, pages 782–786.
Springer, Berlin, 2008.

3. A. Farquhar et al. The ontolingua server: A tool for collaborative ontology
construction. Technical report KSL 96–26, Stanford, 1996.

4. A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engineering.
Advanced Information and Knowlege Processing. Springer, Berlin, 2003.

5. C. W. Holsapple and K. D. Joshi. A collaborative approach to ontology design.
Communications of the ACM, 45(2):42–47, 2002.

6. K. Kotis, G. A. Vouros, and Jerónimo Padilla Alonso. HCOME: Tool-supported
methodology for collaboratively devising living ontologies. In SWDB’04: Second
International Workshop on Semantic Web and Databases 29–30 August 2004
Co-located with VLDB. Springer, Berlin, 2004.

7. A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and distributed
ontologies on the semantic web. The VLDB Journal, 12(4):286–302, 2003.

8. N. Noy, A. Chugh, W. Liu, and M. A. Musen. A framework for ontology evolu-
tion in collaborative environments. In International Semantic Web Conference,
volume 4273 of Lecture Notes in Computer Science, pages 544–558. Springer,
Berlin, 2006.

9. A. Pease and J. Li. Agent-mediated knowledge engineering collaboration. In
L. van Elst, V. Dignum, and A. Abecker, editors, Agent-Mediated Knowledge
Management International Symposium AMKM 2003 Stanford, CA, USA, Lec-
ture Notes in Artificial Intelligence (LNAI) 2926, pages 405–415. Springer,
Berlin, 2003.

10. H. S. Pinto and J. P. Martins. A methodology for ontology integration.
In Proceedings of the First International Conference on Knowledge Capture
(K-CAP2001), pages 131–138. ACM Press, New York, 2001.



Ontology Engineering and Evolution 175

11. H. S. Pinto, S. Staab, Y. Sure, and C. Tempich. OntoEdit empowering SWAP:
A case study in supporting DIstributed, Loosely-controlled and evolvInG Engi-
neering of oNTologies (DILIGENT). In C. Bussler, J. Davies, D. Fensel, and
R. Studer, editors, First European Semantic Web Symposium, ESWS 2004,
volume 3053 of LNCS, pages 16–30, Heraklion, Crete, Greece, May. Springer,
Berlin, 2004.

12. H. S. Pinto, S. Staab, and C. Tempich. DILIGENT: Towards a fine-grained
methodology for DIstributed, Loosely-controlled and evolvInG Engineering of
oNTologies. In R. L. de Mántaras and L. Saitta, editors, Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI 2004), pages 393–397,
Valencia, Spain, August 2004. IOS Press, Amsterdam, 2004.

13. H. Sofia Pinto and J. P. Martins. Evolving Ontologies in Distributed and Dy-
namic Settings. In D. Fensel, F. Giunchiglia, D. L. McGuiness, and M.-A.
Williams, editors, KR2002 Proceedings. Morgan Kaufmann, San Fransisco, CA,
2002.

14. T. Pirlein and R. Studer. An environment for reusing ontologies within a knowl-
edge engineering approach. International Journal of Human-Computer Studies,
43(5):945–965, 1995.

15. M. I. Sucasas, C. Caracciolo, C. Baldassarre, and Y. Jaques. Revised specifica-
tions of user requirements for the Fisheries case study. NeOn deliverable 7.1.2,
Food and Agriculture Organization of the United Nations (FAO), 2008.

16. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. Ontoedit:
Collaborative ontology development for the semantic web. In International Se-
mantic Web Conference, volume 2342 of Lecture Notes in Computer Science,
pages 221–235. Springer, Berlin, 2002.

17. Y. Sure, S. Staab, and R. Studer. On-to-knowledge methodology. In S. Staab and
R. Studer, editors, Handbook on Ontologies in Information Systems. Springer,
Berlin, 2004.

18. C. Tempich, H. S. Pinto, S. Staab, and Y. Sure. A case study in supporting
DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies (DILI-
GENT). In K. Tochtermann and H. Maurer, editors, Proceedings of the 4th Inter-
national Conference on Knowledge Management (I-KNOW’04), pages 225–232,
Graz, Austria, June 30–July 02 2004. Journal of Universal Computer Science
(JUCS).

19. C. Tempich, H. S. Pinto, Y. Sure, and S. Staab. An argumentation ontology for
DIstributed, Loosely-controlled and evolvInG Engineering processes of oNTolo-
gies (DILIGENT). In C. Bussler, J. Davies, D. Fensel, and R. Studer, editors,
Second European Semantic Web Conference, ESWC 2005, LNCS, Heraklion,
Crete, Greece, May. Springer, Berlin, 2005.

20. C. Tempich. Ontology Engineering and Routing in Distributed Knowledge Man-
agement Applications. PhD thesis, Karlsruhe University, 2006.

21. C. Tempich, H. S. Pinto, and S. Staab. Ontology engineering revisited: An iter-
ative case study. In Proceedings of the 3rd European Semantic Web Conference,
2006.

22. C. Tempich, H. S. Pinto, Y. Sure, D. Vrandecic, N. Casellas, and P. Casanovas.
Evaluating DILIGENT Ontology Engineering in a Legal Case Study. In
P. Casanovas, P. Noriega, D. Bourcier, and V. R. Benjamins, editors, IVR 22nd
World Congress – Law and Justice in a Global Society. International Association
for Philosophy of Law and Social Philosophy, 2005.



176 H.S. Pinto et al.

23. C. Tempich, E. Simperl, H. S. Pinto, M. Luczak, and R. Studer. Argumentation-
based ontology engineering. IEEE Intelligent Systems, 22:52–29, 2007.

24. M. Uschold and M. King. Towards a methodology for building ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunc-
tion with IJCAI-95, Montreal, Canada, 1995.

25. D. Vrandečić, H. S. Pinto, Y. Sure, and C. Tempich. The diligent knowledge
processes. Journal of Knowledge Management, 9(5):85–96, 2005.




