
Average-Case Analyses of First Fit and Random Fit Bin PackingSusanne Albers� Michael MitzenmacheryAbstractWe prove that the First Fit bin packing algorithm is stable under the input distributionUfk � 2; kg for all k � 3, settling an open question from the recent survey by Co�man, Garey,and Johnson [3]. Our proof generalizes the multi-dimensional Markov chain analysis used byKenyon, Rabani, and Sinclair to prove that Best Fit is also stable under these distributions [10].Our proof is motivated by an analysis of Random Fit, a new simple packing algorithm relatedto First Fit, that is interesting in its own right. We show that Random Fit is stable underthe input distributions Ufk � 2; kg, as well as present worst-case bounds and some results ondistributions Ufk � 1; kg and Ufk; kg for Random Fit.1 IntroductionIn the one-dimensional bin packing problem, one is given a sequence a1; : : : ; an 2 (0; 1] of items topack into bins of unit capacity so as to minimize the number of bins used. A great deal of literaturehas focused on this problem, perhaps because, as Co�man, Garey, and Johnson [3] observe in theirrecent survey on bin packing, \The classical one-dimensional bin packing problem has long servedas a proving ground for new approaches to the analysis of approximation algorithms." For example,recently the study of Best Fit bin packing under discrete uniform distributions has led to a novelanalysis technique, based on the theory of multi-dimensional Markov chains. In this paper weextend this approach to analyze First Fit and a new bin packing algorithm, called Random Fit,under discrete uniform distributions.First Fit and Best Fit are two classical algorithms for online bin packing. With First Fit,the bins are indexed in increasing order of their creation. Each item is sequentially placed into thelowest indexed bin into which it will �t, or into a empty bin if no such bin is available. With the BestFit algorithm, each incoming item is placed into the non-empty bin with smallest residual capacitythat can contain it; if no such bin exists, the item is placed in an empty bin. The performance ofFirst Fit and Best Fit in the worst case and uniform average case has been settled for quite sometime. In the worst case, the number of bins used by any of these algorithms is at most 1710 timesthe optimum number of bins, as shown by Johnson et al. [9]. When item sizes are generated byU(0; 1), the continuous uniform distribution on (0; 1], then the performance measure of interest isthe expected waste, which is the di�erence between the number of bins used and the total size ofthe items packed so far. Shor [15] showed that the expected waste created by First Fit is �(n2=3).Shor [15] and Leighton and Shor [12] proved that Best Fit does better, generating expected waste�(pn log3=4 n).Because of these tight bounds, research on First Fit and Best Fit is now focused on analyzingexpected waste when item sizes are generated by discrete uniform distributions. A discrete uniform�Max-Planck-Institut f�ur Informatik, Im Stadwald, 66123 Saarbr�ucken, Germany. E-mail: albers@mpi-sb.mpg.deyDigital Equipment Corporation, Systems Research Center, Palo Alto, CA. A substantial portion of this researchdone while at the Computer Science Department, UC Berkeley, under the National Science Foundation grant No.CCR-9505448. E-mail: michaelm@pa.dec.com 1



2distribution, denoted by Ufj; kg; 1 � j � k, is one where item sizes are chosen uniformly from theset f1=k; 2=k; : : : ; j=kg. For Ufk; kg, k > 1, First Fit and Best Fit achieve expected waste �(pnk)and O(pn log k), respectively, (see Co�man et al. [2]). Similar bounds hold for Ufk � 1; kg. Ofparticular interest are distributions for which the algorithms are stable. We say that an algorithmis stable under a distribution if the expected waste remains bounded (that is, O(1)), even as thenumber of items n goes to in�nity. Co�man et al. [2] proved that First Fit is stable under Ufj; kg,when k � j2, and Best Fit is stable under Ufj; kg, when k � j(j + 3)=2. Later, Co�man et al. [4]introduced a novel method for proving the stability (and instability) of bin packing algorithms basedon multi-dimensional Markov chains. Their methodology allowed them to show that Best Fit isstable under Ufj; kg for several speci�c pairs of values for j and k. Kenyon et al. [10] expanded onthis work by proving that Best Fit is stable under the entire family of distributions Ufk � 2; kg,using a complex analysis of the underlying Markov chains.We briey describe the Markov chain setting used in the results described above. Using the BestFit algorithm under a discrete uniform distribution, a packing can be represented by the numberof bins of each possible residual capacity. The order of the bins is irrelevant. This packing processcan therefore be easily represented by a Markov chain, where the state at any time is a vectors = (s1; : : : ; sk�1), and si is the number of bins of residual capacity i=k.The Best Fit algorithm is well suited to the Markov chain approach, because the order of thebins is irrelevant, leading to a simple representation of the packing. In contrast, in the First Fitalgorithm, the order of the bins cannot be dismissed. Because of the di�culty of representing thestate in the First Fit algorithm, until now these Markov chain techniques have not been successfullyapplied to the First Fit algorithm.In this paper, we remedy this problem by demonstrating a Markov chain argument that showsthat First Fit is in fact stable under the family of distributions Ufk� 2; kg. This result disproves aconjecture made by Co�man et al. [3], who state that limited experiments suggest that the expectedwaste may grow unbounded on Ufk� 2; kg for su�ciently large k. Moreover, it demonstrates thatthe Markov chain approach may be more generally applicable than previously believed.Our proof emerges from an analysis of a new bin packing algorithm, called Random Fit (RF).Random Fit is a simple randomized variant of First Fit. With Random Fit, each time an itemis to be placed in a bin the bins are indexed in an order determined by a permutation chosenindependently and uniformly at random. Each item is sequentially placed into the lowest indexedbin into which it will �t, or into a empty bin if no such bin is available.In Section 2 we introduce Random Fit by analyzing its worst-case behavior. In the followingsections we then concentrate on average-case analysis. Random Fit has the advantage that, likeBest Fit, a packing can be represented by the number of bins of each possible residual capacity.Therefore, in Section 3, we �rst generalize the analysis of Best Fit shown in [10] to Random Fit.We prove stability of Random Fit under the input distribution Ufk�2; kg and derive some relatedresults for Ufk � 1; kg and Ufk; kg. Using ideas developed in Section 3, we proceed to provestability of First Fit under input distribution Ufk � 2; kg in Section 4. Finally, in Section 5, wepresent some simulation results which provide some further insight into the ideas presented in thispaper.2 Worst-case analysis of Random FitRecall that with Random Fit (RF), each time an item is to be placed in a bin the bins are indexedin an order determined by a permutation chosen independently and uniformly at random. Eachitem is sequentially placed into the lowest indexed bin into which it will �t, or into a empty bin if



3no such bin is available.Given a sequence S = (a1; a2; : : : ; an) of items and a bin packing algorithm A, let A(S) denotethe number of bins used by A to pack S. In particular, OPT(S) is the number of bins used by anoptimal o�ine algorithm, i.e., it is the minimum number of bins required to pack S.Theorem 1 a) For every sequence S, RF (S) � 2 � OPT (S)� 1.b) There exist sequences S, with arbitrarily large values of OPT(S), such that with high proba-bility RF (S) = 2 � OPT (S)� 1.Proof: Part a) At any time, the sequence of bins used by RF contains at most one bin withresidual capacity of at least 12 . Thus, for any sequence S, the number of bins used by OPT is atleast b12RF (S)c+ 1.Part b) For any integer n � 2, let Sn be a sequence that contains n large items of size 12 . Inaddition, in between any two large items, n2 small items each of size 12n3 must be inserted. ThusSn = (12 ; 12n3 ; : : : ; 12n3 ; 12 ; 12n3 ; : : : ; 12n3 ; 12):Note that the sum of all the small items is12n3n2(n� 1) < 12 .Clearly, OPT(Sn) = bn2 c + 1. We show that with high probability Random Fit uses n bins onthis sequence. More precisely, immediately before an insertion of a large item, the probability thata bin holding a large item does not contain a small item is bounded by (1� 1n)n2 � e�n. Thus, theprobability that at any of the n insertions of large items, some open bin having a large item doesnot contain a small item is bounded by n2e�n. We conclude that with probability at least 1� n2en ,RF needs n bins to pack Sn.While RF has a guaranteed worst-case performance, it does not achieve the same bounds asFirst Fit and Best Fit. In the worst case, RF is only as good as Next Fit and Worst Fit.Motivated by recent work [1, 14], we also consider an extension of RF, called Random-Fit(d),that is de�ned for any integer d � 2. When a new item arrives, RF(d) examines bins in the same wayas RF until d bins are found that can hold the item. Among these d bins, the item is inserted into thebin with smallest residual capacity, i.e., the Best Fit rule is applied. If there are only i, i < d, openbins that can hold the item, then the item is inserted into one of these i bins, using again the BestFit strategy. If no open bin can hold the item, then the item is inserted into a new bin. Interestingly,when making the transition from RF to RF(d), the performance improves. For any algorithm A,let R1A = inffr � 1j for some N > 0; A(S)=OPT (S) � r for all S with OPT (S) � Ng:The next theorem follows from a result by Johnson [7, 8] because RF(d) is an Almost Any Fitalgorithm.Theorem 2 For every d � 2, R1RF (d) � 1710 .3 Average-case analysis of Random FitIn this section we prove that Random Fit is stable under the input distribution Ufk � 2; kg andderive some related results for Ufk � 1; kg and Ufk; kg.



43.1 PreliminariesWe begin by reviewing briey some de�nitions and lemmas from [10]. For considering the distribu-tion Ufj; kg, rather than have bins of size 1, we shall instead think of having bins of size k and itemsizes chosen uniformly from f1; : : : ; jg. The two notions are clearly equivalent. We shall model thesystem using k � 1 tokens that move on the non-negative integers. The value of token i at timet, denoted by si(t) represents the number of bins with residual capacity i after t items have beenplaced. The state of the system at time t is given by a vector s(t) = (s1(t); :::; sk�1(t)). Initially,s(0) = (0; : : : ; 0), as there are no open bins with residual capacity. We shall often drop the explicitreference on t when the meaning is clear. The waste at time t is given by Pk�1i=1 isi(t). We wish toshow that the expected waste as t ! 1 remains bounded under the distribution Ufk � 2; kg. Inthe lemmas and theorems that follow, we implicitly assume that this is the input distribution.We shall divide the tokens into classes. The token i is called small if 1 � i � d j2e and is calledlarge if b j2 + 2c � i � j. In the case where j is even, there is also a middle token, namely d j2e+ 1.For convenience, we restrict ourselves to the case where j is odd. We shall explain the modi�cationsnecessary for the case where j is even after the proof of the case where j is odd.We begin with the following lemma:Lemma 3 State s is reachable from the initial state s(0) = (0; : : : ; 0) only if1. For distinct indices i and i0 with i+ i0 � k, either si = 0 or si0 = 0.2. Pi not small si � 1Proof: Follows from the fact that we will not open a new bin if an item can be packed in acurrent bin.It is also not hard to see that all states that satisfy the conditions of Lemma 3 are reachable,and hence we assume hereafter that our state space consists exclusively of all states satisfying theconditions of Lemma 3. From Lemma 3, if sd j2 e(t) > 0, then all large tokens must be 0 at time t.This feature allows us to focus on the behavior of the small tokens.Lemma 4 Using Random Fit, the motion of a small token i has the following properties:1. For i > 1, the motion of si at all positions other than 0 is a random walk on Z+, such that apositive step is taken with probability at least 1j and a negative step is taken with probabilityat most 1j + sisi�1+si .2. The time spent by si on each visit to 0 is stochastically dominated by a random variable Dwith constant expectation and variance (that depend only on j).Proof: For the �rst part, note that, if si > 0, then si increases whenever an element of sizek � i enters the system, by Lemma 3. Hence we need only consider negative steps. If an item ofsize i enters, then si may decrease; if an item of size less than i enters, then it is clear that theprobability of it landing in a bin of capacity i it at most sisi�1+si . The result follows.The second part is almost exactly the same as in Proposition 4 of [10], which we sketch here forcompleteness. If si = 0, and si0 = 0 for all i0 � k� i, then clearly si moves to 1 with probability atleast 1=j. If si0 = 1 for some i0 � k � i, however, this is not the case. It su�ces to note that if twoconsecutive items have size k � i, then si will go to 1 even in this case. One may check that thisfact su�ces to prove the lemma.



53.2 Outline of the proofWe sketch how we will prove that RF is stable following a similar approach as [10]. By Lemma 3,the amount of waste from non-small tokens is bounded by a constant. Hence we need only considerthe waste due to small tokens, which we denote by f(t) = Pdj=2ei=1 isi(t). The proof breaks downinto three steps. The �rst step, we show that if sd j2 e(t) > 0, then the expected change in f(t) isnegative.Lemma 5 ([10], Proposition 5) Suppose that sd j2 e(t) > 0. Then E[f(t+1)� f(t)jf(t)] = �1=j.Proof: Consider the size i of the item inserted at time t+ 1. If 1 � i � dj=2e, then the new itemis assigned to a bin with remaining capacity l, i � l � dj=2e, and f decreases by i. If d j2e < i � j,then, since sdj=2e > 0, Proposition 3 implies that there is no bin with remaining capacity i. Thus,the incoming item is put into a new bin, i.e., sk�i increases by 1 and f increases by k � i. Theexpected change in f is therefore 1j 0@dj=2eXi=1 (�i) + jXi=dj=2e+1(k � i)1A (1)= 1j 0@dj=2eXi=1 (�i) + dj=2eXi0=2 i01A ;because k � j = k � (k � 2) = 2 and, since j is odd, k � (dj=2e + 1) = dj=2e. It is easy to verifythat equation (1) evaluates to �1=j.For the second step, we show that if we begin a state where f(t) is large, then for some suitablylarge T , for almost all of the next T steps sd j2 e > 0 with a suitably high probability. This step isthe challenging part of the proof and Section 3.3 is entirely devoted to it.Combining the �rst two steps, we �nd that, whenever f(t) is su�ciently large, the expectedchange in f(t) is negative over a suitably long interval T . The third step is to use this fact andresults from the general theory of Markov chains to show that we may conclude that the expectedwaste is bounded. The third step relies on general conditions for a multi-dimensional Markov chainto be ergodic; we cite the appropriate lemma from [10], which is derived from [5].Lemma 6 ([10], Lemma 6, or [5], Cor. 7.1.3) LetM be an irreducible, aperiodic Markov chainwith state space S � Zk, and b a positive integer. Denote by pbs s0 the transition probability from sto s0 in Mb, the b-step version of M. Let � : S ! R+ be a non-negative real-valued function on Swhich satis�es the following conditions:1. There are constants C1; � > 0 such that �(s) > C1jjsjj� for all s 2 S.2. There is a constant C2 > 0 such that pbs s0 = 0 whenever j�(s)��(s0)j > C2, for all s; s0 2 S.3. There is a �nite set B � S and a constant � > 0 such that Ps02S pbs s0(�(s0)��(s)) < �� forall s 2 SnB.Then M is ergodic with stationary distribution � satisfying �(s) < Ce���(s) for all s 2 S, whereC and � are positive constants.For the bin-packing problem, we shall use �(s) =Pd j2 ei=1 isi + k � 1 = f + k � 1, where f is thewaste from small tokens. This is an upper bound on the total waste. One may check that the �rsttwo conditions of Lemma 6 are satis�ed for any choice of b. It remains to �nd appropriate b;B;and �; this is equivalent to the second step of our proof sketch, which we now focus on.



63.3 Random Fit over long intervalsWe now show that, for all but a �nite number of starting states, sd j2 e > 0 for most of su�cientlylarge intervals. We shall often compare the behavior of a token with a random walk over an interval[0; R]. We shall use p"(i) to denote the probability that a walk at i moves to i + 1 in one step.Similarly p#(i) is the probability that a walk at i moves to i�1 in one step, and p! = 1�p"(i)�p#(i)(the self-loop probability) is the probability that the walk remains at i when at i. We shall drop thei in cases where p"(i) is independent of i (except at 0 and R, as p#(0) and p"(R) are necessarily0, and the self-loop probabilities are increased accordingly); this is called the homogeneous case.A random walk is downward biased if p"(i) � p#(i) for all i in the range of the walk (except theboundaries).In order to bound the behavior of the random walks we study, we shall require the followinglemma, which is a restricted bound derived from Corollary 4.2 of [11]:Lemma 7 Let �1 < 1 denote the second largest eigenvalue of the transition matrix for a randomwalk W on [0; R]. Let �(A) = Pa2A �a be the stationary probability that the walk lies in A � R,and Wl(A) be the number of steps the walk spends in A during the �rst l time steps. If the walkstarts at 0, then for any integer l � 1 and 2 � � < 1=�(A),Pr[Wl(A) � ��(A)l] � �p�0 exp���(A)2(1� �1)l�:To use the above lemma we will require the following fact about the eigenvalues:Lemma 8 For the random walk on [0; R] with p" = p# = �, �1 � 1� 2�R2 .We start with a preliminary lemma that provides both the �rst step and the main idea of theproof. In this lemma, and all that follows, we assume that T is at least as large as some constantchosen so that the bounds hold.Lemma 9 For su�ciently large T , if si > T 4 over the time interval [0; T ], then si+1 � T 1=16 forall but at most T 15=16 steps with probability at least 1� 2T 2 .Proof: By Lemma 4, the behavior of the token si+1 at any point on the interval [0; T ] canbe related to a random walk over the positive integers, where p"(i) � 1=j and p#(i) � 1j + sisi+si+1(except at i = 0). Furthermore, the probability that si+1 � T 1=16 for all but at most T 15=16 steps,which we shall hereafter call z, is clearly minimized if we start si+1 at 0. This information issu�cient to prove that z � 2T 2 directly; however, we suggest an easier approach.We �rst note that, since we are comparing the behavior of si+1 to a speci�c random walk, z canonly increase if we restrict the walk (or, equivalently, the token si+1) to the interval [0; T 1=4 � 1].Bounding the walk in this way will simplify the analysis. Also, for convenience, we also temporarilyignore the problem of the waiting time when si+1 = 0 as described in Lemma 6.We now split each step, or item arrival, into two phases. In phase one, a random permutationorder is chosen for the open bins. In phase two, an item size is chosen from the distribution Ufj; kg,and this item is placed according to the RF rule.By breaking each step up in this manner, we see that whenever the permutation chosen in phaseone has a bin with remaining capacity i ahead of all bins of remaining capacity i+1, then for phasetwo, the worst possible case is that si+1 behaves like an unbiased random walk, with p" = p# = 1=j.(Note that it is possible that p# � 1=j, but we maximize the time that si+1 � T 1=16 by assuming



7that p# = 1=j.) In the alternate case where a bin with remaining capacity i + 1 lies ahead of allbins of capacity i in phase one, we may again overestimate z by assuming that p" = 0 and p# = 1 inphase two. As we now show, by splitting each step into two phases in this way, we have essentiallyreduced the problem to an unbiased walk.We note that, over the interval [0; T ] we have enforced the restrictions si+1 � T 1=4 and si � T 4.Hence, with probability at least 1T 2 , for no steps in this interval do we place a bin of capacityi + 1 ahead of all bins of capacity i in phase one. We call this event E . Conditioned on E , si+1behaves like an unbiased random walk on [0; T 1=4 � 1] over the entire interval. In particular, thestationary distribution is uniform, so �i = T�1=4 for all i. Let Z be the number of steps for whichsi+1 � T 1=16. From Lemmas 7 and 8, we �nd that for su�ciently large T ,Pr[Z � T 15=16 j E ] (2)� T 1=8 � T 1=8 exp��2T 1=8j � � 1T 2 :Using a union bound on probabilities now yields the lemma.To handle the discrepancy when the walk is at 0, we note that we can explicitly bound the totalnumber of steps at 0 with su�ciently high probability using part 2 of Lemma 4. The bound givenby equation (2) can also be tightened so that for su�ciently large T , the lemma as stated holds.We have shown that if si is extremely large over a su�ciently long interval, then si+1 is alsobe large over most of the interval with high probability. Our actual goal is to show that if any siis extremely large (for i � d j2e), then sd j2 e > 0 over most of the interval. Hence we will require aninductive, but slightly weaker, version of Lemma 9.One problem in generalizing Lemma 9 is that if si is large only for most, and not all, of thesteps, then there are several steps where we cannot explicitly say how si+1 behaves. Moreover,these steps may a�ect the behavior of si+1 at any point. We avoid the problem by introducingan adversary model, generalizing a similar argument from [10]. This adversary model allows us toconsider the worst possible case for the steps where si is smaller than we need.We consider how an adversary can a�ect a homogeneous downward biased random walk on[0; R]. The goal of the adversary is to keep the random walk at or below some level l, l � 2, for asmany steps as possible. The adversary may control a �xed number of steps. In a controlled step,the adversary may specify any probability distribution on the legal moves from the current state;the step of the walk is then made according to that distribution. In all the other steps, the processbehaves like a homogeneous downward biased random walk.In the following, given an adversary strategy A, let pA(y; i; n;m; l) denote the probability thata homogeneous downward biased random walk of n steps on the interval [0; R] starting at i with ycontrolled steps used according to A, spends at least m steps at or below l.Lemma 10 For all non-negative integers y; i; n;m and l, with l < R and i < R� 1, the exists anadversary strategy A0(a) that never uses a controlled step when the walk is below l(b) that always uses a controlled step as soon as possible when the walk is at or above l + 1 topush the walk downwardssuch that pA0(y; i; n;m; l) � pA(y; i; n;m; l) for all adversaries A.Proof: The case where l = 0, the walk is unbiased, and the self-loop probability is 0 correspondsto what is proven in [10, Lemma 7]; we extend the argument to this more general case. We use



8induction on n. We �rst note that any adversary that uses a downward move when the walk isbelow l can be replaced by one that does not. This follows by a simple coupling argument. Comparethe strategy where the adversary uses a downward move below l to one where the adversary waitsuntil the walk is at l by coupling all random moves; the second strategy will be at the same heightor below the �rst after the downward move. (It will end up below only if the walk reaches 0.) Thuswe have shown that there is an optimal adversary strategy that satis�es condition (a).We now concentrate on adversary strategies that use their moves at or above l + 1. Let DyRdenote the strategy A1 which uses the y adversary-controlled steps as soon as possible when thewalk is at or above l+1, and then follows the random walk. Let RDy denote the strategy A2 thatbegins with a random step, and then uses the adversary-controlled steps as soon as possible whenthe walk is at or above l+1. Let pA1(y; i; n;m; l) be the probability of the event that the walk is ator below l for at least m of the next n steps after starting at i when adversary strategy A1 = DyRis used. Similarly, let pA2(y; i; n;m; l) be the probability of the event that the walk is at or below lfor at least m of the next n steps after starting at i when adversary strategy A2 = RDy. We claimpA1(y; i; n;m; l) � pA2(y; i; n;m; l); (3)and by induction this su�ces to prove that there is an optimal strategy satisfying condition (b).We �rst present two useful propositions.Proposition 11 pA1(y; l; n;m; l) � pA1(y; l; n;m+ 1; l)Proposition 12 pA1(y; l � 1; n;m; l) � pA1(y + 1; l; n+ 1;m+ 1; l)Proposition 11 is easy to verify. We prove Proposition 12. Let Wl�1 be the walk that starts atl � 1 and follows strategy DyR; similarly let Wl be the walk that starts at l and follows strategyDy+1R. Let Tl�1 be the time when Wl�1 �rst makes the transition (l � 1) ! l and let Tl be thetime when Wl �rst makes the transition l ! (l + 1). Clearly, Tl�1 = Tl in distribution. We onlyhave to consider the event that Tl�1 = Tl � n+1 and Tl�1 = Tl �m. Then, the remainder of Wl�1is a walk starting at l that follows strategy DyR and must be at or below l for at least m� Tl�1 ofthe next n� Tl�1 steps. In the case of Wl, the adversary �rst pushes the walk down to l and theremainder is also a walk that starts at l, follows strategy DyR and must be at or below l for at leastm+1�Tl = m+1�Tl�1 of the next n+1�(Tl+1) = n�Tl steps. Using Proposition 11 and takingagain into account that Tl�1 = Tl in distribution, we conclude the probability of the �rst walk isnot smaller than that of the second walk, i.e., pA1(y; l � 1; n;m; l) � pA1(y + 1; l; n+ 1;m+ 1; l).We return to the proof of inequality (3). If i � l, both strategies A1 and A2 start the same andwe are done by induction. If i > y + l, both strategies give the same distribution after y + 1 steps,so the two quantities pA1(y; i; n;m; l) and pA2(y; i; n;m; l) are equal. The interesting case is whenl < i � y+ l. In this case, strategy A1 forces the walk from i down to l using i� l controlled steps.Thus, pA1(y; i; n;m; l) = pA1(y0; l; n0;m� 1; l);where n0 = n� i+ l and y0 = y � i+ l. AlsopA2(y; i; n;m; l) = p" � pA1(y0 � 1; l; n0 � 2;m� 1; l)+ p# � pA1(y0 + 1; l; n0;m� 1; l)+ p! � pA1(y0; l; n0 � 1;m� 1; l)



9and pA1(y0; l; n0;m� 1; l) =p" � pA1(y0 � 1; l; n0 � 2;m� 2; l)+ p# � pA1(y0; l � 1; n0 � 1;m� 2; l)+ p! � pA1(y0; l; n0 � 1;m� 2; l):Using Proposition 11, we have pA1(y0 � 1; l; n0 � 2;m � 2; l) � pA1(y0 � 1; l; n0 � 2;m � 1; l) andpA1(y0; l; n0 � 1;m� 2; l) � pA1(y0; l; n0 � 1;m� 1; l). Thus,pA1(y; i; n;m; l) � pA2(y; i; n;m; l) �p#(pA1(y0; l � 1; n0 � 1;m� 2; l)� pA1(y0 + 1; l; n0;m� 1; l)):Proposition 12 implies that the last term in non-negative.Lemma 13 Suppose, over a period of T steps, si�1 � T� over all but T 1�� steps for some � �1=16. Then si � T�=16 for all but at most T 1��=16 steps with probability at least 1� 3T��=4.Proof: As in Lemma 9, we may, without loss of generality, restrict si to the interval [0; T�=4�1].Then si behaves like a slightly biased random walk on all but the T 1�� steps for which si�1 liesbelow T�. Rather than consider the biased walk, however, we use the same technique as in Lemma 9to reduce the problem to an unbiased random walk by splitting each step into two phases. We givethe adversary control on all steps in which a bin with remaining capacity i lies ahead of all binswith capacity i � 1 after the �rst phase. On any step for which si�1 � T� and si � T�=4, theprobability that a bin with remaining capacity i lies ahead of all bins with capacity i� 1 after the�rst phase is at most 1T 3�=4 . Hence, the expected number of such steps is at most T 1�3�=4, and byMarkov's inequality, the number of such steps is at most T 1�� with probability at least T��=4. LetE be the event that there are no more than T 1�� such steps.Conditioned on E , the adversary controls at most 2T 1�� steps: T 1�� from the above paragraph,and T 1�� from the steps where si�1 < T�. On all other steps the walk behaves like an unbiasedrandom walk with p" = p# = 1=j. (Again, this is not quite true when si = 0, but this smalldiscrepancy can be easily handled explicitly as described in Lemma 9; for convenience we dismissthe problem here.) We use this to bound the probability that si lies below T�=16 for more thanT 1��=16 steps.We �rst consider the moves controlled by the adversary. In the worst case, si begins at 0. ByLemma 10, there exists an optimal adversary strategy A0 that uses a controlled step wheneversi reaches T�=16 � 1 or T�=16. Hence, to overestimate the e�ect of the adversary, we assume thefollowing: the adversary uses its moves whenever si reaches T�=16; the adversary's move returnsthe walk to si = 0; and all steps until the adversary's moves are used count as steps wheresi 2 [0; T�=16 � 1]. These assumptions can only increase the time until the adversary's moves areused. The expected time for si to reach T�=16 from 0 is cT�=8 for some constant c. Thus theexpected number of steps until A has used all of its moves it bounded by cT 1�7�=8. Let Z1 be thenumber of steps until the A0 uses all of its moves. Then by Markov's inequalityPr "Z1 � T 1��=162 jE# � 2cT�13�=16 � T��=4



10for su�ciently large T .After the adversary steps are used, the number of steps that si spends in the interval I =[0; T�=16 � 1] is stochastically dominated by that of an unbiased random walk U on [0; T�=4] thatruns for T steps and begins at 0. Let Z2 be the number of steps U spends in I. As in the proofof Lemma 9, the equilibrium distribution of U is uniform over [0; T�=4 � 1]. Thus �(I) = T�3�=16.Using Lemmas 7 and 8 we obtainPr "Z2 � T 1��=162 #� T�=8 � T�=82 exp �T�3�=8 � T��=2 � Tj !� T��=4for su�ciently large T . Taking a union bound, we �nd that the probability that Z1+Z2 � T 1��=16is at least 1� 3T��=4, which proves the lemma.Lemmas 5, 9, and 13 allow us to prove the following theorem.Theorem 14 Random Fit is stable under the distribution Ufk � 2; kg for all k � 3.Proof: As in our previous calculations we �rst assume that k is odd. It su�ces to consider thedrift of f(s) over a suitably large interval T , and show that it is negative for all but a �nite numberof states. The excluded set of states G will beG = fs 2 S : 8i; si � T 4g;where T will be determined. Consider any starting state outside of this set G. Applying Lemma 9and then Lemma 13 inductively, we �nd that with probability at least 1� (c1=T �1), sd j2 e > 0 overall but T �2 of the steps, for some constants c1 and �1; �2 < 1 dependent only on j. Let A be theevent that sd j2 e > 0 over all but T �2 of the steps. As the expected value of f decreases by 1=jwhenever sd j2 e > 0 by Lemma 5, and it increases by at most j otherwise,E[f(T )� f(0)jf(0)]� E[f(T )� f(0)jf(0) ^A]+ (1�Pr[A])E[f(T )� f(0)jf(0) ^ :A]� ��1j (T � T �2) + jT �2�+ c1T 1��1j:By choosing T su�ciently large, we may make this expression smaller than �� for some constant�. This su�ces to prove the theorem, by Lemma 6.If k is even, then there is middle token sdj=2e+1. If sdj=2e+1 = 0, everything is exactly as inthe case where k is odd. If sdj=2e+1 > 0, then by Lemma 3 sdj=2e+1 = 1 and no bins with largercapacity are open. We consider the time steps when sdj=2e+1 = 1. In these steps f might increasebecause a small item may be inserted in the bin of capacity dj=2e + 1. Lemmas 9 and 13, whichapply when k is even, give that with probability at least 1 � (c1=T �1), sd j2 e > T 1��2 over all butT �2 of the steps, for some constants c1 and �1; �2 < 1 dependent only on j. Hence it should be avery rare event for a small item to be placed into a bin of capacity dj=2e + 1.In fact, in exactly the same manner as shown in Lemma 5, one may show the following:



11Proposition 15 Suppose that k is even and sdj=2e > Z. Then E[f(t+1)�f(t)jf(t)] � �1=j+2=Z.We conclude that in this caseE[f(T )� f(0)jf(0)]� E[f(T )� f(0)jf(0) ^A]+ (1�Pr[A])E[f(T )� f(0)jf(0) ^ :A]� ���1j + 2T 1��2� (T � T �2) + jT �2�+ c1T 1��1j:This expression can also be bounded by �� if T is chosen large enough.One may check that from the inductive use of Lemma 13, the �2 in Theorem 14 is exponentialin j, and hence our bounds on the expected waste is doubly exponential in j. It is an interestingquestion whether better bounds are possible.It is also worthwhile to note the following:Theorem 16 Random Fit(d) for d � 2 is stable under the distribution Ufk � 2; kg for all k � 3.The proof is entirely similar to the proof for Random Fit. Simulations suggest that as d increases,the behavior of Random Fit(d) approaches that of Best Fit, as one might expect.Theorem 17 Random Fit and Random Fit(d), for d � 2, have expected waste o(n) under thedistributions Ufk � 1; kg and Ufk; kg, for all k � 3.Proof: We only consider the distribution Ufk� 1; kg, as the waste under the distribution Ufk; kgis entirely similar. Under this distribution, the statement corresponding to Lemma 5 is that ifsd j2 e(t) > 0, then E[f(t+1)�f(t)jf(t)] = 0. Using the same notation as in the proof of Theorem 14we obtain E[f(T )� f(0)jf(0)] � jT �2 + c1T 1��1jfor some constants c1 and �1; �2 < 1 dependent only on j. Hence, once the expected waste reachesa certain constant, its expected growth is sublinear, proving the theorem.Whether tighter bounds, more like those known for Best Fit and First Fit, are possible forRandom Fit under these distributions remains an open question.4 Analysis of First Fit under distribution Ufk � 2; kgWe now consider how to modify the proof of RF on the distribution Ufk � 2; kg to work for FirstFit. Again we focus on the case where k is odd; the case where k is even requires some minoradditional work, as for Random Fit, which we omit here.One way of thinking about the di�culty in extending the results from RF to FF is to considerthe dependence among the steps. In RF, at each step we have an independent random orderingassigned to the bins, while in FF, the orders of the bins at di�erent steps are clearly dependent.In particular, the order of the bins at each step depends on the initial state, over which we havenegligible control. The work of this section will focus on �nding ways to circumvent e�ect of thesedependencies so that we can apply the same ideas that we used in Section 3.Let us consider an initial state, given at time t = 0. In order to avoid problems caused by theorder of bins in the initial state, we focus on bins that are created after time 0. In fact, we areeven more restrictive: let a single i bin at time t be a bin created after time 0 that has remaining



12capacity i and contains only one item, and denote the number of single i bins by ui(t). Insteadof the vector s we considered previously, we shall primarily focus on the vector u = (u1; : : : ; ud j2 e).The following important points about u make it useful:� If ud j2 e > 0, then sd j2 e > 0 also. Hence, proving ud j2 e > 0 over most of the steps is su�cient.� Regardless of the initial state, (u1; : : : ; ud j2 e) = (0; : : : ; 0) at time 0.To see how the considering u makes things easier, let us prove a lemma similar to Lemma 9 forFirst Fit.Lemma 18 Suppose si(0) � T . Then when ui+1 > 0, ui+1 behaves like a random walk withprobability at least 1=j of increasing at each step and probability at most 1=j of decreasing at eachstep. Also, the time spent by ui+1 on each visit to 0 is stochastically dominated by a random variableD with constant expectation (that depends only on j). In particular, ui+1 � T 1=16 for all but atmost T 15=16 steps with probability at least 1� 1T 2 .Proof: Since si(0) � T , over the next T steps there is always a bin with remaining capacity iahead of all single bins with remaining capacity i+ 1 created after time 0. This implies that ui+1can decrease only when an item of size i+ 1 arrives, and hence decreases with probability at most1=j at each step. When ui+1 > 0, then ui+1 increases whenever an item of size k � i � 1 arrives,and hence it increases with probability at least 1=j. The case where ui+1 = 0 is special, and ishandled as in Lemma 4. The �nal result, that ui+1 � T 1=16 most of the time, now follows using anargument similar to Lemma 9.As in the proof for RF, we now want to extend the above lemma inductively. Similar to theRF case, we would like to say that a bin of size i lies ahead of all single i + 1 bins most of thetime, whenever the number of single i+1 bins is su�ciently small. In Lemma 13, we accomplishedthis by splitting each step into two substeps, with the �rst substep re-ordering the bins randomly.We do not have this luxury for the FF case. However, it seems intuitive that the bins should be\almost" randomly distributed at each step. This point is made explicit in the following lemma:Lemma 19 Let E be the event that a single i bin at time t lies ahead of all single i+ 1 bins. Letzb;ct = PrfEjui(t) = b; ui+1(t) = cg. Then zb;ct � bb+c .Proof: Consider any sequence a = a1; a2; : : : ; at of t items that ends with a single i + 1 binahead of all single i bins with ui(t) = b and ui+1(t) = c. We center on the steps where the single iand i+ 1 bins were created. We �rst claim that if a single i bin was created at step g and a singlei + 1 bin was created at step h, then switching the entering items at steps g and h switches theorder of these two bins, but has no other e�ect on the algorithm. This can easily be proven byinduction for all bins behind the �rst single i + 1 bin, since there is no way a second item couldhave been placed in any of these bins. The only di�cult case is that of the �rst single i+1 bin, callit B. The reason that B is a special case is that it is possible that since B is the frontmost singlebin, it may be that a second item could have been placed in it if we change its capacity. However,since switching the appropriate steps g and h would only lower the capacity of B, it is clear thatif B has not obtained a second item in the original sequence, it cannot in the modi�ed sequence aswell.We now divide the sequences into equivalence classes. For a sequence a, let Y it (a) be the set oftimes at which the single i bins at time t were created. Two sequences a and a0 are equivalent ifY it (a) [ Y i+1t (a) = Y it (a0) [ Y i+1t (a0) and ui(t) = b; ui+1(t) = c for both sequences.



13Take any sequence a with a single i + 1 bin ahead of all single i bins at time t. From the�rst paragraph of the proof, permuting the times when a single i + 1 bin and a single i bin werecreated yields equivalent sequences. Hence, by taking all ways of splitting Y it (a) [ Y i+1t (a) intotwo groups of size b and c, and using this division to determine when single i and i + 1 bins arecreated, we �nd that every sequence a has at least �b+cb � sequences in its equivalence class. Sincethe probability a and any of these other �b+cb � sequences occurring are equal, it is straightforwardto show combinatorially that there are at least b=c times as many sequences with a single i binahead of all single i + 1 bins as there are with a single i + 1 bin ahead of all single i bin. Hencezb;ct � bb+c .Lemma 19 suggests that the behavior of FF should not be worse than RF, with the understand-ing that the ui now play the role of the si. As in the case of RF, we would like to say the smalltokens ui behave like a unbiased random walk over most of the steps. This leads us to the prove avariant of Lemma 13 in this setting, which is phrased slightly di�erently in order to appropriatelyhandle the conditioning.Lemma 20 Suppose, over a period of T steps, ui�1 � T� over all but at most T 1�� steps for some� � 1=16 with probability at least 1=2. Then, conditioned on ui�1 � T� over all but at most T 1��steps, ui � T�=16 for all but at most T 1��=16 steps with probability at least 1� 4T��=4.Proof: As in Lemma 13, we must bound the number of steps for which the behavior of ui is notthat of an unbiased random walk, and then apply an adversary argument. Also as in Lemma 13,we will restrict our consideration to the behavior of ui to the interval [0; T�=4 � 1]. (This can beinterpreted as though if ui � T�=4, we may assume that a single bin of size i + 1 lies ahead of allbins of size i, which is a conservative assumption.)To bound the number of steps the adversary controls, then, we bound the number of steps Xthat satisfy the following conditions:� ui�1 � T�.� ui � T�=4 � 1.� A single i bin lies ahead of all single i� 1 bins.The value of X, in addition to the number of steps for which ui�1 < T�, bounds the number ofsteps where the adversary controls the walk; on all other steps, we either have that ui � T�=4 or asingle i� 1 bin lies in front of all single i bins, and so ui behaves (at worst) as an unbiased randomwalk with p" = p# = 1=j. (As usual, we ignore the discrepancy at ui = 0.)Let yt be the probability that on the tth step the above conditions hold. ThenE[X] = E[T�1Xt=0 yt] = T�1Xt=0 E[yt]� T�1Xt=0 T�=4T� + T�=4 < T 1�3�=4:Although it would seem this is enough to bound the number of adversary steps, we must becareful. Let E be the event that ui�1 � T� over all but T 1�� steps. The expected number ofadditional adversary steps from single i � 1 bins being frontmost is not E[X], but E[XjE ]. From
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Figure 1: Average waste over long sequencesthe hypothesis of the lemma that Pr(E) � 1=2, however, we must have E[XjE ] � 2T 1�3�=4. UsingMarkov's law, we have Pr(fXjEg � T 1��) � 2T��=4:Hence, conditioned on E , the number of steps the adversary controls is at most 2T 1�� withprobability at least 1� 2T��=4. The rest of the proof now proceeds as in Lemma 13.We are now ready to prove the main theorem:Theorem 21 First Fit is stable under the distribution Ufk � 2; kg for all k � 3.Proof: As in Theorem 14, it su�ces to consider the drift of f(s) over a suitably large interval T ,and show that it is negative for all but a �nite number of states. The excluded set of states G willbe G = fs 2 S : 8i; si � Tg;for some suitably large T . We now apply Lemma 18 and Lemma 20 to obtain a bound on E[f(T )�f(0)jf(0)] similar to that in Theorem 14.We would then like to apply Lemma 6; however, technically we cannot do so, as the state spaceof the underlying Markov chain is not embedded in a �xed dimensional space. Similar results,however, can be applied in this setting, once we have shown that the expected change in the wastef is negative for a suitably large T . For example, [13, Theorem 13.0.1] can be used to show that thechain is ergodic, and [6, Theorem 3.1] implies that in the stationary distribution, the distributionof the waste has an exponentially decreasing tail.5 Simulation ResultsIn this section, we briey provide some simulation results comparing the BF, RF, and FF algorithmson the input distributionUfk�2; kg. We emphasize that the purpose of this section is not to providea detailed simulation-based comparison. Rather, the purpose is to gain further insight into someof the technical ideas presented in this paper.In Figure 1, we present the average waste seen over the �rst one million time steps for BF andFF for various values of k. Each data point is the average of ten trials. Similarly, the average wastefor some values of RF are shown. Here, we again averaged over ten trials, but the used one hundredmillion time steps. We chose these numbers of steps because they appeared su�cient for the waste



15

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

k

F
ra

ct
io

n
 o

f 
S

te
p

s
Cap. 1
Cap. 2
Cap. 3+

Figure 2: First Fit: remanining capacity of the �rst bin

65

67

69

71

73

75

77

79

10 11 12 13 14 15

k

F
ra

ct
io

n
 o

f 
S

te
p

s

Cap 1, t = 10^6 
Cap 1, t = 10^7 
Cap 1, t = 10^8

Figure 3: Random Fit: how often the �rst bin has remaining capacity 1



16to reach a stable level. Although the decision for the number of time steps to use was somewhatsubjective, we note that generally the maximum waste seen over the lifetime of the process wasoften obtained signi�cantly far from the end of the process, which suggests that the system wastehad reached a stable level.The most visibly striking feature is that the waste from Random Fit grows signi�cantly morerapidly with k than the waste from Best Fit and First Fit. Recalling that the work of [10] showedthat in the stationary distribution the expected waste was at most exponential in k for Best Fit,these simulations suggest that our doubly exponential bounds may be correct for Random Fit butincorrect for First Fit. Indeed, the much slower convergence of Random Fit to a stable wastelevel suggests this possibility as well. However, we caution that because the waste grows extremelyquickly with k, it is very di�cult to assess the true behavior from these simulations. Also, it isinteresting to note that the jumps between consecutive values are much larger between even-oddpairs than odd-even pairs. This suggests the technicality in the analysis regarding whether k iseven or odd corresponds to a signi�cant feature in the process.In Figure 2 we examine the remaining capacity of the �rst bin in the First Fit ordering over alltime steps. As k grows, a bin with remanining capacity one is almost always up front. Figure 2validates the intuition that FF tends to order the bins so that bins with smaller remaining capacitylie in front. We note that for RF, although we have fewer results, the behavior trends appear thesame. In Figure 3, we concentrate on the fraction of time a bin with remanining capacity one isexpected to be up front over various time scales. That is, at each step, we consider the probabilitya bin with remanining capacity one will end up �rst after the bins are randomly permuted, andFigure 3 shows the average of this probability observed over the lifetime of this process. Again, ask rises, so does the fraction of the time a bin with remaining capacity one lies up front. Figure 3also demonstrates the slow convergence of this behavior for RF, and the importance of carefullychoosing the time scale to judge the behavior of these processes through simulations.6 ConclusionsWe have demonstrated that the First Fit bin packing algorithm is stable on the distribution Ufk�2; kg. We believe that our result demonstrates that the Markov chain approach may be useful,even in situations where the natural description of a problem does not have a convenient statespace. Our analysis made use of insight gained from a novel packing algorithm, Random Fit, whichappears interesting in its own right.An open question is to tighten the bounds developed in this paper. For both First Fit andRandom Fit, our bounds for the expected waste are doubly exponential in j. Simulations suggestthat the expected waste for First Fit may only be exponential in j. Unfortunately, the simulationsfor Random Fit seem to suggest that the expected waste for Random Fit may indeed be doublyexponential in j, in which case it seems that another approach may be necessary to achieve betterbounds for First Fit.References[1] Y. Azar, A. Broder, A. Karlin and E. Upfal. Balanced allocations. In Proc. 26th Annual ACMSymposium on Theory of Computing, pages 593{602, 1994.[2] E.G. Co�man, C. Courcoubetis, M.R. Garey, D.S. Johnson, L.A. McGeoch, P.W. Shor,R.R. Weber and M. Yannakakis. Fundamental discrepancies between average-case analyses
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