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Computer system design is a time-
consuming complex process, and simulation
is essential to overall design activity. Simula-
tion occurs at many levels, from circuit to sys-
tem, and at different degrees of detail as the
design evolves. The designer’s toolbox holds
evaluation tools, often used in combination:
each tool has different complexity, accuracy,
and execution-time properties.

Detailed models of register transfer activi-
ty typically conduct simulation at the microar-
chitecture level. These simulators track
instructions and data on a per-cycle basis and
typically provide detailed models for features
such as instruction issue mechanisms, caches,
load/store queues, and branch predictors, as
well as their interactions. For input, microar-
chitecture simulators take sets of benchmark
programs, including standard and company-
proprietary suites. These benchmarks can each
contain billions of dynamically executed
instructions, and typical simulators run many
orders of magnitude slower than real proces-
sors, producing a relatively long runtime for
even a single simulation.

However, processor simulation at such a
detailed level is neither always appropriate,
nor necessary. For example, early in the design

process, while exploring the design space and
determining the high-level microarchitecture,
too much detail only gets in the way. The ini-
tial definition of a processor microarchitec-
ture requires basic design decisions. These
decisions involve tradeoffs related to basic
cycle time and instructions per cycle; cache
and predictor sizing; and performance/power.
At this stage of the design process, detailed
microarchitecture simulations of specific
benchmarks aren’t feasible. For one, the
detailed simulator itself takes considerable
time and effort to develop. Second, bench-
marks restrict the application space under
evaluation to the specific programs represent-
ed by the benchmarks. To study a fairly broad
design space, the number of simulation runs
can be quite large. Finally, highly accurate per-
formance estimates are illusory anyway, given
the knowable level of design detail.

Similarly, for making system-level design
decisions, where a processor (or several proces-
sors) might be combined with many other
components, a very detailed simulation model
is often unjustified or impractical. Even though
the detailed processor microarchitecture might
be known, the number of processors and the
larger benchmark programs necessary for
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studying system-level behavior multiply many
fold the simulation complexity.

Statistical simulation1-4 can overcome many
shortcomings of detailed simulation for those
situations where detailed modeling is imprac-
tical or at least overly time consuming. Statis-
tical simulation permits early exploration of
the design space with relatively little new-tool
development effort. In addition, it provides a
simple way of modeling superscalar proces-
sors as components in large-scale systems
where a high level of detail is unnecessary or
practical. 

Table 1 presents the practice of micro-
processor design and the role statistical simu-
lation can play in an overall simulation
framework by comparing existing techniques
in terms of development and evaluation times,
accuracy in predicting overall performance, and
level of microarchitecture detail or coverage.

Functional simulation models only the func-
tional characteristics of an instruction set. It
simulates instructions one by one, taking
input operands and generating output values.
These tools are typically most useful for deter-
mining if a design implements an instruction
set correctly rather than its performance char-
acteristics. Consequently, accuracy and cov-
erage are poor (with respect to performance
and implementation detail). However, devel-
opment time is excellent because a function-
al simulator is usually already present at
hardware development time (unless the
processor implements a new instruction set).
Functional simulators have a very long life-
time that can span many development pro-
jects. Evaluation time is good because no
microarchitecture features need modeling.
From a hardware development perspective,
functional simulation is most useful because

it can generate instruction and address
traces—the functionally correct sequence of
instructions and/or addresses that a bench-
mark program produces. Other simulation
tools, including statistical simulation, can use
these traces.

Specialized cache and predictor simulation
takes program instruction and address traces,
and simulates only cache or branch predictor
behavior in isolation. Such simulations usu-
ally evaluate performance as miss rate or miss
prediction rate. These tools are widely avail-
able, especially for cache simulation, and they
can evaluate a variety of cache configurations
simultaneously in a single simulation run.5,6

Although development time and evaluation
time are both good, coverage is limited
because cache and predictor simulations
model only certain specific aspects of a proces-
sor. And although the accuracy in terms of
miss rate is quite good, overall processor per-
formance accuracy correlates only roughly
with these miss rates because so many other
factors come into play. Hence, overall accura-
cy is poor (or perhaps not applicable). 

Full trace-driven simulation takes program
instruction traces and feeds the full bench-
mark trace into a detailed microarchitecture
simulator. A trace-driven simulator separates
the functional simulation from the timing
simulation. This separation is often useful
because designers must only perform func-
tional simulation once, whereas they perform
detailed timing simulations many times. This
separation reduces the detailed simulation
runtime.

One disadvantage of this approach is the
need to store trace files, which can be quite
large. Another disadvantage for modern
superscalar processors is that they predict
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Table 1. Comparing existing simulation and modeling techniques.

Technique Development time Evaluation time Accuracy Coverage
Functional simulation Excellent Good Poor Poor
Specialized cache and predictor simulation Good Good Poor Poor
Full trace-driven simulation Poor Poor Excellent Excellent
Full execution-driven simulation Poor Poor Excellent Excellent
Modular full execution-driven simulation Good Poor Excellent Excellent
Sampled simulation Poor Fair Good to excellent Excellent
Analytical modeling Excellent Excellent Fair Poor
Statistical simulation Good Excellent Good Good



branches and execute many instructions spec-
ulatively. These discarded instructions do not
show up on a trace file from functional simu-
lation, although they can affect cache and/or
predictor contents.7 Overall, full trace-driven
simulation requires a long development time
and long simulation runtimes, but both accu-
racy and coverage are excellent.

Full execution-driven simulation is similar to
full trace-driven simulation, except it com-
bines functional simulation with detailed tim-
ing simulation. Consequently, this type of
simulation does not have to store trace files
and can accurately simulate speculated
instructions. Recently, execution-driven sim-
ulation has supplanted trace-driven simula-
tion as the method of choice. An example in
academia is SimpleScalar’s out-of-order sim-
ulator,5 computer companies use similar sim-
ulation tools.8 Just as with trace-driven
simulation, full execution-driven simulation is
highly accurate, attains excellent coverage—
the simulator models the microarchitecture
in detail—but it is very time consuming to
run and requires a long time to develop.

To overcome the difficulty of building
detailed cycle-accurate simulators, recent work
has presented simulation frameworks built
along the philosophy of modular compo-
nents. Examples of such modular, full execu-
tion-driven simulation tools are Asim8 and
Liberty.9 Within such an infrastructure,
designers can easily reuse, extend, and modi-
fy architectural components to quickly build
complex performance models. Consequent-
ly, the development time is good once the gen-
eral infrastructure is available.

Unfortunately, modular, full execution-dri-
ven simulation does not address the problem
of long simulation times. A partial solution to
this problem is to carefully select a portion (or
portions) of a full benchmark program and
then simulate only that portion. Computer
designers and researchers often implement this
sampled-simulation approach by either select-
ing one single large sample or multiple small
samples. Selecting a representative sampled
trace is an important issue with possible pit-
falls. For example, samples from the beginning
of a program are likely to contain nonrepre-
sentative initialization code. The more gener-
al problem is that the execution of a computer
program consists of several program phases.

As such, an effective sampled trace should rep-
resent each major program phase.2,10-12

Another approach, at the opposite end of
the spectrum, is to use analytical modeling.
With analytical modeling, several equations
approximate the microarchitecture’s behavior.
Conceptually, analytical model development
should be simpler than developing a detailed
simulation model and should provide valu-
able insight. However, researchers have only
derived reasonably accurate analytical models
for simple (for example, in-order) microar-
chitectures. They have yet to develop accurate
analytical modeling techniques that cover
superscalar architectures and many parame-
ters. The coverage of this approach is poor.

Between detailed simulation and analytical
models lies statistical simulation.1-4,13 Statisti-
cal simulation is very simple. First, the design-
er computes (or otherwise derives) a statistical
program profile, using simple trace-based
tools, such as specialized cache and predictor
simulators. This statistical profile is a collec-
tion that records the distributions of impor-
tant program characteristics. The statistical
profile subsequently generates a synthetic
instruction trace that executes on a simple
trace-driven simulator. Because the synthetic
trace is randomly generated from the statisti-
cal profiles, the simulation process quickly
converges to a set of performance projections.
As such, very short synthetic traces (several
hundred thousand instructions or fewer) can
yield accurate performance estimates. The
computation time for this approach is sever-
al orders of magnitude less than for full bench-
mark simulation.

Furthermore, the trace-driven statistical
simulator itself is simpler because it does not
have to model all of a microprocessor’s details.
This sort of simulation statistically model sev-
eral microarchitectural mechanisms that do
not need precise hardware modeling. So the
lines of code for a synthetic trace simulator—
a few hundred in the ones we have devel-
oped—are significantly fewer than for a fully
detailed simulator, which takes at least sever-
al tens of thousands of lines. Finally, program
statistics that drive the synthetic trace gener-
ation do not necessarily have to come from a
specific benchmark program. Rather, the
designer can choose them to cover the full
range of expected program behavior.
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The drawback of using a simple statistical
simulator is that the level of detail or the cov-
erage during statistical simulation is less than
for full and sampled trace simulations. For
example, instructions can be collapsed into a
single class; statistical simulation might treat all
simple ALU instructions as a single class. As
such, detailed measurement of specific instruc-
tion types becomes impossible. Obviously, this
depends on the statistical simulation’s level of
detail; such simulations could model specific
instruction types, if desired. However, model-
ing additional details lengthens development
and evaluation times. Furthermore, statistical
simulation is useful in identifying a region of
interest for further analysis through slower,
more detailed simulations.

A second drawback of statistical simulation
is that employing it for a radically different
system than the one for which it has been val-
idated would require revalidating the model. 

Based on experiments, we observe that sta-
tistical simulation attains good accuracy,

requires relatively short development time, and
provides very short evaluation time and good
coverage. As such, statistical simulation is a use-
ful addition to a designer’s evaluation toolbox.

Statistical simulation
The overall process of statistical simulation

consists of the four steps shown in Figure 1:
program trace generation, statistical profiling,
synthetic-trace generation, and trace-driven
simulation.

Initially, we assume designers have generat-
ed a program trace via functional simulation
(to avoid the storage of long trace files, the trace
output can go directly into the profiling tools).
Then, a microarchitecture-independent pro-
filing tool and specialized cache/predictor sim-
ulators analyze the program trace.

The microarchitecture-independent profil-
ing tool analyzes only the functional opera-
tion of instructions, extracting statistics that
summarize program characteristics. Primari-
ly, these characteristics are distributions,
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including the instruction mix and the data
dependencies among instructions. Such char-
acteristics are independent of the microarchi-
tecture on which the instructions execute;
however, they do depend on the instruction
set architecture and compiler.

The specialized cache/predictor simula-
tion tools extract statistics about the branch
and cache behavior from the program trace.
These cache and predictor miss rates mea-
sure locality-related events that are difficult
to model through microarchitecture-inde-
pendent characteristics. There are several fast
tools that can collect such cache and branch
predictor statistics.

The complete set of statistics (for the pro-
gram, branch, and cache) thus derived is a sta-
tistical profile. Once designers compute a
statistical profile, the next step is to generate
a synthetic trace with the same statistical prop-
erties, by construction, as the original trace
that served as the statistical profile’s source.
The synthetic trace simulates on a trace-driven
simulator. In simulating this synthetic trace,
performance characteristics (like instructions
issued per cycle) typically converge after a few
hundred thousand instructions.

After initial collection of the statistics,
designers can efficiently explore the complete
design space. For instance, the instruction
window size, the number of in-flight instruc-
tions, instruction execution latency, or the
number of pipeline stages are all variable. In
addition, the statistics themselves can be var-
ied to touch on points in the program space
that specific benchmarks might not cover.

Statistical profiling
Finding a viable statistical profile is key to

successful statistical simulation. The perfor-
mance characteristics of the synthetic trace
should be comparable to those of the original
trace from which it derives.2 In our baseline
model, a statistical profile includes four dis-
tribution classes:

• Instruction mix. The profile includes a
distribution of instruction mix by type
and the number of operands per instruc-
tion type. We typically use 10 instruction
types, such as loads, ALU instructions,
conditional branches.

• Interinstruction dependencies. This distri-

bution measures the probability that an
instruction depends on a preceding
instruction through a register value or
through memory. In our approach, we
only consider read-after-write depen-
dencies because other types of depen-
dencies (write-after-write and
write-after-read) are removed dynami-
cally by today’s superscalar, out-of-order
microarchitectures. However, designers
can add statistics for other types of
dependencies if the hardware does not
automatically remove them.

• Cache behavior. For statistical profiling,
we measure the probabilities of L1 and
L2 cache misses, and data and instruc-
tion cache misses.

• Branch predictor behavior. These charac-
teristics include branch (target) predic-
tion accuracies for the various branch
classes (conditional branch, jump, func-
tion call, or return).

Synthetic-trace generation and simulation
Given the statistical profile, we can gener-

ate the synthetic trace. Generating a random
number between 0 and 1, and then mapping
through the cumulative distribution function
selects a particular point on a distribution.
The generation of a synthetic trace proceeds
in the following order:

1. Determine the instruction type and the
number of source operands.

2. For each instruction source operand,
determine the preceding instruction that
produces the value. This will create a
read-after-write dependency between the
preceding instruction and the current
instruction. Do the same for memory
operations, that is, make loads dependent
on preceding stores (for example, a load
follows a store to the same address).

3. If the current instruction is a load, deter-
mine whether it will cause a data cache
miss.

4. If the current instruction is a branch
instruction, determine whether the
branch predictor will correctly predict
the branch’s outcome.

5. For each instruction, determine whether
instruction fetch will cause an instruc-
tion cache miss.
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As the generator produces synthetic instruc-
tions, it streams them into the simulator. One
simplification of the synthetic trace simulator
is that it does not need to model caches or
branch predictors. During simulation, the
simulator models the performance impact of
these structures as follows:

• For a load miss, the simulator assigns an
appropriate latency when the load exe-
cutes. For example, in case of an L1 cache
miss, it will assign the access time of the
L2 cache. For an L2 cache miss, it will
assign the memory access time.

• For a branch misprediction, the simula-
tion will flush the pipeline when the mis-
predicted branch executes.

• For an instruction cache miss, the simu-
lator will stop fetching instructions for a
specified number of clock cycles.

Absolute accuracy
An important performance metric obtain-

able through simulation is the average num-
ber of instructions that execute per cycle or
IPC. We use this metric to evaluate the over-
all accuracy of statistical simulation. To do so,
we define the absolute IPC error:

Absolute IPC error = (IPCs – IPCr) / IPCr

IPCr is the reference IPC measure by detailed
execution-driven simulation; IPCs comes from
statistical simulation. The IPC prediction
error of a baseline statistical simulation model
typically ranges from 10 percent for modest-
resource superscalar microprocessors (at most
32 in-flight instructions and an issue width of
4) to 15 percent for wide-resource micro-
processors (128 in-flight instructions and an
issue width of 8).1,3,4 There are several reasons
for this inaccuracy.

• The synthetic-trace simulator is less
detailed than the detailed architectural
simulator and such a simplified model can
introduce errors. This is expected and part
of the tradeoff that dramatically reduces
development and simulation time.

• In the current statistical simulation
framework, we assume the statistical
independence of the various program
characteristics. For example, the data

cache behavior is statistically indepen-
dent of the instruction-level parallelism
(ILP). In reality, a correlation might exist
between various program characteristics,
which can impact overall performance.
Modeling this correlation can lead to
increased accuracy as the “Program char-
acterization” sidebar explains.

• Statistical simulation does not account
for time-dependent program behavior.
For example, we use one single statistical
profile for the complete benchmark pro-
gram run. However, measuring several
statistical profiles and generating syn-
thetic traces for different program phas-
es might increase the accuracy of
statistical simulation, but will consume
additional evaluation time.

Relative accuracy
In the context of design space explorations,

a performance model’s relative accuracy is more
important than its absolute accuracy (in this
case, absolute IPC error, defined earlier). A
measure of relative accuracy would indicate the
ability of a performance estimation technique
to predict performance trends, for example, the
degree to which performance changes as the
designer varies a microarchitectural parameter.
So, if statistical simulation can provide good
relative accuracy, then it is useful for making
design decisions. For example, a designer might
want to know if the performance gain due to
increasing a particular hardware resource jus-
tifies the increased hardware cost.

We define relative error as

with IPCs,A and IPCs,B the IPC numbers of
the synthetic trace when running on two dif-
ferent microarchitectures A and B; IPCr,A and
IPCr,B are the similarly defined IPCs for ref-
erence traces. This definition quantifies the
difference in IPC increase or decrease of the
synthetic trace versus the IPC increase or
decrease of the reference (real) trace. 

Applications
Three applications of statistical simulation

are uniprocessor performance modeling, high-

  
Relative IPC error

IPC

IPC

IPC

IPC
= −s,B

s,A

r,B

r,A
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An interesting application for statistical simulation is program char-
acterization. When validating the statistical simulation methodology in
general and the characteristics included in the statistical profile in par-
ticular, program characterization makes clear which program character-
istics must be in the profile for good accuracy. That is, this process
distinguishes program characteristics that influence performance from
those that do not. Two enhancements increase the accuracy of statisti-
cal simulation and reveal important program characteristics.

The first enhancement comes from the notion that cache misses occur
in clusters or bursts. In other words, as a function of time, cache misses
tend to occur in close proximity to other misses.1 Modeling this clustered
cache-miss behavior significantly improves the accuracy of statistical sim-
ulation. For example, enhancing statistical simulation by modeling inter-
miss gaps (instead of using average miss rates) reduces the 15 percent
IPC prediction error for wide-resource microprocessors to approximately
10 percent.2 That is, we model a bursty cache-miss behavior instead of a
uniformly distributed one.

The high correlation of various program characteristics is the basis for
the second enhancement. Correlating the instruction mix, the interopera-
tion dependencies, cache-miss rates, and branch misprediction rates to
the basic-block size can lead to significantly higher accuracy in perfor-
mance prediction.3 Figure A shows the IPC prediction error for several
microarchitectural configurations by varying the window size, issue width,
and the fetch queue size. Within each set, the 12 bars represent different

improved characterization models, for instance, with additional complex-
ity in the statistical profile or more correlation among various program
characteristics. Each bar represents the average IPC error for the SPECint95
benchmark suite. This graph shows that the four rightmost bars in each
set attain the highest accuracy for each microarchitectural configuration.
These improved program models correlate cache and branch statistics and
basic-block size to varying degrees and in various ways. For instance, one
method of correlation is to measure different branch prediction and cache
statistics for each basic-block size. The results in the rest of this article
are the baseline results, that is, the results with the statistical profile as
discussed in the main paper.

References
1. J. Voldman et al., “Fractal Nature of Software-Cache

Interaction,” IBM J. Research and Development, vol. 27, no.
2, Mar. 1983, pp. 164-170.

2. L. Eeckhout, “Accurate Statistical Workload Modeling,” PhD
thesis, Ghent Univ., Belgium, Dec. 2002; http://www.elis.ugent.
be/~leeckhou/.

3. S. Nussbaum and J.E. Smith, “Modeling Superscalar
Processors Via Statistical Simulation,” Proc. 2001 Int’l Conf.
Parallel Architectures and Compilation Techniques (PACT
2001), IEEE CS Press, 2001, pp. 15-24.

0

2

4

6

8

10

12

14

16

18

IP
C

 p
re

di
ct

io
n 

er
ro

r 
(p

er
ce

nt
ag

e)

window = 16,
issue = 4,
fetchQ = 4

window = 16,
issue = 4,

fetchQ = 16

window = 32,
issue = 4,

fetchQ = 16

window = 32,
issue = 8,

fetchQ = 32

window = 64,
issue = 8,

fetchQ = 32

window = 128,
issue = 8,

fetchQ = 32

Figure A. Increasing the accuracy of statistical simulation reveals important program characteristics.

Program characterization



level power modeling, and system evaluation. 

Uniprocessor performance modeling
The most obvious application of statistical

simulation is evaluation of uniprocessor per-
formance. Statistical simulation does not aim
to replace detailed cycle-accurate simulations.
Rather, it aims to provide an efficient look at
the design space, and to provide guidance for
decision-making early in the design process.

Figure 2 illustrates the relative accuracy of
statistical simulation for the SPECint95
benchmarks. Figures 2a and 2b show the aver-
age IPC for SPECint95 as a function of the
instruction window size. Figures 2c and 2d
show IPC as a function of the issue width, the
maximum number of instructions that can be
scheduled for execution per cycle. Figures 2a
and 2c show absolute IPC numbers. These
graphs show that statistical simulation results
in a 10-percent absolute IPC prediction error.

Although this absolute prediction error would
be quite reasonable in many applications, sta-
tistical simulation attains a much better rela-
tive accuracy. Figures 2b and 2d show that the
relative IPC error is less than 0.9 percent in
all cases. Furthermore, the runtime for obtain-
ing these data was many orders of magnitude
faster than for detailed simulation.

High-level power modeling
Power dissipation and energy consumption

are and will continue to be key issues when
designing microprocessors. For laptop com-
puters and handheld devices, battery life is a
major design constraint. For high-end systems,
power consumption is also becoming a major
design issue:14 higher clock frequencies, larger
die sizes, and more complex microarchitec-
tures significantly increase power consump-
tion. This, in turn, increases packaging and
cooling cost. Consequently, power consump-
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tion requires consideration early in the design
process. Recent work addresses this issue by
integrating power modeling techniques into
architectural simulators. In other words, power
models of various processor structures are com-
bined with counters that measure the activity
of the structures at the architectural level and
calculate the microprocessor’s total power con-
sumption. Wattch is an example of such a sim-
ulator.15 Because these power modeling
methodologies derive from detailed architec-
tural simulations, they suffer from the same
disadvantages: long simulation times and the
need to develop complex simulation models.

We propose to meld statistical simulation
with architectural power modeling, easily
accomplishing this by integrating architectur-
al power models into the synthetic trace sim-
ulator. In earlier work, we integrated Wattch15

into the statistical simulation framework.1

Using this tool, we can estimate the power dis-
sipation of a microarchitecture executing a syn-
thetic trace. The power prediction error is less
than 5 percent for wide-resource processors;
the relative accuracy is less than 1.6 percent.
By combining the performance and power dis-
sipation predictions, it’s possible to measure a
microarchitecture’s energy-efficiency.14 A met-
ric that combines power and performance can
measure energy efficiency; a popular
power/performance metric for microproces-
sors is the energy-delay product (EDP):

Figures 3a and 3b show EDP for the
SPECint95 benchmarks as a function of the
instruction window size and the issue width.
These graphs show that statistical simulation
can identify a region of energy-efficient
microarchitectures—those with potentially
minimal EDP.

System evaluation
For larger systems containing several proces-

sors—symmetric multiprocessors (SMPs),
clusters of computers, and even large net-
works—simulation time becomes a much big-
ger problem because of the number of
processors that the designer must simulate
simultaneously. Typically, benchmark prob-
lems for such systems are also much larger, and
there might be additional design choices.

Modeling cache coherence, sequential con-
sistency, private versus shared virtual memory
pages, and processor synchronization extend
the statistical simulation framework to SMP
systems.13 To do so, we computed the follow-
ing additional program statistics (an earlier
work provides a more elaborate discussion13):

• Cache line ownership distribution. Our sim-
ulation accounts for the probability that a
store does not own the cache line it targets.

• Store distributions. We calculate two dis-
tributions, one measuring the numbers
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of consecutive stores to private pages and
the other, to shared pages.

• Lock distributions. Lock distributions help
us to statistically simulate synchronization
through critical sections. Statistical simu-
lation uses these distributions during sta-
tistical simulation to compute a target
critical section. In addition, we maintain
two statistical profiles: one updated when
executing outside a critical section and one
updated when executing inside a critical
section. The synthetic trace generator then
produces instructions based on these two
statistical profiles.

• Distributions for synchronization barriers.

Synchronization barriers cause two prob-
lems. First, they often occur at coarse gran-
ularity. As such, they are few in number but
cover long time periods. Second, barriers
typically involve all the processors, which
is difficult to model in a statistically inde-
pendent way in each processor. To address
these issues, we scale down the amount of
work done between barriers in proportion
to the length of the statistical simulation.

Figures 4 and 5 show that it is possible to
achieve accurate performance estimates on
multiprogrammed workloads (SPECint95) as
well as on synchronized parallel scientific
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Figure 4. Reference (a) and estimated (b) instruction throughputs for multiprogrammed SPECint95 workloads as a function of
the number of processors.

Figure 5. Reference (a) and estimated (b) instruction throughputs for parallel workloads as a function of the number of
processors.



workloads (Splash 2). Figure 4 shows the
detailed simulation and the statistical simula-
tion instruction throughput for multipro-
grammed workloads; in these initial
experiments, we assume a simple one-bank
memory system. In general, the performance
estimates for multiprogrammed workloads
running on the statistical model are fairly
accurate (less than 15 percent error with
respect to detailed simulation), but it shows
larger errors in running the benchmarks
compress (underestimated by 17 percent)
and li (overestimated by 23 percent) on
eight processors. This graph shows that sta-
tistical simulation accurately predicts impor-
tant performance trends.

Figure 5 shows instruction throughput for
parallel workloads and a four-bank memory sys-
tem, giving results for the detailed and statisti-
cal simulations. In contrast to the earlier
one-bank memory system, the four-bank mem-
ory system employs interleaving on a cache
block basis, putting less pressure on the shared-
memory system. These results show that accu-
rate performance estimates are obtained for
benchmarks barnes-hut, raytrace, and
radiosity. However, it shows less accura-
cy for fmm and ocean. In spite of the reduced
absolute accuracy for some benchmarks, this
simple SMP model sufficiently identifies the
number of processors after which there is a
diminishing performance return. For example,
detailed simulations of barnes-hut show a
strong performance degradation from eight to
16 processors, which also appears in the statis-
tical simulation results. Likewise, statistical sim-
ulation identifies the point of diminishing
performance return for ocean after eight
processors and for raytrace after 12 proces-
sors. Statistical simulation can predict perfor-
mance trends sufficiently and accurately and is
therefore a useful tool for quickly investigating
design options. We obtained these results with
only two to 10 minutes of simulation time.

The “Workload Space Exploration” sidebar
presents another application of statistical sim-
ulation to system development.

Designing a new microprocessor is
extremely time-consuming because of the

numerous necessary simulations. Statistical
simulation can speed up this design process sig-
nificantly by identifying a region of interest in
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Workload space exploration
A statistical profile in statistical simulation consists of several program characteristics.

These characteristics are easily variable and it’s possible to measure the influence of these
parameters on overall performance. However, varying the distributions in a statistical pro-
file is sometimes impractical because of the numerous probabilities that require specifica-
tion. A limited set of parameters that specifies complete program behavior would be useful.
This is achievable within the statistical simulation framework by approximating measured
distributions with theoretical distributions.

For example,  the distribution of interoperation dependencies through register values
exhibits power law properties—the probability density function (PDF) of this distribution fol-
lows a straight line when plotted in a log-log diagram.1 This type of a distribution is a power
law distribution or a Pareto distribution: P |X = x | = αx − β with 1 > α > 0 (the intersect of the
PDF with the y axis) and β > 0 (the slope of the PDF in a log-log graph). The results show
that this approximation is more accurate than a previously proposed exponential approxi-
mation method. By fitting this power law to the measured distributions, you can estimate the-
oretical parameters α and β.

Figure B displays the SPECint95 as well as the Instruction Benchmark Suite (IBS) traces
as a function of α and β, where α and β derive from the power law PDF of the interopera-
tion dependencies. We can make two interesting conclusions from this graph. First, the inter-
operation dependencies seem to be quite different for the SPECint95 benchmarks than for
the IBS traces. All but one of the IBS traces concentrate in the middle of the graph whereas
the SPECint95 benchmarks are more toward the graph’s left.

Second, this information can identify weak spots in a workload. For example, this graph
reveals that none of these benchmarks have 0.28 < α < 0.33. There are two possibilities to
address this lack of benchmark coverage: either search for real benchmarks or generate syn-
thetic traces with the desired program properties. The latter option is easy because the pro-
gram characteristics in a statistical profile can freely vary. In addition, these program properties
can vary independently from each other.

Reference
1. L. Eeckhout and K. De Bosschere, “Hybrid Analytical-Statistical Modeling for

Efficiently Exploring Architecture and Workload Design Spaces,” Proc. 2001
Int’l Conf. Parallel Architectures and Compilation Techniques 
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a huge design space, permitting targeted analy-
sis using detailed architectural simulations. This
is true for uniprocessor as well as for multi-
processor power/performance modeling. In
addition, statistical simulation is also useful for
distinguishing important program characteris-
tics from unimportant ones, and for identify-
ing and addressing potential weak spots in the
workload design. Now that we have a better
understanding of the important program prop-
erties and processor characteristics, we plan to
simplify performance modeling even further
by tackling the problem of analytical modeling
of superscalar processors. MICRO
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