
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Spring 2005

CS 164: Programming Languages and Compilers

Class Notes #2: Lexical∗

1 Introduction

The purpose of syntactic analysis is to analyze textual input so as to confirm that it is syntac-

tically well-formed—that it obeys certain general structural rules dictated by the specification
of the input language—and to convert it into a form that gives later parts of the compiler
convenient access to this structure.

For example, we might say that in Java a conditional statement can have the form

if

(Expression) Statement else Statement

In later parts of the compiler, the programmer might reasonably want a data structure that
represents “an if statement” and that provides operations that return “the then clause,”
“the else clause,” and “the test” from this statement. These operations would be awkward
to implement if the data structure used were simply a copy of the original text of the statement
(a string). Instead, a tree-like form is a better representation. This requires analyzing the
original text into its constituent grammatical parts.

This task is traditionally broken down into lexical analysis— which breaks the text down
into the smallest useful atomic units, known as tokens, while throwing away (or at least,
putting to one side) extraneous information, such as white space and comments—and pars-

ing—which operates on tokens and groups them into useful grammatical structures. There is
no sharp distinction between these two activities—I am happy to classify both under “syntac-
tic analysis.” A single monolithic subprogram could handle both simultaneously, as was done
in very early compilers. To a certain extent, we divide the tasks as we do to accommodate
certain techniques and certain automatic or semi-automatic tools.

We’re going to start with lexical analysis. The part of a compiler that performs this task
is called a lexical analyzer, tokenizer, or scanner. In brief outline,

∗Parts of these notes are adapted from material by Alex Aiken, George Necula, and Ras Bodik

1



Lexical Analysis 2

• Regular expressions can describe a variety of languages (sets of strings), including the
set of atomic symbols of a typical programming language.

• Finite-state automata (FSAs) are abstract machines that also recognize languages.

• Deterministic finite-state automata (DFAs) are a subset of finite-state automata that
are easily converted into programs.

• There exists a translation from regular expressions into FSAs.

• There exists a translation from FSAs that happen to be nondeterministic into DFAs
(and hence into programs).

• The total process of conversion from regular expression to program is automatable. In
fact, we’ll be using a couple of handy programs: Flex (for producing scanners written
in C or C++) and JFlex (for producing scanners written in Java). These programs are
really compilers themselves, translating succinct descriptions of programming-language
syntax (a piece of it, anyway) into programs that “execute” these descriptions to extract
tokens from the input.

2 Tokens and tokenizing

In the context of programming-language translation we use the term token to refer to an
abstraction for the smallest unit of program text that it is convenient when describing the
syntax of a language. You don’t want them to be too small. The parsing techniques we’ll
use in this class are designed to decide on what to do next on the basis of the next token
of input. If tokens are single characters, they won’t generally contain enough information to
make this decision. For example, suppose a program has seen the characters ‘x+y’ and the
next character is a blank. This is insufficient information to determine whether ‘x+y’ is to
be treated as a subexpression, since if the next non-blank character is ‘*’, then y should be
grouped with whatever is after the asterisk. The lexer, on the other hand, can first eliminate
whitespace, making the decision easier. Another example is ‘x+y’ followed by a ‘+’. Here,
the decision depends on whether the character immediately after the ‘+’ is another ‘+’. If the
lexer has previously grouped all ‘++’s into single tokens, the decision is easily made, with no
ad hoc scanning ahead in special cases. Tokenizing is thus the process of bridging the gap
between the input (made of characters—too small) and tokens.

As an example, a Java program (a Java source file) might contain the phrase

if(i== j)

z = 0; /* No work needed */

else

z= 1;

which a translating program sees as a sequence of characters:

\tif(i== j)\n\t\tz = 0; /* No work needed */\n\telse\n\t\tz= 1;



Lexical Analysis 3

The job of the scanner is to convert this to a sequence of values such as this:

IF, LPAR, ID("i"), EQUALS, ID("j"), RPAR, ID("z"), ASSIGN,

INTLIT(""), SEMI, ELSE, ID("z"), ASSIGN, INTLIT(""), SEMI

Here, the upper-case symbols denote syntactic categories (often internally represented as
integers in an actual compiler). The syntactic categories are consumed by the next stage of
the compiler—the parser. When determining the structure of a program, it is not particularly
important which identifier or integer literal appears at some point; the important point is that
some identifier appears there. Hence, scanners typically separate the syntactic category from
what I’ll call the lexical value of the token (shown in parentheses), which gives information
that the parser doesn’t need, but later stages of the compiler will. In our example, the lexical
value of an identifier happens to be the lexeme itself—the character string constituting the
token.

As you can see from the example, information unnecessary to the rest of the compiler is
filtered out entirely. All the blanks, tabs, newlines, and comments are gone, so that the little
discrepancies in spacing around the operators are removed. This is a typical pattern in the
translation process: each stage makes the job of its successors easier by removing “noise” and
guaranteeing that certain errors are filtered out.

Actually, real scanners don’t entirely do away with whitespace. If it is going to produce
useful error messages, a compiler must keep track of where each token appears so that it can
“point” at the offending part of the program in the original source file. Therefore, tokens
often contain positional information—but just like the semantic value, it is separated from
other parts of the token so that it can be referenced only when needed.

If we were building an actual scanner in Java, our tokens might be represented by objects
with fields like this:

class Token {

enum SyntacticCategory { IF, LPAR, ID, EQUALS, RPAR, ASSIGN, ... };

SyntacticCategory syntax;

Object value;

Location sourcePosition;

...

}

3 Implementation

The rest of these notes come from the Fall 2004 edition of the course, courtesy of Alex Aiken,

Ras Bodik, Richard Fateman, and George Necula.


	Introduction
	Tokens and tokenizing
	Implementation

