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PREFACE

This book was conceived as a dim monograph, but grew to its present sze
as | attempted to set down an account of two-dimensional lattice models
in gatistical mechanics, and how they have been solved. While doing so
| have been pulled in opposite directions. On the one hand | remembered
the voice of the graduate student at the conference who said 'But you've
left out dl the working—how do you get from equation (81) to (82)? On
the other hand | knew from experience how many sheets of paper go into
the waste-paper basket after even a modest calculation: there was no way
they could al appear in print.

| hope | have reached a reasonable compromise by signposting the route
to be followed, without necessarily giving each step. | have tried to be
sdlective in doing so: for instance in Section 8.13 | discuss the functions
k(oc) andg(a) insomedetail, sincethey provideaparticularly clear example
of how dliptic functions come into the working. Conversdly, in (8.10.9)
I merely quote the result for the spontaneous staggered polarization P, of
the F-model, and refer the interested reader to the origina paper: its
calculation is long and technical, and will probably one day be superseded
when the eight-vertex model conjecture (10.10.24) is verified by methods
similar to those used for the magnetization result (13.7.21).

There are 'down-to-earth’ physicists and chemists who reject lattice
models as being unredlistic. In its most extreme form, their argument is
that if amodel can be solved exactly, then it must be pathological. | think
this is defeatist nonsense; the three-dimensional Ising model is a very
redlistic model, a least of a two component dloy such as brass. If the
predictions of universality are corrected, then they should have exactly the
same critical exponents. Admittedly the Ising mode has been solved only
in one and two dimensions, but two-dimensiond systems do exist (see
Section 1.6), and can be quite like three-dimensiona ones. It is true that
the two-dimensional Ising model has been solved only for zero magnetic
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Vi PREFACE

fidd, and that this case is quite unlike that of non-zero fied; but physicaly
this means Onsager solved the most interesting and tricky case. His solution
vadtly helps us understand the full picture of the Isng modd in a field.

In a amilar way, the eight-vertex model helps us understand more
complicated systems and the variety of behaviour that can occur. The hard
hexagon model is rather special, but needs no justification: It is a perfectly
good lattice gas and can be compared with a helium monolayer adsorbed
onto a graphite surface (Riedel, 1981).

There is probably dso a feding that the models are 'too hard’ math-
ematicaly. This does not bear close examination: Ruelle (1969) rightly
says in the preface to his book that if a problem is worth looking at at all,
then no mathematical technique is to be judged too sophisticated.

Basicdly, | suppose the justification for studying these lattice models is
very smple: they are relevant and they can be solved, so why not do so
and see what they tell us?

In the title the phrase 'exactly solved' has been chosen with care. It is
not necessarily the same as 'rigoroudly solved'. For instance, the derivation
of (13.7.21) depends on multiplying and diagonaizing the infinite-dimen-
sional corner transfer matrices. It ought to be shown, for instance, that the
matrix products are convergent. | have not done this, but believe that they
are (at least in a sense that enables the calculation to proceed), and that
as aresult (13.7.21) is exactly correct.

Thereis of course gill much to be done. Barry McCoy and Jacques Perk
rightly pointed out to me that whereas much is now known about the
correlations of the Ising model, amost nothing is known about those of
the eight-vertex and hard hexagon models.

There are many people to whom | am indebted for the opportunity to
write this book. In particular, my interest in mathematics and theoretical
physics was nurtured by my father, Thomas James Baxter, and by Sydney
Adams, J. C. Polkinghorne and K. J. Le Couteur. Elliott Lieb initiated
me into the complexities of the ice-type models. Louise Nicholson and
Susan Turpie worked wonders in transforming the manuscript into immacu-
late typescript. Paul Pearce has carefully read the proofs of the entire
volume. Most of all, my wife Elizabeth has encouraged me throughout,
particularly through the last turbulent year of writing.

R. J. Baxter
Canberra, Australia
February 1982
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1
BASIC STATISTICAL MECHANICS

11 Phase Transitions and Critical Points

As its name implies, statistica mechanics is concerned with the average
properties of a mechanicad system. Obvious examples are the atmosphere
insde a room, the water in a kettle and the atoms in a bar magnet. Such
systems are made up of a huge number of individual components (usualy
molecules). The observer has little, if any, control over the components:
al he can do is specify, or measure, afew average properties of the system,
such as its temperature, density or magnetization. The am of satistical
mechanics is to predict the relations between the observable macroscopic
properties of the system, given only a knowledge of the microscopic forces
between the components.

For instance, suppose we knew the forces between water molecules.
Then we should be able to predict the density of a kettleful of water at
room temperature and pressure. More interestingly, we should be able to
predict that this density will suddenly and dramaticaly change as the
temperature is increased from 99°C to 101°C: it decreases by a factor of
1600 as the water changes from liquid to steam. This is known as a phase
transition.

Yet more strange effects can occur. Consider an iron bar in a strong
magnetic field, H, parald to its axis. The bar will be dmost completely
magnetized: in appropriate units we can say that its magnetization, M, is
+ 1. Now decrease H to zero: M will decrease, but not to zero. Rather,
at zero fidd it will have a spontaneous magnetization Mo,

On the other hand, we expect molecular forces to be invariant with
respect to time reversal. This implies that reversing the fidd will reverse
the magnetization, so M must be an odd function of H. It follows that

1



2 1 BASIC STATISTICAL MECHANICS

M(H) must have a graph of the type shown in Fig. |.1(a), with a dis-
continuity at H = 0.

This discontinuity in the magnetization is very like the discontinuity in
density a a liquid-gas phase transition. In fact, in the last section of this
chapter it will be shown that there is a precise equivalence between them.

L] M

(e}

Fig. 1.1. Graphs of M(H) for (@) T< Te, (0) T= Te, () T> T

The iron bar can be regarded as undergoing a phase transition at H = 0,
changing suddenly from negative to positive magnetization. In an actua
experiment this discontinuity is smeared out and the phenomenon of
hysteresis occurs: this is due to the bar not being in true thermodynamic
equilibrium. However, if the iron is soft and subject to mechanica dis-
turbances, a graph very close to that of Fig. I.I(a) is obtained (Starling
and Woodall, 1953, pp. 280-281; Bozorth, 1951, p. 512).

The above remarks apply to an iron bar at room temperature. Now
suppose the temperature T is increased dightly. It is found that M(H) has
asmilar graph, but M, is decreased. Finally, if Tisincreased to a critical
value T, (the Curie point), Mo vanishes and M(H) becomes a continuous
function with infinite dope (susceptibility) a H = 0, asin Fig. 11 (b).

If T is further increased, M{H) remains a continuous function, and
becomes analytic at H= 0, asin Fig. I.I(c).
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These observations can be conveniently summarized by considering a
(T, H) plane, asin Fig. 1.2. Thereis a cut dong the T axis from O to T..
The magnetization M is an analytic function of both T and H at al points
in the right-half plane, except those on the cut. It is discontinuous across
the cut.

Fig. 1.2 The (T, H) half-plane, showing the cut across which M is discontinuous
Blsavhere M isan ytlcfmcilon of Tand H.

The cut is a line of phase transitions. Its endpoint (T, 0) is known as
a critical point. Clearly the function M(H, T) must be singular at this
point, and one of the most fascinating aspects of statistical mechanics is
the study of this singular behaviour near the critical point.

Mo(T)
'y

B
.

o T, ¥

Fig. 1.3. The spontaneous magnetization Af; as a function of temperature.
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The spontaneous magnetization is a function of T and can be defined as

Mo(T)= lim M(H.T), (1.1.0)

the limit being taken through positive values of H. It has a graph of the

type shown in Fig. 1.3, being positive for T<T¢ and identicdly zero for
T>Te.

Critical Exponents

The susceptibility of a magnet is defined as

i, 1y =M | U.2)
When considering critical behaviour it is convenient to replace T by
t={T-To)IT.. (1.1.3)

Then the thermodynamic functions must have singularities at H=1t= 0.
It is expected that these singularities will normally be smple non-integer
powers; in particular, it is expected that

Mo(T)  ~(-tY asf-»(T, (1-1-4)
M{H,T)~H™ as//-»0, (1.15)
x(0,T) ~-n asf-*0", (1.1.6)
X(OT) ~(-t)~ asf-»O-. (1-1-7)

Here the notation X ~ Y means that XIY tends to a non-zero limit. The
power-law exponents /3, d, y, Y are numbers, independent of H and T:
they are known as critical exponents.

For brevity, the phrase 'near T, will be frequently used in this book to
mean 'near the critical point', it being implied that H is small, if not zero.

12 The Scaling Hypothesis

It isnatural to look for some simplified form of the thermodynamic functions
that will describe the observed behaviour near T.. Widom (1965) and
Domb and Hunter (1965) suggested that certain thermodynamic functions
might be homogeneous. In particular, Griffiths (1967) suggested that H
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might be a homogeneous function of MY? and t. Since H is an odd function
of M, this means that near T,

HIKT. = MWM\Sh(tM\-""), (1.2.2)

where /Sand Sare numbers (as yet undefined), k is Boltzmann's constant,
and h{x) is a dimensionless scaling function. A typica graph of hy(X) is
shown in Fig. 14 it is podtive and monotonic increasing in the interval
-XQ<x < °°, and vanishes a -X.

Note that (1.2.1) implies that H is an odd function of M, as it should
be.

hixl

L

|_-/ >

x

Fig. 1.4. The scaing function hy(x) for the square-lattice Ising modd (Gaunt and
Domb, 1970).

The scaling hypothesis predicts certain relations between the critical
exponents. To see this, fird consder the behaviour on the cut in Fig. 1.2
HereH=0,t< 0and M = +M,. From (1.2.1) the function hg(x) must be
ZEro, SOX= —Xq, i.€.

t=-X\M\"|>. (1.2.2)
Therelation (1.1.4) follows, s0/3in (1.2.1) isthe critical exponent defined

in (1.1.4).
Now set t = 0 (1.2.1). Since hy(0) is non-zero, this implies that near T,

H~M®, (1.2.3)

in agreement with (1.1.5). Hence the 6 in (1.2.1) is the same as that in
(2.1.5).

Differentiate (1.2.1) with respect to M, keeping t fixed. From (1.1.2)
this gives

{KTY = [MP~'[8h(x) - p-xhiix)] (1.2.4)
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where
x=HM|VE (1.2.5)

Again consder the behaviour on the cut in Fig. 1.2. Here x has the fixed
vaue—x0, S0

Z"1~ |MP"1'('*)«*'X). (1'26)
This agrees with (1.1.7), and predicts that the criticad exponent y' is given

y' = 13(<5-1). (1.2.7)

To obtain (1.1.6) from the scaing hypothesis, we need the large x
behaviour of the scding function hy(x). This can be obtained by noting
that for fixed postive t, we must have

H~M asM-»0. (1.2.8)
Comparing this with (1.2.1), we see that
h&c)~xK*» as x -Kx». (1.2.9)
From (1.2.1) and (1.2.9), it folows that for arbitrary amdl postive t,
H-t"-"M asM-»0, (1.2.10)
0 from (1.1.1),
NO.rj-r*-" asf-~0". (1.212)

Comparing this with (1.1.6), and using (1.2.7), we see that the scding
hypothesis predicts the exponent relations

y=y =p0-1). (1.2.12)

Other exponents a, v, V', r\, nwill be dehned in Section 1.7, but for
completeness the various scaing predictions are listed here:

or+2/3+Y = 2, (1.213)
v=1'%(2-»? =¥, (1.2.14)
fi+ V=2 - (1.2.15)

dv=2 - a, (1.2.16)

where d is the dimensiondlity of the system.

A partial derivation of (1.2.14) will be given in Section 1.7, but it is
beyond the scope of this book to attempt to judify dl these rdations: the
interested reader isreferred to the articles by Widom (1965), Fisher (1967),
Kadanoff et al. (1967), Hankey and Stanley (1972), Stanley (1971) and
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Vicentini-Missoni (1972). Their relevance hereisthat exactly solved models
can be used to test the relations, and indeed we shdl find that scaling
passes every possible test for the models to be discussed.

The scaling relations (1.2.12)-(1.2.15) are in good agreement with avail-
able experimental and-theoretical results, and the scaling function hy(X)
has been obtained approximately for a number of systems (see for example
Gaunt and Domb, 1970).

The lagt relation (1.2.16) involves the dimensionality d. It is derived by
making further assumptions, known as 'strong scaling' or ‘hyperscaling'.
It is expected to be vdid for d ~ 4, but there is some gquestion whether it
is consistent with available numerical resultsfor three- and four-dimensional
models (Baker, 1977). The total st of equations (1.2.12)-(1.2.16) is
sometimes known as 'two exponent' scaling, since if two independent
exponents (such as 6 and fi) are given, then al other exponents can be
obtained from the equations.

13 Universdity

Consider a system with conservative forces. Let s denote a state (or
configuration) of the system. Then this state will have an energy E(S),
where the function E(s) is the Hamiltonian of the system.

The thermodynamic properties, such as M(H, T) and T, are of course
expected to depend on the forces in the system, i.e. on E(s). However,
it is believed (Fisher, 1966; Griffiths, 1970) that the critical exponents are
‘'universal’, i.e. independent of the details of the Hamiltonian E(s).

They will, of course, depend on the dimensiondlity of the system, and
on any symmetries in the Hamiltonian. To see the effect of these, suppose
E(s) can be written as

E(s) = £,(*) + kE"9), (1.3.1)

where Eo(s) has some symmetry (such asinvariance under spatid reflection)
and Ei(s) has not. The critica exponents are then supposed to depend on
A only in so far asthey have one valuefor A = 0 (symmetric Hamiltonian),
and another fixed value for A + 0 (non-symmetric). For example, there
would be two numbers #>, ft such that

P=Po ifA=0
= ft if A # 0, (1.3.2)
/3 being discontinuous a A = 0.
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On the other hand, if Eq(s) is some simple Hamiltonian and Ei(s) is
very complicated, but they have the same dimensiondity and symmetry,
then /3 should be completely constant, even a A = 0. The implications of
this are far reaching. One could take a realigtic and complicated Hamil-
tonian E(s), 'strip' it to a highly idedized Hamiltonian £0(5), and 4ill
obtain exactly the same critica exponents. For instance, on these grounds
it is believed that carbon dioxide, xenon and the three-dimensiona Ising
modd should dl have the same critical exponents. To within experimental
error, this appears to be the case (Hocken and Moldover, 1976).

There are some difficulties. there is usually more than one way of
describing a system, in particular of labelling its states. In one of these
there may be an obvious symmetry which occurs for some specid vaues
of the parameters. In another formulation this symmetry may not be
obvious at dl. Thus if the second formulation were used, and these specid
values of the parameters were accidentally chosen, then the critical expo-
nents could be unexpectedly different from those appropriate to other
values.

Also, in this book the solution of the two-dimensiona 'eight-vertex'
mode will be presented. This has exponents that vary continuoudy with
the parameters in the Hamiltonian. This violates the universality hypoth-
esis, but it is now generdly bdieved that such violations only occur for
very specia classes of Hamiltonians.

It should be noted that scaling and universality, while commonly grouped
together, are independent assumptions. One may be satisfied and the other
not, as in the case of the eight-vertex model, where universality fails but
scding appears to hold.

1.4 The Partition Function

How do we calculate thermodynamic functions such as M(H, T) from the
microscopic forces between the components of the system? The answer
was given by John Willard Gibbs in 1902. Consider a system with states
s and Hamiltonian E(s). Form the partition function

Z = *£exp[-E(9)/KT], (1.4.1)

where k is Boltzmann's constant and the summation is over al alowed
states s of the system. Then the free energy F is given by

F=-kT\nZ. (1-4.2)
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Also, the probability of the sysem being in a state sis
Z-'&xp[-E(9)IKT), (1.4.3)

s0 if X is some observable property of the system, such asiits total energy
or magnetization, with value X{s) for state s, then its observed average
thermodynamic value is

(X) = Z'2 X(s) expl -E{s)IKT\. (L4.4)
In particular, the internal energy is
U=(E)
= Z-'"E(s)exp[-E(syicT], (1.4.5)
and by using the above definitions (1.4.1) and (1.4.2) we can verify that
9
- 2 _*
U=kT ar'“ z
=~ TN (FIT) - (1.4.6)

in agreement with standard thermodynamics.

The basic problem of equilibrium statistical mechanics is therefore to
caculate the sum-over-states in (1.4.1) (for continuum systems this sum
becomes an integral, for quantum mechanica ones atrace). Thiswill give
Z and F as functions of T and of any variables that occur in E(s), such as
a magnetic field. The thermodynamic properties can then be obtained by
differentiation.

Unfortunately, for any redligtic interacting systlem of macroscopic size,
including the examples mentioned above, the evaluation of Z is hopelesdy
difficult. One is therefore forced to do one or both of the following:

A. Replace the rea sysem by some smple idedlization of it: this
idealization is known as a model. Mathematicaly, it consgsts of
specifying the states s and the energy Hamiltonian function E(s).

B. Make some approximation to evaluate the sum-over-states (1.4.1).

15 Approximation Methods

Let us consider the step (B) above. Some of the better-known approxi-
mation schemes are:

(i) Cdl or cluster approximations. In these the behaviour of the whole
system is extrapolated from that of a very few components inside
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some 'cell’, approximations being made for the interaction of the
cdl with the rest of the system. Examples are the mean-fidd (Bragg
and Williams, 1934; Bethe, 1935), quas-chemica (Guggenheim,
1935) and Kikuchi (1951) approximations. They have the advantage
of being farly smple to solve; they predict the correct qualitative
behaviour shown in Figs. 11 to 1.3, and are reasonably accurate
except near the critica point (Domb, 1960, pp. 282-293; Burley,
1972).

(i) Approximate integra equations for the correlation functions,
notably the Kirkwood (1935), hyper-netted chain (van Leesuwen et
al., 1959) and Percus-Yevick (Percus and Yevick, 1958; Percus,
1962) equations. These give farly good numerical vaues for the
thermodynamic properties of smple fluids.

(iii) Computer calculations on systems large on a microscopic scae (e.g.
containing a few hundred atoms), but still not of macroscopic size.
These calculations evaluate Z by statisticaly sampling the terms on
the RHS of (1.4.1), so are subject to statistical errors, usudly of a
few per cent. For this reason they are redly 'approximations rather
than 'exact calculations.

(iv) Series expansions in powers of some appropriate variable, such as
the inverse temperature or the density. For very redistic models
these can only be obtained to a few terms, but for the three-
dimensiona Ising model expansions have been obtained to as many
as 40 terms (Sykes et al., 1965, 19734).

The approximation schemes (i) to (iii) can give quite accurate values for
the thermodynamic properties, except near the critical point. There is a
reason for this. they dl involve neglecting in some way the correlations
between severa components, or two components far apart. However, near
T. the correlations become infinitely-long ranged, al components are
correlated with one another, and amost any approximation breaks down.
This means that approximations like (i), (ii) and (iii) are of little, if any,
use for determining the interesting cooperative behaviour of the system
near T..

Method (iv) is much better: if sufficdent terms can be obtained then it
is possible, with considerable ingenuity, to obtain plausible guesses as to
the nature of the singularities of the thermodynamic functions near the
critica point. In particular, the best estimates to date of critica exponents
in three dimensions have been obtained by the series expansion method.
However, an enormous amount of work is required to obtain the series,
and the resulting accuracy of the exponentsis sill not as good as one would
like.
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(v) There is another approach, due to Kadanoff (1966) and Wilson
(1971) (see dlso Wilson and Kogut, 1974; Fisher, 1974): thisis the
so-called renormalization group. In this method the sum over states
(1.4.1) is evaluated in successive stages, a 'renormalized’ Hamil-
tonian function E{s) being defined a& each stage. This defines a
mapping in Hamiltonian space. If one makes some farly mild
assumptions about this mapping, notably that it is analytic, then it
folows that the thermodynamic functions do have branch-point
singularities such as (1.1.4) at T, that the scding hypothesis (1.2.1)
and the relations (1.2.12—(1.2.16) are satisfied, and that the expo-
“nents of the singularities should normally be universal (Fisher, 1974,
p. 602).

In principle, the renormalization group approach could be carried
through exactly. However, this is more difficult than calculating the par-
tition function directly, so to obtain actual numerical results some approx-
imation method is needed for dl but the very smplest models. The fas
cinating result is that quite crude cell-type approximations give fairly
accurate values of the criticd exponents (Kadanoff et al., 1976). The reason
for this is not yet fully understood.

To summarize: approximate methods (step B) either fal completely near
T., or require considerable acts of faith in the assumptions made.

16 Exactly Solved Models

Another approach is to use step A to the fullest, and try to find models
for which E(s) is aufficiently simple that the partition function (1.4.1) can
be calculated exactly. This may not give useful information about the values
of the thermodynamic functions of real systems, but it will tdl us quali-
tatively how systems can behave, in particular near T.. In fact if we could
solve amodéd with the same dimensionality and symmetry as area system,
universality asserts that we should obtain the exact critica exponents of
the real system.

There is a further condition for universality, which was not mentioned
in Section 1.3. In mogt physica sysems the intermolecular forces are
effectively short ranged: in inert gases they decay asr~’, r being the distance
between molecules; in crystds it may be aufficient to regard each atom as
interacting only with its nearest neighbour. The infinite-range correlations
that occur a a critica point are caused by the cooperative behaviour of
the system, not by infinite-range interactions.
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If, on the other hand, sufficiently long-range interactions are included
in E(s), they clearly can affect the way the correlations become infinite
near T, and it comes as no surprise that critical exponents can be altered
in this way. Thus universality only applies to systems with the same range
of interactions. To obtain the correct critical behaviour, a model of a readl
system should not introduce non-physica long-range interactions.

Unfortunately no short-range genuindly three-dimensiona model has
been solved. The simplest such mode is the three-dimensional Ising model
(which will be defined shortly): this has been extensively investigated using
the series expansion method (Gaunt and Sykes, 1973), but no exact solution
obtained.

The models of interacting systems for which the partition function (1.4.1)
has been calculated exactly (at least in the limit of a large system) can
generaly be grouped into the following four classes.

One-Dimensional Models

One-dimensional models can be solved if they have finite-range, decaying
exponential, or Coulomb interactions. As guides to critical phenomena,
such models with short-range two-particle forces (including exponentially
decaying forces) have a serious disadvantage: they do not have a phase
transition a a non-zero temperature (van Hove, 1950; Lieb and Mattis,
1966). The Coulomb systems dso do not have a phase transition, (Lenard,
1961; Baxter, 1963, 1964 and 1965), though the one-dimensional electron
gas has long-range order at dl temperatures (Kunz, 1974).

Of the one-dimensional models, only the nearest-neighbour Ising model
(Ising, 1925; Kramers and Wannier, 1941) will be considered in this book.
It provides a smple introduction to the transfer matrix technique that will
be used for the more difficult two-dimensiona models. Although it does
not have a phase transition for non-zero temperature, the correlation length
does becomeinfiniteat H= T= 0, soinasensethisisacritical point' and
the scding hypothesis can be tested near it.

A one-dimensional system can have a phase transition if the interactions
involve infinitely many particles, asin the cluster interaction model (Fisher
and Felderhof, 1970; Fisher, 1972). It can dso have a phase transition if
the interactions become infinitely long-ranged, but then the system really
belongs to the fallowing class of 'infinite-dimensiona’ models.

'Infinite Dimensional' Models

To see what is meant by an 'infinite dimensiond' system, one needs a
working definition of the effective dimensiondity of a Hamiltonian. For
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a system with finite or short-range interactions in al available directions
there is usualy no problem: the dimensiondlity is that of the space
considered.

For other systems, a useful clue is to note that the dimensionality of a
lattice can be defined by starting from a typica site and counting the
number of sites that can be visited in awak of n steps. For a d-dimensiond
regular lattice and for n large, thisis proportional to the volume of a box
of siden, i.e. ton®. Thelarger the dimensionality, the more close neighbours
there are to each site.

If the number of neighbours becomes infinite, then the system is effec-
tively infinite-dimensional. Such a system is the mean-field model discussed
in Chapter 3. In Chapter 4 the Isng model on the Bethe latticeis considered.
This 'lattice’ has the property that the number of neighbours visited in n
steps grows exponentially with n. This is a faster rate of growth than n,
no matter how large d is, so again this modd is infinite-dimensional.

The results for these two models are the same as those obtained from
the mean-field and Bethe approximations, respectively, for regular lattices
(Section 1.5). Thus these two approximations are equivaent to replacing
the original Hamiltonian by an infinite-dimensiona model Hamiltonian.

Kac et al. (1963/4) considered a solvable one-dimensional particle model
with interactions with a length scde R. For such amode it is appropriate
to define 'close neighbours' as those particles within a distance R of agiven
particle. They then let 72— °° and found that in this limit (and only in this
limit) there is a phase transition. From the present point of view thisis not
surprising: by letting R—>™ the number of close neighbours becomes
infinite and the sysem effectivdy changes from one-dimensiond to
infinite-dimensiona. A remarkable feature of this system is that the equa-
tion of state is precisdy that proposed phenomenologically by van der
Waalsin 1873 (eg. 1.10.1). All these three 'infinite-dimensiona’ models
satiffy the scaling hypothesis (1.2.1), and have classical exponents (see
Section 1.10).

The Spherical Model

As originaly formulated (Montroll, 1949; Berlin and Kac, 1952), this
modd introduces a constraint coupling all components equally, no matter
how far apart they are. Thus it is 'unphysical' in that it involves infinite
range interactions. However, Stanley (1968) has shown that it can be
regarded as a limiting case of a system with only nearest neighbour inter-
actions. The modd is discussed in Chapter 5. It is interesting in that its
exponents are not classica in three dimensions.
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Two-Dimensional Lattice Models

There are a very few two-dimensional moddls that have been solved (i.e.
their free energy calculated), notably the Ising, ferroglectric, eight-vertex
and three-spin models. These are al 'physica’ in that they involve only
finite-range interactions; they exhibit critical behaviour. The main attention
of this book will be focussed on these models.

It is of course unfortunate that they are only two-dimensional, but they
dill provide a qualitative guide to real systems. Indeed, there are red
crystals which have strong horizontal and week vertical interactions, and
0 are dfectively two-dimensional. Examples are K;NiF4 and Rb2Mnk,
(Birgenau et al., 1973; Als-Nielsen et al., 1975). The models may provide
avery good guide to such crysals.

What is probably more unfortunate is that most of the two-dimensional
models have only been solved in zero field (H = 0), so only very limited
information on the critica behaviour has been obtained and the scding
functions h(x) have not been calculated. The one exception is the ferro-
electric model in the presence of an electric field, but thisturns out to have
an unusua and atypical behaviour (Section 7.10).

17 The General Isng Modé

Most of the models to be discussed in this book can be regarded as specia
cases of a general 1sing model, which can be thought of as a modd of a
magnet. Regard the magnet as made up of molecules which are constrained
to lie on the sites of aregular lattice. Suppose there are TV such sites and
molecules, labelledi= 1, ..., N.

Now regard each molecule as a microscopic magnet, which either points
aong some preferred axis, or pointsin exactly the opposite direction. Thus
each molecule / has two possible configurations, which can be labelled by
a 'spin' variable a, with values 4-1 (paralel to axis) or -1 (anti-paralel).
The spin is sad to be 'up’ when o; has value +1, 'down’ when it has value
— 1. Often these values are written more briefly as + and -. Let

a= {tfi,. .., anx}

denote the set of al N spins. Then there are 2" values of o, and each such
value specifies a state of the system. For instance, Fig. 15 shows a system
of 9 spins in the state

az {4, 4 4 -+ ) (1.7.2)
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The Hamiltonian is now a function E(o\,. .., ay) of the N spins
O\,. .., oy, or more briefly a function E(o) of a. It is made up of two
parts:

E(0) = Eo(0) + Ex(a), (1.7.2)

where E, is the contribution from the intermolecular forces inside the
magnet, and E\(0) is the contribution from the interactions between the

7 8 9
[0} . (0]
4 5 6
] L4 L ]
4 2 3

Fig. 1.5. An arrangement of spins on a square lattice with labelled sites. Full circles
denote up (positive) spins, open circles denote down (negative) spins.

spins and an external magnetic field. Since OJ is effectively the magnetic
moment of molecule i, E\{0) can be written as

Ei(a) = -Hia;, (1.7.3)

where H is proportional to the component of the field in the direction of
the preferred axis. From now on we shall refer to H smply as 'the magnetic
field. The sum in (1.7.3) is over al sites of the lattice, i.e. over i =

In a physical system we expect the interactions to be invariant under
time reversal, which means that E is unchanged by reversing al fields and
magnetizations, i.e. by negating H and a\,... , ay. It follows that E, must
be an even function of a, i.e.

Eo(0i,... ,an)= £0(-Cry,. . . , -a). | (1-7.4)

These relations define a quite general 1sing model, special cases of which
have been solved. From a physicist's point of view it is highly simplified,
the obvious objection being that the magnetic moment of a molecule is a
vector pointing in any direction, not just up or down. One can build this
property in, thereby obtaining the classca Heisenberg model (Stanley,
1974), but this model has not been solved in even two dimensions.

However, there are crystals with highly anisotropic interactions such that
the molecular magnets effectively point only up or down, notably FeCl,
(Kanamori, 1958) and FeCO; (Wrege et al., 1972). The three-dimensional
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Ising model should give a good description of these, in fact universality
implies that it should give exactly correct critical exponents.

The gaps in Sections 1.1, 12 and 14, notably a statistical-mechanical
definition of M(H, T) and the critica exponents a, v, 17, (i, can now be
filled in. From (1.4.1), (1.7.2) and (1.7.3), the partition function is a
function of N, H and T, so can be written

Zu(H, T) = 2 exp{-[Eo(0) - H 2 oMKT). (1.7.5)

Free Energy and Specific Heat

Physicaly, we expect the free energy of a large system to be proportional
to the size of the system, i.e. we expect the thermodynamic limit

f(H, T) = -kT lim Nt InZyH, T) (1.7.6)

to exig, / being the free energy per site.

We aso expect this limit to be independent of the way it is taken. For
example, it should not matter whether the length, breadth and height of
the crystal go to infinity together, or one after the other: so long as they
do dl ultimately become infinite.

From (1.4.6), the internal energy per site is

uH,T) = -T>Af(H,T)/T]. (1.7.7)
The specific heat per site is defined to be
C(H, T)=-"u(H,T). (1.7.8)

It has been usual to define two critical exponents a and 0/ by asserting
that near T, the zero-fidd specific heat diverges as a power-law, i.e.

C(O,'I')~ra an-A0+, (179)
~(=1)% ast— 0",

where t is defined by (1.1.3).

The difficulty with this definition is that C(0, T) may remain finite as t
goes to zero through positive (or negative) values, even though it is not
an anaytic function at t = 0. For instance C(0, T) may have asmple jump
discontinuity at t = 0, as in the mean-fidd modd of Chapter 3.

To obtain an exponent which characterizes such behaviour it is better
to proceed as follows.
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Let/.(0, T) and/ (0, T) be the zerofidd free energy functions for
T> T, and T <T¢, respectively. Andyticaly continue these functions into
the complex T plane and define the 'singular part' of the free energy to be

1,0, T) =10, T) i(p, M. (1.7.108)

Near T= T, this usudly vanishes as a power law, and a can be defined
by
f(0,T)~t>2 asf-*O. (1.7.10b)

This definition is equivalent to (1.7.9) (with 8 — a) for those cases
where M(0, T) is continuous and C(0, T) diverges both above and below
Te.

It used to be thought that the only possible singularity in/(0, T) was a
jump-discontinuity in some derivative of /. If the first r — 1 derivatives
were continuous, but the rth derivative discontinuous, then it was said that
the system had a 'transition of order /. In particular, a discontinuity in u
(i.e. latent heat) is called afirst-order transition.

While it is now known that this classfication is not exhaustive, such
behaviour is included in (1.7.10): a transition of order r corresponds to
2 - a=r. In particular, a= 1 for afirst-order transition.

From (1.7.8), the definition (1.7.10) implies that WO , T) contains aterm
proportional to t~2. Since u(0, T) is usualy bounded, it follows that

as1. (1.7.11)
The exponent amay be negative.

Magnetization

The magnetization is the average of the magnetic moment per site, i.e.,
using (1.4.4),

‘M(H,T) =N~Y(o, + .. . +op), (1.7.12)

=N zZN 2J\O\ + ..+ + ON)
a

X exp|-[£o(a) - «X ajo : (1713

Differentiating (1.7.5) with respect to H, and using (1.7.6), one obtains
that in the thermodynamic limit (V—» °°)

MH,T)=-—= f(H . (1.7.14)
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Since the summand in (1.7.5) is unchanged by negating H and a, Zy and
/are even functions of H, so M is an odd function, i.e.

M{-H,T) = -M(H,T). (1.7.15)
From (1.7.12) it liesin the interva
-1=sM(H, "L (1.7.16)

Differentiating (1.7.13) with respect to H and using (1.1.1) and (1.4.4),
the susceptibility is

_iM
*~ dH
= (NKT)-{(M?)-(M)%, (1.7.17)
where
4 =2o0i. (1.7.18)

Using only the fact that the average of a constant is the same constant,
(1.7.17) can be written
x= (NKT)-Y([ M-(M)f). (1.7.19)
Thus x is the average of a non-negative quantity, so
oM

The magnetization M is therefore an odd monaotonic increasing function
of H, lying in the interval (1.7.16), as indicated in Fig. 1.1.

Note that for finite v, Z is a sum of anaytic positive functions of H, so
/and M aredso analytic. Thediscontinuity in Fig. 1.1(a), and thesingularity
in Fig. I.I(b), can only occur when the thermodynamic limit is taken.

The critical exponents /?, 6, y, / associated with the magnetization have
been defined in Section 1.1. The scaling relations (1.2.13) can be obtained
by integrating (1.7.14), using the scaling hypothesis (1.2.1).

Correlations

The correlation between spinsi andj is
g = (@0} — <oMoj>. (1-7.21)

If Eo(0) istrandation invariant, as is usualy the case, (o) is the same for
al sitesi, so from (1.7.12),

(o) =)= M(H,T). (1.7.22)
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Also, gy will depend only on the vector distance ;. between sites i and/,
i.e

&y =g(ry), (1.7.23)

where g(r) is the correlation function.

Away from T, the function g(r) is expected to decay exponentialy to
zero asr becomes large. More precisdly, if k is some fixed unit vector, we
expect that

gixk) ~x' Te-**© as* Ax | (1.7.24)

where xis some number and §is the correlation length in the direction k.

The correlation length is a function of H and T, and is expected to
become infinite at T,. In fact, this property of an infinite correlation length
can be regarded as the hallmark of a critica point. In particular, it is
expected that

0, Ty ~¢" ast—0" (1.7.25)
~{(=t)7" ast— 0",
where vand V' are the correlation length critical exponents.
It isalittle unfortunate that £also depends on the direction k. However,
near T, this dependence is expected to disappear and the large-distance
correlations to become isotropic (see for example McCoy and Wu, 1973,

p. 306). Thus the exponents v and v' should not depend on the direction
in which f is defined.

At the critical point itsglf, the correlation function g(r) sl exists, but
instead of decaying exponentialy decays as the power law
g(r) ~r~*2\ (1.7.26)

where r\ is a critical exponent.
In scaling theory, these properties are smple corollaries of the correlation
scding hypothesis, which is that near T, for r ~ |,

g(r) ~ r™ 2> D(r/g \H\-'VP). (1.7.27)

The susceptibility / can be expressed in terms of g(r). To do this, smply
aum (1.7.21) over dl stesi and/. From (1.7.17) it immediately follows
that

X = (NKT)'* XXstj- (1.7.28)
i
For a trandation-invariant system,
2gn = 2q(r,;) = independent of i, (1.7.29)
/ i
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s0 (1.7.28) becomes
x= (T Zglrg) (1.7.30)

where 0 is some fixed site in the lattice.
Near T, the function g(r) is an isotropic bounded dowly varying function
of r, so the summation can be replaced by an integration, giving

X~ fo T gy A dr. (1.7.31)

Making the substitution r = x% and using (1.7.27), it follows that near T,
X~¥-". (1.7.32)

The scdling relations (1.2.14) now follow from the definitions of y, y',
v, V' and the equality of y and y'.

Interfacial Tension

This quantity is defined only on the cut in Fig. 12, i.e. for H= 0 and
T< T.. If the cut is approached from above, i.e. H goes to zero through
positive values, the equilibrium state is one in which most spins are up. If
the cut is approached from below, mogt spins are down.

At H = 0 these two equilibrium states can coexist: the crystal may consist
of two large domains, one in one state, the other in the other. The total
free energy is then

F = Nf+Ls, (1.7.33)

where Nf is the normal bulk free energy and Ls is the total surface free
energy due to the interface between the domains. If L is the area of this
interface, then s is the interfacia tension per unit area.

It will be shown in Section 19 that there is a correspondence between
the magnetic moddl used here and a model of a liquid-gas transition. In
the latter teminology, s is the surface tension of a liquid in equilibrium
with its vapour, e.g. water and steam at 100°C.

The interfacia tension is not usualy emphasized in the theory of critical
phenomena, but it is one of the thermodynamic quantities that can be
calculated for the exactly soluble two-dimensionad models, so is of interest
here. It is a function of the temperature T.

As T approaches T, from below, the two equilibrium states become the
same, SO S goes to zero. It is expected that near T,

s{T)~(-ty, (1.7.34)
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where\i is yet another critical exponent, the last to be defined in this book.
Widom (1965) used scaling arguments to suggest that near T,

§(T) oc|(0, T) M0, T)/x(0, T), (1.7.35)

from which the scaling relation (1.2.15) follows. He dso obtained the
hyper-scaling relation (1.2.16).

18 Nearest-Neighbour Ising Mode

The discusson of Section 17 applies for any even Hamiltonian Ey(0),
subject only to some implicit assumptions such as the existence of the
thermodynamic limit (1.7.6) and a ferromagnetic critical point.

The smplest such Hamiltonian is one in which only nearest neighbours
interact, i.e.

Eqo(0) = - J 2 op; (1.82)

where the sum is over dl nearest-neighbour pairs of sites in the lattice.
This is the normal Ising model mentioned in Section 16. If / is postive
the lowest energy state occurs when al spins point the same way, so the
modd is a ferromagnet.

A great ded is known about this model, even for those cases where it
has not been exactly solved, such asin three dimensions, or in two dimen-
sons in the presence of a fidd. For instance, one can develop expansions
vdid at high or low temperatures.

From (1.7.5), the partition function is

Zy=2expl K2 op,+ hEal , (182
o L () > ]
where
K= JKT, h"HIKT, (183

so ZN can be thought of as afunction of h andK From (1.7.6) and (1.7.14)
the magnetization per Ste is

M = 4" lim N~'In Z*h |, K). (1.8.4)
oh N-*°°
It is easy to produce a plausible, though not rigorous, argument that M
should have the behaviour shown in Fig. 1.1, and that there should be a
critical point a H = O for some positive vaue T, of T. This will now be
done.
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For definiteness, consider a square lattice (but the argument applies to
any multi-dimensiond lattice). The RHS of (1.8.2) can be expanded in
powers of K, giving

Zy = (2coshh)™I + 2NKt?
+ NK?[(2N -Dt* + 6t + 1] + <3(K3)}, (1.8.5)
where
t = tanhh. (1.8.6)
Substituting this expansion into (1.8.4) gives
M =tanh h {1 + 4 sechffc [K + (3 - 7) tf> + €(K3)]}.  (1.8.7)
All terms in this expanson are odd anaytic bounded functions of h.
Assuming that the expansion converges for aufficently smdl K, i.e. for
aufficiently high temperatures, it follows that for such temperatures

M(H, T) has the graph shown in Fig. |.1(c). In particular, it is continuous
aH=0and

Mo(T) = Af(0, T) = 0, T sufficiently large . (1.8.8)

Alternatively, a low temperatures K is large and the RHS of (1.8.2)
can be expanded in powers of

u=exp(-4/0. (2.8.9

The leading term in this expansion is the contribution to Z from the state
with al spins up (or al down). The next term comes from the N states
with one spin down and the rest up (or vice versa); the next from the 2N
states with two adjacent spins down (or up), the next term comes from
either states with two non-adjacent spins, or aspin and two of itsneighbours,
or four spins round a sgquare, reversed; and so on. This gives

Zy = é™Ml+Nue™
+ 2NU® e + 9%N(N - 5) «* e~
+ 6N ure -5 + Nu* e + €u°)}
+ e?.NK—Nh{l + Nl et
+ 2Nu¥ €* + iN(N - 5) U e
+ 6Nu* ™" + Nu* e + o(u®)}. (1.8.10)

The first series in curly brackets is the contribution from states with
amost dl spins up, the second from states with amost al spins down.



1.8 NEAREST-NEIGHBOUR ISING MODEL 23
Equation (1.8.10) can be written
Zjy = E@FEE) LRk x> (1.8.11)
where
V(hK) = 2K + h + u? e~
+ 2@ @ + U\-2i e + B et + @)
+ 0(M%). (1.8.12)

To any order in the w-expansion, ip(h, K) is independent of N, provided
N is sufficiently large.

If h is positive, the first term on the RHS of (1.8.11) will be larger than
the second. In the limit of N large it will be the dominant contribution to
Zy, so from (1.8.4)

é

= |_2u2 e,_Zh _ 8M3 en4*

- M*-10 €™ + 36 5" + 8en)

-0(M?®) ifh>0, (1.8.13)
and the spontaneous magnetization is
MAT) = |lim M
h-*o"
=1-2M2- 8v®- 34M* - O(W) . (1.8.14)

If these expansions converge for sufficiently smal u (i.e. sufficiently
low temperatures), then M, is positive for smal enough u. Remembering
that M(H, T) is an odd function of H, it follows that at low temperatures
M(H ,T) has the graph shown in Fig. 11 (a), with a discontinuity at
H=0.

The function Mo(T) is therefore identically zero for sufficiently large T,
but drictly postive for aufficiently smal T. At some intermediate tem-
perature T, it must change from zero to non-zero, asindicated in Fig. 1.3,
and at this point must be a non-analytic function of T. Thus there must be
a 'criticd point' a H= 0, T= T., where the thermodynamic functions
become non-analytic, asindicated in Fig. 1.2.

This argument does not preclude further singularities in the interior of
the (if, T) half-plane, but Figs. 11 to 1.3 are the smplest picture that is
consistent with it.

Parts of the argument, or variants of them, can be made quite rigorous.
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For instance, as long ago as 1936 Peierls proved that My(T) is positive for
aufficiently low temperatures (see dso Griffiths, 1972, p. 59).

The argument fails for the one-dimensional Ising model. Thisis because
the next-to-leading term in the low temperature u expansion comes from
states such as that shown in Fig. 1.6, where % line of adjacent spins are all

® & & ¢ O O 0 O & @

Fig. 1.6. An arrangement of spinsin aone-dimensiona Ising model that contributes
to next-to-leading order in a low-temperature expansion. Full circles denote up
spins, open circles down spins.

reversed, rather than just a single spin. There are \N{N - 1) such states,
instead of N, so even to this order Zy is not of the form (1.8.11). This of
course is consistent with the fact that the one-dimensional model does not
have a phase transition a non-zero temperatures.

1.9 The Lattice Gas

Aswdl as being amodd of a magnet, the Isng modd is dso a modd of
a fluid.

To see this rather startling fact, consider a fluid composed of molecules
interacting via some pair potential (j>(r). Typicaly this potential will have
a hard-core (or at least very strong short-range repulsion), an attractive
well and a fairly rapidly decaying tail. The usua example is the Lennard
- Jones potential

0(r) = 4e{(rc/-)* - {;Jrf} (1.9.1)

shown in Fig. 1.7(a).

Instead of alowing the molecules to occupy any position in space, restrict
them so that their centres lie only on the sites of some grid, or lattice. If
the grid is fairly fine this is a perfectly reasonable step: indeed it is a
necessary one in amost any numerical calculation.

Since<p(r) isinfinitely repulsive at r = 0, no two molecules can be centred
on the same site. With each site i associate avariable s; which is zero if the
dte is empty, one if it is occupied. If there are N sites, then any spatia
arrangement of the molecules can be specified by s={s\,. . . ,s\}. The
number of molecules in such an arrangement is

n=s + .. +S, (1.9.2)
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<0

L 4

(a)
cp(r)
&

4

_e_|_
(b)
Fig. 17. Interaction potentials for a modd fluid: (@) Lennard-Jones, (b)
square-well.

and the total potential energy is
E= (2) tp;;s,-s,- R (193)
I’J

where the sum isover dl pairs of sites on the lattice (not necessarily nearest
neighbours) and Qy = O(fy) is the interaction energy between molecules
centred on sites i and /.

The grand-canonical partition function is then

Z = 2 exp[(«qu - E)IKT), (1-9.4)
where (X is the dffective chemicd potential (for classicd systems the con-

tribution of the integrations in momentum space can be incorporated into
H).
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In appropriate units, the pressure is
P = N-’kTInz, (1.9.5)
the density is the average number of molecules per site, i.e.
p= (ri)/N
_oF

(1.9.6)
~ dfx
and the compressibility is
_lae
k2 odp
_i¥
=P’ (1.9.7)

the differentiations being performed at constant temperature.

The Lennard - Jones potential (1.9.1) is a fairly redigtic one, but the
qualitative features of the liquid - gas transition are not expected to depend
on the details of the potential: it should be sufficient that it have short-
range repulsion and an attractive well. Thus Qy should be large and positive
when sites i and / are close together: negative when they are a moderate
distance apart; and zero when they are far apart. The smplest such choice
is

PO0=tef f = ],
= - eif i and / are nearest neighbours ,
=0  otherwise. (1.9.8)

This corresponds to the 'square well' potential shownin Fig. 1.7(b), which
is often used in model caculations.

Letting <f>, = + °° is equivdent to taking the potential to be infinitely
repulsive if two molecules come together, i.e. to prohibiting two molecules
from occupying the same site. This feature has aready been built into the
formulation, so if < is given by (1.9.8), then from (1.9.3) the energy is

£E=-e2si»/, (1-9.9)
the sum now being only over nearest-neighbour pairs of sites on the lattice.
It is now trivial to show that (1.9.4) is the partition function of a

nearest-neighbour Ising modd in a fidd. Replace each s, by a 'spin' ©;,
where

0,=2%,-1. (1.9.10)
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Thus o; = -1 if the dte is empty, +1 if it is full. If each ste has g
neighbours, there are $Nqg nearest-neighbour pairs, and diminating n, E,
Su..,Sn between equations (1.9.2), (1.9.4), (1.9.9) and (1.9.10) gives

Z=2exp|r|'eZ OiQj + (2* + eq) 20

+ N(heg + 2i z)J] /4k'|;| . (1.9.11)

Comparing this with (1.8.2) and (1.8.3), it is obvious that, apart from
atrivid factor, Z is the partition function of an Isng modd with

7=¢€l4, H=(2fi + eq)/4. (1.9.12)

Using dso (1.9.5)-(1-9.7), (1.7.6), (1.7.14) and (1.7.18), one can establish
the following expressions for the lattice gas variables in terms of those of
the Ising mode!:

e= 47, (19.13)
i = 2H-2qJ, (1.9.14)
P=-ig) + H-, (1.9.15)
p=1(1 + M), (1.9.16)
o= \%- (19.17)

The known general behaviour of the Ising model can now be used to
obtain the form of the equation of state of the lattice gas. To do this,
consider a fixed value of T. Then (1.9.15) and (1.9.16) define P and p as
functions of H. Using dso (1.7.14) and (1.7.20), it is easly seen that

=] + M0, %‘iw\o, (19.18)

s0 both P and p are monotonic increasing functions of H. When H is large
(positive or negative) the dominant term in the Ising modd partition
function is one in which al spins are adike, 0

f-*-hqJ-\H\ ag//->+<* >, (1.9.19)

From (1.7.14), (1.9.15) and (1.9.16) it follows that
P->0 andp->0 astf->-°°, (1.9.20)
P~2i/andp-»l astf->+<», (2.9.21)

Since P and p are monotonic increasing functions of H, from (1.9.20) they
must be positive.
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For T> T, fand M, and hence P and p, are continuous functions of
H. Thus P is a monotonic increasing function of p, and a monotonic
decreasing function of the volume per molecule

v=p~. (1.9.22)
As v increases from 1 to °°, P decreases from infinity to zero.

For T< T, M is adiscontinuous function of H as shown in Fig. 1.1(a).
Thus p and v have a discontinuity (but P does not).

o

0 1 2 3 4 5 6 v

Fig. 1.8. Typical (P ,v) isotherms for a simple fluid whose intermolecular inter-
actions have a hard core. The upper two isotherms are for temperatures greater
than T., the middle one is the critical isotherm (T = T.), and the lower two are for
temperatures less than T..

Noting dso that the expansion coefficient

i (™

of afluid is usudly positive (an exception is water between 0°C and 4°C),
it follows that the (P, v) isotherms of the lattice gas (in any dimension
greater than one) have the genera structure indicated in Fig. 1.8. These
are typicd isotherms of a fluid in which the intermolecular potential has
a hard core. _

The point C in this figure is the critical point, and corresponds to the
critical pointH= 0, T= T.in Fig. 1.2

Since M = 0 at this point, we see from (1.9.14) and (1.9.16) that the
critical values of \i, p and v for the lattice gas are

pe=-2qJ, p=%, V=2 (1.9.23)
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At T= T, from (1.1.5) and (1.9.16) we expect that
Ve-v—HY® asH-*0. (1.9.24)

Since P - P, is proportiona to H for smal H, it follows that near C the
equation of the critical isotherm is

P-P~(Ve-V)°. (1.9.25)

For T< T, an isotherm breaks up into three parts: that part to the left
of the broken curve in Fig. 1.8, corresponding to fairly high densities and
to aliquid state; the low-dendity part to the right, corresponding to a gas,
and the horizontal line in between, corresponding to the two-phase region
where the liquid can co-exist with its vapour. The broken curve is known
as the co-existence curve. It corresponds to the cut in Fig. 1.2, where
H= 0and M = £Mqy(T). From (1.9.16) and (1.9.23), we see that on this
curve

\p-p = Mo(T). (1.9.26)

From (1.1.3), (1.1.4) and (1.9.22), it follows that near T, the equation
of the co-exigence curve in the (v, T) planeis

\W-VA~{ Te-TF. (1.9.27)

Near the critical point P - P is proportional to t, so from (1.9.27) the
equation of the co-exigtence curve in the (v, P) plane is

Pe-P~\v-0\"P. (1.9.28)

Equations (1.9.25) and (1.9.28) relate the exponents 6 and fi to the
liquid - gas critica point. To do the same for a, y and y', firg note that
M = 0 on the line segment H=0, T> T, in Fig. 12 From (1.9.16) this
line segment therefore corresponds to the critical isochore v = v.. From
(1.7.7)-(1.7.9) and (1.9.15), and (1.1.6) and (1.9.17), it follows that

d?P/dT?~r2,  ky~rr (1.9.293)

as C is approached from above aong the critical isochore v = v..
The line segment H= 0, T< T, in Fig. 12 corresponds to the co-
existence curve in Fig. 1.8, so

PPRT? ~(-0~""  Kke~(-ty* (1.9.29b)

as C is approached along the co-existence curve, the differentiation being
performed on this curve.

These definitions (1.9.29) of aand a* are the analogue of (1.7.92, and
suffer from the same difficulties. If dP/dT is not continuous, or if 3°P/dT?
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does not diverge a C, it is better to use the analogue of (1.7.10) and define
a sngle exponent a as follows.

Let P+(T) bethe pressurewhenv = vcand T> T;P-(T)be the pressure
when v lies on the co-exigence curve and T<Tc. Anayticaly continue
these functions into the complex T-plane and define P«(T) and a by

P«T) = P.(T) - P-(T) ~t32 (1.9.30)

To summarize this section: the Isng model of a magnet is also a model
of a lattice gas; it merely depends whether one uses 'magnetic language
(spins up or down) or ‘particle language' (sites occupied or empty). In the
second language the critical exponents 6, fi, y, y', aare defined by (1.9.25),
and (1.9.28)-(1.9.30).

The magnetic language is more convenient in theoretical calculations:
it clearly exhibits the symmetries of the Hamiltonian and the thermodyn-
amic functions, notably the relation M(-H) = -M(H).

110 The van der Waals Fluid and Classical Exponents

There are phenomenologica equations of state, notably that proposed for
continuum fluids by van der Waals (1873):

P =KT/(v - b) - aV® (1.10.2)

where a and b are constants. This equation is valid only outside the co-
existence curve, which curve is defined by the Maxwel equal area con-
struction (Pathria, 1972, p. 376) which ensures that P and \i are continuous
aong any isotherm. Aswe remarked in Section 1.6, it is the exact equation
of state of a model solved by Kac et al. (1963/4).

The critical exponent definitions (1.9.25), (1.9.28-30) apply to any liquid
- gas critical point, not just that of the smple lattice gas of Section 19.
Equations such as van der Waals predict that near T, the critical isotherm
is acubic curve, and the coexistence curve a parabola. From (1.9.25) and
(1.9.28) this implies

<5=3, j3=i. (1.10.2)
Also, the van der Waals equation (1.10.1) has a critical point at
T. = 8a/27bk, V.= 3b. (1.10.3)

Near this point it is readily verified that kr~ t~' so
y=/=1. (1.10.4)
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On the critica isochore it is easily seen from (1.10.1) that

P-P. = 4at/27b?, (1.10.5)
while on the coexistence curve a more complicated calculation gives
P-P. = {AaUIb%) [t + 6t%5 + <3(t%)] (1.10.6)

Thus 82P/dT? isfinite at C but has a jump discontinuity on going from the
critical isochore to the co-existence curve. The definitions (1.9.29) of a
and a' fail, but (1.9.30) gives

a=0. (1.10.7)

The vaues (1.10.2), (1.10.4), (1.10.7) of the critical exponents are
known as the classical vaues. They saisfy the scaing relations (1.2.12)
and (1.2.13), and are the values given by the smple ‘infinite dimensiona’
mean field and Bethe lattice models (Chapters 3 and 4). They are not
correct for the nearest-neighbour Ising model in two or three dimensions,
but it is now generally believed (Fisher, 1974, p.607) that they are correct
in four or more dimensions.



2
THE ONE-DIMENSIONAL ISING MODEL

2.1 Free Energy and Magnetization

Ising proposed his model in 1925 and solved it for a one-dimensional
system. The solution is presented in this chapter, partly because it provides
an introduction to the transfer matrix technique that will be used in later
chapters, as well as for the intrinsic interest of a smple exactly soluble
model. The one-dimensional model does not have a phase transition at
any non-zero temperature, but it will be shown that it has a criticd point
a H=T=0, that critica exponents can be sensibly defined, and that the
scaing hypothesis and relevant scding relations are satisfied.

— e ——r——
1 2 3 N

Fig. 2.1. The one-dimensional lattice of TV sites.

Consider an Isng moddl on a line of N sites, labeled successively

/=1,...,iV,asshownin Fig. 2.1. Then the energy of the modd is given
by (1.7.2), (1.7.3) and (1.8.1), i.e.
N N
E{a) = - J2 QjO;4 - HZOJ. (21.1)
y=1I y =1

Here site N is regarded as being followed by site 1, so that on+i in (2.1.1)
isto beinterpreted as O\. Thisis equivalent to joining the two ends of the
line s0 as to form a circle, or to imposing periodic boundary conditions on
the system. This is often a ussful device, partly because it ensures that dl
stes are equivalent and that the system is trandationally invariant. In

32
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particular,
{01 =<cop=ese=(0y), (2.1.2)

so from (1.7.12) the magnetization per ste is
M{H,T) = (a), (2.1.3)

where 1 is any particular dte of the lattice. This result is true for any
trandationally invariant system.
From (1.8.2), the partition function is

N

N .
Ziv = 2 exp k2 0)Oj+1 + h 2 o) (2.1.4)
a j= ;=1 3

| = =
‘where
K=JkT, h=HIKT. (2.1.5)

Now we make a vital observation: the exponential in (2.1.4) can be
factored into terms each involving only two neighbouring spins, giving

In= 2 V(Oi, 02) V(Oz , CTy) V(03, CTy) ...
o

2*V(On-i,00)V(On, (h), (2.1.6)

where
V{J0&) = exp[Ka& + hh(o+ ob)]. (2.1.7)

This is not the only possible choice of V: it could be multiplied by
exp [a(o0— &)] (for any a) without affecting (2.1.6). However, this choice
(in which each ho; is shared equally between two V's) ensures that

V(o,d) = V(o , a), (2.1.8)

which we shal see is a useful symmetry property.
Now look at the RHS of (2.1.6): regard the V(o, &) as elements of a
two-by-two matrix

_ K+h ) —K
(V(+ . +) V(+, )\/e___ } e ) . 2.1.9)

V-t Ve Tlew e
Then the summations over 02, (h,. . . , ay in (2.1.6) can be regarded as

successve matrix multiplications, and the summation over O\ as the taking
of atrace, so that

Zy = Trace V*. (2.1.10)

At each stage in the procedure, matrix multiplication by V corresponds
to summing over the configurations of one more ste of the lattice. The
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matrix V is known as the transfer matrix. In later chapters we shall see that
transfer matrices can be defined for two- and higher dimensional models.
Equation (2.1.10) is then ill satisfied, but unfortunately V becomes an
extremely large matrix.

Let Xi, X2 be the two eigenvectors of V, and Ai, A, the corresponding
eigenvalues. Then

i = kx,j=1,2. (2.1.11)
Let P be the two-by-two matrix with column vectors xi, X,, i.e.
P = (xi,X3). (2.1.12)
Then from (2.1.11) ]
Mi o\
VP=PI L (2.1.13)
VO hi

Since V is a symmetric matrix, it must be possible to choose xi and x,
orthogonal and linearly independent. Doing so, it follows that the matrix
P is non-singular, i.e. it has an inverse P'Y. Multiplying (2.1.13) on the
right by P"* gives

Ilh O\
v =p! 1P, (2.1.14)
\O AY
Substituting this expression for V into (2.1.10), the matrix P cancels out,

leaving
| Zn=T I/AiO}N X2+ X (2.1.15)
= Trace = X?+ Xg. A,
N \0 AY g

Let Ai be the larger of the two eigenvalues and write (2.1.15) as
AT InZy=Inh + A?" [, [1 + (XIX{A\. (2.1.16)

Since |AJAI| < 1, the second term on the RHS tends to zero as N—><x>.
Thus from (1.7.6) the free energy per site does tend to a limit as
—* 0°, namely

f(H,T) = -KT lim /Tt InZy

N =t

=—kTink
= - kT\n[e¥coshh + (e®sinh’h + -%*)*].  (2.1.17)
Differentiating this result with respect to h, using (1.7.14) and (2.1.5),
gives
~n eXsinh h
[e*X sinh® i + e 2K]”

M(H (2.1.18)
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The free energy is an analytic function of H and T for al real H and
positive T. The magnetization M(H, T) is an anaytic function of H, with
a graph of the type shown in Fig. 1.1(c). Thus the system does not have
a phase transition for any positive temperature.

2.2 Corrdations

From (1.4.3), (2.1.1), (2.1.7), the probability of the system being in the
stateo={o0\,...,ON}is

Z V(oi, ai) V(02, Oi) V(ai ,ai)..V(oy, 0). (2.21)
Thus the average value of (say) QICB is
{0\&1)=2ZN 2J O\ V(OI , 02) V{&i, 03) 03

a

V{0i,0i)...V{on,Oy). (2.2.2)

This can aso be written in terms of matrices: let S be the diagona matrix

S= ((1) (11) ) (2.2.3)

i.e. Shasdements
0(0, u) = O0yO, u ) . yL.LA)

Then the RHSof (2.2.2) can be written as
Z3 TraceSWSV . ..V, (2.2.5)

(0103) = ZN* Trace SVAVA"2 (2.2.6)

Smilarly, if 0«/«i*N,
{0ip>)=2ZN'TraceSV'-'SVV*"r, (2.2.7)
<CT> = ZN' Trace SV". (2.2.8)

Note that the trandation invariance of the system is explicitly shown in
these equations: (0;) is independent of i and (dioy) depends on i and/ only
viatheir difference/ —i.
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Define a number 0 by the equation
cot20 = €**sinh/i, O<0<". (2.2.9)

Then a direct calculation of the eigenvectors of V, using (2.1.9), (2.1.11)
and (2.1.12), reveds that the matrix P can be chosen to be orthogonal,
being given by
/cos0 -sinO\
p=f l. (2.2.10)
Vdan 0 cos 0/
The expressions (2.2.7), (2.2.8) are unchanged by applying the similarity
transformation (2.1.14) to both V and S, i.e. replacing V, S by

S {Ai 0
p-1yp = ) '
O A (2.2.11)
_ [/ 2> -sin2d>\
PASP =( _ ,
—8n 2$ — cos &b

respectively.
Substituting these expressions into (2.2.7) and (2.2.8), and taking the
limit N—»> 0o (keeping/ - i fixed), we obtain

(0tOj) = cos? 20+ sin? 20 (f‘%; -, (2.212)
(0i) = cos 20. (22.13)

Together with (2.1.3), this second equation gives us an aternative
derivation of the magnetization M(H, T). The result is of course the same
as (2.1.18) above.

From (1.7.21), (2.2.12) and (2.2.13), the correlation function” can now
be evaluated. It is

gij = (Ci0j) - <O> (0)
= sin“20(A/AY" (2.2.14)
fa jA.
Since JAYAI| < 1, we see immediately that gy does tend exponentialy to

zero as/ - | becomes large, and from (1.7.24) the correlation length §is
given (in units of the lattice spacing) by

A=[IN(A JA)]-L (2.2.15)



2.3 CRITICAL BEHAVIOUR NEAR T=0 37
2.3 Critical Behaviour near T= 0

It is true that |AJAI| < 1 for al positive temperatures T and dl real fields
H. However, if H = 0, then

lim, (AdA) = L

The correlation length £ therefore becomes infinite at // = T=0. We
remarked in Section 1.7 that a critical point can be defined as a point at
which f= «, so in this sense //= T =0 is a critical point of the one-
dimensional Ising model.

Thisisinteresting because it enables us to make some tests of the scaling
hypotheses discussed in Sections 1.2 and 1.7. We shall find that the tests
are satisfied.

The scaling hypothesis (1.2.1) is formulated in terms of M, H and
t= (T- T)/T.. However, if T, = 0 it is more sensible to replace these by
the variables M,h = HIKT, and

t = exp(-2K) = exp(-2J/KT). (2.3.1)

Then h and t measure the deviation of the field and temperature, respec-
tively, from their critical values.

The scaling hypothesis (1.2.1) is equivalent to stating that the relation
between M, h and t is unchanged by replacing them by

APM AP
for any positive number A. Thus another way of writing (1.2.1) is (for h,
t small)
M = h\hf:-1(t> (t\h\-1139), (2.3.2)
where (j)(X) is another scaing function, related to h(x).

For the one-dimensional Ising model, we see from (2.1.18) and (2.3.1)
that if \h\ <1, then

M = hi{t- + h¥)K (2.3.3)
Clearly M is a function only of tlh, so the scaling hypothesis (2.3.2) is
indeed satisfied, with
pd=1,8= 00, (2.3.9)
and _
<t>{x) = (C+1)-K (2.3.5)
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The exponent relations (1.2.12) and (1.2.13) are consequences of the
scding hypothesis, so must be satisfied. From these and (2.3.4) it follows
that

flf=1,j8 = 0,y=I. (2.3.6)
Also, if h = 0 we see from (21<9) that the eigenvaues of V are
h= 2cosh K, A, =2snhK, (2.3.7)
so from (2.3.1)
VA,=(1+0/(1-0- (2-3.8)
When t< 1, equation (2.2.15) therefore becomes
%~{2tT", (2.3.9
which is of the scding form (1.7.25), with
v=l. (2.3.10)

At the critical point k, = A, so from (2.2.14) the correlation function gy
is a constant. This is of the scding form (1.7.26), with

ff=l. (2.3.11)

We can now use these vaues of the exponents to test the scding relation
(1.2.16) and the second of therelations (1.2.14). They are indeed satisfied.

The other relations v= V', pi+ v = 2- a cannot be tested, since they
involve functions defined in the ordered state 0 < T< T, and h = 0. This
state does not exist for this model.

The definition (2.3.1) of t is somewhat arbitrary: the RHS could be
replaced by any positive power of exp(—2K). The fect of this would be
to multiply each of 2 - a, y and v by the same factor. In view of this, we
can only say of the critical exponents of the one-dimensional 1sing model
that they stidfy

2-a=y=v, (2.3.12)
j8=0,5=00,i,= i.

Despite the fact that T, = 0, these exponents are ill of interest: they
can be compared with the Isng model exponents for 2, 3 and higher
dimensions.



3
THE MEAN FIELD MODEL

3.1 Thermodynamic Properties

In any datistical mechanica system each component interacts with the
externa fidd and with the neighbouring components. In the mean-fidd
modd the second effect is replaced by an average over al components.

Consider a nearest-neighbour 1sing model of N spins, with Hamiltonian
given by (1.7.2), (1.7.3) and (1.8.1). If each spin cr,has g neighbours, then
the total field acting on it is

H + J°0j, (311

where the sum is over the g neighbouring sitesj. In the mean-fiedd model
thisis replaced by

H+ (N— x)~'qJ§03 , (3.1.2)

the sum now being over al N - 1 sitesj other than /. This is equivaent
to replacing the Hamiltonian by

N
S, N .
E(0)= -7 % o0, HZ; i, (3.1.3)

where the first sum is over all the iN(N - 1) digtinct pairs (i,/).

This 'mean-field' Hamiltonian (3.1.3) is the one that will be considered
in this chapter. As was remarked in Section 1.6, it isin a sense 'infinite-
dimensional’, since each spin interacts equaly with every other. It dso has
the unphysica property that the interaction strength depends on the number
of particles. Nevertheless, it does give moderately sensible thermodynamic
properties.
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For a given configuration of spins, the total magnetization is
N
M =70, (3.1.4)
and (3.1.3) can be written (using o] =1) as
E{o) = -igJ(M? - N)/(N -\)-HM. (3.1.5)

Thus in this model E{0) depends on O\,. . . , oy only via M. Thisis a
great smplification: the sum over spin-values in the partition function can
be replaced by a sum over the alowed values of Ji, weighted by the number
of spin configurations for each value.

From (3.1.4), if r of the spins are down (vdue -1) and N—r are up
(vaue +1), then

M = N-2r. (3.1.6)
There are (T};' such arrangements of spins, so from (1.7.5) the partition
function is
N
Z="cr, (3.1.7)
r=0
where
=" _ 2 )
&= (N — r)! exp{fgJI(N - 2r)° - N[/(N - 1)
+ PH(N-2r)}, (3.1.8)
and _

P=1/KT. (3.1.9)
Also, from (1.4.4), the average magnetization per ste is

N

M=AT" =@ _2rINN=2z"'2 (@1 -2rIN)¢. (3.1.10)

The properties of ¢y ,. . . , Cy are most readily obtained by considering
d. =c.Vc.. From (3.1.8)

= = Af ep{-2PgI(N - 2r - DI(N - 1) - 23}, (3.1.11)

We are interested in the case when N is large. Asr increases from O to
N—, the RHS of (3.1.11) increases from large values (of order N) to
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smdl vaues (of order N'Y). Provided figj is not too large, this decrease
must be monaotonic. Then there must be a single integer ro such that

d>1 foor=0,...,rp-1
diN (3.1.12)
d<1 foor=ro+1,...,N-1

Since ¢+ =d:c,, it follows that ¢ increases as r goes from O to rq,
decreases asr goes from rg + 1 to N, and that ¢, is the largest ..
When N and r axe both large, (3.1.11) can be written

d, = ¢, +ife, = P(1 — 21N) (3113
where, for -Kx< 1,
Plx) = %"_ 3 exp[—28qJx - 2/3//]. (3119
Let %, be the solution of the equation
#c,) = I. (3.1.15)
Then, when Nislarge, ro is given by
1 - 2rg/N = Xo. (3.1.16)

Regarded as a function of r, ¢ has a peak a r = ro, the width of the
peak being proportional to NK Although this width is large compared to
one, it is small compared to N. Thus across this peak 1 - 2rINin (3.1.10)
can be replaced by 1 - 2rrfN. Since values of r outside the peak give a
negligible contribution to the sumsin (3.1.7) and (3.1.10), it follows that
the magnetization per site is

M = [-2r/N = X. (3.1.17)

From (3.1.14) and (3.1.15), M isgiven by <p(M) = 1, i.e.
M = tanh[(qJM + H)/KT]. (3.1.18)

This equation defines M as a function of H and T. It was first obtained
by Bragg and Williams (1934). The free energy can now be obtained by
integration, using (1.7.14), or more directly by arguing that when N islarge
the sum in (3.1.7) is dominated by vaues of r close to rg, SO

-Pf=" lim N'InZ

N—><*>

= lim AT Inc,,,. (3.1.19)

SK»
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Using (3.1.8), Stirling's approximation

n ~ (2n)*e™ n™, (3.1.20)
and (3.1.17) and (3.1.18), it follows that
AIKT = i In[4/(l - M?)] -igIM%KT. (3.1.21)

This gives/ as a function of M and T.

3.2 Phase Trandgtion

From (3.1.18),
H = -gJM + AT artanh(M). (3.21)

This equation can be used to plot H as a function of M, for -1 <M < 1.,
The graph can then of course be reversed to give M as a function of H.
If gJ < KT, then the resulting graph is similar to Fig. 1.1(c), i.e. a typicd
high-temperature graph, with no spontaneous magnetization.

However, if qJ > KT, the graph looks like that in Fig. 3.1 (a). This graph
is not sensible, since for aufficiently smal H it dlows 3 possible vaues of
M, whereas M is defined by (1.7.12) or (1.7.14) to be a single-vaued
function of H.

The source of this contradiction is in the statements preceding equation
(3.12.12). If gJ > KT, thenthe RHS of (3.1.11) is not amonotonic decreasing
function of r: instead it behaves as indicated in Fig. 3.2.

If H is sufficiently small, then there are three solutions of the equation
d- = 1, asindicated in Fig. 3.2. This means that ¢, has two maxima, as

M M
f
i 1+
| /’/_
0 N 0 f
/ —//
_11. -1-+

) (b)
Fig. 3.1. M as afunction of H for T= 0.94 T, (a) shows al solutions of (3.1.18),
(b) is the correct graph obtained by rejecting spurious solutions.
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10

0
Fig. 3.2. d; as a function of r for T= 0.94 T,, @H = 0.006 and N large.

shown in Fig. 3.3. Together with the intervening minimum, these corre-
spond to the three solutions for M of equation (3.1.18). If H is positive
(negative), then the left-hand (right-hand) peak is the greater.

It is dill true that the sum in (3.1.7) is dominated by values of r close
to ro, where rq is the value of r that maximizes (absolutely) c,. Thus if
(3.1.18) has three solutions and //i s positive, we must choose the solution

Cr
&

0 N
Fig. 3.3. ¢y as a function of r for 7'=094 T, pH = 0.006 and N= 100. As N

increases, the maximum becomes larger and more sharply peaked. The other two
turning values correspond to the spurious solutions of (3.1.18).
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with the smallest value of ry, i.e. the largest value of M. Conversdly if H
is negative. Doing this, the multi-valued graph of Fig. 3.1(a) becomes the
single-valued graph of Fig. 3.1(b). This is similar to the typica low-tem-
perature graph of M(H) shown in Fig. 1.1. In particular, there is a spon-
taneous magnetization M, given by

M, = tanh(*r/My/A:r), Mo> 0, (3.2.2)

provided that qJ > KT.
Thus the mean-field model has a ferromagnetic phase transition for
temperatures below the Curie temperature

Te = qJk. (3.2.3)

3.3 Zero-Field Properties and Critical Exponents

Spontaneous Magnetization and /3

Set
t=(T-T)/T; (3.3.1)
then, using (3.2.3), the equation (3.2.2) can be written as
M, = (I + r) artanhMo. (3.3.2

For T just less than T, the spontaneous magnetization M, is small but
non-zero, so artanhMo can be approximated by M, +Md/3 . Solving the
resulting equation for M, gives

M= (=301 + 6()}. (3.3.3)

Thus M, is effectively proportional to (—t)K From (1.1.4) the critical
exponent /? exists and is given by

j8=i. (3.3.4)

Free Energy and a

Let //->0 for T> T.. Then M-> 0 and from (3.1.21) the free energy is
given very smply by

JJIAT=1In2. (3.3.5)
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On the other hand, if T< T, then M-* M,. For M, smdl it follows from
(3.1.22) that

-IIAT=1In2 + IM&1 - qJIKT)
+ MIIA + OQMg) . (3.3.6)

Using (3.2.3), (3.3.1) and (3.3.3), when t is samdl and negative the free
energy is therefore given by

JIAT =In2 + 344 + €. (3.3.7)

From (1.7.7), (1.7.8), (3.3.5) and (3.3.7), we see that the free energy

and internal energy are continuous at T= T, but the specific heat has a

jump discontinuity. The definition (1.7.9) of the exponents a and ex* is
meaningless, but the alternative definition (1.7.10) gives

or=0. (3.3.8)

Susceptibility and y, y'

Hold T fixed and differentiate (3.2.1) with respect to H. Using (1.7.17),
(3.2.3) and (3.3.1), it follows that the susceptibility % is given exactly by

x= (1= Mgt + M?)]. (3.3.9)
Now let //-> 0. If T> T, then M-> 0, giving
x=(gJey " (3.3.109)

If T< T, then M—>Mo. Using the approximate relation (3.3.3) we then
obtain that near T,

X~{-2qJt)~K (3.3.10h)

Thus at T, the zero-field susceptibility becomes infinite, diverging as t~'.
From (1.1.6) and (1.1.7) the exponents y and y' are given by

y=y' = 1|. (3.3.11)

3.4 Critical Equation of Sate

Using (3.2.3) and (3.3.1) the exact equation of state can be written as
HIKT= -M +(I + f)artanhM. (3.4.1)



46 3 THE MEAN FIELD MODEL

Near the critical point M is smadll. Taylor expanding the function artanh M,
(3.4.1) gives
HIKT, = M? (| + tM~?), (34.2)

neglecting terms of order tM* or M>.
Comparing this result with (1.2.1), we see that the scading hypothesisis
indeed satisfied for this model, with

*(*) =i +x, | (3.4.3)
j8=i, 6=3. (3.4.4)

This agrees with (3.3.4) and it is easy to verify that the scding relations
(1.2.12) and (1.2.13) are satisfied. Indeed they should be, since they are
consequences of the scaling hypothesis.

The values (3.3.4), (3.3.8), (3.3.11), (3.4.4) of the exponents are the
same as those of the van der Waals fluid discussed in Section 1.10, i.e.
they are the classical values.

Since each spin interacts equally with every other, correlations are not
distance dependent, nor can the mode have two physicaly separated
coexisting phases. Thus the exponents v, r\ and \i are not defined for this
model.

35 Mean Fed Lattice Gas

Regarding a'down’ spin asan empty site and an 'up’ spin asasite containing
a particle, the above modd is dso one of a lattice gas. Making the
substitutions (1.9.13)-(1-9.16) in (3.2.1) and (3.1.21), we find that the
chemical potential (i and pressure P are given by

H=-qgep+KkT\n\pl{l-p)}, (35.2)

P=-kTIn(l-p)-igEp?. (35.2)
Here p is the density, i.e. the mean number of particles per site. It must
lieintherange O<p< 1.

Equation (3.5.2) is the equation of state of the mean-fied lattice gas.
Comparing it with (1.9.31), and noting that v = p"*, we see that it is very
similar to the van der Waals equation. Both equations are of the form

P = kT(Kp)-ap?, (35.3)

where a is a constant and the function #(p) is independent of the tem-
perature T. Indeed, there are solvable models which have exactly the van
der Wadls equation of state (Kac et al., 1963/4).



4
ISSNG MODEL ON THE BETHE LATTICE

4.1 The Bethe Lattice

Another smple mode that can be exactly solved is the Isng modd (or
indeed any model with only nearest-neighbour interactions) on the Bethe
lattice. Like the mean-fidd model, this is equivalent to an approximate
treatment of a model on, say, a square or cubic lattice (Bethe, 1935).
However, it can be defined as an exactly solvable model, and this is what
we shdl do here.

Consider the graph congtructed as follows: start from a centra point O
and add q points al connected to 0. Cdl the set of these g points the 'first
shell'. Now create further shells by taking a point in shell r and connecting
g - 1 new points to it. Do this for al points in shell r and cal the set of
al the new points 'shell r + V.

Proceeding interatively in this way, construct shells 2,3,. . .,n. This
gives a graph like that shown in Fig. 4.1. There are g(q - 1)'"* points in
shdl r and the total number of points in the graph is

ai(g - D» - \}{q - 2) (4.1.2)

We cdl the pointsin shell n 'boundary points. They are exceptiona in
that each has only one neighbour, while al other points (interior points)
each have q neighbours.

Such a graph contains no circuits and is known as a Cayley tree. From
our point of view it can be thought of as a regular 'lattice’ of coordination
number g (i.e. g neighbours per site), provided the boundary sites can be
ignored.

There is a problem here: normaly the ratio of the number of boundary
sites to the number of interior sites of a lattice becomes smdl in the

47
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thermodynamic limit of alarge system. Here it does not, since both numbers
grow exponentidly like (g - 1)". To overcome this problem we here
consider only loca properties of sites deep within the graph (i.e. infinitdly
far from the boundary in the limit «-»<»). Such sites should al be equiv-
alent, each having coordination number g, and can be regarded as forming
the Bethe lattice. (This distinction between the Cayley tree and the Bethe
lattice is not dways made, but does seem to be useful terminology. | am
grateful to Professor J. Nagle for suggesting it to me and drawing my
attention to a relevant article [Chen et al., 1974].)

Fig. 4.1. A Cayley tree (with q = 3 and n = 4), divided at the centrad site O into

three sub-trees. They are identical, but here the upper sub-tree is distinguished by

indicating its siteswith solid circles. Each sub-treeisrooted at 0. The site 1 adjacent
to 0 in the upper sub-tree is shown. The spin at 0is Oo, that at 1 isS.

Put another way, if we congtruct an Ising model on the complete Cayley
tree, then the partition function Z contains contributions from both sites
deep within the graph, and sites close to or on the boundary. The contri-
bution.from the latter is not negligible, even in the thermodynamic limit.

If one considers the total partition function, then one is considering the
'lsing modd on the Cayley tree'. This problem has been solved (Runnels,
1967; Eggarter, 1974; Miiller-Hartmann and Zittartz, 1974) and has some
quite unusua properties. We shal not, however, consider this problem
here. Instead we shall effectively consider only the contribution to Z from
sites deep within the graph, i.e. from the Bethe lattice.

Some motivation for this choice is given by series expansions. If one
makes alow temperature expansion asin Section 1.8 for any regular lattice,
then to second order the only properties of the lattice that one needs to
know are the number of sites and the coordination number. To third order
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one needs the number of trianglesin the lattice, to fourth order the number
of tetrahedra (i.e. clusters of 4 sites dl connected to one another) and
other highly connected 4-point sub-graphs, and so on. Aninteresting smple
case iswhen there are no circuits at al, and hence no triangles, tetrahedra,
etc. Then one obtains the Isng model on the Bethe lattice as denned here.

4.2 Dimensionality

Consider any regular lattice. Let m\{=q) be the number of neighbours per
site, m, the number of next-nearest neighbours, mj, the number of next-
next-nearest neighbours, etc. Then c,=1+m\ + my+... +m, is the
number of sites within n steps of a given site. For the hyper-cubic lattices
it is easy to see that

lim(nc)/inn=d, (4.21)

where d is the dimensiondity of the lattice.

The relation (4.2.1) is dso true for al the regular two and three-dimem
siond lattices, and can be regarded as a definition of the dimensionality
d.

Now return to considering the Bethe lattice. In this case ¢, is given by
(4.1.1). Subgtituting this expression into (4.2.1) gives d= °°, so in this
sense the Bethe lattice is 'infinite-dimensional’.

4.3 Recurrence Relations for the Central Magnetization

Consider an 1sing model on the complete Cayley tree (but we shdl later
ignore boundary terms, thereby reducing it to the Bethe lattice). The
partition function is given by (1.8.2), i.e. by

Z = 2P(CT), (431)
where
P(0o) = exp\K X dOi + h2gjl * )

The firt summation in (4.3.2) is over al edges of the graph, the second
over dl sites. The P(0) can be thought of as an unnormalized probability
distribution: in particular, if og is the spin at the centra site O, then the
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locd magnetization there is
M= (o) =2 ¢Ppo) . (4-3.3)

From Fig. 4.1 it is apparent that if the graph is cut at O, then it splits up
into q identical disconnected pieces. Each of these is a rooted tree (with
root 0). This implies that the expression (4.3.2) factors:

q

P(a) = e<p(Aa:))J_LJ1 G»(ob|?), (4-34)
where S® denotes dl the spins (other than ay) on the yth sub-tree, and
On{00\s) = exg K 2§ + KsiOo + h2 « . (4.35)

S being the spin on site i of the sub-tree (other than the root, which has
Soin ob). Site 1 is the dite adjacent to 0, as in the upper sub-tree of Fig.
4.1. The fird summation in (4.3.5) is over dl edges of the sub-tree other
than (0,1); the second is over dl stes other than 0. The suffix n denotes
the fact that the sub-tree has n shdls, i.e. n steps from the root to the
boundary sites.

Further if the upper sub-tree in Fig. 4.1 is cut a the site 1 adjacent to
0, then it too decomposes into q pieces. one being the 'trunk’ (0,1), the
rest being identical branches. Each of these branches is a sub-tree like the
original, but with only n— 1 shells. Thus

9-1

G*(obly) = exrftfoosi + fax) | Q-ifcik®) (4.3.6)

where N denotes dl the spins (other than s on the ;th branch of the
sub-tree.

These factorization relations (4.3.4) and (4.3.6) make it easy to calculate
M. Let

gn(06) = 20Qn{0o0\s) . (4.3.7)
Then from (4.3.1) and (4.3.4),

Z= Eexp(hcﬁ}) (gn(00)]¢. (4.3.8)

Similarly, from (4.3.3) and (4.3.4),

M=z % oy explhao) [ga(on}}? . (4.3.9)
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Let

*«=& .(-)[«»(+)e (4-3.10)
Then from (4.3.8) and (4.3.9),
e —e 'yt
= m . {4.3.11}

Thus M is known if x, is. To obtain x, we sum (4.3.6) over dl the spins
s, i.e. over s and the fi\ to give, using only (4.3.7):

0n(00) = 2 expiKooH + hsr)  fo-ifo)]-!  (4.3.12)
Remembering that ob and 5i are single spins, with values +1 and — 1,

performing the summation in (4.3.12) for og = +1 or - 1, taking ratios and
using (4.3.10), we obtain

Xn = Y(Xr-Y), (4.3.13)
where the function y(X) is given by
y(x) = [+ >[N + ertr e (4.3.14)

Equation (4.3.13) is a recurrence relation between x, and x,-\. It is easy
to see that

Xo = go(®) == 1, (4.3.15)
s0 (4.3.13) defines x,, and (4.3.11) defines M.

44 ThelLimit n-> «

Hereafter we consider the ferromagnetic case, K > 0. Then y{x) increases
monotonically from exp(—2K) to exp(2#) as x goes from 0 to ».

The recurrence relation (4.3.13) can be thought of graphically by sm-
ultaneoudly plotting v = y(x) and v = X.

Let Py be the point {X,-\, v(*,,_i)) in the (X, y) plane. To construct
P, draw a horizontal line through P,-\ to intercept the liney = x at a point
(3n. Now draw avertica line through Q. Itsintercept withy = y(x) isthe
point P,

There are two cases to consider: either the liney = x crosses the curve
y =y(X) once, or it crosses it three times, as shown in Fig. 4.2. In the
former case the point P, will dways monotonically approach the cross-over
point A as n—> », as indicated in Fig. 4.2(a). Thus x, and M tend to a
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limit as n becomes large, as we expect. This M is therefore the locd
magnetization of a site deep within the Cayley tree, i.e. the magnetization
per site of the Bethe lattice.

If there are three cross-over points, then the outer two (A and Cin Fig.
4.2(b)) are sable limit points of (4.3.13), while the centre one (B) is
unstable. If P, lies to the left (right) of B, then P, tends to A (C). Thus
again P, tends to alimit, giving the magnetization M for the Bethe lattice.

Y4 Y 4
i S A ] . - - ==
L b C
* P’ !
+BAA [

F3 P‘ /

Al
z 2|74
o x ) %

{a) (b)

Fig. 4.2. Typicd sketches of the function y(X) given by (4.3.14), with z=

exp(—2K). In (@) the curve intercepts the straight liney = x only once, at A. Two

typical sequences of paoints P, = (X, , Y(X»)) are shown, one starting to the right of

A, the other {Po , P{, Pi,. . .} to the left. All such sequences converge to the limit

point A. In (b) there are three intersections A, B, C. A sequence {P,} grows in the

direction of the arrows, never crossing A, B or C. Thus A and C are stable limit
points, B is an unstable fixed point.

We need some more convenient rule to determine which stable fixed
point, A or C, is the one approached. The borderline case is when P, is
the point B, i.e. when x = 1 is a solution of the equation x = y(x). From
(4.3.14) this occurs when, and only when, h=0. If h> 0, then P, liesto
the left of B so P, tends to A. Conversdly, if h > 0, then P, tends to C.

Summarizing, when n-* °° the magnetization is given, using (4.3.11),

by

p2A _ 9
A= (4-41)
where x is a solution of
X = y(X). (4.4.2)

If there are three solutions, the smdlest must be chosen for h > 0, the
largest for h < 0.
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These equations can be written in a more conventional form by defining

z=eX pi=e® jui=fixt (443
Then, using (4.3.14), (4.4.2) gives
X= (z+ Ul +juiz) . (4.4.4)
From (4.4.3), (4.4.4) and (4.4.1) it follows that
Hiffi = [(z+ jui)/(l + H\2)]%, (4.4.53)
M=(1— (1 + pl+ 2u,2). (4.4.5b)

The firg of the equations (4.4.5) defines ; the second gives the mag-
netization M. These are the same as the results of the Bethe approximation
for a lattice of coordination number q (Domb, 1960, pp. 251-254).

4.5 Magnetization as a Function of H

Now suppose T, and hence K, is fixed and consider the variation of x and
M with h = HIKT. Using (4.3.14) the equation (4.4.2) can be written

o — (2K _ y(o2Ky _ Q. (4.5.1)

All the x, are positive, and so is the limit point*. For the RHS of (4.5.1)
to be poditive it fallows that x must lie in the interval

e~K<x<e (45.2)

Clearly (4.5.1) defines h as a function of x, for fixed K. (This function
is of course not the same as the scaling function hg(x) of Section 1.2.)
Differentiating (4.5.1) logarithmically gives

&h 2sinh2K

2X_dx: q-r-- 2cosh2K-x-x

For x in the interval (4.5.2), the RHS of (4.5.3) has its maximum at
x = 1. If this maximum is negative, i.e. if K< K., where

K. = iln[dg/(g-2)], (4.5.4)

then h decreases monotonicaly from » to O as x increases from
exp(-2#) to exp(2K). Hence for given real h, (4.5.1) has one and only
one rea positive solution for x, and x is an analytic function of h for
-00 < h < 00

TT. v(4.5.3)
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If, on the other hand, K > K., then dh/dx is positive for x sufficiently
close to one. From (4.5.1), h =0 when x = 1, so the function h{x) has a
graph of the type shown in Fig. 4.3.

For sufficiently small h, (4.5.1) therefore has three solutions for x. From
the discussions of Section 4.4, if h > 0 the limit point of the sequence given
by (4.3.1) corresponds to the smallest solution for x. If h < Qit corresponds
to the largest solution.

hg

NN .
o z A

T
1
1
1
|
i
L}
t
|

Fig. 4.3. A typicd sketch of h as afunction of x for T< T..

Considering the behaviour as h decreases from +°° through zero to
-00, it is therefore apparent from Fig. 4.3 that x is an analytic function of
h, except at h = 0, where it jumps discontinuoudly from the smallest to the
largest solution.

In al cases x is a decreasing function of h, satisfying

x(-h) = Vx(h). (4.5.5)

From (4.4.1) it falows that M is an odd function of h. It increases
monotonically from — 1 to 1 as h increases from -00 to 0o and is analytic
if K< K. If K> K, then it is anadytic apart from a jump discontinuity at
h=0.

Thisis precisaly the typical behaviour of aferromagnet that was outlined
in Section 1.1. Thus the Ising model on the Bethe lattice exhibits ferro-
magnetism, with a criticd point a H = 0, T= T, where

JET, = hin[g/(g-2)]. (4.5.6)
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4.6 Free Energy

The total free energy of the Cayley tree is

F=-fcrinz, (4.6.2)
where Z is given by (4.3.1) and (4.3.2). Differentiating these equations
with respect to H = hkT gives

| = 2M-- (4.6.2)

an

where the summation is over dl sitesi and
M; = (a)

isthe loca magnetization at sitei. Each M, is a function of H, and hence
h, for given temperature T. To show this we shall sometimes write it as
Mh).

If H is large and positive the summation in (4.3.1) is dominated by the
state with al spins up, so in this limit

F/KT=-KNehN, (4.6.3)

N being the number of edges and N the number of sites. Also, inthislimit
(a)=1fori= , N.

We can now mtegrate (4.6.2) with respect to H, using (4.6.3) to abtain
the integration constant. This gives

F/KT = -KNe -hN+AT [M,(h) -I]dh. (4.6.4)
i h

Alternatively, if g is the number of sites adjacent to site i, then 2 g, =
2N, and (4.6.4) can be written
F=2f
where
fIkT = -IKqgi - h + f* [M,(h") - 1] dT . (4.6.5)
Jh
Eachfi can be thought of as the free energy of site i. For an homogeneous

lattice thef; are al equal to the usud free energy /, and on differentiating
(4.6.5) one regains the usual relation (1.7.14).
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As we remarked above, the difficulty with the Cayley tree is that it is
not homogeneous, there being a significant number of boundary or near-
boundary sites that have properties different from the interior. However,
dl sites deep inside the graph have the same locd magnetization M, and
hence the same loca free energy/, given by (4.6.5). This free energy is
therefore the free energy of the Isng model on the Bethe lattice. It is given
by setting<? = q,M; = Min (4.6.5), and using the equations (4.5.1), (4.4.1)
for x and M as functions of h.

Noting that x is a monotonic differentiate function of h for h > 0, one
can change the integration variable in (4.6.5) from h' to X' = x(h"). This
gives [dropping the auffixes i and using z = exp(-2AT)]

fkT=\Kg-h- I"[M(X)-1], fil dX (466

provided h > 0 (or K < K\).

Substituting the expression (4.5.1) for exp(2/i) into (4-4.1), and using
(4.5.3), theintegrand in (4.6.6) can bewritten, after alittle re-arrangement,
as

’

X -z
—@-2) - 6.

el R e e (4.6.7)
This can be eadly integrated to give, eiminating h by using (4.5.1),

fIkT=\Kg\q\n(\ - 2
+ \[Z +1-z(x + xY] +i(q-2) In¢* +x' -12. (46.8)

Negating h has the effect of inverting x, which leaves (4.6.8) unchanged.
Since/must be an even function of h, it follows that (4.6.8) is true for dl
real h. Together with the equation (4.5.1) for X, it gives the free energy
per site of the Isng model on the Bethe lattice.

4.7 Low-Temperature Zero-Field Results

A problem arises with any ferromagnetic Isng mode if H= 0 and
T< T In this case the spins do not know whether to be mostly up, or
mostly down. If just the boundary spins are fixed to be up, every spin will
have a greater probability of being up than down. In a sense the 'ther-
modynamic limit' does not exist, since the bulk properties depend on the
boundary conditions.

This is particularly evident in the present modd: if H=0 then it is
obvious from (4.3.13)-(4.3.15) that x, = 1, for dl n. If T< T this means
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that dl the points P, = (., V) are the point B in Fig. 4.2(b). However,
thisis an unstable fixed point of (4.3.13): if X iS hot one, but just less than
one, then the sequence {P,} will converge not to B, but to the stable limit
point A.

There are at least two ways round this difficulty: one isto take H= 0
andfix dl boundary spins up; the other to take H > 0, let —* °°, and then
let H—>0+. In either case the sequence {P,} will converge to A and the
limiting value of x is, from (4.4.2) and (4.3.14), the smalles positive
solution of the equation

- 1-
7= @ UhT =

If T<T, this vaue of x is less than one. From (4.4.1) and (4.6.8) the
spontaneous magnetization M and free energy / are then given by
1 —xf
T 14xt
T . (]_ﬁ)(l_xh..zl,zf 47
e =t )[x(l —# (A -x9] @73,

It isinteresting to compare these results with those of the two-dimensional
Ising model. This will be done in Section 11.8.

(4.7.2)

4.8 Critical Behaviour

Set x = exp(-2s), then (4.5.1) becomes
h = -(g- 1> + i In[sinh(/i: + s)/sinh(*: - 9)], (4.8.1)

which makes it clear that h is an odd function of s. Taylor expanding, we
obtain

h = [cothK-q + |]s + I>cothKcosech’K V + (4.8.2)

The critica value of Kisgiven by (4.5.4), i.e. by coth K. = q - 1. Setting
as usua

t=(T-T)/T., (4.8.3)
and using K = J/KT, it follows that for t small
cothK - g+ 1 =q(q - 2Kt + €. (4.8.4)
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Using this result in (4.8.2), together with h = H/KT, gives (for t and s
small):

HIKT: = q(q - 2) {Kds +i(q - )$*
+ B(t’sta\s”)}. (4.8.5)

From (4.4.1), the magnetization M is given by
M = tanh(/i + qs). (4.8.6)
From (4.8.5), h is much less than s, which is itsdf small, so M =qs, or
conversay
s=q~M+ 6(h, M. (4.8.7)
Substituting this result into (4.8.5) and neglecting terms of order t°M,
tM2 or M°, we obtain
HIKT, = M*hgtIM?), (4.8.8)

where

* () = 1 - 2)* Infolfa- 2)] + (q - 1) for - 2/(34). (4.8.9)

Comparing (1.2.1) and (4.8.8), we see that the scaling hypothesis is
satidfied for this model, h{x) being the scaling function. It is linear, and
critical exponents /? and 5 have the vaues

i8=1, 6=3. (4.8.10)

Thus all the exponents /3, d, a, at, y, I must have the same values as
those of the mean-fidd model (Section 3.3), i.e. the 'classica’ values.

All the above results are very similar to those of the mean-fiedld model
of Chapter 3. (In fact they are the same in the limit g— ™, gK finite)
However, the Bethe-lattice modd is really much more respectable than
the mean-field one: its interactions are independent of the size of the
system, and each spin interacts only with its nearest neighbours.

4.9 Anisotropic Modd

The key equations (4.3.14), (4.4.2), (4.4.1), (4.6.8) of the above working
can be summarized (using the first two to eliminate z from the last) as

z = exp(-2/0 = (T - fix-yo. - iu9), (4.9.1)
M=(1-iveHI(\ + (uc"), (4.9.2)



4.9 ANISOTROPIC MODEL 59
AIKT = h + $gK+ In(l + /u")

+\q In[(1 - (DI - fiwg]. (4.9.3)

The edges of the Bethe lattice can be grouped into classes 1, ..., ¢, SO
that each site lies on just one edge of each class. Then the interaction
coefficient K can be given a different value for different classes of edges.
If K, is its value for class r (where r=l,...,q), then this anisotropic
model can dso be solved by the above methods.

The equations (4.9.1)-(4.9.3) generdize to

zy=exp(=2K)=(x,—ex;(1 -0, r = 1..q (4.9.4a)
ft=exp(-2/t) =t/(q ... Xq), (4.9.4b)
M=(1-0/(1+0 (4.9.5)

1 Iy —;zx,'z
fIKT=h+ i(Ki + ... +Kg) +In(l +f) +* 2 In-— ~- (4.9.6)
r~1 1—f
These define M, f as functions of K\, . . . , Kh; the parameters
X\, . . ., X t being defined by (4.9.4). The critical point occurs when
h=0andx, ... , X, taxeinfinitesmaly different from one. From (4.9.4)
this implies that _

exp(-2Ki) + .. + exp(-2Ky) =¢-2. (4.9.7)
[This result is derived in (11.8.37)-(11.8.42).]



5
THE SPHERICAL MODEL

5.1 Formulation of the Model

In 1952, Berlin and Kac solved another model of ferromagnetism, the
spherical model. This is smilar to the Isng modd of Section 1.8. One
considers a lattice ££ in space (e.g. the smple cubic lattice), containing N
sites. To each site/ of i£ one assigns a spin 05 which interacts with its
neighbours and with an external field. However, instead of taking only the
values +1 or - 1, each Oj can now take al real values, subject only to the
constraint that

N

haj = N. (5.1.1)

For an homogeneous system this congtraint ensures that the average of the
sguare of any spin is one, as in the usud Isng model.

The partition function is again given by (1.8.2), except that-the O-
summation is replaced by an integration subject to the constraint (5.1.1),
0

fo :
= !,_w... .ILW dai. .. dov ex;ﬁ KO% opi
0, i - .
\h% }OJ|J d\LN 2j ff/?LJ (5.1.2)

The firg summationin (5.1.2) is over all edges (/, /) of £ the other two
are over dl sites;. As usual, K= J/KT and h = HIKT.

Berlin and Kac regarded this as an approximation to the usua Ising
model. They argued that in the Ising model the a-summation can be viewed

60
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as a sum over dl corners of an TV-dmendond hyper-cube in a-space. In
the spherical model this is replaced by an integration over the surface of
a hyper-sphere passing through dl such corners.

While this is mathematically plausible, it is gtill true that the constraint
(5.1.1) is unphysicd in that it implies an equal coupling, or interaction,
between al spins, no matter how far apart on it they may be.

Fortunately Stanley (1968) has shown that the spherical model is a specia
limiting case of another model (the «-vector model) which has only
nearest-neighbour interactions. This equivalence has since been proved
rigorously by Kac and Thompson (1971) and Pearce and Thompson (1977).
It effectivdly removes the above objection and establishes the spherical
model as a physicdly acceptable modd of critical behaviour.

Many papers have been written on the spherical model (see Joyce (1972)
and references therein) covering many aspects of it. This is because it is
one of the few (if not the only) modd of ferromagnetism that can be solved
exactly in a field, and exhibits non-classical critical behaviour.

In this chapter we shall not attempt to consider al facets of the model,
but shall outline the derivation of the equation of state and discuss the
critical behaviour of the thermodynamic functions.

5.2 Free Energy

To evauate (5.1.2), fird note that it is unchanged if an extra factor
exp[aN -asS oj\J (5.2.1)
i

is introduced into the integrand, since the delta function ensures that this
is unity. Now use the identity

6(x) = {202¥° | exp(isx) ds (5.22)

J—

to obtain

Too Foo .I'

ZN= (ZE)FIJO I -
. dffi... day\ dsexp\K 2, op,
—00 J—80 + J—00 L_V»")
+ hX°i'+ (« + «)W- (0 + «) 2 0]\ (5.2.3)

The argument of the exponentia in (5.2.3) is the sum of quadratic and
linear forms in a\, =.., ON- It is useful to introduce a matrix notation to
handle these.
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Let <r be the V-dimendgond vector with elements O\,. . . , an. Let V be
the N by N symmetic matrix such that

cri\er = 2 2 OiVjiy
] |
= (a + is) 2 0j-K"~ a0, (5.2.4)
[ (]

Findly, let h be the JV-dimensiond vector with every element equal to h.
Then (5.2.3) can be written more neatly as

Zy = (In)* ~ ee \ dor f dsexp[-aa+ h'a+ (a + i9N].
J-<C J-00 J-CC (5.2.5)
Choose the arbitrary constant a sufficiently large to ensure that dl the
eigenvaues of V have poditive real part. Then (and only then) the order
of the cr and s integrations can be interchanged. The a integration can be
performed by first changing variables from a to

t=<r-ivV-th (5.2.6)
and then rotating axesin (t, . . . , ty) Spaceto make V diagonal. Thisgives
Zy = fersw-i f* ds[det V]"'exp[(a + i)N

T (5.2.7)
+ h'V-'n/4].

The matrix V depends on s and the structure of the lattice on which the
spins are placed. Let ustake X to be the rf-dimensional hyper-cubic lattice,
contained in a box with each side of length L lattice spacings. Then

N= L% (5.2.8)

Impose periodic boundary conditions. Then V is cydic and from (5.2.4)
its eigenvalues can be found to be

k((oy...,0)d)=a+is-K(cosu>i+ ...+ coscog), (5.2.9)

where each QJ can take the values O, 2nlIL, 4n/L,.. . , 2n(L - \)IL.
The determinant of V is the product of its eigenvalues, so

IndetV =2 ... 2InAfti. . ., (00). (5.2.10)

In the thermodynamic limit L is large and the summations in (5.2.10)
become integrations. Using (5.2.8) and (5.2.9), it follows that

ladet V = 7V[Inii: + g(2)], (5.211)
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where
z= (a+ is Kd)IK, (5.2.12)
9@ = (2ny? \*... pdo)!... dindn[z
N B +d—cosei - ... -cosG)d]. (5.2.13)

Also, since V is cydlic, h is the eigenvector of V corresponding to its
minimum eigenvalue a + is - Kd = Kz. Thus

h~h=(KzrvVh = NnlIKz (5.2.14)

Using (5.2.11) and (5.2.14), and changing the integration variables from
s to z, the equation (5.2.7) can now be written as

Z.= (K/2m) {nIK)" P Iw dz exp[N(p(2)], (5.2.15)

where
4>{z) = Kz+ Kd- hg(2) + h?/4Kz, (5.2.16)

and ¢ = (a- Kd)IK. From (5.2.9) it is apparent that dl the eigenvalues
of V have positive rea part only if a> Kd, so ¢ must be positive. The
function $(z) is andytic for Re(z) > 0, so the RHS of (5.2.15) is the same
for al positive values of c.

In the limit of N large, the integral in (5.2.15) can be evaluated by the
method of steepest descent (Courant and Hilbert, 1953). First consider
the function #(z) for z real and positive. Provided K> 0 and h # 0, the
function tends to plus infinity as z tends to either zero or infinity. Thus in
between < p(2) must have aminimum at some positive value zo of z. Further,
it is easy to see from (5.2.16) and (5.2.13) that 4>"(2) > O, so thereis only
one such minimum.

Take the arbitrary constant ¢ to be z,. Then aong the path of integration
in (5.2.15), <p(2) has a maximum at z = z,. In the limit of iV large this
maximum will give the dominant contribution to the integral, so

fIKT= lim AT In Zy

=} In(wK) + ¢{z0) . (5:2.17)

Here/is as usua the free energy per site. The parameter z is of course
defined by the condition that 0'(zo) be zero, i.e., usng (5.2.16),

K - hY4K23 = 3g'(20) - (5.2.18)
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There is one and only one positive solution for z, so (5.2.16)-(5.2.18)
define/ as a function of K and h, provided K> 0 and h =£ Q.

5.3 Equation of Sate and Internal Energy

The parameter z, can be smply related to the magnetization. To do this,
hold K fixed and differentiate (5.2.17) with respect to h, using (5.2.16).
Remembering that z, itsef depends on h, this gives

_d N, 92
e 2KZO+¢(20) - (5.3.1)

However, z; is defined so that (3>'(zQ) is zero. Using (1.7.14) and (1.8.3),
the equation (5.3.1) therefore smplifies to

M = W2Kzo = H/2Jz, (5.3.2)

M being the magnetization per site.
We can now eliminate z, between (5.2.18) and (5.3.2). Using the defi-
nitions (1.8.3) of AT and h, we abtain

2/(1 - M?) = KTg'(HI2IM). (5.3.3)

This is the exact equation of state (i.e. the relation between M, H and
T) of the sphericad modd.
From (1.7.7), the internal energy per site is

u= 'T2~{31?p, (5.3.4)

where the differentiation is performed holding / and H fixed. Using (1.8.3),
(5.2.16) and (5.2.17), it follows that

U = ikT- J(zo + d)- HYAJz + KT?<p{zo) (dzg/dT).  (5.3.5)

Again we note that (j)'(zo) is zero. Using (5.3.2) to eliminate z, we
obtain

u = \KT-Jd- \H{M + M~). (5.3.6)

This is an exact relation between the internal energy and magnetization.
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5.4 The Function g'(2)

The equation of state (5.3.3) involves the function g'(2). This can be

obtained by differentiating (5.2.13), but the result is a rather unwieldy

multi-dimensional integral. It is useful to smplify it as follows.
Differentiate (5.2.13) and use the formula

12 exprxyet (5.4.1)
Jo
to write the result as
2 ol 1=
go=en ]
d(ui... dlod 6t
O xé&p{-tfz+d-BosOi-...-cos(o\. (54.2
Provided Re(z) > 0, the integrals converge and may be re-ordered. The
W\, . . ., coq integrations can then be performed by using the formula
Jo(it) = @m~* | exp(r cos cp) dm, (5.4.3)
Jo

Jo(x) being the usua Bessd function (Courant and Hilbert, 1953, p. 474).
This gives

g2 = fexp[-f(z + d)} [Io(it)] . (5.4.9)
Do

This expression for ¢'(2) is convenient when considering the dependence
of the thermodynamic functions on the dimensionality d of the lattice it.
In fact, d need no longer be redtricted to integer values, but can be allowed
to take any positive value.

This concept of continuoudly variable dimensiondity is quite common
in modern datistical mechanics (e.g. Wilson and Fisher, 1972; Fisher,
1974). It can be quite useful in discussing the dependence of critica
exponents on d, as we shal see in Section 5.6.

To discuss the behaviour of g'(z) we need to consider the convergence
of the infinite integral in (5.4.4). To do this we can use the large t relation

75(0 = (27) " e[l + C(rY)]. (5.4.5)

From this we see that the integral (5.4.4) converges if Re(z) > 0, s0 ¢'(2)
is analytic in the right haf-plane. In particular, for real postive z it is
analytic and decreases monotonically to zero as z —* °°.

We shdl find that the critica properties depend on the behaviour of
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g'{2) for amdl positive z. If z is zero we see from (5.4.5) that the integral
in (5.4.4) divergesif d> 2, but converges if d*£ 2. Thus

g0) = °° if 0<d«2,
<e° if d>2. (5.4.6)

For d > 2 we shall need the dominant small z behaviour of g'(0) - g'(%)-
To abtain this, first differentiate g'(2) and then apply the same reasoning
as above. This gives

g'0=a if O<d=£4,
<<x> if d>4. (5.4.7)

If d < 4, the dominant small z behaviour of g"(z) is obtained by smply
neglecting the terms of relative order r* in (5.4.5) and substituting into
(5.4.4) to give

g{2) =* - (2n)—idJor th* e~ dt

- - (2%)-"r(2 - id) 292 (5.4.89)
For d = 4a dightly more subtle calculation gives
g"(2 ~-(2J)-Anz (5.4.8b)

Define a (positive) coefficient Ad by
Ag= (2n)-*%id- N"1TE@ - id), 2<d<4,
=Q2n)7?, d=4,
=-g"(0), d>A (5.4.9)
Then from (5.4.7) and (5.4.8) it follows for z amdl that
g'(0)-g(@"AZ%-\  2<d<4,
=A,zin{l/z), d=4,
~Agz, d>4. (5A.10)

55 Exigence of a Critical Point for d > 2

Suppose T, and hence K, is fixed. From (5.3.2) and (1.8.3) the function
M(H) can be obtained from zj as a function of h. The behaviour of these
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functions can be understood by plotting both sides of (5.2.18) as functions
of Zo (or rather 2) for non-negative z Typica graphs are sketched in Fig.
51

Let P be the intersection of the two curves in the graph. Then its z-
coordinateisthe solution ZQ of (5.2.18). Provided h + 0, ZQ isnon-zero and
varies smoothly with h: in fact z, is an even anaytic function of h. Hence
M is an odd anaytic function of H, provided Hi=0.

(a) (b)

Figure5.1. The zyin eq. (5.2.18) is here replaced by z and typicd sketches given
ofqtjhe LHS and Rng as( fun_djgnns of z ?Ihe intgysedion gpéorreqmnds tg the
solution z= zo of the equation.

Now suppose that h' is decreased to zero. The graph of the LHS of
(5.2.18) becomes the step-function OKA in Fig. 5.1. Thus P moves to the
left, its limiting position being the intersection of OKA with the graph of
\g'(2). There are two cases to consider, depending on whether the limit
of P lies on the horizontal line KA (asin Fig. 5.1(a)), or the vertical line
OK (Fig. 5.1(b)).

Define K, T. by

K, =JikT. == tg'(O). (5.5.12)
Then the firg case arises if T> T, the second if T< T..

T>Tc

Suppose that T>Tg, i.e. K<K¢ = ig(0), as in Fig. 5.1(a). As /i%-»0,
P-*A, so from (5.2.18) z, tends to a non-zero value w given by

ig'(w) = K. (5.5.2)
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For sufficiently small h the term h¥4Kz in (5.2.18) can be treated as a
perturbation and the equation solved iteratively to give zy as a non-zero
even andytic function of h. From (5.3.2) and (1.8.3), M is therefore an
odd analytic function of H a H = 0, and its graph must be similar to that
of Fig. 1.1(c). There is no spontaneous magnetization and no phase tran-
stion across h = 0.

If d=£ 2, g'(0) and K, are infinite, 0 K is dways less than K.. Thus the
spherical model has no transition for dm 2.

T<Tc

Now suppose that d>2, so that K. is finite, and that K> K., i.e. T<
T.. Then the graphs of (5.2.18) take the form sketched in Fig. 5.1(b). As
h? tends to zero, P tends to the point (0, K¢) and ZQ tends to zero.

More strongly, the RHS of (5.2.18) tends to K, s0

limyiz}iz, = [4K(K-Ko)] h (5.5.3)
From (5.3.2) and (1.8.3) it follows that
limM =gn (H) My, (5.5.4)
A=
where M, is given by
Mo=(1-777;)*. (5.5.5)

Thusin this case M{H) has a jump-discontinuity acrossH = 0, asin Fig.
I.1(a). There is a non-zero spontaneous magnetization M,, given by the
remarkably smple exact formula (5.5.5).

Thus for d > 2 the spherical model exhibits the typica ferromagnetic
behaviour outlined in Section 1.1. There is a Curie point (i.e. a critica
point) at H= 0, T= T, where T is given by (5.5.1).

56 ZeoFidd Properties Exponents a, /3, y, ¥

Internal Energy and a

Le H—> 0in (5.3.6). If T< T.then M tends to the non-zero value M,, so
u=u_=3%T-3 if T<Tc. (5.6.19)
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If T> T, then M tends to zero and from (5.3.2) HIM tends to 2Jw, where
wisgiven by (5.5.2). Thus

u= u+ = ikT-Jd-Jw. (5.6.1b)

Clearly the low-temperature function u{T) defined by (5.6.1a) is analytic
a T, 0 the definition (1.7.9) fals and we must use (1.7.10) to define
a. Let M, the singular part of the internal energy be

u,(T) = u(T) - u-(T). (5.6.2)
Asin (1.1.3), st
t=(T-T)/T.. (5.6.3)

Then for t amdl (1.7.10) implies that

Us(T)~t'-«. (5.6.4)
This defines a.
Now use the results (5.6.1) in (5.6.2) (teking T>Tc¢). This gives
ug(T) = -Jw. (5.6.5)

From (5.4.10), (5.5.1) and (5.5.2), w vanishes as f->0, its asymptotic
behaviour being given by

W22 H2<d<4,
~f/In(r') ifd = 4, (56.6)
~t ifd>4.

Thus for d + 4 the relation (5.6.4) is satisfied, with
a=~(4- d)/(d-2) H2<d<4,
=0 ifd>4. (56.7)

Spontaneous Magnetization and /?

The spontaneous magnetization has been calculated in (5.5.5). Comparing
this exact result with (1.1.4) it is obvious that

0= 1. (5.6.8)
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Susceptibility and vy, y'

The susceptibility % is defined by (1.1.2). Differentiating (5.3.3) with
respect to H and using (5.3.2), it follows that

Xt = 2Jz - 8IKMYg' (o). (5.6.9)
Let H tend to zero. If T> T, then M tends to zero and z, to w, giving
l1=2w. (5.6.10)

From (5.6.6) it follows that % becomes infinite as T-* T, from above.
Provided d + 4, its asymptotic behaviour has the power-law form (1.1.6),
with

y=2/(d-2) if2<y<4,
=1 ifd>4.

On the other hand, if H—> 0 for some (fixed) T<Tc, then z—> 0. From
(5.4.7), g'(0) isinfinite if d « 4, so from (5.6.9)

X-*°0 asH-»0. (5.6.12)

This result is quditatively different from that of the classcd mean-field
and Bethe lattice models. When d « 4 the zero-field susceptibility is infinite
for dl temperatures less than T.. The usud definition (1.1.7) of the
exponent / has no meaning.

If d> 4, then g"(0) is finite and (5.6.9) gives

x~ =-8JKM%/g'(0). (5.6.13)

For t smal X is therefore effectively proportional toM&?, i.e. using (5.5.5),
to (—t)'Y. Thus it does have the power-law behaviour (1 1.7), with

/=1, d>A (5.6.14)

(5.6.11)

5.7 Critical Equation of State

Using (5.5.1) and (5.6.3), the exact equation of state can be written as
g'(0) - g'(H/2IM) = 2J(M? + 1)IKT. (5.7.1)

When H and t are small, so are both sides of (5.7.1). The Ton the RHS
can be replaced by T, and the LHS approximated by (5.4.10). Solving the
resulting equation for H gives
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H = 2IM[2K{M? + f)Adrff (¢~2) 2<d<4,
- (41X A4) M(M? + O/In[(M? + 0" 1], d=4, (57.2)
= (4JKJA)M(M?+ 0, d>4.

The quantities /, K, Ay are constants, so this critical equation of state
is of the form (1.2.1), with /?=\ (in agreement with (5.6.8)) and

d=(d+2)(d-2), 2<d<4, (573)
=3, d>4.

Using (5.6.11) and neglecting multiplicative constants, the scaling func-
tion hy(x) is given by

hs(x) = (I+xy, (5.7.49)

providedd=t4.

The scding hypothesis is therefore satified, so the scaling relations
(1.2.12) and (1.2.13) should be aso. Indeed they are, as is evident from
(5.7.3) and the results of the previous section, subject to the proviso that
/ does not exist for d =£ 4.

If d< 4 most of the exponents vary with d, but for d > 4 they dl take
the classical congtant values. This is perhaps the most interesting result of
the spherica model, for it is generdly believed that the same is true of the
usual nearest-neighbour Ising model, but with different vdues of the
exponents for d < 4 (Fisher, 1974, first two lines of p. 607).
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DUALITY AND STAR - TRIANGLE
TRANSFORMATIONS OF PLANAR ISING
MODELS

6.1 General Comments on Two-Dimensional Models

In this and the remaining chapters of this book | shal consider the few
Ising-type models that have been solved exactly in two dimensions. As |
remarked in Section 1.6, it is unfortunate that they are only two dimen-
sional, and even more o that they have only been solved in the absence
of external fidlds. Even so, they do contain the essential prerequisite for
a 'physica’ mode of a magnet or a fluid, namely short-range non-zero
interactions, and they do have critical points. They can therefore be used
to obtain insight into the behaviour (particularly the critical behaviour) of
rea systems.

In particular; the two-dimensional exactly solvable models provide
extremely valuable tests of general theories and assumptions, such as the
scding and universality hypotheses. For instance, the first evidence of
universality was provided by the solution of the square lattice Ising model
by Onsager in 1944. Onsager dlowed the interactions to have different
strengths/ and /' in the horizontal and vertica directions, but his solution
showed that for T near T, the specific heat diverges as In|T- T\, inde-
pendently of the ratio J'U. The evidence for universality accumulated in
the next twenty-five years. It took another exact solution, that of the
eight-vertex model (Baxter, 1972b), to show that there are exceptions to
universality.

72
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6.2 Duality Relation for the Square Lattice Ising Mode

Three years before Onsager solved the square lattice model, Kramers and
Wannier (1941) located its critical temperature. Their argument can be
simplified to the following.
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Fig. 6.1. The square lattice it (solid circles and lines), and its dua lattice !£5 (open
circles and broken lines).

Consgider an Ising modd on the square lattice X shown in Fig. 6.1. At
each dte there is a spin a; with two possible values. +1 or — 1. Two
nearest-neighbour spins CT, and -, contribute a term -Joty to the Hamil-
tonian if they are horizontal neighbours, -J'0iQj if they are vertica neigh-
bours, where / and /' are some fixed energies. If there is no external
magnetic fidd, then the Hamiltonian is smply the sum of such terms, one
for each nearest-neighbour pair of sites (i.e. an edge) of the lattice i£.
From (1.4.1), for a lattice of N sites the analogue of equation (1.8.2) for
the partition function is

Zv=DeplkD ag+ L3 o;ok]] (62.1)
° L

where the first sum inside the brackets is over al horizontal edges (i, j),

the second is over all vertical edges (2, k), the outer sum is over al values

of al the spins, and

K= JkgT, L=J1kgT, (6,2.2)
ks being Boltzmann's constant and T the temperature. |

To locate the critical temperature, one notes that Zy can be represented
graphicaly in two different ways, but with a similar form:
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'Low-Temperature’ Graphical Representation

For a given set of vaues of the spins (a spin 'configuration’), let r be the
number of unlike nearest-neighbour vertical pairs, and 5 the number of
horizontal ones. Let M be the total number of vertica edges of ££ and
suppose £ has as many columns as rows, 0 that M is dso the number of
horizontal edges. Then there are M —r like vertical pairs, and M - s like
horizontal pairs, and the summand in (6.2.1) has the vaue

exp[K(M -2s) + L(M - 2r)]. (6.2.3)

In particular, it depends only on the numbers of unlike nearest-neighbour
pairs.

A useful concept in two-dimensiona lattice models is that of the dual
lattice: from any planar lattice '£ one can form another lattice by placing
points at the centres of the faces of £6 and connecting points in faces that
are 'adjacent' (i.e. have an edge in common). These points and their
connections are the sites and edges of the dual lattice ££p.

The dual '£; of the square lattice £ in Fig. 6.1 is dso shown therein and
is dso a square lattice. It differs from i£ in being shifted a haf-lattice
.gpacing in both directions.

Instead of regarding the soins as being on the sites of X, we can just as
well regard them as being on the faces of |£5. Given a spin configuration,
we can then represent unlike nearest-neighbours pairs by lines on XD, as
follows: If two adjacent spins are different, draw aline on the edge of £,
between them; if they are the same, do nothing. Do this for dl nearest-
neighbour spin pairs.

 Thisgeneratesaset of r horizontal lines and 5 vertical linesoni£p. There

must be an even number of lines into each site, snce there must be an
even number of successive spin changes between the four surrounding
faces. The lines can therefore be joined up to form polygons, as in Fig.
6.2.

Conversdly, these polygons divide the plane into up-spin domains and
down-spin domains, asis evident in Fig. 6.2. For any such set of polygons
there are just two corresponding spin configurations, one being obtained
from the other by negating al spins.

Using (6.2.3), it follows that the expression (6.2.1) for Zy can equiv-
aently be written as

Zy = 2exp[M(*: + L)] P2 exp(-2Lr - 2Ks), (6.2.4)
where the summation is over al polygon configurations on iE-o, i.e. over

al sets of lines with an even number of lines into each site. The r and 5
are the numbers of horizontal and vertical lines, respectively.
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The expression (6.2.4) is useful when developing low-temperature series
expansions, since then K and L are large and the dominant term comes
fromthecaser =5 =0, i.e. nolines a dl. For this reason it is convenient
to cdl it a 'low-temperature’ representation, but note that it is exact for
al temperatures.
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Fig. 6.2. A configuration of spins on the faces of a square lattice, showing the
polygons that separate + and - spins.

'High-Temperature' Graphical Representation

Another form for Zy can be obtained by noting that, snce aa can only
take the valuesof +1 or - 1:

exp[KO(Qj] = cosh K + sinh K ofy. (6.2.5)

Using this identity, and its analogue with K replaced by L, the definition
(6.2.1) can be written

Zu = (cosh K cosh L)M 2 \[ (1 + voty) Y[(I+ wOiOy), (6.2.6)
e @i<t)

where
v=tanh A, w=tanhL, (6.2.7)

the firg product is over dl the M horizontal edges of X; the second is over
al the M vertica edges.

Now expand the combined product in the summand of (6.2.6). Since
there are 2M factors (one for each edge), each with two terms, there are
2 terms in this expansion. Each such term can be represented graphically
as follows:
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Draw a line on the edge (i, ) if from the corresponding factor one
sdlects the term vo,Oj, or woty. Draw no line if onetakes theterm 1. Do
this for dl edges of ££

This gives a one-to-one correspondence between terms in the expansion
and line configurations on the edges of i£. Each term in the expansion is
of the form

v'vfaVafaf..., (6.2.8)

where r(s) is the total number of horizontal (vertical) lines in the corre-
sponding line configuration, and n, is the number of lines with site i as an
end-point.
Now sum (6.2.8) over oj, <%,..., Ox. Since o, = =1, the result will
vanish unless n\, n,,. . . , ny are al even, when it will be Vvw2",
Classifying such terms by their corresponding line configurations, (6.2.6)
can therefore be written as

Zx = 2Y(coshKcoshL)"Ww?, (6.2.9)
p

where the sum is over dl line configurations on i£ having an even number
of lines into each site, i.e. over polygon configurations on X.

Duality

Let ksT?) be the free energy per site, i.e. from (1.7.6),
-V = lim N~\nz. (6.2.10)

From (6.2.1), ipis afunction of K and L, so we can write it as rp(K, L).

The summationsin (6.2.4) and (6.2.9) are similar, but not quite identical
as the first is a sum over polygon configurations on !£p, while the second
is over polygon configurations on !£. For finite square lattices '£p and £
differ a their boundaries.

However, in the thermodynamic limit this should have no efect on the
free energy. Also, in this limit MIN= 1, so (6.2.4), (6.2.9) and (6.2.10)
give

YK, L) =K + L + D @7 %), (6.2.11)
=In[2cosh K cosh L] + <&(u, w), (6.2.12)
where

*(»,w) = lim AT in (2 VVA (6.2.13)
P J

IV-K>» K
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Replacing K, L in (6.2.12) by K*, L*, where
tanhK* = e~® | tanhL* =% (6.2.14a)

and comparing with (6.2.11), it becomes obvious that the function <> can
be eliminated, leaving

y(K* ,L*) = K+ L + \KK,L) - In[2coshK* coshL*].  (6.2.14b)

If K, L are large, then K*, L* are smdl. Thus (6.2.14) relates the free
energy at a low temperature to that at a high temperature, and is known
as a duality relation. It can be written in the more symmetric form

snh2K* snh2L = 1, snh2L* snh2K = 1,
wK*, L*) = xliK L)+i In(sinh2K sinh2L). (6.2.15)

which makes it clear that it is a reciprocal relation.

To locate the critical point, consider firg the isotropic case when / =
/'ysoK=LandK* = L*. Atacritica point the free energy isnon-anaytic,
s0 %p will be a non-analytic function of T, and hence of K. Suppose this
happens at some value K. of K, then from (6.2.15) it will also be true that
%I > isnon-anaytic when K* = K. Normally thiswill correspondto adifferent
value of K, so there will be two critical points. If we assume that there is
only one critical point, then it must occur when K* = K i.e. K. is given
by

snh2Kc=1,K.= 0.44068679.... (6.2.16)

The argument is smilar for the anisotropic case: the mapping (K,
L)—> (K*, L*) takes the region | in Fig. 6.3 into the region |1, and vice-
versa. It leaves al points on the curve AB unchanged. Thus if there is a
line of criticd points insde I, there must be another such line inside 1.

o.s.-

' + »
0 05 10 «

Fig. 6.3. Square latice dudity: the mapping (6.2.15 interoha}%esr jons | and
%I, andslqaaves unatered dltypoints on ther:%r(aph AI% of anh 2| s'rhGQZL =1
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If there is only one line of critical points, it must be the boundary line AB,
the equation of which is
sinh2A:sinh2L = |. (6.2.17)

In the next chapter it will be shown that this is indeed the criticality
condition for the sguare lattice Ising mode.

6.3 Honeycomb-Triangular Duality

One can congtruct Ising models on any lattice, in particular on the honey-
comb and triangular lattices shown in Fig. 6.4.

{a) {b)

Fig. 6.4. The honeycomb lattice (solid lines) and associated triangular lattices
(dotted lines) formed by: (a) duality; (b) the star-triangle transformation.

Consider first the honeycomb lattice, with N sites. The edges can be
grouped into three classes: those pardle to the edges marked L\ in Fig.
6.5; those parallel to edges marked L ,; and those pardlel to edges marked
L3. Let the energy of two adjacent spins a, & be - kgTL,a&, if the edge
between them is of the L, class. Then in zero magnetic field the analogue
of equation (1.8.2) for the partition function is

Z%{L} = 2 ap[LIE oo+ L, D00+ La 20@]. (63.1)

Here L denotes the sat of three 'interaction coefficients L\, L,, L3, and
the three summations within the exponentia are over al edges of the
classes L\, L,, L3, respectively. For instance, the last summation is over
al vertical edges (k, 1) of the lattice.

Similarly, for the triangular lattice with N sites the partition function is

ZhiK} = 2 e(p[xlz‘, G0+ K2 2 0,0, + Kazoqu], (6.3.2)
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where the firg summation inside the exponential is over al edges (y , K)
paralel to that marked K\ in Fig. 6.5, the second is over edges (k, i)
parallel to that marked K,, and the third is over edges (i, j) paralée to
that marked KA.

Fig. 6.5. A star ijkl on the honeycomb lattice and its associated (dotted) triangle.
The interaction coefficients for the various edges are shown.

One can readily use the technique of Section 6.2 to obtain a dudity
relation between these two partition functions. First apply the 'low-tem-
perature’ procedure of Section 6.2 to the honeycomb Ising model. As is
shown in Fig. 6.4(a), the dua of a honeycomb lattice of 2N sites is a
triangular lattice of N sites. It follows that the analogue of (6.2.4) is

Z&{L} = exp[V(Li + L, + L3)] ;,5) exp[-2L1ry - 2Lor, - 2L 3r3], (6.3.3)

where the P-summation is over dl polygon configurations on the triangular
lattice, Tj being the number of lines on edges of type/.

(A factor 2 corresponding to the leading term in (6.2.4) has been ignored,
and the number of edges of each class has been taken to be N, which
ignores boundary effects. These approximations have no effect on the free
energy in the thermodynamic limit.)

Also, apply the 'high-temperature’ procedure of Section 6.2 to the
triangular lattice. This gives

ZI{K} = (2 cosh Ky cosh K; cosh K3) ' 2 515782, (6.3.4)

where
Vj = tanh Kj, y - 1,2, 3, (635)

and in the thermodynamic limit the P-summation has the same meaning
asin (6.3.3).
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Comparing (6.3.3) and (6.3.4), it fallows that if

tanh/C. = exp(-2L,), /=123, (6.3.6)
then
ZUL) = (2s9S)™ ZJAK}, (6.3.7)

where
S =i exp(2L) seen’K,

= §nh 2Lj = Ysnh 2K;. (6.3.8)

If K\, K, Ks are large and positive, then L, L,, L3 are smdl; and
viceversa. Thus the duality relation (6.3.7) maps a low-temperature
(high-temperature) model on the triangular lattice to a high-temperature
(low-temperature) one on the honeycomb lattice.

This is not aufficient to locate the critical temperature: to do this we
need some more information so as to be able to map a low-temperature
mode to a high-temperature one on the same lattice. This information will
be supplied in the fallowing two sections.

6.4 Star - Triangle Rdation

In addition to the dudity relation (6.3.7), there exists another relation,
known as the 'star - triangle' relation, between the partition functions of
the triangular and honeycomb Ising models. Onsager (1944) referred in
passing to it in the introduction to his paper on the solution of the square
lattice Isng model. Wannier (1945) wrote it down, and it has subsequently
been re-presented by many authors (e.g. Houtappel, 1950).

To derive it, firg note that the honeycomb lattice is 'bi-partite, i.e. its
sites can be divided into two classes A and B such that al neighbours of
an A site are B sites, and vice-versa. This is indicated in Fig. 6.4, where
the A sites are indicated by solid circles and the B sites by open ones.

The summand in (6.3.2) can therefore be written as

[Iw(ala o), (6.4.1)

where
W(0,\Qj, Oj, o)) = exp[a,(LiOi + L,Oj + Li,00)\, (6.4.2)

the product in (6.4.1) is over dl B sites /, and i, j, k are the "4-dte
neighbours of /, arranged as in Fig. 6.5.
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The important point about (6.4.1) is that each fi-spin a, occurs in one
and only one factor. Using the form (6.4.1) of the summand, it follows
that the summations in (6.3.2) over the 5-spins can be performed at once,
giving

Z%{Q = 2 I! WCT, , g, &), (6.4.3)

OA (13.K)

where

w(Oi, Oj, o) = 2 W(oi | ot, Oj, o)

= 2 cosh(L'o; + L,Oj + L30y), (6.4.4)

and the summation in (6.4.3) is over the remaining A -spins.

Since w(a, , Oj , o) is unaltered by negating al of a, Oj, o and since
Oj, Oj, o only take the values +1 or — 1, there must exist parameters R,
Kx,Ko, Kz such that

W(OJ, Oj ,00 = Rexp(KiOjO, + K00 + Ks0j0j),  (6.4.5)

for al values of CT,, OJ o« Substituting this expression for w into (6.4.3)
then gives

Z%{L) = R"2 IT e*p(KiOjOk + K00, + KiO/Qj). (6.4.6)
OA (i.jik)

The summation is over %N spins on the A -sites of the honeycomb lattice.
As is indicated in Fig. 6.4(b) these form a triangular lattice. The product
in (6.4.6) is over dal down-pointing triangles (i,j ,k) of this triangular
lattice.

The sum in (6.4.6) is therefore precisely the partition function of the
Ising model on a triangular lattice of N/2 spins. Replacing N by 2N, and
comparing with (6.3.1), it is obvious that

ZEALY = RN zUK]. (6.4.7)

This relation between the honeycomb and triangular lattice partition
functions is known as the star - triangle relation, since it is obtained by
summing over the centre spin of a star (Fig. 6.5) to obtain a triangle.

Relations Between Interaction Coefficients
Given L\, L,, Lg, the parameters R, K\, K,, K are defined by the four

equations obtained by equating (6.4.4) and (6.4.5) for dl vaues of o,
Oj, ok Thessare
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2cosh(Li + Lo + Lg) =Rexp(iC; + Ky + Ka) (6.4.83)
2cosh(-Ly + L, + L3) = Rexp” - A% - Kj) (6.4.8b)
2cosh(L! - L, + L3s) = Rexp(-Ki + Ky~ Kj) (6.4.8¢)
2cosh(L! + Lo- L) = exp(-AT:- Ko+ Ki).  (6.4.8d)

Multiplying the first two of these equations, and dividing by the second
two, gives

cc\lcocs = exp(4#i), (6.4.9)
where, for dl permUtationsi,j,fcof 1,2, 3,
c=cosh(Li + Lo+ L3), ¢ = cosh(-Li + Lj+ Ly. (6.4.10)

Using standard hyperbolic function identities, it follows from (6.4.9)
that

exp(4A"0 - 1 = sinh 2L, sinh 2Ly/c2C;, (6.4.11)

and hence that
sinh2Li sinh2Lz_sinh2L 5
2(cC,CoCay '
Clearly the origina set of star - triangle relations (6.4.8) is invariant
under permutation of the suffixes 1, 2, 3, so two other equations can be
obtained from (6.4.12) by such permutations. However, the RHS is a

symmetric function of L\, L,, L3, S0 remains unchanged. Defining AT to
be its value, it follows that

snh2Kj snh2L, =it"!, j=1,2,3. (6.4.13)

snh 2Ky sinh 217, =

(6.4.12)

This is a remarkable and very important property of the star - triangle
relations: the products sinh 2A} sinh 2Ly, forj = 1,2,3, dl have the same
value.

Multiplying the four equations (6.4.8), using (6.4.12) to eliminate cc,C,Cs,
and then using (6.4.13), one obtains -

R’ = 2ksinh 2Ly sinh2L, sinh2Ls
= 2/(K¥ sinh 2Ky sinh 2K, sinh 2Ky). (6.4.14)

These lagt three equations define K, Ky, K3, k and R as functions of L,
L, Ls. Alternatively, one can obtain equations for L. k, etc. as functions
of Ki, K5, Ks. For instance, diminating R, L, and L3 between the equations
(6.4.8) gives, after a little algebra,
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sinh 2Ki cosh 2K, cosh 2K + cosh 2Ki sinh 2K, sinh 2K”
= dnh 2/s! cosh 2Ly. (6.4.15)
Eliminating Li between this identity and (6.4.13) gives

(1-oD) 1 -odh (1 -0}
(1 + v1vaw3) (01 + vav3) (02 + v3vy) (3 + )}

where W, v,, V3 are given by (6.3.5).

k=

(6.4.16)

Operator Form

In two-dimensional lattice problems it is often useful to consider a row of
spins O\,..., oy, and operators that build up the lattice by adding sites
and/or edges. These operators are 2" by 2V matrices, with rows labelled
by (oi,..., QW), and columnsby (o{,..., #). Two important smple sets
of operators are si,... , Sy, and c... , Cy, Where

(5o = ab(an, a{)d(02,a7)... d(on, an)
(C)oe =0, 00)... Hoi-1,0!-1) 8(0:, —0]) (0141, O141)
..d(on,0K), (6.4.17)

and <r denotes (0j,..., gv), a denotes (ai, ..., gVv).

Thus S isadiagona matrix with entries 0j, ¢, isthe operator that reverses
the spin in position i. Writing (x, v) for the commutator xy-yx of two
operators x, y, and / for the identity operator, it is readily seen that

g=cf=1, SC1+cS=0, (6.4.18)
(s, 9) = (s, C) = (c, ¢j)=0fori¥7.
In the Isng model, the two basic sets of operators are
P,(K),. . . Pyi(K) , QdL)... Qu(b),

where
[P,'(K)]W* = CXP(KO{O'H‘I) (5(0'1 » a{) d(ON, a'N)

[Q{L}ose = N, 01). .. Hoi-1, 0/-)) exp(Loo])
X d(04), al+1)... 6{ay, a®. (6.4.19)

The effect of the operator P7K) is to introduce an edge, with interaction
coefficient K, between sitesi and i + 1. The effect of <2/(L) isto introduce
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a new site in position i, linked to the old site by an edge with interaction
coefficient L. If we regard O\,. . . ON as being a horizontal row of spins;
then Pi(K) adds a horizontal edge, <2,(L) a vertica one.

Using (6.4.17), the definitions (6.4.19) can be written more compactly
as

Pi(K) = exp(Ks;si+1)

QL) = exp(L) / + exp(-L) c;. (6.4.20)
Since cf =/, it follows that
exp(Lc) = (cosh L) + (sinh L)CJ (6.4.21)
for dl complex numbers L. Thus <2(L) can be written as
QJ{L) = (2sinh2L) exp(L*c)) , (6.4.22)
where L* isrelated to L by
tanh L* = exp(-2L). (6.4.23)

(This is the same as the relation (6.2.14a) which occurs in the dudlity
transformation.)

It is useful to interlace the operators P, Q, in the order Qu Py Q,
Pi,eee QN and to define a corresponding set of operators
U\, U2, ¢ ¢ , U2N-1, dependent on two interaction coefficientsK and L, by

UK, L) = Pj(K) = expiK§S.0 if 1 =2/,
= (28rh 2L)-*Qj(L) = exp(L*c) ifi=2/-1 (6.4.24)

These are dl the operators that are needed to construct a square-lattice
Ising model with horizontal interaction coefficient K and vertical coefficient
L.

Let K\, K5, K3, L\, L2, Ls be related by the dar-triangle relations
(6.4.8)-(6.4.15). Then, using (6.4.19) to directly expand the matrix prod-
ucts, and using (6.4.13) and (6.4.14), the star - triangle relation (6.4.4-5)
is found to imply that

£/l+1(KX! LX) U'[{LZ! KZ) Uni(K37L3)

= Ui(Ks, L3) Uir1(Lo, Ko) f£ (%N, LO (6.4.25)
for/=1,...,2N-2.ltisd obv_iousthat
Ul(K! L) UJ{KI! Ll) = UJ(K‘ 1LI) Ut(Kl L) (6426)

for dl complex numbers K, L, K', L', provided \i —j\ * 2.
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Like the P, and Q, the Ui(K, L) are operators that add edges to the
lattice. If i is even, the LHS of (6.4.25) has the effect of adding an (L\,
L, , L3 star, the RHS of adding a (Ki, K, , K5) triangle; and vice versa
if i is odd. Thus (6.4.25) is a Smple operator form of the star - triangle
relation.

If we write U{K, Li), U(L,, K5), UKz, L3) smply as U,,Ul,UJ,
respectively, then (6.4.25) is smply

Uj+Uill; = WU' 14U, (6.4.27)
which makes its structure rather more obvious. Also, (6.4.26) implies that
UUt=U;Uiifli-j13=2 (6.4.28)

Significance of the Star - Triangle Relation

The star - triangle relation turns out to have very significant consequences.
Consider two square-lattice Ising models as in Section 6.2, with different
values of K and L, but the same vaue of sinh 2K sinh 1L. Onsager (1971)
noted that the star - triangle relation implies that their diagonal-to-diagonal
transfer matrices commute, providing cyclic boundary conditions are
imposed.

A proper derivation of thisis given in Section 7.3, but a partial demon-
stration follows readily from (6.4.25). Consider the operator

V(K, L) = UtiK, L) Ux(K, L). . . Uy(K, L), (6.4.29)

where n—=2N - 1. This corresponds to adding a vertical edge in column
N, then a horizontal one between columns N— 1 and iV, then a vertica
one in column N—|, and so on, going downwards as this proceeds.
Altogether this adds a 'staircase’ to the usua sguare lattice. Apart from
boundary conditions (and atriviad normalization factor), V(K, L) isthere-
fore the diagonal-to-diagona transfer matrix of the square lattice.

Let us again take K\, K;, K3, L\, L,, L3 to saidfy the star - triangle rela-
tions (6.4.8M6-4.15). Write V{Ky, L), V{L, , K5) smply as V, V. Then

V=U,U,...U,, (6.4.30a)

V' = U[U,...U',. (6.4.30b)

By repeated use only of (6.4.27) and (6.4.28), it is eadly verified that
W {U',-'UkU,) = (UiiriUi') Vv'V. (6.4.31)

.The bracketted terms are 'boundary terms’ involving only operators
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acting on the end spins. It is therefore perhaps not surprising that these
terms disappear when the cyclic boundary conditions are treated properly
(asis donein Section 7.3), leaving

W = VV. (6.4.32)

Thus V{K\ ,L\) and V(L2, K2) commute providing K3, L3 can be chosen
to saidy (6.4.8)-(6.4.15). This is so if Sn2ATi snh2Ly =snh2L,
sinh 2K.2-

More generadly, if we have any lattice modd whose transfer matrix V
can be written in the form (6.4.304a), and if we can dso construct operators
ul,...Un =[//,... U: stidfying (6.4.27) and (6.4.28), then the
pseudo-commutation rule (6.4.31) is satisfied by V and V. In Chapters 9
and 10t is shown that this can be done for the six- and eight-vertex models.
The corresponding commutation relation is a vital firg step in the solution
of the eight-vertex model.

To obtain exact commutation relations it is necessary to use an explicit
representation of the operators so as to handle the cydlic boundary con-
ditions. Also, to cast the transfer matrix into aform like (6.4.30a), it would
be necessary to introduce an irritating cydlic shift in the spin-labelling from
row to row. For these reasons the commutation relations of the Ising
six- and eight-vertex models will be obtained directly, instead of by invoking
(6.4.30)-(6.4.31). Even so, in each case the commutation relations are a
direct consequence of the appropriate 'star - triangl€' relation, and this will
be emphasized.

Further, in Section 11.7 it is shown that for the Isng model the transfer
matrix formdism can be dispensed with atogether: the free energy is
obtained solely from the star-triangle relation and its corollaries!

6.5 Triangular - Triangular Duality

If L\, Li, L3 in (6.4.8) are small, then so are K\, K,, K3. The gtar - triangle
relation (6.4.7) therefore maps a high-temperature modd on the triangular
lattice to a high-temperature one on the honeycomb lattice.

Now apply the dudlity transformation (6.3.6)-(6.3.8). This maps the
high-temperature honeycomb model to a low-temperature triangular one.

Taken together in thisway, the star - triangle and duality transformations
therefore give the following salf-dudity relation for the triangular Ising
model:

ZftkE k" ZtK*), (65.)
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where
sinh 2Kf = ksinh2K., /=1,2,3, (6.5.2)

and k is given in terms of K\, K,, K5 by (6.4.16) and (6.3.5). Alternatively,
in terms of Kj, K%, K%, it is given by

o= (L-vh)@-vh@A~W & &0

AA+vivE) (W +ys) (F2+ V) (Vs + wivi))r '

where
vf = tanhKf, j= 1,2,3. (6.5.4)

Clearly this mapping is reciprocal: i.e. it maps apoint K = (K\, K5, Kj)
to the point K* =(Kf, Ki, K$), and the point K* back again to K. From
(6.5.2) there is a surface of sdf-dud points in (Ki ,K,,Kz) space, corre-
sponding to k = 1. We can therefore argue as in Section 6.2: if there is
only one criticad surface in (Ki, K,, K3) space, then it must be the sdlf-dua
surface, in which case the condition for criticaity must be

* =1, (6.5.5)

Thisisin fact true, asisshownin Chapter 11. For the isotropic triangular
model, with K\ = K, = K3 = K, it implies that the critical point K = Kgq is
given by

sinh2K¢ = 3", K= 027465307 (6.5.6)
From (6.3.6), the isotropic honeycomb model therefore has its critical
point at L\ =L, = Ly =L, where

snh2Lc = 3*, L.= 06584789 (6.5.7)
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SQUARE-LATTICE ISING MODEL

7.1 Historical Introduction

The free energy of the two-dimensiona Ising modd in zero fidd was first
obtained by Onsager in 1944. He diagondized the transfer matrix by
looking for irreducible representations of a related matrix algebra. His
student, Bruria Kaufman, smplified this derivation in 1949 by showing that
the transfer matrix belongs to the group of spinor operators.

Since then many aternative derivations have been given. The transfer
matrix method has been used by Schultz et al., Lieb (1964), Thompson
(1965), Baxter (1972b) and Stephen and Mittag (1972).

A completely different technique was discovered by Kac and Ward
(1952), who used combinatorial arguments to write the partition function
as a determinant which could be easily evaluated. This method was refined
by Potts and Ward (1955).

Hurst and Green (1960), and Kasteleyn (1963) dso used combinatorial
arguments, but this time to write the partition function as a Pfeffian.
Another combinatorial solution was obtained by Vdovichenko (1965), and
is given by Landau and Lifshitz (1968).

Quite recently, Hilhorst et al (1978), and Baxter and Enting (1978), have
shown that the planar Isng models can be solved quite directly by using
the star - triangle relation of Section 6.4 as a recurrence relation.

It is quite beyond the scope of this book to discuss al these approaches
in detail. The one given in this chapter may be caled the 'commuting
transfer matrices' method. It has the advantage that it can be generalized
to solve the eight-vertex model, as is shown in Chapter 9.

The basic idea is to regard the diagonal-to-diagonal transfer matrix as
afunction of the two interaction coefficients K and L. It is easily established

88
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that two such matrices commute if they have the same value of k = (sinh 2K
sinhzL)"!, and for any such matrix another one can be found which is
effectively its inverse. These properties are badcdly sufficient to obtain
the eigenvadues of the transfer matrix. From these, the free energy, inter-
facid tension and correlation length are derived.

The result for the spontaneous magnetization M, is aso given (in Section
7.10), but is not derived in this chapter asits calculation is rather technical:
five years elgpsed between Onsager's derivation of the free energy / and
his announcement at a conference in Florence of the result for M, (Onsager,
1949 and 1971). The first published derivation was given by Yang in 1952,
while Montroll et al. obtained it by the smpler Pfaffian method in 1963.
A derivation based on corner transfer matrices is given in Section 13.7 for
the more general eight-vertex model.

In Sections 7.7-7.12 the cases k< 1, k= 1 and k> 1 are distinguished.
As is shown in Section 7.12, these correspond to the low-temperature
(T<Tg), critical temperature (T=Tc) and high-temperature (T>Tg)
cases, respectively.

7.2 The Transfer Matrices V, W

Consider the square lattice zero-fiedld 1sing model, as defined in Section
6.2, but draw the lattice diagonaly as in Fig. 7.1. The partition function
is dill given by (6.2.1), but now the first summation inside the brackets is
over dl edges parallel to those marked K in Fig. 7.1, and the second
summation is over al edges parallel to those marked L.

Group the sites into horizontal rows: for instance, the sites denoted by
solid circlesin Fig. 7.1 form arow. Asisindicated in Fig. 7.1, these rows
can be cdlassfied into two types A and B (open circles and solid circles).
A row of type A is above one of type B, and vice-versa.

Let m be the number of such rowsin the lattice. Label them so that row
r is bdow row r + 1, and impose cyclic boundary conditions so that row
m is below row 1. This means that m must be even.

Let n be the number of sites in each row and label them from left to
right. Again impose cyclic boundary conditions, this time to ensure that
stenistotheleft of site 1, asindicated in Fig. 7.1. (Taken together, these
cyclic boundary conditions are equivalent to drawing the lattice on atorus:
they are known as 'toroidal’.)

Let (f); denote dl the spinsin row r, so <p; has 2" possible values. The
summand in (6.2.1) can be thought of as a function of fa,.. ., <j),. Since
each spin interacts only with spins in adjacent rows, this function factorizes



20 7 SQUARE-LATTICE ISNG MODEL
and (6.2.1) can be written as
Zy = 22 ¢ o o 2 Vicfc W fc VicN WA L. . Wic,*,.  (7.2.1)

01 02 Ora
Here VA2, contains dl the Boltzmann weight factors in the summand
that involve only spins in adjacent rows; and/ + 1, the lower row / being
of type A. The sameistrue for W{<py, 4>j+i), except that the lower row is
of type B.

. Fig. 7.1. Three successive rows of the square-lattice (drawn diagonally).

Consider two typical successive rows. Let </> ={o\,..., a,} be the spins
in the lower row, and # = {q[,..., 0'n} the spins in the upper row. Then
from (6.2.1) and Fig. 7.1, it is clear that

Vo = exp [E (Koj+10f + Lo} )] , 72.2)

WM = exp [%Korf + Lorf+x)",

where a,;+i =0\ and &, +! = &y.

These observations parallel those made in Chapter 2 for the one-dimen-
siona lsing model. Again V((p,(p') can be regarded as the element
<f>, </>' of amatrix V, and smilarly for W. Then (7.2.1) can be written as

Zn = TraceVWVW... W
= Trace (VW)""2. (7.2.3)

Themain differencefrom the one-dimensional caseisthat <j> and cp' have
2" values, so Vand Ware 2" by 2" matrices, rather than 2 by 2. It isaso
no longer true that VW is symmetric: even so, the working of (2.1.11) to
(2.1.15) can be generalized to show that (7.2.3) implies

ZV =Af + Af+ . .. + A, (7.2.4)

where A?, Al,... are the eigenvdues of VW. -
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We are interested primarily in the thermodynamic limit, when m and n
are large. To obtain this it is permissible to firg let m—* °°, keeping n
fixed. From (7.2.4) it then immediately follows that

Zyy~(Amax)», (7.2.5)

where A is the numerically largest eigenvalue of VW.
The matricesV and W are known as transfer matrices. The problem now
is to calculate the maximum eigenvalue of VW.

7.3 Two Significant Properties of V and W
Commutation

From (7.2.2) it is obvious that the matrices V and W are functions of the
interaction coefficients K and L. It is convenient here to exhibit this
explicitly and to write Vand W as V(K, L) and W(K, L).

In this section, | shall establish two properties of these matrix functions,
and in subsequent sections will show that these properties enable Ay to
be evaluated. Although indirect, this presentation has the advantage of
showing that it is basicaly only locd properties of the lattice model that
are being used.

In (7.2.3) one is interested in the matrix product V(K, L) W(K, L).
Let us generdize this and consider the product.

V(K,L)W(K',L"), (7.3.2)

where for the moment K,L, K',L' can be any complex numbers. This
product matrix has a lattice model meaning: it is the transfer matrix for
going from the lower row of open circles in Fig. 7.1 to the upper one,
provided the interaction coefficients K, L of edges above the solid circles
are replaced by K',L', respectively.

Each element of the product matrix is therefore the product of the
Boltzmann weights of the complete edges shown in Fig. 7.1, summed over
dl the spins aj,..., @'y on the intermediate solid circles. Let <f> =
{oi,...,a,;} be the spins on the lower row of open circles, and <f>' =
[&,..., @} the spins on the upper row. Then the element <f>, tj>" of the
matrix product (7.3.1) is

n

2 --2) 1l exp[a] (Kaw + Lay + K'a) + L'aj)]. (732
CTI On 7-1
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The exponentia in (7.3.2) is smply the Boltzmann weight of the four
edges in Fig. 7.1 that have solid circlej as an end-point. Since a; enters
only this term, the summation over a; is readily performed. Doing this for
aj,. .., al, (7.3.2) becomes

bx@iai, 0.1, (733)

where, for ab,.cd=+ 1,
X(a, b;c,d)= % ﬁ‘xp[/(La + Kb+ K'c + L'd)]. (7.3.4)

Now ask the following question: suppose we interchange the interaction
coefficients K and K', and the coefficients L and L'\ does this change the
product matrix (7.3.1)? Explicitly: is the equation

VIKDWK' L) =V(K' L)WK,L) (7.3.5)

true?

This is a generdized commutation relation. If it istrue, then it is shown
in the next section that the transfer matrices al commute, and this property
will be used to obtain the free energy. For the moment, however, let us
just ask whether (7.3.5) can be satisfied.

Clearly (7.3.3) is unchanged by replacing X(a , b; ¢, d) by

e"%X(a,b;c,d)e-M", (7.3.6)

since the exponential factors from adjacent terms cancel. Thus (7.3.5) will
certainly be true if there exists a number M such that

d™X@b;cd =X(a , bc ,d) ™ (7.37)

where X' is obtained from X by interchanging K with K', and L with L'.

This equation can be interpreted graphicaly as in Fig. 7.2(a). It is
equivalent to requiring that the Boltzmann weights of both figurestherein,
summed over the centre spin, be the s:\mefor dl vaI ues (x 1) of the exterior
spins a, b, ¢, d.

The condition (7.3.7) can be examined directly, but to link with the
remarks of Section 6.4, it is better to proceed as follows.

In both figuresthereis a (L , K', M) triangle. Define K, Ky, K3 by

Kt=L, Ky=K', Kz=M, (7.3.89)

and convert these triangles to stars by using the star - triangle relation
(6.4.4), (6.4.5). Then L, L, Ls are defined by (6.4.8)-(6.4.15), and, to

within a common factor R, we see that the Boltzmann weights are those
of the figures in Fig. 7.2(b), each summed over the two internal spins.
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Clearly these weights are the same if

U=K, Ly=1L" (7.3.8b)
From (6.4.14), it follows that K, L, K', L' must saisy
snh2*:dnh 2L = snh 2K' snh 2V . (7.3.9

This condition can be obtained more directly by making the substitutions
(7.3.8) into (6.4.8) and eiminating R, L3 and M. Provided (7.3.9) is true,
we can choose R, Lz and M so that (6.4.8) is satisfied. The relations (7.3.7)
and (7.3.5) follow immediately.

Fig. 7.2. () The lattice segments whose weights (summed over the spin on the
solid circle) are the left- and right-hand sides of (7.3.7); (b) the same segments
after applying a triangle-to-star transformation.

We have therefore used the star - triangle relation to establish that
(7.3.9) is a aufficient condition for the exact commutation relation (7.3.5)
to be satidfied. It is aso necessary.

Inversion

The other property that will be needed can be thought of as a relation for
the inverse of V, or W. It can be approached by asking the question: given
K, L; canK', L" be chosen to ensure that the product (7.3.1) is adiagonal,
or 'near-diagonal’, matrix?

Since the dlements of (7.3.1) are of the form (7.3.3), this property would
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be satisfied if X(a ,b;c,d) vanished when a # ¢ (or b i= d). This require-
ment is too strong: it cannot in general be satisfied.

What can be satisfied is a weaker condition: namely that X(a ,b;c,d)
vanish if a+ ¢ and b=d. From (7.3.4) this is equivalent to the two
equations

cosh(L + K-K' + L) =0 (7.3.10)
cosh (L-K-K' -L') =0.

These equations have no real solutions, but they do have the complex
solution

K'=L+HJ, L =-K (7.3.11)

What is the effect of the requirement that X(a ,b;c,d) vanish if a # ¢
and b = d? From (7.3.3) it implies that for non-zero elements of VW, if
Oj and a | are unlike, then o;.; and a/,; must aso be unlike. Since /' =
1,.. ., n, with cyclic boundary conditions, thisimplies that either al pairs
(05, al) are like, or they are all unlike.

If they are like, then we are interested only in X{a ,b;c,d) for a= ¢
and b = d. From (7.3.4) and (7.3.11), all such values of X are

Xiike = 2i sinh 2L. (7.3.12a)
If they are unlike, thena=£ c and b ¥= d, and
Xun]ikc = -2i'ab sinh 2K. . (7.3.12b)

Substituting these expressions into (7.3.3), it follows that (7.3.3) is now
the same as the expression

(2i sinh 2L)" 8{o,, a[) 8{a, a).. 8{a,, a'n) (7.3.13)
+ (-2i sinh2/0" d{a,, -a) 6{a, -a).. <Ba, -an)

Thus V(K, L) W(K', U) is the matrix with elements (7.3.13). Let / be
the identity matrix of dimension 2", and R the matrix with elements

Ryg =0(or, -of) .60, -av). (7.3.14)
Then we see that we have established the matrix identity
V(K,L)W(L+UJI:, -K)
= (2i Snh2L)"l + (-2i snh2K)"R. (7.3.15)
Since '

=1, (7.3.16)
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the RHS of (7.3.15) is eadly inverted, so (7.3.15) could be used to obtain
the inverse of the matrix V(K, L). For this reason | shall sometimes call
it the 'inversion identity'.

74 Symmetry Relaions

In addition to the commutation and inversion properties established above,
we shdl need some smple symmetry properties of the transfer matrices.

Interchanging K with L, and each oj with each @], in (7.2.2) is equivaent
to interchanging V and W. This means that

W(K,L) = V'(L,K), (7.4.2)
and
V(K, L) W(K, L) =[V(L , K) W(L , K)]". (7.4.2)

Also, negating K and L in (7.22) is equivdent to negating
O\,...,ayora,...,an Thisimplies

V{-K-L)=R V(K ,L)=V(K,L)R, (7.4.3)

and smilarly for W.

Findly, let r be the number of unlike pairs of spins (g-+ ,aj), and s the
number of unlike pairs {a;, cry). Then r + sis the number of changes of
sign in the sequence a, a[, ai, a’,... , &, . Thismeansthat r + s must be
even and, from (7.2.2),

Vw = exp[(n - 2r) K + (« - 29) L] (7.4.9)

We are interested in the thermodynamic limit, when nislarge. It should
not matter how n becomes large, so we can restrict n to be even. This
dightly simplifies the following discussion, so from now on in this chapter
let us set

n=2p, (7.4.5)
where p is an integer.

The equation (7.4.4) can now be written as

VA = exp[+2rK £ 251], (7.4.6)

where r' and s are non-negative integers in the range (0, p). They are
either both even or both odd, so that RHS is unchanged by negating both
of exp (2K) and exp (2L). This means that the matrix V(K, L) satisfies

V(K+lm,L+hm) = V(K,L), (7.4.7)
and similarly for W.
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7.5 Commutation Relations for Transfer Matrices

The relation (7.3.5) is true if the condition (7.3.9) is satisfied. It will now
be shown that this implies that V(K, L), W(K, L), V{K', L"), W(K', L")
al commute.

Define C to be the 2" by 2" matrix with elements

Sd , 0, 80, ,a's)... 8o, a\). (75.1)

This operator C shifts the columns of the lattice to the I€ft or the right: for
instance, applying the transformation A—> C~'AC to any matrix A has the
effect of replacing the spinlabels 1,. . .,nby 2,...,n, 1. From (7.2.2) it
is obvious that this leaves V(K, L) and W(K, L) unchanged, .so
V(K,L)=C"V(K,L)C
W(K,L)=C-"W(K,L)C. (7.5.2)
Also, from (7.2.2),
WK, L) = V(K, L) C. (7.5.3)

Thus C, V(K, L), W(K, L) al commute with one another.
Now subgtitute (7.5.3) into (7.3.5). We obtain a once

V(K, L) V(K" L= V(K', L) V(K, L) (7.5.49)
provided (7.3.9) is satisfied, i.e.
snh 2K snh2L = snh2K' snh2V. (7.5.4b)

Thus V{K, L), V(K', L"), and hence W(K, L), W(K' ,L"), do dl com-
mute, as was asserted.

Using (7.5.3), the matrix W can be eliminated from the identity (7.3.15)
to give

V(K,L)V(L+ii3t,-K)C
= (2isinh2L)"/ + (-2i sSinh2AT)™, (7.5.5)

Finaly, from (7.3.14) the transformation A—>R~'AR is equivalent to
negating al spins oy ..., O,, a[,.. . , &, This leaves (7.2.2) unchanged,
0

V(K,L)=R-'V(K,L)R. (7.5.6)

Thus V(K, L) aso commutes with R. So does W(K, L).
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7.6 Functional Rdation for the Eigenvalues

Let :
k= (snh 2K snh2L)"™. (7.6.1)

Suppose kisagiven fixed real number, regard K and L as complex variables
subject to the constraint (7.6.1). Then an infinite set of transfer matrices
V(K, L) can be generated by so varying K and L.

From (7.5.4), dl such matrices commute. From (7.5.2) and (7.5.6) they
adso commute with C and R, and hence with W(K ,L). It follows that all
these matrices, for al values of K and L satisfying (7.6.1), have a common
st of eigenvectors.

Let x be one such eigenvector. It cannot depend on K or L, so long as
(7.6.1) is satidfied. It can (and does) depend on k, so can be written as
X(K).

Let v(K, L), ¢, r be the corresponding eigenvalues of V(K, L), C, R
Then, for al K, L sisfying (7.6.1),

V(K, L) x(K) = v(K, L) x(k)
Cx(K)=cx(Kk) (7.6.2)
Rx(k) =rx(k).

Snce C=R=/, the eigenvalues ¢, r are unimodular constants,
satisfying
c'=i’=1. (7.6.3)

Note that if K, L saisfy (7.6.1) so do the K', U defined by (7.3.11).
Now pre-multiply x{k) by both sides of (7.5.5). It follows a once that

v(K,L)v(L+iin, -K)c
= (2 gnh2L)" + (-2i sinh 2K)"r. (7.6.9)

The squares of the Ags in Section 7.2 are the eigenvalues of
V(K, L) W(K, L). From (7.5.3) and (7.6.2), x(Kk) is dso an eigenvector
of this matrix. Let A(K, L) be the corresponding A,. Then

A(K, L) = VK L)c. (7.6.5)

Thus A(K, L) can be defined to be

A(K,L) = v(K,L)c'. (7.6.6)
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Since ¢, and hence ¢, are constants, the relation (7.5.4) can therefore be
written in the c-independent form

A(K,L)A(L+im,-K)
= (2lsinh2L)" + (-2isinh27) V. (767)

7.7 EigenvduesA for T= T,

The equation (7.6.7) is afunctiond relation for the function A(K, L). This
relation is very useful: together with some ssimple anaytic properties of
A(K, L), it determines A(K, L) completely. There are of course many
solutions, corresponding to the different eigenvalues.

To seethis, it ishelpful to firg consider the case k = 1. Aswas remarked
in the previous chapter, and will later be shown in this chapter, thisis the
case when the temperature T has its critical value Te.

Parametrization of K, L
When k=, rather than working with K and L, it is convenient to use a
variable u defined by
snh2K =tanu, (7.7.0)
snh 2L = cot u.

The condition (7.6.1) is then automatically satisfied. If K and L are red
and positive, then u liesin the interval (0, \JZ).

Clearly A(K, L) can be thought of now as a function of u, so let us
writeitasA(M). Then (7.6.7) becomes

A(a) A(u+1JC) = (2 cot«)" + (-2/ tanu)"r. (7.7.2)

The usefulness of working with the variable u lies in the fact that not
only is (7.6.1) satisfied, but adso exp(x2X) and exp(x2L) are 'smple
functions of u. In fact

exp(2K) = (1 + Sshmycosu ,

exp(-2JC) = (1— sin Mycos U, (7.7.3)
exp(2L) = (1 + cos«)/sin u,

exp(-2L) = (1 — cosu)/sinw.
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To be more precise, these functions (regarding u as a complex variable)
have the following properties:

(a) They are single-valued.

(b) They are meromorphic, i.e. their only singularities are poles (in fact
smple poles).

(c) They are periodic, of period In.

The Form of the Function A(u)

Substituting the forms (7.7.3) of exp(x2K) and exp(x2L) into (7.4.6), it
is obvious that every matrix element V"p is of the form

VA% = H(u)/(sinu cosu)P, (7.7.4)

where t(u) is apolynomid in n u and cos u, of combined degree 2p. Thus
for any particular element, t{u) can be written as '

tu) = e?>cy + a€' + ... + cype’>). (7.7.5)

Now consider the firg vector equation in (7.6.2). Thisisredly 2" scaar
equations, any one of which can be regarded as expressing the eigenvalue
v(K, L) as a linear combination of the elements of the matrix V(K, L).
The coefficients are ratios of the elements of x{k). The crucia point to
remember is that (for the commutativity reasons discussed in Section 7.6)
these ratios depend only on k. They are independent of u.

Thus v(K, L) is a linear combination of functions of the form (7.7.4),
with constant coefficients. Clearly it dso must be of thisform. From (7.6.6),
so must A(K L), now caled A(«), be of this form.

This form can be smplified by usng the symmetry relations. Suppose
M isreplaced by u + n. From (7.7.3) thisis equivaent to replacing K and
L by -K + hni and -L + im."From (7.4.3) and (7.4.6), this is equivalent
to multiplying V by R. Writing v(K, L) as v(u), the first of the equations
(7.6.2) therefore becomes

V(K, L) Rx(K) = v(u + it) x(K), (7.7.6)

again using the M-independence of x(K).
Using the first and the last of the equations (7.6.2), it follows at once
that

v(u+ JI)=rv(u), (7.7.7)
and hence, from (7.6.6), .
A<+ W) = rA(«). (7.7.8)
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Thus A(w) is of the form given by (7.7.4), and satisfies the periodicity
relation (7.7.8). The polynomia in (7.7.5) therefore only has non-zero
even coefficientsif r = +1, odd ones if r = — 1. Factoring this polynomial,
the resulting expression for A(M) is

L
A(u) = p(sinucosu)~" 11 €n (u - uj), (7.7.99)

where p,U\,...,ui are constants (as yet unknown) and

I=2p ifr=+1 (7.7.9b)
=2p-lifr=-1.

Zeros of A(u)

Now substitute this expression for A(u) into the relation (7.7.2). This gives,
using (7.4.5)

p 0. sin(« - Uj) cos(w - My = 2% [cos®u + rsin*'u].  (7.7.10)

.This must be an identity, true for all values of u. It is most easily
understood by writing it in terms of the variables
z = exp(2i«), z-=exp(2i«). (7.7.11)
Then (7.7.10) becomes
!

p(/14)' fll.[(zz -zl =2-*z2 - [z + )P+ Kz - D). (7.7.12)

From (7.7.9b), both sides are polynomials of degree / in 7', so the
constants p, 2,. . . ,Z can indeed be chosen to ensure that (7.7.12) is
satisfied identically. Clearly 7,..,.Z are the / distinct zeros of the RHS,
which are readily found to be

Zj = -tan?(0,72), (7.7.13)
where, for; = 1,...,/,
fy=n{j-i)2p if r=1
= jtj/2p if r=-1. (7.7.14)

These Oy al lie within the interval (0, n). Define <fa,..., <f>i by
¢;=tIntan(6/2), /=',...,/. (7.7.15)
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Then, from (7.7.11) and (7.7.13),
a,=T\n-icpj, /=1,...,/. (7.7.16)

There are other solutions, but they correspond to incrementing u, by an
integer multiple of n. From (7.7.9a), thisleaves A(w) unchanged (to within
anirrelevant sign), so the only truly distinct solutions are given by (7.7.16).

Since the sign in (7.7.16) can be chosen independently for each value
of /, we appear to have 2' possible solutions. However, not quite al of
these are alowed.

Suppose M-> + i °°. Then from (7.7.3), exp(2K) and exp(-2L)-» 1.
However, from (7.4.7) the elements of the transfer matrices are unchanged
by negating exp(2K) and exp(2L). Thus

A(/oo) = A(-/00). (7.7.17)

From (7.7.9), this condition is automatically satisfied if r=-1. If r=
+1 it implies that

(« + ...+ uyp)/n = integer + \p, (7.7.18)

so only 2p - 1 of the signsin (7.7.16) can be chosen independently. For
both r = +1 and r = -1 there are therefore 2*~* eigenvalues A, as
expected.

Substituting the values (7.7.16) of the u, (7.7.9a) becomes

A(w) = p (sn u cos u)‘pjlzl sin(« + ify + \YjJi), (7.7.19)
wherevyi,. .., y/havevaues £1, andifr = +1,
Yi+ ....+Yp=2p-4xinteger. (7.7.20)

Clearly the constant p can now be evaluated (to within an irrelevant
sign) by substituting the expression (7.7.19) for A(u) into the identity
(7.7.2). | shall not proceed further with this calculation, sinceit is alimiting
case of that of the next section. The main point has been made: when
k = 1 the eigenvalues of VW are determined by the commutation relations
and the inversion identity (7.6.7), and can be calculated by ordinary
algebra. :

7.8 Eigenvalues A for T< T,

I have presented the solution for the case k = 1 in some detail because the
derivation can then be carried out solely in terms of elementary functions.
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There were three main steps.

(i) For the given value of k, find a parametrization of (7.6.1) so that
exp(x2K) and exp(x2L) are single-vaued meromorphic functions
of avariable u.

(i) Note that (7.4.6) implies that every element of Vis aso a sngle-
valued meromorphic function of u. From (7.6.2), so therefore is
any eigenvalue v(u), and hence A(«).

(iii) The zeros of A(M) must be contained in the zeros of the known
function on the RHS of (7.6.7). They can therefore be evaluated.
There will be many choices of the zeros, corresponding to different
eigenvalues. The normalization of A(M) can then be determined
(to within a sign) from (7.6.7).

Parametrization of K, L

Can this programme be used when Ti= T, i.e. & # 1? From (7.6.1), an
obvious firg step is to introduce an intermediate variable x such that

sinh 2K = x (78 %)
sinh2L = (kx)™.
Solving these equations for exp(2/Q and exp(2L) gives
exp(2/q =x+ (1 +x%y
exp(2L) = (k) [1 + (1 + k&¢H]. (7.8.2)

Thisis a parametrization of exp(2K) and exp(2L) satisfying (7.6.1), but
it is not single-vaued and meromorphic, due to the presence of the square
roots of 1 +>° and 1 + kA&

When k = 1 these can be eiminated by setting x = tan u, as in Section
7.7. Then 1 + X% is a perfect square, and exp(2A"), exp(2L) become mero-
morphic functions of u.

For general values of k there is no parametrization using elementary
functions that simultaneously makes 1 +x% and 1 + k> perfect squares.
However, such a parametrization can be made by using dliptic functions.
In Chapter 15 the meromorphic functions sn u, en u, dn u are defined and
shown to stisfy the relations (15.4.4) and (15.4.5), i.e.

enu= 1—s’u
dn’« = |-fc®sn’«. (7.8.3)
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Comparing (7.8.2) and (7.8.3), it is obvious that if we set
x= -isn(iu), (7.8.9)

then
exp(x2K) = eniu Fisniu,

exp(+2L) = UC' (dniu + l)/sniu. (7.85)

In (15.1.6) the functions sn, en, dn are expressed in terms of the theta
functions H, H, 6, 0,. From (7.8.5) and (7.8.3) it fallows that

exp(£2K) = [K Hxiiu) + m{iuM[KYju)\,
exp(x2L) = i [KMiu) £ @{iuH[kH{iu)]. (7.8.6)

The theta functions are entire (i.e. anaytic everywhere), so (7.8.6)
explicitly gives exp(x2£) and exp(x£2L) as ratios of entire functions of u,
i.e. as meromorphic functions.

These dliptic functions occur aso in solving the six-vertex and eight-
vertex modelsin the following chapters. Provided one has some knowledge
of elementary complex variable theory they are not at dl difficult to use;
in fact they are ddightfully easy. At this stage | suggest the reader looks
through Chapter 15, paying particular attention to the three theorems in
Sections 15.3. Once these are understood, dl the various identities that
follow are easily obtained.

From (7.8.1) and (7.8.4), the relation between the interaction coefficient
K and the parameter u can be written

sniu=gn2iK. (7.8.7)
From (15.5.7) and (15.5.8), setting a= ifi, it follows that
- 4B
“= ) U+ Ksinhig)’ (7.8.8)

so if Kand L axe real and positive, then uisrea, andO<u< I

If k=1, the integral (7.8.8) can be evaluated, giving the firg of the
equations (7.7.3). In fact, (7.8.6) reducesto (7.7.3) when k = |, and most
of the equations of this section then become precisaly those of Section 7.7.
In making such comparisons, note that if k= 1, then /= <» /' =In,
sniu=itanu, H(iu) «i 9nuand 0(i«) « cos u.

In Chapter 15 the dliptic functions are defined only for

0<*: <, (7.8.9)

so for definiteness it will be supposed in this section that thisis so, i.e. that
T< T.. In the next section this restriction will be removed.
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The Form of the Function A(u)

It is now quite straightforward to generalize the programme of Section 7.7,
as outlined at the beginning of this section. Step (i) has been performed
in equation (7.8.6). From this and (7.4.6) it is evident that every element
of Vis of the form

Voo = GO (7.8.10)
where

h(u) = H{u) O(w) (7.8.11)
and the ... in (7.8.10) denotes an entire function of u.

From (7.6.2) and (7.6.6), each eigenvalue A is alinear combination of
elements of V, with coefficients that depend on k but not on u. Writing
A asA(M), it follows from (7.8.10) that

AM=p ATy (7812

where again . . . stands for an entire function.

Now consider the effect of incrementing u by 21', and -2H, where/, /'
are the haf-period magnitudes of the dliptic functions. (This unconven-
tional notation, instead of K, K', is used to avoid confuson with the
interaction coefficients) From (15.2.5), incrementing u by 21' in (7.8.5)
is equivalent to replacing K, L by —K £\m, - L £\m; As was shown in
Section 7.7, this replaces A by rA where r (= £1) is the corresponding
eigenvalue of the spin-reversal matrix R.

Thus

A(u + 2/") = rA(u). (7.8.13)

Also from (15.2.5), incrementing u by —HI in (7.8.5) is equivaent to
replacing K, L by K+ im; L +\m." Snce r' + s in (7.4.6) is even, this
leaves the matrix elements of V unchanged, so

A(« - 2i) = A(w). (7.8.14)

Now we can use the vital theorem 15¢c of Section 15.3. From (7.8.13)
and (7.8.14), A(«) is doubly periodic, while from (7.8.12) it has 2p poles
per period rectangle. It follows that

2

A(M) = pe” [h(u]-P n H(iu - iu), (7.8.15)

where u\,. . . , U" are the zeros of A(M) within a period rectangle, p and
A are constants, and A must be chosen to ensure (7.8.13) and (7.8.14).
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This expression (7.8.15) is the required generdization of (7.7.9). Step
(i) is completed.

Zeros of A(a)

The next step is to determine the zeros W\,. . . , Uy, of A(w) from the
identity (7.6.7).

First replace u by u +/' in (7.8.5). Usng (15.2.6) this is found to be
equivaent to replacing K, L by L + im, —K. Usng aso (7.8.1) and
(7.8.4), the identity (7.6.7) therefore becomes

AM)AH + /)= iTZ_V T +(-2 S/Q)">e. (7.8.16)
Ve s lit

This is the generdization of (7.7.2). Using (7.4.5), (7.8.11), (7.8.15)
and (15.1.6), it becomes

Fid
f? exp[A(2« + /I)],:-L::L H(iu - iu,) H(iu - iu + W)

= (4K)P[0%(u) + rH*P(u)], (7.8.17)
which is the generdization of (7.7.10).
The zeros of the RHS of (7.8.17) occur when
(ksn*iu)® + r = 0. (7.8.18)

The expression on the LHS of (7.8.18) is a doubly periodic function of iu,
with periods 21, 2iV. It has one pole, of order 4p, per period rectangle,
s0 from theorem 15b it has 4p zeros per period rectangle.

To locate these zeros, set

u=-hl'-i(j>. (7819
Then, using (15.4.12), (7.8.18) becomes
exp[4*>Am(0)] +r = 0. (7.8.20)

Define 6; asin (7.7.14). Then (7.8.20) will certainly be sdtified if 0 =
<j>j,where
Am(¢y) = 6>,-i", j=I,...2p. (7.8.21)

As is shown in Section 15.4, the function Am(0) is red and increases
monatonicaly from -\n to \K as </> increases from -/ to /. Since
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0<6j™n, (7.8.21) therefore has a unique rea solution, with -/<
<j>i s£/. Solutions with different values of’; are distinct.

From (15.2.6), if u is a solution of (7.8.18), then so is « +/'. Thus
(7.8.18) has 4p solutions

u= 7 —ig, j=1,...,2p. (7.8.22)

To moduli 2V, 2il these are distinct, so we have found the 4p zeros of the
RHS of (7.8.17). Their locations in the iu-plane are shown in Fig. 7.3.

Fig. 7.3. The locations in the complex tw-plane of the 47 zeros of the RHS of

(7.8.17), namely iu =(pj~+ ii/'. (Herep is 3.) The crosss are the zeros for r =

+ 1; the circles are the zeros for r = - 1. The broken line is the perimeter of the
period rectangle.

ThelL HSof (7.8.17) has4p zeros, in pairs uy and «.—/*. Thusthe general
solution of (7.8.17) is

Uj = -i YjI' - i<tj, (7.8.23)
where
vi==l, =1,...,2p. (7.8.24)

This is the generalization of (7.7.16). (The value ;=2p when r — -1 is
excluded in Section 7.7, because when k-*I, | and (® then tend to
infinity.)

Asin Section 7.7, not all solutions of (7.8.23) are alowed. The reason
for thisis actualy easier to see now than it was then: theorem 15c imposes
the restriction (15.3.7) on the locations of the zeros of a doubly periodic
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function. Applied to equations (7.8.12)-(7.8.15), this restriction becomes
Ui + .tup = (p+ 2V 1" +ifi(l - ) + 21] 1, (7.8.25)

where / and /' are integers.

Ifr=+1,theQSoccurinpairs(0, - (j>).1fr=- 1, they al do so except
for (/>,=0and 02, =/. Using (7.8.23), the imaginary part of (7.8.25) is
therefore satisfied, while the rea part gives, forr = £1,

Yi+eee+Y2D=2p-4Xinteger, (7.8.26)

asin (7.7.20). Thusr and al but one y: can be chosen independently, giving
2°P = 2" eigenvalues. This is the expected number, since V and W are 2"
by 2" matrices.
Subgtituting these results for u\,. .. , u-" into (7.8.15), A can be chosen
to ensure (7.8.13) and (7.8.14), giving
»

A(U) = plAi9l-" Il e Hfiu -fy+U ') « (7.8.27)

This result can be dightly smplified by squaring both sides and using the
relation (15.2.4) between H{u + W) and @(«), giving

)
H(iu - ¢+ 3iy I')O@u - ;= 4iyI')
2 - /] 4 /] i
Au)=p ;l:Il Hiw) (i) , (7.8.28)
where p' is another constant.
Using (15.1.6), this can in turn be written as

A% (M) = D}I:ll &sn@M-ft+1iy,/"), (7.8.29)
where D isindependent of yi, « ¢ « > y> being given by

2
11 O(iu — ¢+ §il')O(iu — ¢;— Hl')
P i H(in) OGu) '
From (15.2.4) and (15,2.3), D is a doubly periodic function of iu, with

poles of order 2p at iu= 0 and /', and 4p smple zeros, at iu = ty + HI',
j=1,...,2p. From (7.8.18)-(7.8.22), one such function is

D= (7.8.30)

(fran? iuf + r

T sni)® (77831)’

The ratio of D to the expression (7.8.31) is therefore an entire doubly
periodic function of iu. From theorem 15g, it is therefore a constant.
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To within a normalization constant, therefore, the term D in (7.8.29)
can be replaced by the expression (7.8.31). The normdization constant
can now easily be obtained from (7.8.16), giving

AZ(M) = T[E—ze\l i r2sn iU)z"}

\\ksniuj
P
xp_flclm(iu—<t>j +hiyjl, (7.8.32)
where
r=+1 ifr=+1,
=i ifr=-1. (7.8.33)

7.9 General Expressons for the Eigenvalues

Having used dliptic functions, and in particular their factorisation theorem
15¢c, to evauate the eigenvaues A, we can now eliminate them. From
(7.8.21), (15.4.12), (15.4.4) and (15.4.5),

Ksn(g;— 4il') = —explif) (7.9.1)
en(0; -HI') an((fr - |i /) = -ik* expii8,)c,, (7.9.2)

where
Cj = k~' (1 + K- 2k c0s20,)*. (7.9.3)

Using the addition formula (15.4.21), it follows that
Ktsn(iu — ¢; +3il')
_eniudniu-ikCsiu

(i) - K exp(i6)) S7 (10 (7:94)
Also, from (7.8.5),

sinh2A = —jsniu

cosh 2K = eniu

sinh 2L =i/(ksn M)

cosh 2L = i dn iulfc n i), (7.9.5)

while from (15.2.6)
**qiu -<j>-iH") = [fsn(iu -<pj + hi/)]* (7.9.6)
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Using theserelations, (7.8.32) can bewritten (dropping the explicit depend-
ence of A on u) as
p
a2 = 1(-4)"[(sinh 2LfP + r (sinh 2K)??] ,-91 (w)", (7.9.7)

where

__ cosh 2K cosh 2L + ¢
' exp(;0y) Snh 2tf + exp(-/0;) sinh 2L°

798

Analytic Continuation to T~ T,

This result has only been abtained for k < 1, since only then can the dliptic
function definitions of Chapter 15 be used. However, for finite p each
eigenvalue must be an agebraic function of exp(2K) and exp(2L), so
(7.9.7) can be andytically continued to k3= 1, i.e. to 1? T..

In doing this, the only difficulty is the sgn of each c,-. Provided
0 < dj<n there is no problem:; (7.9.3) is positive for k< 1 and tends to
a drictly positive limit as k — 1, so the analytic continuation of (7.9.3) is
the positive square root.

On the other hand, if r= -1 and / = 2p, then 6j = Jt and, for k<\,
(7.9.3) gives

cp=(1-k)k ifr=-1. (7.9.9)

Thistendsto zero ask—* 1, and its analytic continuation is clearly negative
iovk>\.

Thus the formulae (7.9.7), (7.9.8) and (7.9.3) apply not only for k <
1, but dso for k” 1, provided that the positive sign is chosen in (7.9.3)
except whenr = -1,/ = 2p and kM.

Counting of the Eigenvalues

One disadvantage of this method, aswith any method that does not depend
on an explicit representation of the transfer matrix, is that it only proves
that any eigenvalue of VW must be of the form (7.9.7), with an appropriate
choice of yi,. . ., Y2 It does not tell us how many eigenvalues there are
for a particular choice of ft,. . ., Yip, if indeed there are any.

There are two ways round this problem: one can consider a low- or
high-temperature limit, when at least some of the eigenvalues (notably the
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largest) can easily be uniquely identified, or one can compare with a direct
calculation using spinor operators (Kaufman, 1949). One does in fact find
that for each choice of r and yu ¢ « « > Y2p stisfying (7.8.26), there is one
and only one eigenvalue given by (7.9.7).

Maximum Eigenvalue and the Free Energy

In the thermodynamic limit the partition function Z is given by (7.2.5).
Since the lattice has m rows of 2p sites, the total number A' of sitesis Imp.
From (1.7.6) and (7.2.5), the free energy/per dite is therefore given by

ke T= (2pY M NA iy, (7.9.10)

where kg is Boltzmann's constant and A« is the eigenvalue of greatest
modulus.
From (7.6.1), (7.9.3) and (7.9.8), for K and L real,

. _ cosh2”cosh2L . ¢ R
™ Tcosh 2Ecosh 2L - ¢, K'-y-ii)

while for K and L positive,
0«c,*£ cosh 2K cosh 2L. (7.9.12)

It follows that |ju] 2s 1, so the RHS of (7.9.7) is maximised by choosing
Yi=...=Yp= + 1, which is dlowed by (7.8.26). The product of the
denominators of fi\,. . . , nip in (7.9.7), as given by (7.9.8), can then be
caculated using (7.7.14). It exactly cances with the leading factors in
(7.9.7), except AP, giving

2

ALx = jI;|12(cosh 2K cosh 2L + ¢j). (7.9.13)

This is true for either r=+1orr=-1. However, from the Perron-
Frobenius theorem (Gantmacher, 1959, p. 53) the maximum eigenvalue
of amatrix with al positive entries corresponds to an eigenvector with al
positive entries. From (7.6.2), this can only happen if r = +1.

Define

F(6) = In{2[cosh 2K cosh 2L + k~' (1 + k* - 2k cos20)*]}. (7.9.14)

Then from (7.7.14), (7.9.3) and (7.9.13), setting r = +1, it follows that

2
10 Amex = 3 2 F[2O)302] - (7.9.15)
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This is a sum over iF(dj), where 6y . . . , d" are uniformly distributed
over the interval (0, n). In the limit of p large it therefore becomes the
usual definition of the integral of iF(0), divided by the sub-interval length
ni2p. Thus (7.9.10) becomes

flkeT = (M) JFE) dd. (7.9.16)

This is the principal result of this chapter: the free energy of the square
lattice Ising model in the thermodynamic limit.

7.10 Next-Largest Eigenvalues: Interfacial Tension, Correlation Length
and Magnetization for T <T¢

In this section it will usually be supposed that 0 <k < 1.

Asymptotic Degeneracy and Interfacial Tension

What is the next-largest eigenvalue of the transfer matrix? Clearly one
candidate is Ai, the eigenvalue obtained by setting r=-1,y;=...
=YTp=+1. From (7.9.13), (7.9.14), (7.9.3) and (7.7.14), thisis given by

2p

InAi =\ 2 F(7ijl2p) ifjksl. (7.10.1)
J-

The two sums in (7.9.15) and (7.10.1) differ only by terms that are
exponentially small when/? is large. To see this, Fourier anayse F(0):

00

F(6)= 2 amcos2md. (7.10.2)
m=0

Now substitute this expression for F(d) into (7.9.15) and (7.10.1) and
interchange the j and m summations. The / summation is then easily
performed, giving

INAnax = P(@0 = @p+ e, = ar+...)
INAi =plag+ ap+at+at+...). (7.10.3)

This transformation is a specia case of the Poisson summation formula
(Courant and Hilbert, 1953, Vol. 1, p. 76). Itisidealy suited to evaluating
Anmax and Ai for large p, since the a,, usualy tend exponentialy to zero
with increasing \mi.
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To see this, set
z = exp(2i0) (7.10.9)

and consider F(d), given by (7.9.14), as a function of z It has branch
p%i_nts a z=0, k, kv and « and is analytic in the annulus k < \A <
- '

The Fourier expansion (7.10.2) can be written

F6) =i " an(Z" + z=M), (7.10.5)
m=0

which is plainly a Laurent series. Since Fis analytic on \2A = 1, this series
converges. More strongly, since F is analytic in the annulus k < \2 <
ATY, and singular at z = k, k~', the series (7.10.5) must converge for k <
|2 <k~' and diverge when z = k or AT%. From the ratio test for series
convergence, it follows at once that

ank" asm-»°°, (7.10.6)

Since Ai < Anax, it now follows from (7.10.3) that when p is large
AlAn = 1 - €(CP). (7.10.7)

For k< 1, the two largest eigenvalues A and A, are therefore asymp-
totically degenerate, in that their ratio differs from unity by terms that
vanish exponentially with the width of the lattice.

The rate of this exponential decay is a measure of the interfacial tension
s, as can be seen by the following argument (Fisher, 1969).

Consider the quantity

Z'n = Trace (VW)"R , (7.10.8)

where V, W are the row-to-row transfer matrices and R is the spin reversal
operator defined by (7.3.14). Asin (7.2.3), this is the partition function
of a lattice of m rows, but with the anti-cyclic condition that the spins in
the top row are the reverse of those in the bottom row.

In an ordered ferromagnetic state the spins are either al mostly up, or
dl mostly down, within a region. Suppose that near the bottom of the
lattice they are mostly up. Then from the anti-cyclic boundary condition,
near the top of the lattice they must be mostly down, as in Fig. 7.4.

Somewhere in between, there must be a line running across the width
of the lattice separating the domains of mostly up and mostly down spins.
There are n sites per row, so this line will give an extra contribution ns to
the free energy, where s is the interfacia tension per unit length. Thus

KsTINZ'n = Nf+ns, (7.10.9)
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where/ is the usual free energy per site of the lattice, given by (1.7.6).
Thus
Z'NIZy = exp(-ngkgT). (7.10.10q)

This is not quite right: it is the correct contribution to the partition
function of a separation line but there are many such lines, as can be seen
by considering the zero-temperature limit. In this, dl spins above the
separation line must be down and spins below it must be up, and the line
must be of length 2n lattice spaces, which is the minimum possible length.

+ + = + + +

Fig. 7.4. The two domains induced at low temperatures by requiring that the spins

in the top row be the reverse of those in the bottom row. Below the separation line

(shown dotted), there is a 'sea’ of up-spins containing 'islands’ of down spins.
"~ Above the separation line the reverse is true.

All such arrangements minimize the energy under the given boundary
conditions, so are equdly likely. leen the face in which the left-hand
end, of the line I|es, there are (2n)!/(n!)? such lines: this is the number of
walks of equal length that one may take in a rectangular-grid city to get
from Olh Street and fifh Avenue to nth Street and nth Avenue. The RHS
Qf (7 10. 10a) should therefore be multiplied by this factor, but since for
H largeitis effectively an exponentlal it can be absorbed into the definition
o 5.

On the other hand, since there are m rows, there are \m faces in which
the left-hand end of the separation line may lie. Thus the RHS of (7.10.10a)
should aso be multiplied by this factor. This cannot be absorbed into s,
and clearly persists for non-zero temperatures, so (7.10.10a) should be
replaced by

Z'N[Zy = imexp(-ng/kgT). (7.10.10b)

From (7.2.3) and (7.10.8), it follows that
imexpi-ng/ksT) =" ~ f f fe (7-10.12)
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Since R commutes with V and W, this result can in turn be written as
\m exp(-ng/kgT) = 2 rffl /2 Af (7.10.12)

where the Ay? are the eigenvalues of VW, and the r; the corresponding
eigenvalues of R

When mislarge only the two largest eigenvalues A s and Ai contribute
to the sums in (7.10.12). The corresponding eigenvalues of R are +1 and
—1

A" —A"
\mexp(-ns/ksT) = —L4——%t o (7-10.13)
Amax + Ai
Set
e=I-A 1/ABUBv (71014)
then (7.10.13) becomes
\ mep(nsll) = { - —="N-2Z Ne (7-10.15)

+

From (7.10.7), evanishes exponentialy with n. The definition (7.10.9)
of sis sengible only if m and n are large and of the same order, in which
case eis effectively small in (7.10.15), so

imexp(-ng/ksT) =\me. (7.10.16)
From this and (7.10.14), it follows that
Ai/AN =1 -0 {exp(-ngksT)}. (7.10.17)

Thisis agenera result, applicable to any two-dimensional ferromagnetic
system with T< T,. Comparing it with (7.10.7), we see that for the Ising
model

exp(-gksT) = k. (7.10.18)

Thus the interfacid tension s is large and positive at low temperatures
(k™ 1), decreases with increasing temperature (increasing k), and vanishes
at the critica temperature (k= 1).

Corrdation Length

After Apnax and Ai, what is the next-largest eigenvalue of (7W)'? From
(7.9.7) and (7.8.26), thisis obtained by negating the two y;s corresponding
to the smallest jujs. For r = +1, from (7.9.11), (7.9.3) and (7.7.14), the
next-largest eigenvalues A, therefore corresponds to

yi=yh=-i, Yi= ..= Y2ei=+i, (7.10.19)
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and
Ao/ Amax=+(W2prt. (7.10.20)

Since @ =jr-0i, it folows from (7.9.8) that \i2p=—\if, so from
(7.9.112),

A, ~coshlK cosh?2L - g

Amax  Cosh 2K cosh 2L + ci

71021>
<

.. >

choosing for convenience the lower sign in (7.10.20).
In the limit of p large, Q\ tends to zero and ¢\ to |1 - K\Ik, so

Ay = . 4, (7.10.22)

where
A=oosh2K cosh 20 — |1 — k|k PR
cosh 2K cosh2L + |1 - KIk' TKITMAY

A similar argument applies for r=-1. If A, is now taken to be the
next-largest eigenvalue for r = - 1, then when p is large we again obtain
the result (7.10.22), to within an irrelevant sign.

Thus dl eigenvalues A; other then A and Ai satisfy the inequality (for
p’c)

[Ay[FEAA max, (7.10.24)
where 0 < A < 1 provided k £ 1. This result justifies the smplification of
(7.10.12) to (7.10.13).

Provided all the eigenvalues Ay are real, the ratio A2/A« is related to
the correlation length f. To see this, let P and Q be two sites on the lattice,
and ap, OQ the corresponding spins. Then from (1.4.4) and (1.8.1) the
expectation value of the product OpOQ is

(<JpOg) ="ZN* 2 OpOg (.gxp K2ofy+IE otak] ,  (7.10.25)
a ) ox J
where the outer sum is over al values of al spins, and the inner sums have
the same meanings as in (6.2.1).
Using the same argument that led to (7.2.1), (7.10.25) can be written

- -
(opog) = Zjf'2 2 «es 2/ OPOQ VAfc
*o ¥ *5 (7.10.26)

X Wﬂ'm Vm’w ¢ . oa W%'ﬁ .

Let (j> beaset of « spins{ oi,..., a,} and let s\ be the 2" by 2" diagonal
matrix with entries
(*IW =0 if<t>'t<p (7.10.27) .

=0 lf¢‘=¢
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Then if P, Q are the firg sites in rows x and y respectively, where x and
y are odd, (7.10.26) can be written as

(0p0g) = ZN' Trace VW. . . VWs, VW. . .
X VWSVW.. . VW, (7.10.28)
where S occurs before the *th and _yth matrices V. Thus
(0p00) = ZN! Trace (VW)" 1141 {ywW)r-?
X 8 (VW)m=y+0), (7.10.29)

The argument now closdy parallels that of Section 2.2 for the one-
dimensional I1sing model. Let U be the matrix of eigenvectors of VW, and
D the corresponding diagonal matrix with diagona elements Djj = A,,
j =1,2,3,.... Then for dl integers X,

(VWW)*? = uD*U-~. © (7.10.30)
Using this result, (7.10.29) can be written
(800g) = Z~n, S 2 % Al hAIY (7.10.31)
where
t, = {ir'sV),. (7.10.32)

Now let m—* °°. Thei summation in (7.10.31) isthen dominated by the
value for which A; = Aa¢ Cdl this vaue 0. Using (7.2.5) it follows that

(0pOo) = 2 to, (Aj/Amexy-tj0. (7.10.33)

From (7.3.14) and (7.10.27) it is apparent that
SR = -Rsy (7.10.34)

so whereas the transfer matrix VW commutes with R, the spin operator
s anti-commutes with it.
Since R? =/, thereis a representation in which

R = (I O)
o -1/ <7_1035

Using the commutation and anti-commutation properties mentioned above,
it follows that V, Wand U are dl block-diagondl, i.e. of the form

2o
O

>
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while si, and hence U~*S U, is of the form

(#)

It follows at once that

tij = 0 unless r; = -ry (7.10.36)
where r; and r: are the eigenvalues of R corresponding to A, and Ay,
respectively.

Since Ao = A corresponds to ro = +1, this implies that the f{f and tp
in (7.10.33) vanish unless r,-=—1. The summation can therefore be
restricted to such values of /, giving

(0p0g) = foi'io(Ai/AmaxF~* + t€20(A/Ama)>"* + . ... (7.10.37)

Inthelimit n-*e «, Ai = AL Provided A,, As, . . . aredl real, it follows

that for y - x large
(0r0Q) = ttw + €[ (AdfAmay-]. (7.10.38)

The correlation function geg is defined in (1.7.21), which can normally
be written in the form

gro = (0p0g) - lim (0pOp), (7.10.39)

i.e. gpg is the difference between (0p0g) and its limiting value for P, Q far

apart.
With this definition, (7.10.38) implies that for y — x large

gPQ~(A2/Amax)>A- (7.10.40)

Sincey - x is the distance between sites P and Q, the definition (1.7.24)
of the correlation length § gives

rt = In(AmadAr). (7.10.41)

This is a quite general result, but it is not immediately applicable to the
present problem. To see this, note that Q is vertically above P, so gpqg is
the vertical correlation function on the diagonal square lattice. If K and
L areinterchanged, this must become the same as the horizontal correlation
function. However, if P and Q lie in the same row, at positions 1 and ;'
then repeating the argument of (7.10.26)-(7.10.33) gives

©0:0Q) = (U sg !/)«,. (7.10.42)
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Here U is the matrix of eigenvectors of VW, which we have seen depend
onKand L only viak. Thusgeq and £ must aso depend only on k, whereas
from (7.10.22, 23) thisis not true of AnadAo.

The reason for this apparent contradiction is that the transfer matrix
VWi s not in general symmetric, S0 its eigenvalues are not dl real. The
eigenvalue A2 is merely the largest of aband of complex elgenvalues, with
different arguments. In the limit of n large this band becomes continuous
and the; = 2 contribution to (7.10.33) can be cancelled by the contributions
of eigenvalues arbitrarily close in modulus to A,, but with different argu-
ments. Johnson et al. (1972a, 1973) have explicitly found such a phenom-
enon for the eight-vertex model discussed in Chapter 10.

Fortunately in this case it is easy to retrieve the situation, since § can
depend only on k. For a given value of k, consider the isotropic case
K= L. From (7.4.2), the transfer matrix is then symmetric, o its eigen-
vaues are rea and the formula (7.10.41) is valid. Using (7.6.1) and
(7.10.22, 23), it fallows that, for 0< k< 1,

r' = -Infc. (7.10.43)

Comparing this result with (7.10.18), we see that the interfacial tension
s and the correlation length 8§ satify the smple exact relation

s$=kgT. (7.10.44)

Spontaneous Magnetization

From (1.7.22), the magnetization M is given by
M = (op). (7.10.45)

Care has to be taken in evaluating this average for T<Tc and H = 0.
For the finite zero-field system of this chapter, (0>) must be zero, since for
every state in which 0> = +1, there is an equaly likely state (obtained by
reversing al spins) in which op = — 1.

What should be doneis clear from Fig. 1.1: when H = 0 the magnetization
can take any value between M, and -M,, where the spontaneous mag-
netization M, is defined by

Mo= lim (op); (7.10.46)
i.e. (0p) isto be evauated for H> 0 in the thermodynamic limit, then H

dlowed to tend to zero.
Now for H>0 it is certainly true that the correlation gpq defined by
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(1.7.21) tends to zero as the P and Q become far apart. Since the system
is trandation invariant, (>) = (erg), o it follows that
(0= lim  (0p0g). (7.10.47)
y X—* 00
This can be taken as a definition of (0>) for H> 0. Letting H-*0, it
then provides a definition of M,, so from (7.10.38), (7.10.46) and (7.10.47),

Mo = (ttw). (7.10.48)

The calculation of this quantity is quite technical and | refer the reader
to the excellent book by McCoy and Wu (1973). One property, however,
can readily be deduced from the above: the eigenvectors of VW, and hence
the matrix U, depend on K and L only via k. From (7.10.32) therefore,
so do the Uj. Equation (7.10.48) therefore gives

Mo = function of konly . (7.10.49)

In fact, it was found by Onsager in 1949, and a proof published by Yang
in 1952, that

Mo = (I-A:3)Y8 = A4 (7.10.50)

In view of the difficulty of the calculation, this is an amazingly smple
result. It is curious that no smple way has been found to derive it. A
derivation, usng corner transfer matrices and applicable to the more
genera eight-vertex model, is given in Section 13.7.

7.11 Next-Largest Eigenvalue and Correlation Length for T> T,

As in the previous section, let Aj be the maximum eigenvalue for
r = —1, but now suppose that k > 1.

From (7.9.9), ¢y, is now negative. The formula (7.10.1) would still be
true if F{n) were defined by (7.9.14) with the sguare root negated, but it
is more sensible to keep the square root positive for dl 6, in which case
the term/ = 2p in (7.10.1) must be corrected to give

InAi =ilni4 + JEF(ji//2p), (7.11.1)
y=i

using the definition (7.10.23) of A.
The argument of equations (7.10.2)-(7.10.6) can again be used to show
that for large p the summations in (7.9.15) and (7.11.1) differ by expo-
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nentialy small terms. The only difference is that now the annulus of
analyticity of F(d) is k! <\2 < k, so am ~ k=™
Subtracting (7.9.15) from (7.11.1), it follows that tor p large

AdAmax = A (7.11.2)

Since A < 1, Ai is therefore no longer asymptotically degenerate with
Anmax, and from (7.10.13) there is no interfacial tension.

It is «ill true that al other eigenvalues satisfy (7.10.24), so they are less
than Ai. If the eigenvalues of VW are dll real, then the formula (7.10.33)
gives, fory - x large,

(apag)~AY-Y. (7.11.3)

As in the previous section, this result can only be true for K= L, since
(0p OQ) is afunction only of k. From (1.7.21) and (1.7.24) the correlation
length § is therefore given by

§=2/InA: (7.11.4)

for dl K, L such that k> 1.

This is smadl at high temperatures (k large), increases with decreasing
temperature (decreasing k), and becomesinfinite at the critical temperature
(k = 1). Note that the high-temperature formula (7.11.4) differs from the
low-temperature one (7.10.43) in afactor of -2. There is no spontaneous
magnetization.

7.12 Critical Behaviour

From (7.6.1) and (6.2.2),
k = [sinh(27/A:gr) sinh(2J'/kgT)] -2, (7.12.1)

where / and /' are the interaction energies of the Ising model in the two
directions. Normally, / and./" are regarded as fixed, and the temperature
T as avariable.

As T increases monotonicaly from O to °°, so does k. Thus k is itsdf
a measure of the temperature.

Free Energy and the Exponent a

The free energy/is given by (7.9.14) and (7.9.16). For positive k and real
6, F{6) is an analytic function not only of 6, but also of cosh 2K cosh 2L
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and k, except only when 6 = 0 and k= 1. Thus/is an analytic function of
K and L, except possibly when k = 1.

Since the sguare root in (7.9.14) vanishes when 6= 0 and k= 1, the
dominant singular behaviour of/is given by expanding F(6) in powers of
this square root and retaining only the firg two terms, i.e. setting

F(6) = In(2 cosh 2ATaxh 2L)
+ /r'sech2£sech2L (1 + K? - 2&cos20)*.  (7.12.2)

Substituting this into (7.9.16), the contribution of the firg term to / is
analytic even a k = 1, so the dominant singular part fs of / is given only
by the second term. Using the relation cos20 = 2 cos0 - 1 and changing
the integration variable from 6 to \n - 6, it is found that

_f’!kBT=jtkcoshZKcosh_2LE(k‘)' (7.12.3)
where
M =2V(1 +K) (7.12.4)
and E(K) is the complete dliptic integral of the second kind of modulus
k:
jilr2
E(k) =J' (I-fc?sin?0)'dO. (7.12.5)
o _

Near k= 1 this integral satidfies the approximate formula (Gradshteyn
and Ryzhik, 1965, Paragraph 8.114.3)

EK) ~1+i(1-K)In16/( - K], (7.12.6)
so from (7.12.3), again neglecting analytic contributions to/,
_fs’kB - : m 1+ k’ . (7127)
2rAchs 2 "~ ko L 1 -k

Clearly, /isin fact singular at k= 1.

A critical temperature can be defned either as a value of T for which
/is asingular function, or one at which the spontaneous magnetization or
interfacial tension vanishes, or one at which the correlation length f
becomes infinite. By any of these criteria, it is now evident that the square
lattice Isng model has one and only one critical temperature T, given by
k= lie

smh(2J/ksT,) smh(2J'/kgT,) = 1. (7.12.8)

Near T= T, k- 1lisproportional to T- T.. Thus the definition (1.1.3)
can be replaced by

t=k-\, (7.12.9)
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and (7.12.7) gives
fs ocf 1nt]. (7.12.10)
This result can be written as

f oct?lim 1- 0=

a-»0 a
Comparing this with the definitions (1.7.7)—(1.7.9) of u, C and the critical
exponents a and a“, we see that in this limiting sense

a=a = Q. (7.12.12)

(7.12.11)

Other Exponents

From (7.10.18), (7.10.50), (7.10.43) and (7.11.4), near T=Tc the inter-
facial tension s, the spontaneous magnetization M,, and the correlation
length § behave as

s~t, Mo~(-t)" asf->0", (7.12.13)
E~ |t ast—>0".
Comparing these results with (1.7.34), (1.1.4) and (1.7.25), we see that
the corresponding exponents (i, /3, v, V' exist and are given by
p=l, 0=h, v=v = | (7.12.14)

The scaling relations (1.2.15) and (1.2.16) are therefore satisfied.

Since the two-dimensional 1sing model has only been solved in zero field
(H=0), a complete test of scaling is not possible. Even so, there is a
wealth of numerical results (e.g. Sykes et al., 1973b; Domb, 1974; Baxter
and Enting, 1979) and of mathematical theorems applicable to the model
in afield. For instance, Abraham (1973) has rigoroudly proved that

y=7/4, (7.12.15)

in agreement with (1.2.14). There is no reason to suppose that the scaling
hypothesis is not satisfied. In particular the exponent 6 defined by (1.1.5)
is presumably given by

6=15. (7.12.16)

7.13 Parametrized Star - Triangle Relation

In the above working | have delayed introducing eliptic functions for as
long as possible: until Section 7.8. There they were needed in order to
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express exp(2K), exp(2L) as meromorphic functions of some variable u,
while satisfying (7.6.1) for k independent of u.

This equation (7.6.1) is the ‘commutation condition’: two transfer mat-
rices with the same value of k, but different values of u, commute. This
was established in the firg part of Section 7.3, using the star - triangle
relation (6.4.4), (6.4.5). In fact (7.6.1) is merely a re-interpretation of
(6.4.13).

Thus it would have been perfectly natural to have introduced elliptic
functions as early as Section 6.4, so as to obtain a parametrization of
(6.4.13), and indeed of the full star - triangle relations (6.4.8).

Onsager (1944, pp. 135 and 144) noted that this was an obvious thing
to do: in Section 6.4 the K, K;, KM Ly L,, Lz satisfy relations similar to
those of hyperbolic trigonometry (Coxeter, 1947). It is well known that
these can be smplified by using dliptic functions (Greenhill, 1892, Para-
graph 129): Onsager calls this a 'uniformizing substitution’. The resulting
identities are very smple and have analogues in other models: let us
therefore not leave the Ising model without noting them.

For/ =1, 2, 3, let Ky L; in Section 6.4 be given by (7.8.5), with K, L,
u replaced by Kj, Lj, M.. Then (6.4.13) is automatically satisfied.

Substituting these expressions for K\,. . . , L3 into (6.4.14) and (6.4.15)
gives
R? = -2i/(K¥ sniu, sniup sn/«s), (7.13.2)

—isniu\ eniu, en2Vi - eniu\ sniu, sAms = k~' dniu\. (7.13.2)

From (15.2.5), the functions snu, en u, dn u are al dtrictly periodic, of
periods 4/ and AW. Comparing (7.13.2) with the formula (15.4.22), it
follows that one set of solutions of (7.13.2) is

Mi=(An+ 1)/ - U - «g+ Aiml, (7.13.39)

for al integers m, n.

From (15.2.5), (7.13.2) is unchanged by negating u, and Ms;, or by
negating u, and incrementing ws by 21' + HI, or by interchanging u, and
Ms. From (7.13.3a), (7.13.2) is therefore aso satisfied by

Mi = (An+ 1) /' + M, + Mg + Aiml,
=(An- 1)/ + Up- M3+ (Am- 2) il, (7.13.3b)
= (4n- 1)/' + M3-u,+(4/n-2)i/.

The difference between the RHS and LHS of (7.13.2) is a periodic
function of iu\, with periods Al,AW. Within each period rectangle it has
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four poles, at iui = £H', +U' + 21. From the theorem 15b it therefore has
just four zeros per such period rectangle. These are dl accounted for by
(7.13.3), so this is the complete set of solutions of (7.13.2).

In addition to (6.4.15), there are two other relations obtained by per-
muting the suffixes 1, 2, 3, i.e. permuting u, U,, Uz in (7.13.2). The solution
(7.13.34) is unchanged by this, but those in (7.13.3b) are not. The correct
solution is therefore (7.13.3a).

From (7.8.5), incrementing u\ by 41' or Ail leaves K* L\ unchanged.
Without loss of generality one can therefore take the solution of (7.13.2)
to be

Mi + M+Mz=/". (7.13.49)

The relations (6.4.8) are now satisfied.

Operator Form

Now let us look at the operator form (6.4.25) of the star - triangle relation.
The operators [/; are functlons of K, L, and, from (6.4.13), every operator
has the same value k~' of sinh K sinh L. Regarding k as constant, they are
therefore functions of the single variable u in (7.8.5).

The middle operator has arguments L, K,, rather than K,, L,. From
(15.2.6) and (15.2.5), interchanging K and L is equivalent to replacing u
by /' - u. Thus u, should be replaced by /' - u,, which from (7.13.4) is
« + Mas. Writing [/, as a function of H, rather than K and L, the equation
(6.4.25) therefore takes the smple form

Uina(t) U; («l + My) Uisi(ug) (7.13.5)
= U:{ua) U:’+l(ul + “3) Ui(ul) .
This is an operator identity, true for/=1,...,2N- 2 and al complex

numbers u, Ms. In particular, it is true when Ui,«s take their 'physica’
vaues0< Mi </', 0< Mz </', corresponding to K\, L,, Ks, L3 being real.

7.14 The Dimer Problem

Before moving on to the next chapter, it is appropriate to mention the
planar dimer problem. Thisis because its solution by Kasteleyn (1961) and
by Temperley and Fisher (1961) was the next mgor advance in exact
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statistical mechanics after Onsager's solution of the Ising model; and
because the zero-field Isng model partition function can itsef be expressed
as a dimer problem.

A 'dimer' is an object that occupies two adjacent lattice sites, eg. a
dumb-bell shaped molecule. The 'dimer problem' is to determine the
number of ways of covering a given lattice with dimers, so that al sites are
occupied and no two dimers overlap. If there are N sites, then N must be
even and there must be N/2 dimers.

A smpleillustration is to ask the number of ways of covering a chess-
board with dominoes, each domino filling two squares. Fisher (1961) used
his result to work this number out: it is 12988816.

For any lattice, the number of dimer coverings is clearly

Z = (M2YIb(p,P2)b(PzPa)b(PsPe)..-b(PN PN, (7.141)
where m = \N, the sum is over dl permutations P ={p\,. . . ,PN\ of the
integers 1,. . ., N, and
b(i j) = 1 if dtes/ and/ are adjacent, (7.14.2)
=0 otherwise.

This expression counts the number of ways of grouping the N sites in m
nearest-neighbour pairs, which is the same thing as covering them with
dimers. The factor m! dlows for the fact that no digtinction is made
between pairs, and the factor 2~™ is because no distinction is made between
apar (i j) and apar (/, ).

Unfortunately there is in genera no easy way to calculate the sum in

(7.14.2).

However, what one can make progress with is the expression

PH{A) = {m\2")-"ea{pupz)a{ps,pa)-.-a{ Pn-1,Pn), (7.14.3)
where

a{i,j) = -a(j,i), (7.14.9)

and g, isthe signature of the permutation P, being +1 for even permutations
and -1 for odd ones.

If A isthe N by N matrix with elements a(i ,j) (i.e. a,), then (7.14.3)
is known as the 'Pfaffian’ of A (Muir, 1882). It is Smply the square root
of the determinant of A:

Pf(A) = (detA)', (7.14.5)

and determinants are comparitively smple to calculate, mainly because the
determinant of a product of matrices is the product of the determinants.
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Kasteleyn (1961) and Temperley and Fisher (1961), therefore asked the
question: can (7.14.1) be put into the form (7.14.3) by ajudicious choice
of the sgns of the a(i,/)? In generd the answer is no, but for any planar
lattice (i.e. ones with no crossing edges) it turns out to be yes. Further,
for a regular lattice the resulting matrix A is effectivdy cyclic, so its
determinant can be calculated.

Following this solution of the planar dimer problem, Kasteleyn (1963)
showed that the square-lattice zero-field Isng model partition function can
be expressed as a dimer problem on a decorated lattice, and was therefore
able to re-derive Onsager's solution. Aswas mentioned in Section 7.1, this
Pfaffian method has proved very useful for calculating 1sng model proper-
ties (Montroll et al., 1963; McCoy and Wu, 1973; Thompson, 1972).
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|ICE-TYPE MODELS

8.1 Introduction

Following the solution of the Ising moded and the dimer problem, the next
class of datistical mechanical models to prove tractable was that of the
'ice-type’ models, which was solved by Lieb (19673, b, ¢) for three arche-
typa cases, then more generally by Sutherland (1967).

There exist in nature a number of crystas with hydrogen bonding. The
most familiar example is ice, where the oxygen atoms form a lattice of
coordination number four, and between each adjacent pair of atoms is an
hydrogen ion. Each ion is located near one or other end of the bond in
whichit lies. Slater (1941) proposed (on the basis of local el ectric neutrality)
that the ions should stisfy the ice rule:

Of the four ions surrounding each atom, two are closeto it, and two are
removed fromit, on their respective bonds.

This means that the partition function is given by (1.4.1), i.e.

z =2 exp(-mgr), 811

where the sum is now over al arrangements of the hydrogen ions that are
alowed by the ice rule, and % is the energy of the arrangement.

For iceitsdf, % isthe samefor dl dlowed arrangements. With a suitable
choice of the zero of the energy scale, % can therefore be taken to be zero.
Z then becomes smply the number of dlowed arrangements, and the
residua entropy is

S= kalnZ. (8.1.2)

This is non-zero, since there are many arrangements dlowed by the ice
rule. One of them is shown in Fig. 8.1(a) for the square lattice.

127
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y X .

Y - - pr———

(a) (b) (c)

Fig. 8.1. An arrangement of hydrogen ions on a 3 by 3 square lattice (with cydlic

boundary conditions), satisfying the ice rule: (a) the positions of the hydrogen ions

on the bonds, (b) the corresponding eectric dipoles, (c) the corresponding line
representation.

Of course red ice, and other crystals, are three-dimensional, but unfor-
tunately the only exact solutions we have for three-dimensiona ice-type
models are for very specid 'frozen' states (Nagle, 1969b).

In this chapter only ice-type models on the sguare lattice will be con-
sidered. They exhibit smilar behaviour to three-dimensiond readlity, and
have the enormous advantage of being solvable! (In particular, square ice
is redly quite a good approximation to rea ice, snce the residua entropy
is only weakly sengitive to the structure of the lattice.)

The hydrogen-ion bonds between atoms form electric dipoles, so can
conveniently be represented by arrows placed on the bonds pointing toward
the end occupied by theion, asinFig. 8.1(b). Theiceruleisthen equivaent
to stating that at each site (or vertex) of the lattice there are two arrows
in, and two arrows out. There are just Sx such ways of arranging the
arrows, as shown in Fig. 8.2. (For this reason the ice-type models are
sometimes known as 'six-vertex' models, as opposed to the ‘eight-vertex'
model of Chapter 10.)

In general, each of these 9x locd arrangements will have a distinct
energy: let us cdl them g, ..., %, usng the ordering of Fig. 8.2. Then the
partition function is given by (8.1.1), where

% = an} + n2€2 + - .- + n6% (813)

and tij is the number of vertices in the lattice of type].
s

1 2 3 4 5 6
A el s

Fig. 8.2. The sx arrow configurations allowed a a vertex, and the corresponding
line configurations.
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We now have avery general model that includes three important models
as specia cases.

lce

As was remarked above, the ice mode is obtained by taking dl energies
to be zero, i.e
£l = £,= ... = £6=0. (814)

KDP

Potassium dihydrogen phosphate, KH,PO, (referred to hereafter as KDP),
forms a hydrogen-bonded crystd of coordination number four, and orders
ferrodectricaly at low temperatures (i.e. dl dipoles tend to point in the
same general direction). Slater (1941) argued that it could be represented
by an icetype model with an appropriate choice of £i,. . ., e;. For the
square lattice such a choice is

£l = £2=0,£,=£,=£5=£6> 0. (8.1.5)

The ground state is then either the one with dl arrows pointing up and to
the right, or al pointing down and to the left. Either state is typicd of
an ordered ferroelectric.

F Modd

Rys (1963) suggested that a mode of anti-ferroelectrics could be obtained
by choosing
£1=£,=£3=£,>0,£5= £,= 0. (8.1.6)

The ground state is then one in which only vertex arrangements 5 and 6
occur. There are only two ways of doing this. One is shown in Fig. 8.3,

IAY

¥ F 3 4

F F 3 : b

Fig. 8.3. One of the two ground-state energy configurations of the anti-ferroelectric
ice-type model. Only vertex configurations 5 and 6 occur.
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and the other is obtained by reversing all arrows. Note that arrows alternate
in direction, as would be expected in an ordered antiferroelectric (Nagle,
1969a).

Restrictions

In this chapter the following restrictions will be imposed on ei,. . . , e

fi = &, EsE, 6= £ (8.1.7)

These ensure that the model is unchanged by reversing al dipole arrows,
which one would expect to be the situation for a model in zero external
electric field. Thus this is a 'zero-field model which includes the ice, KDP
and F models as specia cases.

In fact the third condition c; = £6 is no restriction at all. From Fig. 8.2
it is obvious that vertex arrangement 5 is a 'sink’ of horizontal arrows,
whereas 6 is a 'source’. If cylindrical or toroidal boundary conditions are
imposed, then there must be as many sinks as sources, so ns = ng. From
(8.1.3) it follows that £5 and e; only enter the partition function in the
combination £5 + £5, S0 there is no loss of generality in choosing £5 = €.

The other two conditions {e\ =£,and£; = £4) are more ones of con-
venience than necessity, since the working of Sections 8.2-8.7 can easily
be generalized to the unrestricted case (so long as each of the six energies,
e.g. £1, isthe same for dl sites of the square lattice). The effect of relaxing
them (i.e. introducing electric fields) will be discussed in Section 8.12.

8.2 The Transfer Matrix

Y et another way of representing the hydrogen-ion dipolesis to draw aline
on an edge if the corresponding arrow points down or to the left, otherwise
to leave the edge empty. A typical arrangement of lines is shown in Fig.
8.1(c), and the sx allowed line arrangements at a vertex are shown in Fig.
8.2

Suppose the lattice has M rows and N columns, and impose cyclic (i.e.
toroidal) boundary conditions. Consider arow of JV vertical edges (between
two adjacent rows of sites). There are M such rows:. label them r = 1, 2,
. . ., M sequentially upwards. Let g7 denote the 'state’ of row r. i.e. the
arrangement of lines on the N vertical edges. Since each edge may or may
not be occupied by aline, cp; has 2" possible values. Then as usua we can
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write the partition function as

2=25)... 2 V((pi. (p) V{(p2, <p3). . . V(<Pu_i, <pu) V(Pw. cpi)

P <2
= Trace VY, (8.2.1)
where Vis the 2" by 2V transfer matrix, with elements
V(cp, cp') = 2exp[ - (MiBi + mpE,+ ¢ ¢ o + meep)/ksgT]. (8.2.2)

In (8.2.2), cpisthe arrangement of lines on one row of vertical edges, and
cp' isthe arrangement on the row above, asin Fig. 8.4. The summation is
over dl alowed arrangements of lines on the intervening horizontal edges.

Y, Y2 ' H Y2
ed e 1
e i
o] (b)

Fig. 8.4. The two typica arrangements of lines in adjacent rows (for n = 2). The
W,. . . ¥a» must interlace xi,. . . X

1 Xy

These arrangements must satisfy the ice rule a each vertex: if there is no
such arrangement, then V(cp, <p') is zero. There are a most two such
arrangements. The m\,. . ., mg are the numbers of intervening vertices of
types 1,. . ., 6.
Let A be an eigenvalue of V, and g the corresponding eigenvector. Then
Ag=\Vg. (8.2.3)
As in Sections 2.1 and 7.2, when M is large it follows from (8.2.3) that
Z ~ Af?, (8.24)

where A is the largest of the 2V eigenvalues of V.

8.3 Line-Conservation

In Fig. 8.2 and 8.1(c) the four lines in vertex arrangement 2 are divided
into two pairs. This makes it clear that the lines link together to form
continuous non-crossing paths through the lattice. If one starts by following
a path upwards, or to the right, then one will aways be travelling in one
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or other of these two directions, never down or to the left. The cyclic
boundary conditions ensure that a path never ends.

Suppose there are n such paths from the bottom of the lattice to the top.
Each path will go through a row of vertical edges once and only once. It
follows that:

if there are n lines on the bottom row of vertical edges, thentherearen
lines on every row.

In particular, there must be n lines on the second row, which means that
V(g>, g>") iszero unlessg> and < contain the same number of lines.

The matrix V therefore breaks up into N+ 1 diagona blocks, one
between the state with no lines, another between states with one line, and
so on up to the state with N lines. Thus n, the number of lines per row,
is a 'quantum number' of the matrix V. We can restrict our attention to
states with a given value of n.

The obvious way to identify such a state is to gpecify the positions
Xi,. .. X of the lines, ordered so that

I™<Xo<. . . <X,N. (8.3.1)

Let X={X\,.. . X} be such a specification, and let g(X) be the corre-
sponding element of the eigenvector g. Then (8.2.3) can be written

Ag(X) =2 V(X Y)g(Y), (8.3.2)

where V(X Y) is the element of V between states X and Y, and is ill
given by (8.2.2). Using (8.1.7), it is convenient to set

(a = exp(-e/ksT), /=1,...,6, (8.3.39)

a=a>i=co, b=0)3=0)4, c=0)s=0). (8.3.3b)

(Thus o>i,...,cos are the Boltzmann weights of vertex arrange-
ments 1,. . ., 6.) Then (8.2.2) becomes

V{X)Y) = 2amtm2fgm3rmacmstmé (8.3.4)

where X, Yreplace<j>, <j>'; againthesummationisover thedlowed arrange-
ments of lines on the intervening row of horizontal edges, and
no%\,. . . , m6 are the numbers of intervening vertices of types1,. .., 6. Two
typica cases are shown in Fig. 84 (with n = 2).

The problem now is to solve the eigenvalue equation (8.3.1) for a given
value of n. It is very helpful to begin by considering the smple cases
n=0,1and?2.
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TheCaen=0

If n = 0, then there are no vertical lines in the two successve rows. There
are two possible arrangements of lines on the intervening horizontal row
of edges. either dl the edges are empty, or they dl contain aline. In the
firg instance, al vertices are of type 1; in the second they are al of type
4. Thus the n = 0 block of V is a one-by-one matrix, with value

A= a+b". (8.3.5)

TheCaxen=1

If n= 1, we can write g(X) as g(x), where x is the position of the vertica
line in the row. Thisx can take the values 1,. . . , N, so this block of Vis
an N by N matrix, with elements V(x , y).

If xislessthany, then dl horizontal edges between x and y must contain
aline, dl others must be empty (as in the firg hdf of Fig. 8.4a). If it is
greater than y, the reverseistrue. If x =y, then either dl horizontal edges
are empty, or dl are full. Counting m\,. . . , nm" for the various cases, the
equation (8.3.2) becomes

i
Ag(x)=a""'bg(x) + 2 aVrrTleidg(y)

x-1
+ B9 B pv>idg(y). (8:36)
-

We look for a solution of the form
a(x) = Z, (8.3.7)

where z is a complex number. Subgtituting this form for g(x) into (8.3.6),
and summing some elementary geometric series, the egquation becomes

AZ = aL(2) Z - &~ BN Y(a - b2)
+ b'M(2) Z + a~ bN~c?d{a - b2), (8.3.8)
where
L(2) = [ab + (c? - bY)Z/(a* - abz), (8:3-9)
M(2) ~[a® - ¢ - ab7]l{ab - b%).

The second and fourth terms on the RHS of (8.3.8) are 'boundary terms,
coming fromthey = Nandy = 1 summation limitsin (8.3.6), respectively.



134 8 ICE-TYPE MODELS

They differ only by a factor (—z*), so their sum can be made to cancel by
choosing
2=\ (8.3.10)

The remaining firg and third terms on the RHS are 'wanted terms, in
that they have the same form as the LHS (constant x Z). Thus (8.3.8) is
now satified if

K = a'L(2) + b"M(2). (8.3.11)

There are N solutions of (8.3.10) for the complex number z. With
(8.3.7), these give the N expected eigenvectors of this block of the matrix
V. The corresponding eigenvalues are given by (8.3.11).

The equations (8.3.7) and (8.3.10) could have been predicted on trans-
lation invariance grounds, but it turns out to be a mistake in this problem
to introduce this consideration too early: for n > 1 it obscures the structure
ofg(Xx).

TheCaen = 2

When n = 2, g(X) becomes g{x , X»), where x, and x, are the positions
of the two lines. The summation in (8.3.1) isover dl dlowed line-positions
yi and y, in the upper row of vertica edges, given that there are lines in
positions X\ and x, in the lower row.

The two archetypal cases are shown in Fig. 8.4. There are specid cases
when Vi ory, equals X\ or x,, but the ice rule ensures that yi and y, must
dways saisfy either

“IEyissxa £y, or yi £*1 ssy, =sx,

Thus W and y, mugt interlace X\ and x..
Countingm.\, . . . , m, dlowing for the specia cases, (8.3.2) becomes

X2 N
AgXi X)) = 23 ZN @ LE(X, yi) Dy, , x2) E(xz, v2)

¥I=x ¥p=k2

x| *2

xca'-Kg(y,y2)+ 2 2 PIDG, 1)

n=ly:=x

X E(x ,Y2) D(Y2, %) ¢ b"-"g{yxY»), (8.3.12)
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where
D(y ,x) = ale iix=y,
= ca*->"! iy, (8.3.13)
E(x,y)=blc if v = x ,
= ch~*~* ify >x.

The * in the summations means that any terms with y, =y, are to be
excluded. In each case there is only one such term: YA =x, =y, in the first
sum, yi =xi =y, in the second.
The first step in solving (8.3.12) is an obvious generdisation of (8.3.7):
try
g(XuX2)=AnZl'2¥, (8.3.14)

where Ajp, 2\, 2, are complex numbers.

The summations in (8.3.12) are now straightforward, if rather tedious,
to perform. The easiest way is to first ignore the *, then subtract dff the
contribution of the terms spurioudly included. The first double summation
in (8.3.12) then gives

Apla(ran-rzd +Mib™®* =)
X (Laa" ™" 2§ ~ p BN 70 2f)

—-gNtn-n pa-n (z1z2)%} (8.3.159)
and the second gives
Apf(pra + M b 27)

X (L2 a.)(2‘__X| Z\X + M2 bXZ_X| ZX22) bN___XZ

Q2N ez (7179)1, (8.3.15h)
HereL,= L(z) , M, = M{zJ), and
Pi - p(Zj) = ¢?4/(a® - abz). (8.3.16)

Expanding the products in (8.3.15a), or (8.3.15b), gives atotal of five
terms. These can be grouped into three classes.

Wanted terms

These are terms that have the same form as g{X, ,x,) itsdf, i.e. they are
proportional to Z* . There is one each in (8.3.158) and (8.3.15b), and
thelr sum is

An@'LL, + bYMM,)Z'3%2 (8.3.17)
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Using (8.3.14), they cancd with the LHS of (8.3.12) if
A= aLL, + bYM;M,. (8.3.18)

Unwantedinternal terms

These have the form {2AZ,)*}, or (zZ,)"\ and include the final correction
termsin (8.3.15a and b). Their sum in (8.3.153a) is

AV X ML, - 1) (zizp)*?, (8.3.19a)
and in (8.3.15b) it is
A, @X PV (ML, - 1) (z7)* (8.3.19b)
Using (8.3.9), one can verify that
Myl, - 1 = -c’sJ/[(a - bZ) (a - bz)], (8.3.20)
where if
A= (@& + b*- d2ab , (8.3.21)
then
*iz = 1-2A 2 + Zp. (8.3.22)

Boundary terms

These come from either the y, = N or the y\ = 1 summation limits in
(8.3.12), and are characterized in (8.3.15) by the fact that they contain a
factor P2 or pi. Define

Ri(x,X) = Lja“-*z# + M,b*'-"7. (8.3.23)
Then the sum of the boundary terms in (8.3.15a) is
-AuffW-"Rifa , x;) *, (8.3.24a)
and in (8.3.15b) it is
AN M, %) pi. (8.3.24b)

Elimination of unwanted terms

To saisfy (8.3.12), the unwanted terms (8.3.19) and (8.3.24) must be
eliminated. How can this be done? A fairly obvious idea is to generalize
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the ansatz (8.3.14) and to try alinear superposition of such terms, i.e.
g(xix) = ?LA®Z], 2% (8.3.25)

Put another way, we try summing over various choices of 2\ and z, with
appropriate coefficients A,.

The wanted terms will certainly cance if they do so for each value of
r, i.e. if (8.3.18) is satidfied for every choice of A and z. Since A is
independent of r, the RHS of (8.3.18) must therefore be the same for Al
choices of 2\ and z.

Also, it may be possible to cance the unwanted internal terms (8.3.19)
if for every choice of z, and z there is another choice 4 and Z, with the
same value of 2\z. Together with the previous remark, this means that
A and z must saidfy

47, = %2

a"L{(z{) L(z}) + b"M(z1) M(z3)
= a'L{z) L(z) + b"M(@) M(z). (8.3.26)

Eliminating z5 and using (8.3.9), this gives a quadratic equation for
Z. There are therefore just two solutions for Z and z5, and it is obvious
that they are:

A=z L=z, and 2\=1zy, Z,= 1y, (8.3.27)

since interchanging Z and z leaves (8.3.26) unchanged.

(For more complicated problems, notably staggered ice-type modelswith
different weights on the two sub-lattices, there are additional solutions for
A and Z,. Regarding (8.3.14) as a 'plane wave' trid function, these 4 and
Z can be regarded as 'scattered waves, the two equations (8.3.26) playing
the role of total momentum and total energy conservation. For n = 2, such
problems can be solved by using these scattered waves, but unfortunately
the working does not then generalize in any apparently useful way to
n>2.)

From (8.3.27), it fallows that in addition to the choice (2, z,), we should
aso include the choice (z, , Zi). Thus there are just two termsin (8.3.25),
and the resulting ansatz for g{x., X») can be written

g(x,X) = Auzi' z? + Apnz?22. (8.3.28)

Summing (8.3.19) over these two choices (the second choice is obtained
by interchanging the suffixes 1 and 2, except in JJ and xy), it is obviousthat
the unwanted terms cancel if

(MiL, - DA, + (MU ~ A = 0. (8.3.29)



138 8 ICE-TYPE MODELS
Using (8.3.20), this condition amplifies to
SpAR + SAd = 0. (8.3.30)

Findly, summing the boundary terms (8.3.24a) and (8.3.24b) together
over the two choices, we obtain

NP R{XX)  (An - ZUn)

+ pRA(X1,X2) (Ay - Z?A2)}. (8.3.31)
Clearly this will vanish for al X\ and x; iff
= ApAy, 2?=AylAn. (8.3.32)

Solving (8.3.30) for Ai /Ay, (8.3.32) then gives two equations for 2 and
2. These can in principle be solved (there are many solutions, correspond-
ing to the different eigenvectors of V). To within a normalization constant,
the elements of the eigenvector g are then given by (8.3.28), and the
eigenvalue A by (8.3.18).

8.4 Eigenvalues for Arbitrary n

The solution of the eigenvalue problem for arbitrary n is a sraightforward
generdization of that for n = 2. The appropriate generalizations will be
briefly indicated in this section. A fuller description (for the ice model) is
given by Lieb (19674).

The eigenvalue equation (8.3.12) becomes

Y R T

EuDaPnPne e« Epca™"g(y,....y,)

+ 22... 2* by/\ D,EDyEos...
>| =[>>2=J:i yn-Xn-|
Duch™ " g(y1...., Vi), (8.4.1)

where 1 X\ <x, < ... <X, M N, the * means that no two of W,. . ..y,
can be equal, and 2y = D(y: , X)), £y = E(xi , yj).
One firgt tries taking

9Kty X) = ALt 25 (8.4.2)
where Ali,,,, IS a constant coefficient.
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The firg nfold summation on the RHS of (8.4.1) then gives
A, @RI(aX). o Ry (Xl %)
X (Li@"~"Z" - poN~"7H) - correctionterms},  (8.4.3a)
and the second gives
ALt + Mbe2?)Ro(X, %) . . RIXp-uXe)bN-"
- correction terms}. (8.4.3b)

Here the 'correction terms' arise from explicitly subtracting off spurious
contributions from y, = y,, Yo = Vi, ® ¢ ¢, O Yix = Yn.

From (8.3.23), each Rj(x, X) is a sum of two terms. Expanding the
products of the n - 1 Rs therefore gives 2'"* terms. In each of (8.4.33)
and (8.4.3b), only one of these is 'wanted' (i.e. has the same form as
f{X\,..., X,). Equating these wanted terms on both sides of (8.4.1) gives

A= aL..L, + b"M...M,. (8.4.4)

Apart from the 'boundary terms' containing a factor p, or p\, al other
terms contain at least one factor of the form

(zZ+1yi" OF  (3Zry- (8.4.5)

They can be made to cancd by adding terms in (8.4.2) with z and z..,
interchanged. Doing this for dl /, and dl initid choices of 2. . ., z
thereby generated, one is led to replacing (8.4.2) by

g1, . X)) = ZP" woepsZi|o o Zan (8.4.6)

where the sum is over dl n\ permutations P = {pi,. . ., p,} of the integers
1,...,«.

This trial form for the eigenfunction is the same as that used by Bethe
(1931) for diagonalizing the quantum-mechanical Hamiltonian of the
one-dimensional Heisenberg model. For that reason it is known as the
Bethe ansatz.

Evauating the internal unwanted terms containing the factors (8.4.5)
(these include contributions from the ‘correction terms'), one finds they
cancel provided the following generdization of (8.3.30) is satisfied, for al
permutationsPand;=1,...,/i— 1.

PRSP S~ Pi+\>PIADL. gl eps = O . (8.4.7)

This leaves only the boundary terms, containing a factor p; for some
vaue of/. Replacing 4,...,.z, in (84.38) by z,,. . ., z, z, it becomes
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obvious that the boundary terms therein will cance with those in (8.4.3b)
if
2P + A, = 0. (8.4.8)

Making dl possible permutations of 2\,. . ., z,, dl boundary terms will
therefore cancd if

Zgl — Apu---tPJAPZI-ApApI ) (849)

for dl permutations P.

These conditions (8.4.4), (8.4.7) and (8.4.9) do in fact ensure that the
eigenvaue equation (8.4.1) is satisfied (see Lieb, 19674, for afull treatment
of the sufficiency of these conditions for theice model). It is not immediately
obvious that they can dl be satisfied, since there are many more equations
than unknowns. However, it is easy to veify that (8.4.7) has the solution
(to within a normalization factor): _

A*_IMYIEIMW (PA)

where ep is the signature (+1 for even permutations, -1 for odd ones)
of the permutation P. Subdtituting this into (8.4.9) then gives, for al P,

z:,\': =(-)y! E Spi.pvSprpi + (8.4.11)

The RHS of this equation is symmetricinp,, * . ¢, p,, S0 there areonly n
such digtinct equations, namely

Z = {-)"-'J\s;| S (8.4.12)

for/l=1,...,n.

Thus we have n eguations for 2\, . . . , z,. These can in principle be
solved, and the coefficients Ap calculated from (8.4.10). The eigenfunction
g is then given by (8.4.6), the eigenvalue A by (8.4.4).

8.5 Maximum Eigenvalue; Location of zi, ¢ » ¢ , Z,

Unfortunately the equations (8.4.12) have not in general been solved for
finite n and N. (This contrasts with the Ising model, where dl eigenvalues
can be explicitly obtained for finite N.) It turns out that they can be solved
for the maximum eigenvalue in the thermodynamic limit (N large), but
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reasonable care is necessary to ensure it is the maximum eigenvaue that
is obtained.

A remarkable feature of the equations (8.4.2), (8.4.10), (8.4.12) and
(8.3.22) is that they are not merely of the same form as Bethe's ansatz for
the Heisenberg model: they are exactly the same! Thus the eigenvectors
of this model are those of our transfer matrix V. This meant that Lieb
(1967a, b, c) was able to use the known properties of the Heisenberg
model, in particular the work of Yang and Yang (1966) to identify and
evaluate the maximum eigenvalue in the limit N—><x>. Thiswork is quite
rigorous, and the interested reader is referred to it. Here | shall merdy
give some plausible arguments to locate the solution of (8.4.12) corre-
sponding to the maximum eigenvalue, and to evaluate it for N large.

TheCasen = 2
Again it is instructive to consider the case n = 2, when (8.4.12) becomes
(8.3.32). Multiplying the two equations (8.3.32) together gives
(22)" = |, (85.1)
which implies that
Ziz, = t, (85.2)

where T is an Mh root of unity.
This relation is a Smple consequence of the trandation invariance of V,
since from (8.3.28) it implies that

g + 1% + 1) = rg{x, %). (85.3)

From the Perron - Frobenius theorem (Frobenius, 1908), the eigenvector
corresponding to the maximum eigenvalue must have dl its entries non-
negative. From (8.5.3), this can only be o if r = 1, so we must choose the
solution

212, = (8.5.4)

of (8.5.1) (i.e. g(xi , xo) isitsdf trandation invariant, as we would expect).
Also, from (8.3.28) and (8.3.32),

Ax, %) = AuZ> o + o ), (855)
s0, using (8.5.4) and setting
ny=exp(ik), r=iN-I, (8.5.6)
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we have
9(x, X2) OC COSK(x X2 + W) * (85.7)

Now, X\ - % + IN can take dl integer (or hdf integer) values from
—r tor. To ensurethat al values of g{X\, x,) be non-negative, it istherefore
aufficient that k should either be red and lie in the interval \—nl2r , J/2r],
or that k should be pure imaginary.

Further, negating k merely interchanges 2\ and z,, leaving the eigenvector
g unchanged. Thus we can just as wdl limit our search to rea vaues of
kintheinterval [0, n/2r], or positive pure imaginary values.

Now use (8.3.22), (8.3.30) and (8.3.32) to write zf as arationa function
of 2\ and z,, and use (8.5.4) to diminate z. The resulting equation for Z\
is

A(zf-* + z) = zf +1, (8.5.8)
or usng (8.5.6),

A = cos(r+ l)fc/cos rk. (8.5.9)

Plotting the RHS of (8.5.9) as a function of k for k real, and for k pure
imaginary, it is easily seen that:

if A <1, (85.9) has one rea solution in the interva (0, xI2r), and no
pure imaginary solution;

if A > 1, (85.9) has no rea solution in (0, nllr), but has a single
positive imaginary solution.

In both cases it is evident from (8.5.7) that dl values of g{xi ,x,) are
gtrictly positive so, from the Perron - Frobenius theorem, we have located
the solution corresponding to the maximum eigenvaue of Vinthen= 2
sub-block.

When /i = 1, it is obvious from (8.3.7) and (8.3.10) that the eigenvector
with al positive entriesis given by z= 1.

Admittedly thesen = 2 and n = 1 results provide very slender evidence,
but they do in fact point in the right direction: when A <1 (and n =s%N)
the solution of (8.4.12) that maximizesA issuchthat z, . . . , z, aredistinct,
lie on the unit circle, are distributed symmetrically about unity, and are
packed as closdy as possible. The equation (8.4.12) does admit solutions
with two or more of 2\,. . . , z, equal, but these must be discarded since
from (8.4.6) and (8.4.10) dl elements of g then vanish identicdly.

Then=2and n = 1 reaults dso suggest that for A > 1 the 2,...,z,
are dl positive real, but we shall not need this hypothesis.
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86 TheCaeA>1

The cae A > 1 istrivid. Let A, be the maximum eigenvalue for a given
value of n. Then from the above results it can be veified that, for N
aufficiently large,

Ag>Al and Ao>A,. (8.6.1)
In fact, it can be shown that (Lieb, 1967¢)
Ao An,, n=0,..,N. (8.6.2)
Thus the maximum eigenvaue is Smply A,, i.e. from (8.3.5),
Ay = a0V, (8.6.3)

From (1.7.6), (8.2.4) and (8.3.3), remembering that the lattice has MN
sites, the free energy is therefore given for N large by

/=min(ey,es3). (8.6.4)

The system is 'frozen’ in the sense that if one vertical arrow isfixed to be
up, then the probability of any other arrow being up is unity, no matter
how far it is from the first. (Providing of course that the proper thermo-
dynamic limit is taken; both arrows must be deep within an infinite lattice.)
This is complete ferroelectric order.

Such frozen solutions exist for three dimensional ice-type models (Nagle,
1969Db): one of the very few exact results in three dimensiona statistical
mechanics.

8.7 Thermodynamic Limit for A <1

If zi,. .., z lie on the unit circle, then the equations (8.4.12) involve
complex numbers. They can be reduced to aset of real equations asfollows.
Define the 'wave numbers' K\,..., k,, and the function &{p , g) by

z; = exp(ik;), s/s;s, = exp[-*0(/cy, Au)]. (8.7.1)
From (8.3.22) it follows that .
| gbta

e«<(p.9) = ;I__:Zéém—w; . (872)
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and hence that

Q(p.g) = 2 tan'HA sini(p -g)/[cosi(p + q) - Acos|(p - Q)]}, (8.7.3)

so &(p , q) is area function.
The product in (8.4.12) is unchanged by including the term / =/, so
(8.4.12) can now be written

expOMy) = (-)" "1,E'1 exp[*O(fcy, ki)). (8.7.4)

Both sides of this equation are unimodular, i.e. of the form exp(id), so it
is natural to take logarithms and divide by i, giving (for’; = 1,...,«)
) .

NKj = 2dj - S ®(K, k), (8.7.5)

where each /, is an integer if n is odd, and haf an odd integer if n is even.
The equation (8.7.5) is consistent with the hypothesis that k\,. . . , k,
are real, since so then are both sides of (8.7.5).
We want K\,. . . , k, to be distinct, symmetrically distributed about the
origin, and packed as closaly as possible. This suggests choosing

=j-i(n+1), j=1,...n. (8.7.6)

Yang and Yang (1966) proved that (8.7.5) then has a unique real solution
fork,. .., k.

The ratio nIN is the proportion of up arrows in each row of the lattice,
so it is the probability of finding a vertical arrow to be up. When Nis large
we expect this probability to tend to its appropriate thermodynamic limit.
This means that we are interested in solving (8.7.5) in the limit of N and
n large, nIN remaining fixed.

In thislimit K\, . . . , k, become densely packed in some fixed interval
(—Q,Q), so they €ffectivdly form a continuous distribution. Let the
number of kjS lying between k and k + dk be Np(k) dk. Then in the limit
of N large, p(K) is the distribution function. Since the total number of kjS
isn, p{k) must satisfy

Q
f  p{k)dk = nIN. (8.7.7)
J-Q
For a given value k of k, /,;+ 1 (n + 1) is the number of ks with / <j.
Thus (8.7.5) becomes

k
M: = -jz(n+l) + 2xN \  p(K) dk - N \° @k , k) p(k) dK.
JQ J-Q

(8.7.8)
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Differentiating with respect to k, dividing by N and rearranging, this gives
Q

2rp(k)=1+] - ~ —Ip{k)dk. (8.7.9)
-0

This is a linear integral equation for p(k). For a given ratio nIN, Q is
determined by (8.7.7).

The eigenvalue A is given by (8.4.4). In the limit of N large both terms
on the RHS grow exponentialy, the larger completely dominating the
smaler. From (1.7.6), (8.2.4) and (8.3.3), the free energy/is therefore

given by
/= minfg - ksT 2 [In L(z)]/N, e; - ksT" [In M(z)]/N] . (8.7.10)

In the limit of N, n large, these sums become integrals, giving

/= minj £l—ksT [° [In L(e*)] p(k) dk
LY J_Q
£3 - kBTJ\% [InM(e*)] p d) . (87.11)

Since p(K) is an even function, these integrals are real.

88 FreeEnagyfor -1<A <1

The problem now is to solve the linear integral equation (8.7.9). For the
case A = -1 Hulthen (1938) noted that by making an appropriate change
of the variable k, the eguation can be transformed to one with a difference
kernel. Walker (1959) generalized thisto A <-1, and Yang and Yang
(1966) to A < 1. There are more complicated modds that can be solved
by the Bethe ansatz method (Lieb and Wu, 1968; Baxter, 1969, 1970b, c,
1973a; Baxter and Wu, 1974; Kelland, 19744). In every case such a trans-
formation to a difference kernel exists. (See dso the remarks following
(8.13.77) and (10.4.31), remembering that trigonometric functions are
specid cases of dliptic functions.)
For -1 < A < 1 the appropriate transformation is to replace k by a,
whereiif
A = -cosju, 0<JU<JT, (8.8.1)
then
exp(i)t) = [exp(j» - exp(ar)l/[exp(i> + a) - 1]. (882
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Differentiating logarithmically gives
dk _ gn \i

dor ~ cosh a—cos i (889

s0 k is a real monotonic increasing function of a, odd, going from ju - n
to n—fi asa increases from — 00 to °°.
In (8.7.2), let p = k(a) and q = k{(i). Then the equation smplifies to

. — eX exXP:e:
epl-iop, *)—= P Eer XTI (884
exp(/d - o) - exp(22u) '
0 @(p , ) is afunction only of a /3 (and the constant jit).
Let (2°r)* R(a) be the transformed distribution function, defined by

R(a) da= 2jtp(k) dk. (8.8.5)

Making the subgtitutions (8.8.2), (8.8.4) and (8.8.5) in (8.7.8), differen-
tiating with respect to or and using (8.8.3), the integral equation becomes

()= * 1§ +\? A ~*fi, (886
cosha-cosft InJgoosh@-jg -cos2n ~ " Y y

where (-<2i , Q\) isthe interval on the or line corresponding to (-Q , Q)
on the A: line. The side condition (8.7.7) becomes Smply

{2n)~'J\Q' R(a)da=n/N. (8.8.7)
-e,

The free energy is given by (8.7.11) and (8.3.9). On making the sub-
stitutions (8.8.2) and (8.8.5) it becomes natural to define another constant,
w, by

alb = [exp(iju) - exp(iw)]/[exp(i(i + iw) - 1], -ft< w< fi. (8.8.8)

From (8.3.21) and (8.8.1) it then follows that

a b:c=dgnk(n-w):sn}j(n+ w):snfi, (8.8.9)
and from (8.8.2) that
T expjiiw + iy) - expja- in)
) o) epew)
M(eik) = eXP-(l\I\/I rr),Xp(a+|n) . (88.10)

exp(a) - exp(iw)



8.8 FREE ENERGY 147

Using (8.8.5), the formula (8.7.11) for the free energy now becomes

Q
f=min{ei-(kgT/2jt) { ' [\n L(€M)]R(@) da,
J-Qi
£5 - (kgT/2n) ,|Q' [InM(e")]R(a) da}. (8.8.11)
J-Qi

Solution by Fourier Integrals

Since (8.8.6) is a linear integral equation with a difference kernel, it can
be solved by Fourier integrals if <A = ».
Suppose thisis so. Let

R = (2}~ ™ R(a) exp(ixa) da. (8.8.12)

Multiplying both sides of (8.8.6) by exp(ixa) and integrating over a, we

obtain

gsnh(™"v)* sinh*»2"
dnh ;cc dnh nx

It immediately follows that

R(x) = R(x). (8.8-13)

“R{x) = i sch /. (8.8.14)

From (8.8.12), the LHS of (8.8.7) is smply £(0), which from (8.8.14)
isi Thusif Oi = oo, then
n=W. (8.8.15)

We want to choose n so as to maximize A, or equivaently to minimize
the expression (8.8.11) for/. It makes very good sense to assume that
(8.8.15) is the correct value of n, since it corresponds to the symmetric
situation when there are as many down arrows as up ones in each row of
the lattice. Further judtification of this argument is given by Lieb (1967).

We could aso have predicted that 2i = °° by arguing that if the first
term dominates in (8.4.4), then A is maximized by choosing n as large as
possible so that h\,. . ., L, dl have modulus greater than unity. (If the
second term, then Mi,. . . , M,,.) Thusif thereisareal value of k for which
L [exp(ik)], or M [exp(ifc)], is unimodular, then this should correspond
tok= +Q. For -1 < A < 1 there are two such values, and from (8.8.10)
they obvioudy correspond to a= +°°,i.e. 2i = > Q7 "~ I*e

Thus we are in the fortunate position that we can caculate R(a) ana-
Iytically when, and usualy only when, n = iN, and this is precisely the
desired value to obtain A Nature can be kind!
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Ifw=0,thena= b, g = e and\L\ = \M\, sothe two termsin (8.8.11)
are equal. If w< 0, then the firg term is the smaller; if w> 0, the second
term.

Congder fird the case w< 0. Snce R(a) is even, the function
InL[exp(ik)] in (8.8.11) can be replaced by its even part, which is dso its
real part. The Fourier transform of thisis

@) f “;) exp(kon)In|L (e*)|dar

— SRR —whesisRfn—x.  (8.8.16)

X sinh nx
The Fourier transform of R(a) is given by (8.8.12) and (8.8.14). Using
these results, (8.8.11) becomes, for w < 0,

— — wSil’lh(ﬂ+ i IxrinhpanM)X
f=a "‘BTL e ECampx 9o (8817
Using (8.8.3), (8.8.9) and the formula
snh (fi + w)x = sinh (fi - w)x 4- 2 cosh/usnhw”:;,  (8.8.18)

this result can be written as

= - oo Sinh A___ A Sinha _ .
/= g3 - ksT P et oo Sh_@—de— (8.8.19)

However, this is precisaly the result obtained for w> 0. Thus both
(8.8.17) and (8.8.19) are valid throughout the interval -fi < w < fj,. There
is no singularity at w= 0.

In general these integral expressons for the free energy cannot be
andyticaly evaluated. An exception is when fi is a rationa fraction of
n. For instance, for theice modd (8.1.4), a=b=c=1, w=0and ju=
2;r/3. The integral in (8.8.17) can then be evaluated by summing over
residues in the upper half-plane, giving

ZIMN _ ~,/ _tit- T\ — (AIXW ta ¢ )M

which is Lieb's (1967a) result for the residual entropy of square ice.

89 Free Energy for A< -1

If A <-1, the parameters fi, a deiined by (8.8.2) are purely imaginary,
S0 can be replaced by - ik, -ia, where A and the new a are real. Then
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(8.8.1) and (8.8.2) become

A = -coshA, A>0, (8.9.1)

e = (@ - t-?I(-? - 1). (8.9.2)

As aincreases from - nto n, k dso increases from - n to n.
The integral equation (8.8.6) now becomes

*<o> = ooh X-cosa-L axh 2A - co@- ffl A x> @I

and the side condition (8.8.7) remains unchanged.

Whereas (8.8.6) was solvable by Fourier integrals if Qi = > the cor-
responding equation (8.9.3) is solvable by Fourier series if Q\ = n. Set,
for al integers m,

R = (2J1)" I" R(@) exp(ima) da. (8.9.4)
331
Multiplying (8.9.3) by exp(imar) and integrating, we obtain
Rm = exp(-A|m|) - exp(-2A|m]) «m, (8.9.5)

R, =1sechim. (8.9.6)

From (8.9.4), the LHS of (8.9.7) is smply "o, so again we have
n = iN. Thisisthe value of n for which we expect A to obtain its maximum
value.

The free energy is ill given by (8.8.10) and (8.8.11), but now w (like
H and the old a) is pure imaginary, so we replace it by —iv, where
-A<v<A. Then (8.8.9) and (8.8.10) become

a:b:c = sinhi(A - v) : sinh|(A + Vv): Snh A, (8.9.7)
exp({v + A)-exp(-A-/flr)
exp(-iar) - exp(y)

_exp(v — A) — exp(A — i)
~ exp(ja) -exp(y)
If v< O, then the firs term in (8.8.11) is the lesser, and In L[exp(i&)]

can easily be Taylor expanded in powers of exp(ia). Doing this, then using
(8.9.6), gives

f=£1-kaTl( _il%-xvf-i(-'WA)Si” thH;)l. (899)

T
m=1 m cosh m.. I

L(e*)=

¥

8-9.8)

v
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This expression can be re-arranged as
=e3-kgT\HX-v), i expC-msSnhMA-)y  (go
I m=i mcoshmA J’ (8.9.10)

but this is precisely the result obtained when v > 0. Thus both (8.9.9) and
(8.9.10) are vdid throughout the interval -A < v < A.

Equations for Finite n

Instead of taking the limit N, n-* °° and then making the change of
variablesin (8.9.1), we could equally well have made the change of variables
fird. The intermediate equations will be needed in the next two chapters,
S0 it is convenient to give them here.

Let aj be the value of or when k = kj. Then from (8.7.1) and (8.9.1)

Zj = exp(ikj) = Snh&A + ia)/sinh A - ia), (8.9.11)

for;=1,...,«. Using this, (8.7.1) and (8.7.2), the original finite-nequa-
tions (8.4.12), (8.4.4) can be written

sinhdA—ia)]  Ksihlii@@-a) + AT A §9.12)

[sinh [(A +iaMN _ A snh[*or, - a,) - AT

avr”r SN v + g + W) | v A SV + i - 2A)
kL sinhiqv + iaj) f#\  snhi(v + ia))

A—

(8.9.13)
where
A'= A-«r. (8.9.19)

As n—»°0, «i,. .., a, tend to a continuous distribution.on the line
interval {~n, JZ). The number of ars in the interval (a, a+ da) is then
(2°n)~* NR(a) da. In this limit the equations (8.9.12) for ac\,. . . , a, reduce
to the integral equation (8.9.3) for R(a).

8.10 Classification of Phases

We have seen that the free energy takes a different analytic form depending
on whether A>1, 1>A>-1, or -1>A. In terms of the Boltzmann
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weights a, b, ¢, it follows from (8.3.21) that there are four cases to consider,
the four regimes being shown in Fig. 8.5.

|. Ferrodectric Phass a> b+ ¢

Inthiscase A > 1 and, from (8.3.2) and (8.3.3), & < &, &. Thusthe lowest
energy state is one in which al vertices are of type 1, or dl of type 2.
Either dl arrows point up or to the right, or dl point down or to the I€ft.

b/c |

Fig. 8.5. The phase diagram of the zero field ice-type model, in terms of the
Boltzmann weights a,b,c. The dotted circular quadrant corresponds to the free-
fermion case, when A = 0 and the modd can be solved by Pfaffians.

Thus a very low temperatures the system is ferrodectricaly ordered (al
paralel arrows point the same way), and the free energy/is equal to S.

However, from Section 8.6, this is the value of/throughout the regime
I. This means that excited states give a negligible contribution to the
partition function and throughout the regime | the system is frozen in one
or other of the two ground states. As explained in Section 8.6, there is
complete ferroelectric order.

Il. Ferrodectric Phass b>a + ¢

This is the same as case |, except that now it is vertex types 3 and 4 that
are dominant. There is complete ferroelectric order: effectively al arrows
either point up and to the left, or they dl point down and to the right.

I11. Disordered Phase: a, b, c< h(a+ b+ ¢)

Thisisthe case when -1 < A < 1. It includes the infinite temperature case
a=b = c=1, so one might expect the system to be disordered. This is
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true in the sense that al correlations decay to zero with increasing distance
r.

However, if a® +b* = ¢? (when the weights must lie in this regime I11),
then from (8.3.21,22) it follows that A =0 and s, =5~ The equations
(84.12) then smplify dramatically, Ae is proportional to £, and the
eigenfunction (8.4.6) is amply a determinant.

In this case the problem can be solved by the Pfaffian method mentioned
at the end of the last chapter (Fan and Wu, 1970; Wu and Lin, 1975) and
the correlations calculated. It is found (Baxter, 1970a) that they decay as
an inverse power law in r, rather than an exponential. From (1.7.24), the
correlation length § is therefore infinite, so the S/SIem' is not disordered
in the usua sense.

As will be shown in Chapter 10, the ice-type model is aspeud case of
the eight-vertex model, which can dso be solved. In this regime |11, the
ice-type model corresponds to the eight-vertex moddl being at a criticd
temperature. There are infinitely many eigenvalues of the transfer matrix
which are degenerate with the maximum one. There is no spontaneous
order or interfacial tension, but the correlation length is infinite.

The ice-type model therefore has a very unusua property: it is critical
for dl a, b, c in the regime HI.

IV. Anti-Ferrodectric Phasec> a+ b

Inthiscase A < -1 and £5 <E\, £3 The lowest energy state is either that
shown in Fig. 8.3, or the one obtained from it by reversing al arrows. In
either case the arrows alternate in direction.

At aufficiently low temperatures we therefore expect the system to be
in an ordered state with this anti-ferrodectric ordering. Since the free
energy is anaytic throughout the regime IV, we expect this to be the
anti-ferroelectric ordered regime. Thisis confirmed by the following results
for A<-1,i.e forc>a+ b

Interfacial Tension

For A<-1, Q\= Q=Jl, so the maximum eigenvalue corresponds to
A,...,z, being distributed round the whole of the unit circle. A more
careful analysis (Baxter, 1973b) reveals that for N even there are actually
two such solutions in the n = \N sub-space. The numericaly larger of the
two eigenvalues (A,) corresponds to an eigenvector which is symmetric
with respect to reversing dl arrows; the smaler (Ai) is negative, and
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corresponds to an anti-symmetric eigenvector. The 2\,. . . , z, of one sal-
ution interlace the 4,. . . , z, of the other, and for N large
AMAO = -1 + €exp(-Ng'kgT)}, (8.10.1)
where if
X = exp(-A), (8.10.2)
then il PR
exXp(-5/Azr) = 27 1 (%) . (8.10.3)

(This result is derived in Section 10.10 for the more genera eight-vertex
model.)

Thus Ao and Ai are asymptotically degenerate. From an argument parallel
to that of Section 7.10, sisthe interfacia tension between the two ordered
anti-ferrodectric phases.

Spontaneous Staggered Polarization

Regard the ground state arrow arrangement shownin Fig. 8.3 asa'standard'
configuration. For any arrow configuration, assign a parameter T; to each
i according to the rule:

T, =+1if thearrow on edgei pointsin the same
direction asthe arrow in edge iin Fig. 8.3,
T, = -1if the arrow pointsin the opposite direction.

Then (T,) is the mean 'polarization' of the eectric dipole on edge i,
normalized to lie between -1 and 1. It is defined with respect to the
alternating arrow pattern of Fig. 8.3, so is a 'staggered' polarization.

We have exactly the same problem defining it that we had for the lsing
model spontaneous magnetization in Section 7.10. If we défine it as in
(1.4.4), then it must be zero, since for every state with an up (or right)
arrow on edge i, there is another state (obtained by reversing al arrows)
with the same energy and a down (or Ieft) arrow on edge i.

However, by using only symmetries which leave the standard configur-
ation of Fig. 8.3 unchanged (arrow reversa plus trandation, and mirror
reversal plus rotation plus arrow reversal) one can show that (r;) must have
the same value for dl edgesi, horizontal or vertical. If PQ is this common
value, then by analogy with (7.10.47) we can define it by

P% = lim(T ry), (8.10.4)

where the limit is that in which edges i and / are infinitely far apart. This
Po is the spontaneous staggered polarization. (Just as M, is the limit of M
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when H-* 0%, 0 is P, the limit of (r) obtained by applying a staggered
electric fidd to the ice-type model, then turning it off.)

We now use an argument similar to that of (7.10.25)-(7.10.37). Consider
a particular column C of the lattice. Let %\ =+ 1 if the vertical arrow in
row i of this column points up, -1 if it points down. Let s be the 2" by 2"
diagonal matrix with entries +1 (-1) for row-states with an up (down)
arrow in column C. Then, forj > 1,

<tITJ) = toMM/A0)™ + ter*AalAo)-' + ..., (8.10.5)

where if U is the matrix of eigenvectors of the transfer matrix V, then fa
isthe element (0,1) of U~'sU, i.e.

to = (U-'sU)w, (8.10.6)

and smilarly for t,, fa, etc. The summation in (8.10.5) is over dl eigen-
valuesAi, A2,. . . that correspond to eigenvectorswhich are anti-symmetric
with respect to reversing dl arrows. Thus A, (=Ana) is not included, but
Alis.

First take the limit N-* °° in (8.10.5). From (8.10.1), Ai/Ao-» - 1. All
the other eigenvalues remain drictly less than A, in modulus. Thus if we
now letj - i become large, we obtain

<ir>~<bifio(-iy-". (8-10.7)

The r'i are defined relative to a regular configuration (al arrows up),
while the r; are defined relative to the staggered configuration of Fig. 8.3.
It followsthat ifiTfj = (- iy™>TiTj, so from (8.10.4) and (8.10.7)

P?0 = tait,, (8.10.8)

The matrix elements fa and t,, have been calculated (Baxter, 1973c. the
calculation is quite intricate and complicated). The result is

/1= 2P
Po-*f!l ("1 "‘+x2an) - (810_9)

Correlation Length

After A, and Ai, the next-largest eigenvalue A is the maximum eigenvalue
in the n=\N— (or n=JiV+l) subspace, for N even. Agan
Z. - . ,Z, are distributed round the unit circle, but there is a hole in the
distribution at z = - 1 . Such incomplete distributions can be handled (Y ang
and Yang, 1968; Gaudin, 1971; Takahshi and Suzuki, 1972; Johnson and
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McCoy, 1972). Specidizing the more generd eight-vertex result of Johnson
et al. (19723, 1973), we obtain that for N infinite

S ATA AN
m(AyA) =4+ p+2 2 T2 M™NV) - (g19.10)
m=i m cosh ml

This expression is vdid only for -A<u<0, dnce for w3=0 the
summation diverges. However, expanding the summand in powers of
exp(-2A) and summing term-by-term gives

A , 1+ x5 (1 + ¥z
(Kz) =x(+ 2 H (1(+x4mx 251 +i4,,,z, )_,) (8.10.11)

where z = exp(u). This product formulais convergent and vaid throughout
the dlowed interval -A <v < A.

The correlation length 8 can now be obtained by reasoning smilar to
that of Section 7.10. The formula (7.10.41) only necessarily holds if the
transfer matrix V is symmetric, which is true only if a=b and v= 0.
Indeed, Johnson, Krinsky and McCoy argued that f must be the same as
the decay length of the correlation between two vertical arrows in the same
row (instead of the same column). Like (0p0g) in (7.10.42), this correlation
depends on the Boltzmann weights a, b, ¢ only via the eigenvector matrix
U. From (8.4.6), (8.4.10), (8.4.12) and (8.3.22), these eigenvectors depend
only on A. From (8.9.1) and (8.9.7), this means that U is a function of
A, but not of v. (This point will be taken up in the next chapter.) Thus
8must also be independent of v, in contradiction to (7.10.41) and (8.10.11).

As with the Isng modél, this argument demolishes one derivation, but
provides another. The equations (7.10.41) and (8.10.11) are vdid for
v -0, when V is symmetric and its eigenvalues are real. Since £ is inde-
pendent of v, the resulting expression for 8 must be vaid throughout the
dlowed range -A<Vv<A. ltis

= fae [T (220,

1+ p 2 (8iai2)

Johnson et al, (1973) verified this explicitly by properly summing (8.10.5)
over dl relevant eigenvalues. Comparing this result with (8.10.3), we see
that the interfacial tension 5 and the corrdation length § satiffy the exact
relation

s%=kgT. (8.10.13)
This is the same as the corresponding Ising model relation (7.10.44).
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811 Critica Singularities

Consider a given sat of values of the interaction energies g, . . . , &,
satidfying (8.1.7). For atemperature T, the Boltzmann weights a, b, ¢ are
given by (8.3.3). they correspond to a point in the {ale, blc) plane of Fig.
8.5.

As T increases from 0 to °°, this point traces out a path in the plane,
adways ending at the point (1 ,1) in regime I11. Depending on the values
of Ei, £3, £5, this path may or may not cross from one regime into another.

If the lowest two of g; £3, £5 are equal, then the path dways lies inside
regime I11. The free energy is analytic for dl temperatures T.

If one of £1, £3, £5 is less than both the others, then a sufficiently low
temperatures the path will be in regime I, Il or IV. As T increases it will
cross into regime 11, at a 'transition temperature’ T,. There can only be
one such transition temperature.

The free energy has a singularity at T= T, s0 in this sense this is a
critical point. It is, however, a very unusud critical point since, as was
remarked in the previous section, the correlation length is infinite through-
out regime I1l.

There are three cases to consider.

Ferroelectric: £1 < £3, £5

In this case, at aufficiently low temperatures, the weights a, b, c lie in
regime | of Fig. 8.5. The model then has complete ferrodectric order. A
typicd example is the KDP modd discussed in Section 8.1.

The transition temperature T is given by the condition

a=b+c (8.11.1)

For T> T.fis given by (8.8.9) and (8.8.17); for T< Tfis smply equa
to £1

As r->7?, it follows from (8.3.21), (8.8.1) and (8.8.8) that /x-» n,
w-» -it. Thus it is useful to define 6, e by

H= K-d, w=-M+e. (8.11.2)
Then (8.8.9) becomes
a:b:c=dni(d+e): dnfle-<B:. 9n<5. (8.11.3)

As 777~, S and £ tend through postive values to zero, their ratio
remaining non-zero and finite. The temperature difference T— T, is pro-
portional to

t={b + c-a)la, (8.11.49)
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provided t is smal. We can therefore use this as our definition of the
deviation of T from T, instead of (1.1.3). From (8.11.3), t is related to
6 and e by

t=249n|6(cosid - cosk)/sini(<5 + e), (8.115)
and for 6 and e smdl this gives
t-id(e-d). (8.11.6)

Thus both 6 and e vanish as f* when £ 0.
Now make the subgtitutions (8.11.2) into (8.8.17) and let t become small.
We obtain, using (8.11.6),

I= £i - keTb(e- 6) T -2+ Of) = g - iksTet + 6.
j-oosinn Ljtx ?c -i -1 n\

(o.1i./)

Thisistheresult fort> 0. For t < 0,/issmply £i. Clearly/is continuous

a t= 0, itsfirst derivative (the internal energy) has a step-discontinuity,

and its second derivative (the specific heat) diverges asr* for t > 0. Using

the definition (1.7.10) of the critica exponent a, it follows (because of the
step-discontinuity) that

a=l, (8.11.8)

corresponding to afirst-order transition.
For T <T¢ the system is completely ordered, so the spontaneous polar-
ization PQis
Po=1- (8.11.9)
Just as we defined in (1.1.4) a critical exponent /? for a magnetization
Mo, so can we define an exponent $> for an electrical polarization P,. In

this case it follows that
ft = 0. (8.11.10)

Above T, the correlation length is dways infinite, whereas below T it
is zero and the interfacia tension is infinite. The exponents v, v and \i
cannot therefore be sengbly defined. Despite this pathological behaviour,
the model isinteresting in that it is one of the very few that can be solved
in the presence of a symmetry-breaking field (in this case a direct electric
field). This calculation will be outlined in the next section and the critica
equation of state obtained.

Ferrodectric. e5< g, &

Exactly the same results hold for this case as for the previous case, provided
£1 is interchanged with £5, a with b, and regime | with regime Il. Indeed,
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this corresponds merely to mirror-reversing the lattice, or rotating it through
90°.

Anti-Ferrodlectric: es< £i, £3

At sufficiently low temperatures the weights lie in regime IV of Fig. 8.5.
The transition from regime IV to regime |11 occurs at a critical temperature
T. given by

c=a+b (8.11.11)

For T>Tc, fis given by (8.8.9) and (8.8.17); for T< T. it is given by
(8.9.7) and (8.9.9).

This case is quite different from the previous two, because the ordered
state is one of partial anti-ferroelectric order, rather than complete fer-
roelectric order.

The 'singular part' /sng Of the free energy can be defined by (1.7.10a).
Comparing (8.8.1) with (8.9.1), and (8.8.9) with (8.9.7), we see that the
analytic continuations from T> T, to T< T; of n and w are —ik and -iv,
respectively. In both cases win is real and -l<wifi<l. Near T,
A= -1andnissmall.

We therefore want to continue analytically the integral in (8.8.17) from
small real positive values of nand n + w to small negative imaginary values.
To do this, we first use the evenness of the integrand to write (8.8.17) as

=g - @T9 (1 Mthf iy el ge - (81112)

2x siffth nx cosh [AX

where 9* denotes the principal-value integral. If n, w have negative ima-
ginary parts, thisintegral can be closed round the upper half of the complex
je-plane. Summing over residues then gives, settingn = -/A and w = —iv:

— kBT\hX+V) + exp(_mA) sinhw. (A+v)

12 =i mcoshwA
_;Y X mexpR(m =4 Vi coshi(m - Dnvik]\
££ 1 (m - I) th[(m - |)/\/A] T (8.11.13)

(for the F-model, when v = 0, this result is given in eqn. A13 of Glasser
etal. (1972).)

Clearly the real part (for A, v real) of this expression is the same as
(8.9.9). Thus/sing is the imaginary part of (8.11.13). Near T, A is small,
S

/sng = -4iksT. exp(-JT?/A) cosh(;ru/2A). (8.11.149)
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Anaogoudly to (8.11.4), let us define the deviation of T from T to be
t= {a+ b-c)lc. (8.11.15)

Then, from (8.9.7), vik remains finite and non-zero as t—*0, while for A

and v smdl
t=-i1AZ%-u?). (8.11.16)

Thus near T, both A and v are proportional to {-if.
It follows that the free energy has an unusual singularity a& T= T,
namely
/dng * exp [-constant™-tf]. (8.11.17)

This is a very weak singularity. It and dl its derivatives tend to zero as
—* O~ Infact, dl temperature derivatives of the free energy exist and are
the same on both sides of the transition (Glasser et al., 1972; Lieb and
Wu, 1972, pp. 392-407). The trangition is of infinite order.

Clearly (8.11.17) is not of the usudly postulated form (1.7.10b), so the
exponent a does not properly exist. If one indsts on giving it a value, the
only sensible choice is

ar=-°°. (8.11.18)

For T<Tc, the correlation length §, the interfacid tension s, and the
spontaneous staggered polarization P, are given by (8.10.3), (8.10.9) and
(8.10.12). Their critica behaviour is most easily obtained by noting that
these infinite product expressions are precisady those that relate eliptic
moduli and integrals to their corresponding nome. In fact, from
(15.1.1)-(15.1.4):

exp(-1/8) = exp(-s/ksT) = K", (8.11.19)
P, = ik'lIn,
where k, K, | are the modulus, conjugate modulus and eliptic integral
corresponding to the nome
q=x° = exp(-2A). (8.11.20)

Near T, A becomes smadl so x and k approach one. Then /'—*iit, s0

from (15.1.3)
I=—~1a%n g = 742, (8.11.21)

Also, replacing k and q in (15.1.4) by their conjugates k' and ¢, where
g = exp(—nl/l'), we obtain

k' =Aq"= 4exp(-;r74A), (8.11.22)
Ink = -8q° = -8 exp(-"/2A) . (8.11.23)
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Using these formulae in (8.11.19), it follows that near T
E = sikyT = d exp(—ati24) , Po= (2IT/A) exp(-"?/4A). (8.11.24)

Thus If*, 5 and P, al tend rapidly to zero as A= 0, i.e. as T-* T.. They
each have an essential singularity similar to that of/sing, i.e. of the form
(8.11.17). They do not vanish as smple power laws. The definitions (1.7.9),
(1.7.34) and (1.1.4) of their critica exponents v, n and fl, therefore fail.

On the other hand, from (8.11.14) and (8.11.24) it is apparent that the
proportionality relations

rt K ox<x (L)*fSMU (81125

are satisfied. If these quantities did vanish as power laws, then (8.11.25)
would imply the exponent relations

v=p=h+ 2p=i(2-a). (8.11.26)

In this sense we can therefore say that these exponent relations are satisfied.
In particular, the scaing relations (1.2.15) and (1.2.16) hold true.
Unfortunately, applying a direct electric field does not break the degener-
acy of the anti-ferroelectric ground states. To do this it is necessary to
apply astaggered electric field, alternating in direction on successive edges.
The model has not been solved in the presence of such a field, so we are
unable to apply any further tests of the scaling hypothesis in this case.

8.12 Ferroedectric Moddl in a Fied

In the absence of fields the partition function Z is given by (8.1.1) and
(8.1.3), and the vertex energies e\, . . . , g saisfy the arrow-reversal sym-
metry relations (8.1.7).

The arrow-reversal symmetry can be broken by applying vertica and
horizontal fieldsE and E', respectively. These give each vertical up-pointing
(down-pointing) arrow an extra energy -E (+E), and horizontal right-
pointing (left-pointing) arrows an energy —E' (+£').

If desired, these energies can be incorporated into the vertex energies
by sharing out the energy of each arrow between its end-point vertices. If
£i,. .., 6s are the origina zero-fied vertex energies, satisfying (8.1.7),
then from Fig. 8.2(a) the six resulting vertex energies are

et-E-E', e + E+E', st+E-E', e-E+ E', ¢ e
(8.12.1)
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As was remarked in Section 8.1, there is no loss of generdity in choosing
£5 = €5, S0 aly Sx energies can be fitted to (8.12.1), using (8.1.7). Thisis
therefore the general six-vertex model.

This can be solved (Yang, 1967; Lieb and Wu, 1972): the working of
Sections 8.2-8.7 can be appropriately generalized, leading to a linear
integral equation of the form (8.7.9). In genera this equation can no longer
be solved analytically, but its properties can be studied and it can of course
be solved numerically.

The generaization is particularly ssimple if E' = 0, i.e. only the vertical
electric fidd E is applied, so from now on let us consider this case. Rather
than incorporating the vertical fidd into the vertex energies, let us keep
£],..., £ asthe vertex energies, dill satisfying (8.1.7). Then (8.1.3) must
be replaced by

G =ne+ ... +nees- E(N, - 2Ng), (8.12.2)

where N, is the total number of vertica edges and Ny the number of
down-pointing arrows. (Thus N, - 2Nq is the number of up arrows minus
the number of down ones.)

The vitd point to remember is that of Section 8.3: there are exactly n
down arrows in each row. Since there are M rows of N columns, it follows
that

N-2Ng = M(N-2n). (8.12.3)

Replacing (8.1.3) by (8.12.2), and noting that the transfer matrix V
breaks up into N+ 1 diagond blocks, each with its own value of n, the
equation (8.2.1) therefore becomes

N

Z =2 exp[EM(N - 2n)/kgT] Trace V2, (8.12.4)
n=0

where V, is the nth diagonad block of the origina transfer matrix V. If
An is the maximum eigenvalue in this block, then when M is large

N

Z~ 2 A2 exp[EM(N - 2n)/keT]. (8.12.5)

Further, for M large the summation in (8.12.5) will be dominated by the
value of n which maximizes the summand. From (1.7.6) the free energy
per site is therefore

f=f-E(-2n/N), (8.12.6)
where _

f,= -N-"kgT\nA, (8.12.7)

and n must be chosen to minimize the RHS of (8.12.6).
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Since V is the original zero-fidd transfer matrix, for a given value of n
this/, is precisely the/given by (8.7.7), (8.7.9) and (8.7.11). The only
difference between the previous working and that of this section is that
originaly we chose n to minimize /, itsdf (the appropriate value being
n =i/V). Now we must minimize (8.12.6).

More explicitly, for each value of n we must solve (8.7.7) and (8.7.9)
for Q and p{k), using the definition (8.7.3) of 0. Then we must calculate
/,, from (8.7.11), and finally choose n to minimize (8.12.6).

The polarization P is the expectation value of (N, - 2 Nd)/N,, and since
the summation in (8.12.5) is dominated by the appropriate value of n, this
is smply given by

P = l-2nIN. (8.12.8)

As E varies, so may n; but since n is chosen so that (8.12.6) is stationary
with respect to variations in n (for given E), it follows at once that

A-=]-2nIN=P. (8.12.9)

This equation is the expected analogue for electrical systems of (1.7.14).

Critical Equation of State

Let us suppose that £i is less than £; and £5. Then in zero field there is a
transition at atemperature T, given by (8.11.1). Close to thistemperature,
the above programme can be carried out to first order in the temperature
variable* of (8.11.4).

The easiest way to do thisisto go back to the equations (8.4.12), (8.3.22)

for Zi,...,z,. Defining K\,. . . ,k, by (8.7.1) these equations give
. ul 1—- - ki)
exN.I:,— = (__ )n—l "
=i L - 2A € + &> (8-12.10)
fory=1, ..., «.
Define t, 6 as in Section 8.11. Then from (8.8.1) and (8.11.2),

A =cosS (8.12.11)

andf, <6» 0as T-+ T..

In Section 8.8 it was shown that if n = IN, then Q = n—/u= 8. Thus
K\,....k, are distributed over the interval (—d ,8). For n < \ N we expect
them to be distributed over some smaller interval centred on the origin.
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If 8 is small, it follows that K\,....k, are of order 8. Expanding both
sides of (8.12.10) to order 8, and taking logarithms, it follows that

Nkj = 2: _21 & - kiki)l(k - k). (8.12.12)

#
Now let n,N tend to infinity, keeping n/N fixed. As in Section 8.7,
K\...k, effectivdly form a continuous distribution over some interval

(-Q, Q)- Again let Np(k) dk be the number of kjS between k and k + dk.
Then (8.12.12) becomes the integral equation

k = 2’;j aynp(K)dk:, (8.12.13)

where -Q < k< Q and 2P means that the principa-vaue integral must be
used. Again Qisrelated to n/N by the condition (8.7.7). Using the definition
(8.12.8) of the polarization P, this condition is

JQ p{k) dk = i(l - P). (8.12.14)
-G

Writing kk' in (8.12.13) as K-k{k-k'), and using (8.12.14), the
integral equation becomes

2(52 kz) ]( K-k (81215)

Thisisasingular integral equation with a Cauchy kernel (M uskhdishvili,
1953), and can be solved exactly. (One brute-force way is to transform
from k, k' to a, @', where k= Qtanh a, and then use Fourier integrals.)
The solution is, for Q" 8,

plk) = Maza(%z)l(;z T2T— (8.12.16)

Substituting this into (8.12.14) and using the formula

2 QR - OuEY 8.12.17
[Qaz_kz Aql-(1-Q4,  @1217)

we find that Q is given by
6 = (5(1-P?). (8.12.18)

Snce 0An~N, Pliesin the interval (—1,1); so Q is dways less than
d and the above solution is valid for al allowed values of n/N.
For a given value of n, the free energy /, is given by (8.7.11). Since
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£1 < £3, the firg term is the smaller, so we must expand L [exp(/A:)] about
6=0and k=0.
Using (8.3.9) and (8.11.4), noting that k ~ 6 and t~ <5 we obtain

InL (en) = 2+ ik ( —E>k2+ O(<5). (8.12.19)

Substituting tms expression into (8.7.11), and using (8.12.16) and (8.12.18),
then gives

l, = £!- kB'Tt(I -P) + Q-A\ &1 - PIA + Q<5) 1.J (8.12.20)

However, from (8.11.3) and (8.11.6), in the limit of 6 small,
(1--§a2=_2t, (8.12.21)
¢/

so, neglecting terms small compared with t, (8.12.20) smplifies to
f,= e-UgTt(l-P?). (8.12.22)

Now we choose n to minimize (8.12.6), remembering that n must lie
between 0 and N, and is related to P by (8.12.8). This gives

P = ElksTd) if \E\<kgTt, (8.12.233)
= sign(£) otherwise . (8.12.23b)

The resulting division of the (t, E) plane is shown in Fig. 8.6. In Region
A the system is disordered, with polarization P given by (8.12.23a). In
regions B, C it is completely ordered, with P = +1, - 1, respectively.

Fig. 8.6. Phase diagram of the ferrodectric modd neer its criticd point t= E==
0. The boundaries of the disordered phase A are the lines E = +ksT.t.



8.12 FERROELECTRIC MODEL IN A FIELD 165

Scaling Hypothesis

Equation (8.12.23) is the critical equation of state, vdid for al negative
t, and for amdl positive t. In view of its quite complicated derivation, it
is amazingly simple.

Remembering that P is the eectrical analogue of M, and E of H, we can
compare (8.12.23) with the form (1.2.1) predicted by the scaling hypothesis,
namely

E/ksTe = P\P\&-thJ(1\P\-"P). (8.12.24)

A little thought shows that if hy(X) is of the general form shown in Fig.
14, and if
lim x"*h(x) =1, 6=1+/T%, (8.12.25)

then (8.12.24) reduces to (8.12.23) in the limit /3>0". Thus the scaling
hypothesis is satisfied in this limiting sense, and the critical exponents are

a=|,ft = 0,y.=I,6,=00, (8.12.26)

using the auffix e to denote 'electrical’ exponents. These results of course
agree with our previous observations (8.11.8) and (8.11.10).

Apart from the redtriction in (8.12.25), hg{x) is undetermined. This is
apity, since of the two-dimensiona Ising, ice-type and eight-vertex models,
only this ferroelectric model has been solved in a symmetry-breaking field.
It would be extremely interesting to obtain an exact two-dimensional scaling
function.

8.13 Three-Colourings of the Square Lattice

The ice model is a specid case of the 'six-vertex' or ‘'ice-type’ modd in
which £i,. . ., e are dl zero, as in (8.1.4). Lenard (Lieb, 19678 has
pointed out that the model is equivalent to counting the number of ways
of colouring the faces of the square lattice with three colours, so that no
two adjacent faces are coloured alike.

To see this, consider some such colouring of the lattice, and labd the
colours 1, 2, 3. Place arrows on the edges of the lattice according to the
rule:

if an observer in one face, with colour a, looks across an edge to a
neighbouring face which has colour o+ 1 (mod 3), then place an arrow
in the intervening edge pointing to the observer's l€ft; if the neighbouring
face has colour a—\ (mod 3), point the arrow to the right.
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Now imagine the observer walking once round asite. Let /be the number
of increases in colour (left-pointing arrows) that he sees, and D the number
of decreases (right-pointing arrows). Since he returnsto the origina colour,
it must be true that / - D -0 (mod 3). Since there are four faces round
each site, itisaso truethat | + D = 4. The only non-negative solution of
these equationsis/ = D = 2, so there are two arrowsinto the site, and two
out. The ice rule (Section 8.1) is therefore satisfied at this and every site
of the lattice.

To every three-colouring of the lattice there therefore corresponds an
arrow covering of the edges that satisfies the ice rule. Conversaly, to every
such arrow covering there correspond three alowed colourings of the
lattice (one square can be coloured arbitrarily; the colours of the rest are
then uniquely determined). Thus the number of ways of colouring the
lattice is 3Z;ce, Where Zie is the ice-model partition function. It is aso equal
to

2G(M, 2,13), (8-13.1)

where G(Ni, Nz, A") is the number of alowed ways of colouring the faces
so that Ni have colour 1, A™ have colour 2, and N3 have colour 3. If there
are N, faces altogether, then plainly

Ni + N, + Ng = N,. (8.13.2)

The summation in (8.13.1) is over al non-negative integers N\, N,, N3
satisfying (8.13.2).

An obvious generalization of the colouring problem is to calculate the
G(N\, N,, N3) individualy, instead of just their sum. Equivalently, we can
attempt to calculate the generating function

Zs = 2 2'2d GATI, Ny, Na), (8.13.3)

for arbitrary values of 2\, z, za.

A more obvioudly statistical-mechanical way of looking at this problem
is to regard the colours 1, 2, 3 as three species of particles. Each face of
the lattice contains just one particle, adjacent particles must be of different
species. Then Zc in (8.13.3) is the grand-partition function of this
close-packed lattice gas; 2\, z,, z-$ are the three activities.

It turns out that this problem can be solved (Baxter, 1970c, 1972a).
More precisely, one can caculate the limiting 'partition function per site'

K= lim zZI"<, (8.13.4)
Nr->°°
where as usua the limit Afl—> °° means the thermodynamic limit in which
both the height and the width of the lattice become large.
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The method is again that of the Bethe ansatz. Here | shdl give the
required modifications of Sections 8.2 to 8.8.

Another problem that can be solved is that of four-colouring the sites
of the triangular lattice (Baxter, 1970b). As | point out in Sections 12.1
and 12.2, both these colouring problems (with unit activities) are specid
cases of the Potts model.

Transfer Matrix

Let M be the number of rows of the lattice, and N the number of columns.
Impose cydic (i.e. toroidal) boundary conditions. Then

N, = MN. (8.13.5)

Consider a row of the lattice. Let oi,. . . , oy be the colours of the N
faces, asinFig. 8.7. Place arrows on the intervening vertical edges according
to the above rule. Then there is an up arow in position/ if 0.1 =Oj + 1,
adown arrow if Oj-\ = 0,e- 1.

fufat o (ute

Fig. 8.7. A row of faces of the square lattice, coloured <j\,. . . , ay. Arrows are

placed on the intervening edges according to the rule given in Section 8.13. The

particular configuration shown correspondsto Oi = CTl +1,a?, =0i —1,¢¢ O\ =
CTiv-1.

Let there be n down arrrows in the row, in positions Xi, Xy, ® * * X,
where 1= <X < .. <X,«N. Then the colours o\,. .., oy ae
uniquely determined by specifying O\ and xi,. . . ,X,. Let us refer to O\
amply as a. Then the product of the activities for this row is

TEE) = ZyZop . . - Zan

n

= (ﬂzng)m |;£ Iftt,' +j + a), (8136)

where
80) = 2424+ 1{212223) m (8.13.7)
Here X denotes the set {X\,. . . , X} and we use the modulo 3 conventions

Zoes =25, Lo+3)=£(a). (8.13.8)
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We aso note that for the colouring to be consistent with the cydlic boundary
condition ans; = Oi, N and n must be such that

N-2n = 0, modulo 3. (8.13.9

We now need both a and X to specify the state of a row. Let 0 denote
both a and X. Then again we have (8.2.1), where Z= Zs and V is the
transfer matrix. The elements of V can now be taken to be

V((j,, 0") = D[ X) if <f>, $ consistent,
= 0 otherwise . (8.13.10)

Here <j> - {a, X) is the colouring on one row of faces, and 0' ={& , Y} is
the colouring on the row above. Thus D,(X) is the activity product for the
lower row.

X denotes the positions of the down arrows in the lower row, Y the
positions of those in the upper row. We still have the ice rule (two arrows
into each site, and two out), so it is ill true that al rows of the lattice
have the same number of down arrows, and we can regard this number
(n) as fixed. Further if X={xi,.. X} and Y ={yy... .yo} then
vi,. .. ¥n must interlace X\,...x,. Altogether, it follows that <f> and
(p' are consigtent if either:

& = o+ 2and 1« *i =£yi Ss* y« ¢ » ¢ =5)%,=£#; (8.13.10a)
or
& = at land 1l «yi=£*i =£y," ... ~%"N. (8.13.10b)

Wedill have (8.2.3) and (8.2.4), where g is an eigenvector of the transfer
matrix V. Let gJJC) be the element of g corresponding to the row-state
<t> = {0, X). Then the eigenvalue equation (8.3.2) becomes

AgdX) = DLX) {g gosAY) + 'ggmi(Y)\.; (8.13.11)

Here L denotes a summation overyi,... ,y, subject to the restrictions
(8.13.10a); R denotes a summation subject to (8.13.10b). We adopt the
modulo 3 convention

go.s(X) = gJ,X) . (8.13.12)

Bethe Ansatz

As in Section 8.3, we can successively consider the cases « =0, 1, 2,...
This leads us to modify (8.4.6), and instead to try the Bethe-type ansatz

n

go(X) = 2 A 1 <t>plog + ] + o)'. (8.13.13)
i=1



8.13 THREE-COLOURINGS OF THE SQUARE LATTICE 169

Here P ={pi,. .. ,p,) is a permutation of the integers {1 , . .. ,n}, the
sum is over dl n! such permutations, the coefficients® and the functions
<f>j(x) areat our disposd.

We can ensure that the condition (8.13.12) is satisfied by requiring that
there exis wave numbers k...,.k, such that

<ti(x + 3) = 4>,{x) exp(3ik]) (8.13.14)

and
ki + .+k, = 0. (8.13.15)

Thus (j>j(X) can be regarded as a plane wave modulo 3. The condition
(8.13.15) implies that we are seeking atrandational invariant eigenvector
of the transfer matrix: this must include the eigenvector corresponding to
the maximum eigenvalue A .

When 2\ =z, = Z3 = 1 weregain the ice modd and expect the functions
<pj(X) to be pure plane waves. To maintain the analogy with Section 8.4,
we must use not the coefficients A'p, but the related set

Ao = Ap explilky + 2K + .. + Nkey)]. (8.13.16)

When zi =z, = z3;, these should reduce to the coefficients Ap of the ice
model.

Substituting the form (8.13.13) of gJ(X) into the eigenvalue equation
(8.13.11), wefind asin Section 84 that there are 'wanted terms), ‘'interna
unwanted terms’ and 'boundary terms'. The wanted terms give (for n even)

A= 2(212:23)"\1...Yn, (8.13.17)

ANI$E > G

for/=1,... ,nand al integers x.
The equations (8.13.14) and (8.13.18) form a cubic eigenvalue equation
for y in terms of kj, the solution of which can be written asy. = y(kj), where

yiK) = i exp(3iki2)/g(K) (8.13.19)

and the function g = g(k) (not to be confused with the eigenvector g) is
defined by

where

g - 3Bg + 2sn(3/:/2) = 0. (8.13.20)
The congtant B is given by
B =[£(1) + £2) + £3)]/3
= (2223 + Zgy + Z"\V"Z1Z2ZsH. (8.13.21)
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We dill get the equations (8.4.7) from the vanishing of the interna
unwanted terms. In fact at first Sight we appear to get three such equations,
each with its own function s,,. However, closer examination shows that al
three are in fact the same. (If they were not, then the Bethe ansatz would
fail.) It turns out that

s, = o(kj) expli(*/ + &,)] + g(k,) exrf-i(*, +i*,)]. (8.13.22)

The coefficients Ap are therefore again given by (8.4.10). Further, (8.4.8)
and (8.4.9), with z therein replaced by exp(i£,-), are ill the conditions for
the boundary terms to vanish. Thus again we obt_ain (8.4.12). i.e.

n

exp(iNkj) = !I=II [sn/Si] (8.13.23)
*]

forr=1,...,n.

These equations (8.13.23), together with (8.13.20) and (8.13.22), deter-
mine k\,. . . ,Kk,; Yi, ¢+ Yn arethen given by (8.13.19). Note that these
equations involve the activities 2\, z,, z3 only via the single dimensionless
parameter B. Why this should be s0 is not clear.

When 2 = z, = z;, then 5=1 and (8.13.20) has the solution g(k) =
2 9n(A:/2). Subgtituting this into the above equations, the ice model results
of Section 84 are regained.

Of course (8.13.23) has many solutions for k,...,k,, corresponding
to the various eigenvalues of V. We are interested in the solution corre-
sponding to the maximum eigenvalue. From (8.2.4), with Z = Zg, and
from (8.13.4) and (8.13.5), we then have

K= ImAZ; (8.13.29)
N-»=0
or, using (8.13.19) and (8.13.15), and writing g for g(kj),
K= (222)™ lim [(-r%... g-"™ (8.13.25)

The Limit N-* «

| expect the andlysis of Section 8.7 to apply aso to the three-colouring
problem: in the limit of n and N large, k... . , k, form a continuous
distribution over some interval (-Q , Q), with distribution function p(K)
satisfying
2 aQ(k kN
2jtp(k) =1 —antinellidk, (8.13.26)
J-Q ok
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Ip{k)dk = niN, (8.13.27)

the function & (k, k") being derihed by (8.7.1). From (8.13.22) it follows
that

exp[-i@(p ,9)] o
. - + . + eX| -|- + ) ‘o am gy
g(p) cxpli(a + ip)] + g(@) oxpl-i(p +iq)] AT
Thegi, * * * ,g, Occur in pairs of opposite sign, so from (8.13.25)

e
InK=ilnzzz) - f In\g(k\ p(k) dk. (8.13.29)
J-e

Trangformation to an Integral Equation with a Difference Kernd

An important step in the solution of the ice-type models is the transfor-
mation (8.8.2) from the variable k to a new variable a. Using this trans-
formation to go from the variablesp, g to new variables a, /3, we found in
(8.8.4) that exp[-i O(p , g)] becomes a function only of a - fi. The integral
equation (8.13.26) then has a difference kernel: for the required value of
Q it can be solved by Fourier transformation.

Can this procedure be repeated for the present case, i.e. doesthere exist
afunction k{a) such that if

p= k(@),a=k(P), (8.13.30)
then
e(p, g = functiononly of a- /3? (8.13.31)
If so, then
M) 3e(Pda o ) 212 2N

da dp dp dq
From (8.13.20) and (8.13.28) we can veify that
&(p,a)=p-q[I-g*(p)/B] +<0(c). (8.13.33)

Taking the limit #-»0 in (8.13.32), and choosing a= 0 to be a zero of
k(a), it follows that

K'(a) =k'(0) [1 - B-tfik)]. (8.13.34)
Substituting this result back into (8.13.32), we obtain

[B~2<P)]~ | ~+[B~gq] '-» =0. (81335
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Using (8.13.28) and (8.13.20), we can verify directly that this needed
identity is indeed satisfied, for dl complex numbersp and g. Thisin turn
means that (8.13.31) is correct; there is indeed a transformation that
reduces (8.13.26) to an integral equation with a difference kernel!
The function on the RHS of (8.13.31) is readily evaluated by setting
/3=0. Then g = 0, so from (8.13.33) and (8.13.30) we obtain
®(p,g9)=k(a-p). (8.13.36)

Change variables in (8.13.26) from k, k' to a, /3, where k = k(a) and
k' = k(f$). Define R{@) asin (8.8.5). Then we obtain the integral equation

R(a) = k'(a) + (27) 7! f 2 k(a—BYR(P) 03,  (81337)

where Q = k(Q{). (The function k(a) is monotonic increasing and odd.)
The sde condition (8.13.27) and the equation (8.13.29) for K become

{In)"* |Q' R(a)da=n/N, (8.13.38)

Imc= An(ziZ2Z5) - {2n)~ fQ' In\g(@)\R(a) da  (8.13.39)
J-Qi

(regarding g now as a function of a, rather than k.)

The Functions g(a), k(a)

The functions g(a), k(oc) are defined by (8.13.20) and (8.13.34). We want
to solve (8.13.37) for R{a), and then evaluate K from (8.13.39).
Eliminating k between (8.13.20) and (8.13.34), we abtain the relation

A= [2B/K(0)] {4 - 9\3B - gYY (8.13.40)

between a and g.

This equation can be integrated using dliptic integrals (Gradshteyn and
Ryzhik, 1965, Paragraph 3.147.2). Let u, v, w be the three vaues of x
which stisfy the cubic equation

X(3B - xf = 4, (8.13.41)
and let k,,, X be the constants
kn= [(@- v)WI(u - *>]*, (8.13.42)

T=[uw/(u- w*B/K'iO). (8.13.43)
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From (8.13.21), BM.It fallows that u, v, w are real and positive. Let
us choose them so that

u=> v~ . (8.13.44)
Then k., is real, satisfying
0<*y«l. (8.13.45)
Now introduce a new variable s, related to g by
g? = «ivj?/(H-iv + H'j?). (8.13.46)

Substituting this expression for g into (8.13.40), the differential equation
becomes

A= TI(L- ) (1 - KWYS (8.13.47)
Integrating, remembering that k =g =s= 0 when a= 0, we obtain

oc=rE[(L- ) (1 - kK &t. (81349

This gives aas afunction of s (it is actualy an dliptic integral). We are
interested in s as a function of a. From (15.5.6) we see that

s = sn(r-'a, kn), (8.13.49)

where sn(u , K) is the dliptic sn function of argument u and modulus k,
defined by (15.1.1)-(15.1.6).

From now on let us regard the dliptic modulus k, (not to be confused
with the wave numbers K\,...,k, above) as understood. Also, we are
free to choose the scale of ain any convenient way: let us do so so that

T=1. (8.13.50)

Then &'(0) is defined by (8.13.43), and sis smply sn a.

As is shown in Section 15.2, the function sn or is meromorphic (i.e. its
only singularities are poles). Since u, v, w are constants, it follows from
(8.13.46) that ¢ is aso a meromorphic function of a.

Let »/ be one of the poles of g*ar). Then from (8.13.46),

g7 ri=-(u-w)/w. (8.13.51)

As in Chapter 15, let / and /' be the complete dliptic integrals of the
firg kind of moduli K, K'n=(1 - ",)J, respectively. From now on let g
be the 'nome’, defined by (15.1.1)-(15.1.4), i.e.

q = exp(-«/7/). (8.13.52)
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As amoves aong the imaginary axis in the complex plane, from 0 to
H', snais dso pure imaginary, and goes from 0 to +i°°. The RHS of
(8.13.51) is negative, so we can choose 1\ to lie in the interval (0, U') of
the imaginary axis.

Using (15.4.4), (15.4.5), (8.13.42) and (8.13.51), we have that

enrj = {ulwf, dnr\ = (ulvf, (8.13.53)
1-Knsn*r] = u(v + w- ul{ww). (8.13.54)
Taking square roots of (8.13.41), we obtain a cubic equation for XK By

considering the sum of the roots of this equation (taking proper account
of their sign), we obtain the homogeneous relation

u=v+w. (8.13.55)
Squaring, this implies that
V A+ W-U = -2(Ww)' (8.13.56)

Multiplying both sides by ul{ww) and using (8.13.53) and (8.13.54), we
obtain

|-*isn*?7= ~2cnr/ dn /. (8.13.57)
Using (15.4.21) with u = -v = rj, it follows that
sn2rj = -snr], (8.13.58)
i.e., udng (15.2.5),
sn 27 =sn(2/I" - rj) . (8.13.59)
This equation has just one solution in the interva (0, H"), namely
T7=2i/73 (8.13.60)

Thus t] is this smple fraction of il'.
Using (8.13.51), remembering that we now regard g as a function of
a, we can write (8.13.46) as

gV) =" snfal(sn’a- snj). (8.13.61)

We can express the constant uinterms of t). From (8.13.41), the product
of the three roots is 4, so uvw = 4. Using (8.13.53), it follows that

en?7dn?7 = £<32, (8.13.62)
Using (15.1.6) and (15.4.30), this can be written as

\u™ = H{ri) 6,77 €*(0)/[//'(0) Ci(O) erfj)],  (8.13.63)



8.13 THREE-COLOURINGS OF THE SQUARE LATTICE 175

where H(u), Hi(u), ©(w), ©i(w) are the dliptic theta functions defined in
(15.1.5).
From (15.2.3b) (with u therein replaced by -JJ),

H{2ri) = g-™H{r)) ; (8.13.64)
and from (15.4.17) (with u, v replaced by r\, —\),
2H{r]) efa) Hriv,) ©,(r? = H{2rf) 0(0) H(0) 6i(0). (8.13.65)

Eliminating H{2r})IH(t]) and Hi(r)) ©i(/?) between theselast three equa-
tions, we obtain

u = ¢ O0YOX)). (8.13.66)
Using this in (8.13.61), together with (15.1.6) and (15.4.19), we find that
gV) = g?°H¥@/[H(r)H@+ r)]. (8.13.67)

Now consider the function k(a). From (8.13.34) and (8.13.43), using
T=I,
K(a) = [uw/(u - w)]’[B - g\a)}. (8.13.68)
The RHS of this equation is a meromorphic function of a; like g?(a), it
has smple poles when the denominator in (8.13.61) vanishes, i.e. when
a=z+rj+ 2ml + 2inF , (8.13.69)
for dl integers m, n. The residue at such a pole can be obtained in the

usual way by differentiating the denominator. Using (15.5.1a) and (15.5.5),
this gives

Res[k’(a)] = - [uw/(u - w)]hi sn*/(2cna dna), (8.13.70)

Substituting the values (8.13.69) of a, using the periodicity relations
(15.2.5), together with (8.13.51) and (8.13.62), we find that

Regk'(a)] = =i, (8.13.71)
the upper (lower) dgn being used if the upper (lower) one is used in
(8.13.69).

A function of athat has precisdly these poles and residues is
[Htn) B )
i IA@rr) ~ A@m] (8.13.72)

The difference between this and k'(a) is therefore a meromorphic function
with no poles, i.e. an entire function. Further, it is doubly periodic, with
periods 2/ and HI', so it must be bounded. By Liouville's theorem it is
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therefore a constant. (This is an example of the use of theorem 15a in
Section 15.3.) Integrating (8.13.68) and using k(0) = O, wetherefore obtain

k(a) = Ca+i \n[H(r) + a)/H({] - )], (8.13.734)

where C is some constant.
Since /(@) is periodic, with periods 27 and 2H', so from (8.13.20) is
sn’3)t/2). Using (15.2.3), this fixes C to be

C=-2n/(3)). (8.13.73b)
This completes the derivation of the functions g{a) and k(a). We shall
need the Fourier expansion of k(a), and the Fourier integrals
i
Gn =0 J\| exp(imJia/l)In[g%(a)] da, (8.13.74)
i

wheremisaninteger. From (8.13.61), (8.13.73), (8.13.60) and the product
expansion (15.1.5) of the dliptic theta function H{u), it is sraightforward
to establish that

Go = - 4x77(97),
Gm = (P - DMl +r™+ r*™)], m#0, (8.13.75)

R
tesz3)" Bt o (B2

Here ais real and

and that

r=q" = exp(-2x7737). (8.13.77)

Elliptic functions occur very frequently in the exactly solved two-dimen-
siond models in statistical mechanics. Thismodel is interesting in that they
are needed to transform (8.13.26) to an integral equation with a difference
kernel. They aso occur in this way in the origina method of solving the
three-spin model (Baxter and Wu, 1973, 1974). As | remark at the end of
Section 10.4,1 suspect that the 'difference kernel' transformation is closdy
related to the dliptic function parametrization of the generalized
star - triangle relation.

Solution of the Integral Equation

We can solve the integral equation (8.13.37) by Fourier series, provided
2Qi is a period of the dliptic functions, i.e. if

Qi=I. (8.13.78)
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Substituting the form (8.13.76) for k(a), and setting

R(@) = {nil) \RQ + 2 2 R,cos(m;rar//)] , (8.13.79)
I m = | J
it is easy to find that
R = rM{\+r?M. (8.13.80)
From (8.13.38), it fallows that

n=iN, (8.13.81)
so there are as many up arrows as down ones. Asin Section 8.8, we expect

this case to give the maximum eigenvalue of the transfer matrix V.

From (8.13.78) and (8.13.76), k(a) increases monotonically from —n/3
to Jt/3 as aincreases from -<2i to <& Thus Q = Jt/3 in (8.13.26): the
wave-numbers Ki,...,.k, fill the interval (—n/3, Jt/3). This is the same
interval as for the origina ice model, though of course the distribution is
in genera different.

Substituting into (8.13.39) the Fourler saries (8.13.79) for R(a), we
obtain

INK = ilnZz2Z) i 2 GuRn (8.13.82)
wGe
(taking R-, = Ry). Using (8.13.75) and (8.13.80), it follows that
INK=1ilIn(2i2,z5) - SInr
R . i
m=tm(l + ) (1 + 7+ r77)

This gives KI(z2\z2z1)'® as afunction of r. We can regard r as defined by
(8.13.77) and (8.13.66). Using (15.1.5), these give

(8.13.83)

i (ES o) 81389

To summarize: given z;. z,, z3, define B by (8.13.21) and let u be the
largest root of (8.13.41). Define r (0<r< 1) by (8.13.84). Then K, the
partition-function-per-site of the weighted three-colouring problem, is
given by (8.13.83). Note that KI{2ZiZz)™ depends on 2\, z,, 23 only via B.

This form of the result is convenient when B is large, which iswhen one
of 2, Z2, 23 is large, or small, compared with the others. Then r is smal
and the infinite series and product are rapidly convergent.
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Critical Behaviour

Considered as a function of the postive rea variables 2\, z, z3, the
partition-function-per-site K is analytic except when 2\ = z, = z3. In this
caeB=1,u=2andr= 1

It follows that r is just less than one if 2\, 2, z; are nearly equal. The
expressions (8.13.83), (8.13.84) are no longer convenient, since the series
and product converge only dowly. It is then useful to apply the Poisson
summation formula of Section 15.8 to (8.13.83), and the conjugate modulus
formula (15.7.2b) to (8.13.84). This converts the equations to the form:

W

T3

*-(413)  (Qzzy | Jr——ee—s— (8.13.85)
T (1 + s5)?
u*=2”=1£—11—;;;—)- (8.13.86)

Here s = exp(-3x//2/"), but we can regard it as defined by (8.13.86). It
is smal when B is close to one. In particular, whenzx =z, = z3 = 1, then
B=1, M =2,5=0 and we regain the iceemodel result (8.8.20), namely
*:=(4/13)¥?(Lieb, 19764).

We can aso examine the way in which the ice-modé limit is approached.
Let 2, 2, Z differ from unity by terms of order e. Then B exceeds unity
by terms of order €. By scding e appropriately, we can choose

B=1+£2 (8.13.87)
where |e| <i 1. From (8.13.41) it follows that
M* = 2{1 + J&? + 0(e)}, (8.13.88)
so from (8.13.86)
j~|e/3]%'?, (8.13.89)
and from (8.13.85)
k = (43)¥2 (z2225)™ {1 + 411/31% + ©(€))}. (8.13.90)

Thus K has a 'singular part' proportional to €*2. In this sense we can say
that the three-colouring problem has acritica point at 2\ = z, = z3. Defining
the critical exponent a analogoudy to (1.7.10), we have

<x=\. (8.13.91)
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It is possible to explicitly eliminate the variable r between (8.13.83) and
(8.13.84) (Baxter, 1970c), giving

. Auvw?
K={2Z,Zef— 1j-Tjj—j- rg-rj. (8.13.92)

[(« - wyuy - [{v - wyvy
This makes it clear that KI{AZ,Z3)" is an algebraic function of B.
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ALTERNATIVE WAY OF SOLVING THE ICE-
TYPE MODELS

9.1 Introduction

In Chapter 8 the ice-type moddls have been solved by using a Bethe ansatz
for the eigenvectors of the transfer matrix. This method depends heavily
on the fact that the number of 'lines, or down arrows, is conserved from
row to row. It is not clear how to generdize the method to model s without
such conservation.

The purpose of this chapter is to examine the results of Chapter 8, and
to show how they suggest an alternative route by which they can be derived.
This alternative route can be cdled the 'commuting transfer matrices
method: it will be used in Chapter 10 to solve the eight-vertex model.

9.2 Commuting Transfer Matrices

Let Vbe the row-to-row transfer matrix of an ice-type model. From (8.3.3)
and (8.3.4), it is a function of the Boltzmann weights a, b, c.

Let g be an eigenvector of V, asin (8.2.3). Then the elements of g are
given by (8.4.6), (8.4.10) and (8.3.22), where Zi,. . . ,z, are solutions of
the equations (8.4.12).

However, these equations for g involve a, b, ¢ only via the combination

A = (a®+ b*- eyiab . (9.2.1)

Thus if we consider two transfer matrices, with different values of a, b, ¢
but the same value of A, then they have common eigenvectors.
If dl eigenvectors are given by the Bethe ansatz and span the 2" dimen-

180



9.2 COMMUTING TRANSFER MATRICES 181

siona vector space (whichisthecase), and if P isthe matrix of eigenvectors,
then it follows that

V = PVsP~, (9.2.2)

where V<tisdiagonal, V and Vy are functions of a, b, ¢, but P is afunction
only of A.

In Chapter 8 we were led to the parametrization (8.9.7) (or (8.8.9)),
namely

a,b,c = psinh\{X - v), psinh\{K + V), psinhA , (9.2.3)

where p is a normalization factor.

Regard p, A and v asvariables, not necessarily real. Then (9.2.3) defines
a, b, c. The matrices V, V] and P are now functions of p, A and v.

However, from (8.9.1)

A = -coshA. (9.2.4)
Thus P is a function only of A: it isindependent of v and p.

We can regard A and p asfixed constants, and v as a (complex) variable,
and exhibit the dependence of V on v by writing it as V(v). Then (9.2.2)
implies that

V(v) V(u) = V(u) V(Vv), (9.2.5)
for dl complex numbers u, v; i.e. the transfer matrices V(u) and V(v)
commute.

9.3 Equations for the Eigenvalues

Now consider the equations (8.4.4) and (8.4.12), which exactly define the
eigenvalues A of V for finite n and N. By analogy with (8.7.1) and (8.9.1)
(replacing g by ivj), let us transform from z,. . . , z, to

Zj = (¢" - e'0/(e"™ - 1). (9.3.1)

Then from (8.3.22), (8.3.9) and (9.2.3),
_ snh A gnh|(2A + v - W)

Sk~ SNNIA - w) SPNIA - »)' 932
. sinhi(u v,-+ 2A)
L(Z7) = LR
' sphi(v - |&
Miz) = - SDOZZA) (9.3.3)

smhi(v - Vj)
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For given values of p and W,. . . v, let us define functions (j{v), ¢{v)
by

c)(v) = p¥ sinh“(v/2) (9.3.4)

qv) = :Izl snhi(v - vi). (9.35)

Then. (8.4.4) can be written
H{(>{X- v)ofv + 2k) + <j>{X+ v)q(v~2X)]Iq(v), (9.3.6)
where

A'=A-0T. (9.3.7)
From (8.4.12), (9.3.1) and (9.3.2) the v,. . . , v, are given by the n

equations
(P(A—Uj):_Q(_Zl"FUj) j'=1
A+ p) q2A +v) ’

'y (9.3.8)

9.4 Matrix Function Relation that Defines the Eigenvalues

In the Bethe ansatz method, a considerable amount of work is needed to
establish the equations (8.4.12), i.e. (9.3.8). We can now observe that they
are a smple corollary of the commutation relations and (9.3.6).

To do this, we use a smilar argument to that of Section 7.7 for the
Isng model. From (9.2.2), if A is the eigenvalue of V corresponding to
column r of P, then

A=(p-'VP),. (9.4.1)

Regard pand A asfixed, v asavariable. Thethe RHS of (9.4.1) isasum
over elements of V, with coefficients from P that are independent of v.
From (8.3.4) and (9.2.3), each edlement of V is an entire function of v.
Thus

A =A(>), (9.4.2)

is dso an entire function.

Now look at (9.3.6). The RHS is the ratio of two entire functions, and
the denominator q(v) vanishes when v =vi,. . . ,v, . Since the ratio must
be entire, the numerator must aso vanish at these values. The equations
(9.3.8) fallow immediately.
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Thus (9.3.6), considered as a relation between the functions A(v) and
q(v), defines A(v).

Every dlowed solution of (9.3.8) defines W,...,v,, and hence an
eigenvalue A(i>) and a function g{v). This is true for each value of n.
Altogether there must be 2*'such eigenvalues A(v) and associated functions
q(v).

Let us label these A(V), g:(v), r =1,. .., 2" . The matrix Vyin (9.2.2)
is a diagonal matrix with entries Ai,. .., AN. Similarly, let Qq be the
diagona matrix with entries q..., 0.f. Then the full set of equations
(9.3.6) (one for each eigenvalue) can be written as the single matrix
equation

Va(v) QI(V) = <p(k-v) Qofv + 2K) + tH>(A + V) Qqy(v - 2K). (9.4.3)

(Thefactors (j)(k—V), (f>(k + v) are the same for each eigenvalue, so are
smple scalar coefficients).
Now define the non-diagonal matrix function

Q(v) = PQa(v) P (9.4.4)

and again exhibit the dependence of the transfer matrix on v by writing
it as V(v). Premultiplying (9.4.3) by P, post-multiplying by P"*, using
(9.2.2), (9.4.4) and the fact that P is independent of v, (9.4.3) becomes

V(V) Q) = OA - v) Qv + 2k) + (j(k+ V) Q(v - k),  (9.4.5)

which is a relation between the matrix functions V{v), Q(v).

Since Vy(v), Qq(v) are diagond for dl v, Q(v) commutes with V(u) and
Q(u) for al complex numbers u and v.

It was shown in Section 8.3 that V(v) breaks up into N+ 1 diagonal
blocks, one for each value of n. It therefore certainly breaks up into two
blocks, one with n even and the other with n odd. This is smply a
consequence of the commutation relation

V(v) S= SV(v), (9.4.6)

where 5 is the diagona operator that has entries +1 (-1) for row-states
with an even (odd) number of down arrows.

The matrix P can therefore aso be chosen to commute with 5.
From (9.3.5), since n< N, dl the diagonal elements of Qy(Vv) are of the

form
2r d, e 94.7)

where for n even (odd) the sum is over al even (odd) values of r in the
interval —N<r<N. The codfficients d, are independent of v; some may
be zero. '
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From (9.4.4), each dlement of Q(v) is a sum of expressions of the form
(9.4.7), either dl with n even, or dl with n odd. Thus each element of
Q(v) is itdf of the form (9.4.7).

9.5 Summary of the Relevant Matrix Properties

To summarize: we have used the results of the Bethe ansatz calculation
of Chapter 8 to establish the following properties:

(i) Given a transfer matrix V for a particular set of vaues of a, b, c;
there are infinitedly many other transfer matrices (with different a,
b, ¢ but the same A) that commute with V.

(i) If &, b, c are defined in terms of p, A, v by (9.2.3), and if p, X are
regarded as constants and v as a complex variable, then matrices
V{u), V(v) commute for dl values of u, v.

(i) All dements of V(v) are entire functions of v.

(iv) There exists a matrix function Q(v) such that the matrix relation
(9.4.5) is satisfied for al complex numbers v.

(v) The determinant of Q(Vv) is not identically zero, and matrices Q(u),
Q(v), V(v) commute for al values of u, v.

(vi) The matrices Q(v), V(v) commute with the diagond operator 5 that
has entries +1 (-1) for row-states with an even (odd) number of
down arrows. They therefore break up into two diagond blocks.
Within each block dl eements of Q(v) are of the form (9.4.7),
where —N <r<N and r takes even (odd) values.

Sufficiency

These properties (i)-(vi) are in fact sufficient to define the elgenvalues of
V(v). All we have to do is to reason backwards to (9.3.6) and (9.3.8) as
follows.

From the commutation properties (ii) and (v), there exists a matrix P
(independent of v) such that

p-'V(V)P = Vy(v), P~'QV)P = Qu(v), (9.5.1)

where Va(v) and Qd{v) arediagonal. From (iv), (9.4.5) is stisfied and can
therefore be put into the diagonal form (9.4.3). Let A(v) be a particular
eigenvaue of V(v), and q(v) the corresponding eigenvalue of Q(v). Then
the corresponding entry in (9.4.3) is the function relation (9.3.6).
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From (9.5.1), A(v) and g[v) are sums over elements of V(v), Q(V),
respectively, weighted by coefficients (from P'* and P) that are independent
of v. From (iii) it follows that A(v) is entire. From (vi) it follows that g(v)
is entire and of the form (9.4.7), where r takes either al even or al odd
values.

If g(v) were indenticaly zero for dl v, then so would be the determinant
of Q(v). Provided this does not occur, it must be possible to write g{v)
inthe form (9.3.5) (where 0 =£ n « N), together with a non-zero factor that
cancels out of (9.3.6). As shown at the beginning of Section 9.4, the
relation (9.3.6) now implies the equations (9.3.8). These define W,. . .,
V. From (9.3.5), q(v) is now known, so (9.3.6) gives A(V).

These equations are exact for finite n and N. Of course it sill remains
to solve (9.3.8), and in generd this can only be done andyticaly in the
limit n, N-* <*>, using methods such as those of Sections 8.6-8.9. Even so,
the equations (9.3.8) are an enormous smplification of the origina eigen-
value problem: they could for instance be solved rapidly on a computer
even for moderately large values of n and N. In this sense they are a
'solution’ of the eigenvalue problem.

Note that n does not occur in the properties (i)-(vi). Thus one may hope
to generalize them to models where there is no line conservation. This will
be done in Chapter 10.

9.6 Direct Derivation of the Matrix Properties:. Commutation

Can the properties (ix—Vi) be established without using the Bethe ansatz,
hence giving an dternative way of diagondizing V{v)l They can, as will
be shown in this and the next two sections.

Consider a horizontal row of the lattice and the adjacent vertical edges.
With eéach edgei associate a'spin' u-such that (i,» = + 1 if the corresponding
arrow points up or to the right, and fi,. = -1 if the arrow points down or
to the left.

Let oc\. .. ay be the spins on the lower row of vertical edges.
Pi,. . ., 2, the spins on the upper row; and fi\,. . ., fi* the spins on the
horizontal edges; as indicated in Fig. 9.1. Denoting the set {a\,. . ., oM}
by a and {jSi,. . ., /3\} by /8; it is obvious that a (/3) specifies the spinsin
the lower (upper) row. Thus the transfer matrix V has elements Vp, and
these are given by

2 w(|Ui, ail/?!, fi;) w(fip, a)\p2, to)
"> m (9.6.2)
—W(fin, OGWPN , Mi)-
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Here w{fx, a\/3 ,pi') is the Boltzmann weight of the vertex configuration
specified by the spinsfi, a, /J, fi'. From Fig. 8.2 and (8.3.3) it follows that

W+, +\+ +) = w (-, -] -) =«
wi+, ==, +)=w(—,+[+,-)=0b, (9.6.2)
wi+, =+, )=w(-,+|-,+)=c,

and w{fi, a\fl , fX') is zero for dl other values of fi, a, fl, u'.

B, Bs Bx

uN MH+1

d, Uy ay

Fig. 9.1. A row of the square lattice, showing the 'spins' associated with the various
edges. The cyclic boundary condition is that /J,N+I = fit-

Let V be another transfer matrix, derfhed by (9.6.1) and (9.6.2), but
with a, b, c replaced by a', b', ¢'. Denote the corresponding vertex weight
function w by w'. Then from (9.6.1)

(VV )ag = ; VarVis

N
-3 E”71:113(%,v.'hu.-ﬂ,v,-ﬂla,-,ﬁ,-) (9.6.3)

HL .. N VI

where

S, W', v |, By = 2wl , aly N )w(v,y

¥

8.v). (9.64)

This Sis smply the Boltzmann weight of a pair of sites, one above the
other, as indicated in Fig. 9.2, summed over the possible arrow configur-
ations on the intervening edge.

Let S@afi) be the four-by-four matrix with rows labelled by (fx, v),
columns labelled by (//, V'), and dlementsS(n , Wfi', v\a,fl). Then(9.6.3)
can be written more compactly as

(Map = Tr Ya, A) Sa ,&).... San, Oy). (9.6.5)
Similarly,
(MV)ap = Tr S{a,, ft) S(ap, ft). . . . S(an, On), (9.6.6)
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where S is defined in the same way as S but with w, W' interchanged in
(9.6.4).

To establish property (i), we want to find a V that commutes with V,
i.e. the right hand sides of (9.6.5) and (9.6.6) are the same. Clearly this
will be so if there exigts a four-by-four non-singular matrix M such that

Ya,/3) =MS(a,fiyM~, (9.6.7)
fora= t1 and 0= %1.

Fig. 9.2. The lattice segment whose weight (summed over the internal edge spin
y) is the %<, Wfi' , v\a,/3) of eq. (9.6.4).

Star - Triangle Relation

The matrix M has rows labdlled by (fi , v); columns by (fi', V). If we write
the elements as w'(v, fi\v, fi'), post-multiply (9.6.7) by M and write the
matrix products explicitly, usng (9.6.4), we obtain

2 W, aly, @)y w' (v, vl ) w(V @V, )

= :r;»" w(v, @y w' ' aly, wyw(V, v, V), (9-6.8)

fora, /3, (i, v, fi', v' = 1.

We can regard w'(v, JJ\V, fi') as a 'Boltzmann weight function' for a
vertex with surrounding edge spins v, pi, V', /J,". Then (9.6.8) can be given
the smple graphical interpretation indicated in Fig. 9.3: the combined
weight of the left-hand trilateral (summed over spins on internal edges)
must be the same as that of the right-hand trilateral. This must be true for
al values of the 9x exterior spins.

One figure can be obtained from the other by shifting a line across the
intersection of the other two. In both figures the lines (fi, V1), (a, fl)
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intersect at the vertex with weight function w. Similarly (a,/3), (v, n")
intersect with function w';{v,fi"),{(i,v) with w".

This picture of the equation (9.6.8) can be very illuminating, as will be
shown in Chapter 11.

The equation (9.6.8) can also be written in terms of operators: let - be
the matrix with elements

(Udag = a1, B1). ... Hai-1, Bi-1)
wi(ai, ai1)Bi, Bie1) 8(iez2, Bisvz) . ... San, By)- (9.6.9)

Thus Ui actson the spinsin positioni andi + 1, leaving the rest unchanged.
It can be interpreted as a vertex operator.

Fig. 9.3. The lattice segments whose weights (summed over the internal edge spins
y, /1, il are the left- and right-hand sides of eq. (9.6.8). This relation is the
'star - triangl€e' relation of the vertex models.

Similar, define Ui and U[ by (9.6.9), with w replaced by w, w", respec-
tively. Then (9.6.8) implies that

d1+1d/f/;l+l = A'[/;+lt/',, (9610)
and it is obvious from (9.6.9.) that
Uuuf = Ujui, (9.6.11)

if i\ 2

Thisequation (9.6.10) isthe same as (6.4.27). Thusthe present operators
Ut stiy the same star - triangle property as the corresponding Ising mode
operators of Section 6.4. Since (9.6.10) is a direct corallary of (9.6.8), |
shdl therefore cdl (9.6.8) the 'star - triangle' relation for the ice-type

models. (Strictly speaking, a more accurate name would be 'trilateral-to-
trilateral'.)



9.6 DIRECT DERIVATION OF THE MATRIX PROPERTIES 189

From (9.6.11), the f¢ operators dso sidy (6.4.28). Further, if N is
replaced by N+ 1 in (9.6.9), then the element

(Pi, o o o , PN-1, IN, GNPl ,seee, PN, Hn+1)

of UN is the weight of the extreme-right vertex in Fig. 9.1. Thus Uy can
be thought of as the operator which adds this vertex, going from edge spins
P, fin+1 1O SpINS LW, ay.

Similarly, the product U\. . . Uy adds the row of vertices in Fig. 9.1,
going from Pi, . . . ., pn, /3-N+1 tO jug: &\,. . . ., ay. Apart from boundary
conditions and a shift of spin indices, it is therefore the transfer matrix and
the partial commutation argument of (6.4.30)-(6.4.31) applies. In dl these
respects the 1/- operators of this chapter therefore correspond to those of
Section 6.4.

To summarize: the transfer matrix V commutes with another transfer
matrix V if w' can be chosen to saidy (9.6.8). This is analogous to the
dtar - triangle relation of the Isng model.

Solution of the Star - Triangle Relation

Given w, we want to find w', w" so that (9.6.8) is satisfied. One trivia
solution is W <* w, w'(v, fi\v' , /1) =5(>, V') 6(U, fi') ; but this is not
interesting since it implies only that VV commutes with a scalar multiple of
itsedf. We want solutions in which w' is not Smply proportional to w.

From Fig. 9.3 it is obvious that W' plays avery smilar role to w and w'.
Thus it is natural to take w"' dso to be given by (9.6.2), but with a, b, ¢
replacedby a’, b", c".

If a, b, c are given, then a',b',c' and a", b", ¢" are at our disposal. Since
(9.6.8) is homogeneous in W and w", this leaves us four disposable
parameters.

On the other hand, a, p, fi, v, 3J,", V' in (9.6.8) can each independently
take the values +1, so (9.6.8) represents 64 scaar equations. At first sght
the task of satisfying dl of them seems hopeless!

Fortunately there ae many smplifications. From (9.6.2),
w(fx, a\P, v) =0 unless\i + a= P+ v, and amilarly for w', w". It follows
that both sides of (9.6.8) are zero unless v+[i+ a= fi+ Vv +\i". This
leaves only 20 non-trivial equations.

Negating all spins leaves w, WA W' and (9.6.8) unchanged, so these 20
occur in 10 identica pairs.

Further, interchanging the pairs, (a, /?), (Ix, V), (//,y), (it', i/') merely
interchanges the two sdes of (9.6.8). This implies that 4 of the remaining
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10 equations are satidfied identically, while the rest occur in three equivalent
pairs. Thus (9.6.8) finally reduces to just three equations, namely

aca’ = bc'b" + cac",
ab'c" = ba'c" + cc'b", (9.6.12)
ch'a” = cg'b" + bc'c”.
Eliminating a", b", c" leaves the single equation
(@ + b*- cAl(ab) = (@?+ b?- c?d)/(ab). (9.6.13)

Defining A asiin (8.3.21) and (9.2.1), it follows that w" can be chosen
to satidy the star - triangle relation (9.6.8) provided that

A=A" (9.6.14)

Thus if Vand V have different vaues of a, b, ¢, but the same vaue of
A; then they commute. We have therefore directly established the com-
mutation property observed in Section 9.2. This completes step (i) of
Section 9.5.

9.7 Parametrization in Terms of Entire Functions

To establish the properties (ii) and (iii) of Section 9.5, we need to para-
metrize a, b, ¢ in terms of three other variables, say p, A and v, 0 that a,
b, ¢ are entire functions of v, but A is independent of v.

An obvious parametrization is to regard a, A as 'constants and to
introduce a variable x = bla. Then from (9.21),

a=a b=ax c=af\ +xX-2Ax)*. (9.7.1)

However, cisnot an entire function of x: it isthe square root of aquadratic
polynomid in x.

There is a smple way of parametrizing a function F = [{x - X\){x -
%o)f , namely to define

= (X - )X - %), (9.7.2)
i.e tost

X = (*i - l{\ - ). (9.7.3)
Then the sign of t can be chosen so that

F={x-x)tl{\-t%), (9.7.4)

0 both x and F are rational functions of t.
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In our case x\ and X2 are the zeros of 1 + x> — 2A*. Thus
Azixi+*rh), x=x (9.7.5)
and (9.7.1) becomes
a=a, b=a(-t>xTH/(-t?), (©.2.6)
c = a(x - xiht{\ - .

We can 're-normalize to remove the denominators by setting
a=p X -f). Then

0 =p'xi(1-f3), b= p{x\-t3), (972)
c = p'(xA\-\LHt.

With this parametrization, a, b, ¢ are entire functions of p\ X\ and t, but
A depends only on X\. Varying t changes a:b:c, but leaves A unaltered.

This completes the derivation of (ii) and (iii), and we could continue to
use this parametrization, regarding p\ X« as constants and t as a variable.
However, to regain contact with the results of the Bethe ansatz (and to
make the subsequent generaization to the eight-vertex model more
straightforward) it is useful to findly transform from p', X\, tto p, A, v by
setting

*i = -exp(-A), t=expli(v-K], p =kpt'W. (9.7.8)

We then regain (9.2.1), (9.2.3) and the properties (ii) and (iii) of Section
9.5.

Parametrized Star - Triangle Operator Relation

So far we have used only the corollary (9.6.14) of the star - triangle relations
(9.6.12). Since (9.6.12) is unchanged by interchanging the twice-primed
and unprimed weights a, b, c; another obvious corollary is A" = A". Thus
(@ ,b' ,c) and {a", b" , c") can also be parametrized in the form (9.2.3),
al sets having the same value of A. '

They have different values of v; let us cal them v and V", respectively
[and similarly for p, but these normalization factors cancel trivialy out of
(9.6.12)]. Substituting the resulting expressions (9.2.3) for a,. . . . , ¢" into
(9.6.12), dl three equations are satisfied if

sinhJ(A+ vv + V') = 0. (9.7.9)
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Incrementing V' by Amileaves a, b', ¢ unchanged, so without loss of
generality we can take the solution of (9.7.9) to be

V' = kv (9.7.10)
For some purposes it is convenient to use
<= QA +»), (9.7.11)
as avariable, instead of v. Then (9.2.3) becomes
a b ,c = /Osnh(A - u) ,psinhu , psinhA , (9.7.12)
and if U =1(A + 0), U" =i(A + V"), then (9.7.10) becomes
u=u+u" (9.7.13)

The vertex operators [/; defined by (9.6.9) and (9.6.2) are functions of
a, b, c. From (9.7.12) they therefore depend on p, A, u. Regarding p, A
as constants, we can regard £/; as a function of u and write it as !/,-(«).
Then the U[ and UJ in (9.6.10) are £/,<«) and £4(u"), respectively. Using
(9.7.13), the star - triangle operator relation (9.6.10) becomes

Up+i(u) U{u + u") Uisq(u™) = Utiu") Uisi(u + u") Ui(u). (9.7.14)

This is an identity, true for i =1,....,N-2, and for al complex
numbers u and u". In particular, it istruefor O <ulk< 1,0< u'/k< 1 : for
A < 1 these are the 'physical’ values of u, u"; corresponding to positive
Boltzmann weights a, b, ¢, a", b", ¢".

Comparing (9.7.14) with (7.13.5), we again see a very close analogy
between the 'star - triangl€e' relations of the ice-type and Ising models.

9.8 The Matrix Q(Vv)

Coumn Vectorsy

The next step is to obtain property (iv), i.e. to construct the matrix Q(v)
that satisfies (9.4.5).
Let y be a particular column of Q(v). Then (9.4.5) implies that

V(V)y=y'+y", (9.8.1)

where y' and y" are proportional to y, with v replaced by v + 2A" and
v - 2A", respectively.

Let us try to construct yy',y" directly, and let v(an ,...., ay) be the
element (an ,...., @) of the vectory. Then the product {v) y simplifies
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if y@\.., dv) has the product form

y(en, an) = gi(a)gz(a2——aN(an), (98.2)
i.e. yis adirect product of the two-dimensional vectorsgi,. ... ,gv. In
fact, from (9.6.1), the element (ac\,..., o) of V(v) y is
[V(Myla = Trd(ai) Ga(*2).... Gn(aw), (9.8.3a)
where G;(+) and G-(—) are two-by-two matrices with (n, [i') elements
[G{®)],,, = 2wOi, ar|[8, ') g<(ft) * (9.8.3b)
p

Explicitly, usng (9.6.2),
G-+ — (agii+) o
! )W -) 6ft(+))
oy — (98() cgs(+))
SV 0« ()

We want the RHS of (9.8.3a) to decompose into the sum of two terms,
each like (9.8.2). This will be so if there exig two-by-two matrices
Py....Pn such  that

(9:8_4)

Gi{a) = PiHi{a)PT}u (985)

where each H& @) is upper-right triangular, and PN+1 = Pi-

To see this, substitute the form (9.8.5) of each G¢(a) into (9.8.3a). The
P;s cancel, so the effect is to replace each Gy(a) by Hi(a). If //(<*) has the
form o me

(9.8.6)

then (9.8.3a) gives
Vs = 9l(ei).... ow@) + g'{(ai).... ohlay. (9.8.7)

Pair Propagation Through a Vertex

Can (9.8.5) and (9.8.6) be satiffied, i.e. can we choose the P* so that the
the bottom-left element of Pi'Gi( a) P, . 1 vanishes for both ar= +1 and
a= -1? If Pi; is the firg column of P;, this is equivalent to requiring that

Gia)p..i*=gi(a)pi, (9.8.8)

for a= x1. Here G;(+) and G;(-) are two-by-two matrices; the p, are
two-dimensional vectors, g/(+) and g/(—) are scaars.
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Let the elements of p; bep,(+) andp,(-). Usng (9.8.3b), the condition

(9.8.8) can be written explicitly as
g' wln, <X\P,i*")g, (B) pi+ (') = gi(a@) p: (12}, (9.8.9)
for g, ji= 1.

This equation can be interpreted graphicaly as in Fig. 9.4. Let fi, a,
f5, fi' be the edge spins round a vertex, as shown. With the upper and
right-hand edges associate weights g-(/3), pi+i(fi*). Sum over dl vaues of
13, n', weighted by the vertex weight w. This gives a function of fi and a.

9

Fg. 94. Par-propagdion through a vertex: grgphicd representation of
eg. (9.8.9).
The condition (9.8.9) implies that this function factors into a weight
g!(a) for the lower edge, Pi(ji) for the left-hand one.
Thus we can think of (9.8.9) as saying that the vertical and horizontal
functions (or vectors) g, pi+\ 'propagate’ through the vertex to become

gl,Pi- Indeed, usng (9.6.9), (9.8.9) can be written in farly obvious
operator notation as

Ui{gi®pi+l): p,®g| ! (9810)

Since (i,a= %+1,(9.8.9) represents four scalar equations. Explicitly they
are

agd+) pira(+) = gi(+) pi(+)
bgd—)pisiF) +cgi(H)piri(-) =8i(-)pi(+)  (9g11)
cg{~) pirs(+) + bgi(+) piri(—) = gi(+) pi(—)

agi(=)piri(—) = gi(~) p:(-).

These equations are homogeneous and linear in g,(+), gi(~), dl(+),
gi(-), so these variables can be eiminated (by taking the determinant of



9.8 THE MATRIX Q 195

coefficients), leaving

a2+ A2 = A A (9.8.12)
ab r, I'i' + i
where
ri=Pi(-)/Pi(+) fori = I,..N. (9.8.13)

This is a quadratic recurrence relation between r; and r,-,;. There are
two interesting things about it: firstly, it involves a, b, c only via the A
defined by (9.2.1); secondly, from (9.2.4) it explicitly factors into the
smple form

rm = -r,exp(zxA). (9.8.14)

Column Vectors y(v) and the Matrix Qg(V)

The relation (9.8.14) must hold for i = 1,. . . , N; but the choice of dgn
can be made independently for each i. Thus the most genera solution for
lg. . . JIne1 IS ,
r-=(-)'rexplA@+ ...+ 0,-0], (9.8.15)

wherer isarbitrary and each o, hasvalue + 1. The cydic boundary condition
Ov+ =i is satisfied if
ffi+..+ OAT=0, (9.8.16)

which implies that N must be even.

(If JA] <1, then A is pure imaginary. If A equals 2mm/n, where m and
n are integers, then it is auffident that o, + . . . + oy be amultiple of n.
Such cases are often of particular interest, e.g. the pure ice model has
A = 2ni/3).

We can choose al p,-(+), g,-(+) to be unity, sop(-) = r. Solving (9.8.11),
using (9.8.15) and (9.2.3), then gives

0<t) =1, di(-) = nexp[h(X+ v)a] , (9.8.17)

gi(+)=a (di() = -an exp[K3A + 0)a].
The equation (9.8.8) is now saisfied, where/?; is the first column of P;.
It follows that the matrix //;(#) defined by (9.8.5) must be of the form
(9.8.6), whatever the choice of the second column of P, (so long as no P;

issingular). The elementsg;{a) can be obtained by taking the determinant
of both sides of (9.8.5) and using (9.8.4) and (9.8.6). This gives

_ abgi(a) det(P;41)
8 = ) det( Py

(9.8.18)
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Subsgtituting this expression into the last term in (9.8.7), the P-deter-
minants cancel out, so we can ignorethemin (9.8.18) (or we could require
them to be unity). From (9.8.17) it then follows that

gA+) =t>, tf(-) = -bnexplHv - K)o] . (9.8.19)
For a given i, let us define a two-dimensional vector function hy(v) of
vy
moy=( 1), (9820)
r.exp[i(A+ f)cr]/
where we take r in (9.8.15), and hence dl n,. . . , ry, to be independent
of v. Let gi be the two-dimensional vector

&= (9.8.21)

and smilarly for gl, g".
Then the equations (9.8.17), (9.8.19) can be written very neatly as
g = h(v), gj=ah(v+2k), gl = bhi(v-2k), (9.822)

where A' =k +in, asin (9.3.7). If we dso define a 2*-dimensiona vector
function y{v) of v by

y(V) = hi(V) ®hy{v) ® e e e ®M"), (9.8.23)
then, using (9.8.2), the equation (9.8.7) can be written
Viv) y(v) = ay(v + 2k) + bMy(v - 2k). (9.8.24)

From (9.2.3) and (9.3.4), a" = 4>{k - v) and b" = <p(k + v). There are
many choices of the y{v), corresponding to different choices of r,
O\,..., O\ in (9.8.15), subject only to the restriction (9.8.16). Let QR(V)
be a 2" by 2V matrix whose columns are linear combinations (with coef-
ficients that are independent of v) of such vectors y(v). Then it follows
immediately from (9.8.24) that

V(v) Qadv) = cp(k - v) Qr(v + 2K) + <j)(k+ V) Qr(v - 2k), (9.8.25)
which is basicaly the equation (9.4.5) required by property (iv) of Section
9.5.

Row Vectorsy'{—v) and Matrix QL(V)

We dill have to stidfy (v) and (vi). From (9.6.1) and (9.6.2) (by inter-
changing a  and #, and negating dl #;) it can be seen that interchanging
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a with b is equivalent to transposing the transfer matrix V. Thus, from
(9.2.3),

V(-v) = V(v). (9.8.26)

QL{V) = Ql{-v), (9.8.27)
then transposing (9.8.25) and negating v gives

If we define

Q) V(v) = <p(X-v) Q{p + 2A) + <p(X + V) QL(V -2AY),  (9.8.28)

SO QL(Vv) plays a similar role to QRr(v), except that it pre-multiplies the
transfer matrix, instead of post-multiplying.
The vector W{V) is defined by (9.8.23), (9.8.20) and (9.8.15), so depends

onr and o\. .., oy a wel as v. This can be exhibited by writing it as
y(Wr, 0). Consider the scalar product
y'(-u\r',&))y(Wr,a), 1(9.8.29)

of two such vectors. This is readily evaluated as

N

L
jgll{l + 1 expl[ACTi + ...+ CT,- | +a + ...+ 0j-i)

+ W+V)o; + i(k-u)o't]}. (9.8.30)

In particular, this expression depends on O\,. . . , ay, U and v so let us

cal itJ(u, W<h,« e+ ON), and consider the ratio
J(u, v\ oo 0j+i, Ofy o ) I(u vl . op Oj+u- e e),  (9.8.31)

the numerator differing from the denominator only in the interchange of
Oj and G-H. Since al but the i=j and i = j+ 1 terms in (9.8.30) are
symmetric in oj, Oj+i, this ratio simplifies, leaving only these terms in the
numerator and denominator. A simple direct calculation (using the fact
that Oj, Oj+i, 0], Oj+i only take the values +1) then reveals that the ratio
(9.8.31) is a symmetric function of u and v.

However, it is obvious from (9.8.30) that J(u, V\o\,. . . , oy) is sym-
metric in u and v if 0;=0I for i=1...N. Since al vaues of
Oi,. . ., ON allowed by (9.8.16) are permutations of this particular set of
values, and since all such permutations can be obtained by successive
interchanges of pairs (05, 0j-+i), it followsthat (9.8.30) isawaysasymmetric
function of u and v. Thus

Yy (-u\r' L& )Y{Wr,0)=y{-Wr',&)y{u\r,o0). (9832)
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Now consider the matrix product Qiiu) QR(v). Since any column of
QR{V) isalinear combination of vectorsy(\Wr , a), and any row of QL(U)
is a linear combination of vectors y'{—u\r' , &), it follows immediately
from (9.8.32) that

QL(U) Q{V) = Quv) Qr{U), (9833

for dl complex numbers u, v.

QR(V) a Non-Singular Matrix

Consider now the set of vectors y{\Wr, o) formed by letting r take dl
possible complex number vaues, and a={a;,..., ay} teking dl the
(Bv) values dlowed by (9.8.16). | want to assart that there are values of
v for which these vectors span al 2*-dimensiona space, so that QR(V) and
QL(~V) can then be chosen non-singular. Unfortunately | know of no
simple way to completely prove this, but it is dmost certainly correct and
the following argument supports the assertion.

From (9.8.23), (9.8.20) and (9.8.15), the dement {<Xy,. .., ay) of
y(Wr, 0) contains a factor

tHN-<Xi-....-«\). (9.8.34)

the other terms being independent of r. Thus
N

y(Wr,0)=* Zr_”yn(v\o), (9.8.35)

where each y,(Wa) has non-zero elements only when ocx+. ..+ <XN=
N—2n, i.e. when there are n down arrow spins.

Let Y, be the (M)-dimensiona space of vectors whose elements are zero
unless oc\ +. .. + oc*= N- In. Then it would be aufficient to show (for
n=0,...,N)thatV,isspanned by the vectorsy,{\\ 0) obtained by letting
atake dl possible values.

Since there are (}) such vaues of apermitted by (9.8.16), there are at
least as many vectors y,(W 0) asthe dimensiondity of Y,. The most delicate
case isn = £V, when there are just enough vectors.

Each dement (ai,. .. , ay) of y,(V\a) contains a factor

N

eppy E o - anl, (9.8.36)
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al other terms being independent of v and non-zero. From (9.8.16), this
factor amplifies to
N

ex;BI -IvZOKYX] . (9.8.37)
=1 1

If n=-iN and v is large and negative, then there is a single dominant
eement of y,{\lo) given by a\,. .., ay=0\. .., ay: this maximizes
(9.8.37) and is consistent with (9.8.16). Thusthere are (J) column vectors,
each with its dominant element in a different row. These vectors clearly
form a basis of °V,,.

The assartion is therefore certainly true for n = \N. Since this subspace
contains the maximum eigenvalue of V, this eigenvalue can certainly be
obtained by the present methods. More generaly, for n + $N, there are
more vectorsy,{W\a) than necessary and there is no reason to suppose they
do not (for genera vaues of v) span Y,.

Q(v) and its Commutation Relations

From now on let us therefore suppose that the determinant of QR(v), and
hence QL{v), does not vanish identically (it may of course vanish for a
finite number of complex values of v). Let VQ be a value for which it is
non-zero and define

Q(V) = QR(V) QRV,) . (9.8.38)
Taking u = vy in (9.8.33), it follows that
Q(v) = QiXvo) Qdp). (9.8.39)

Post-multiplying (9.8.25) by QR\v,), and pre-multiplying (9.8.28) by
QlI\vo), therefore gives
V(v) Q(v) = Q(v) V(v)
= 4>{X- V) Qv + 2A) + 4>{X + V) Q{v -2k).  (9.8.40)
Also, from (9.8.39) and (9.8.38),
Q(u) Q(v) = QiXvo) QL(U) QR{V) Qilvo) * (9.8.41)
From (9.8.33), thisis unaltered by interchanging u with v, so
Q(u) Q(v) = Q(v) Q(u). (9.842)

Thus this matrix function Q(v) satisfies (9.4.5) and dl the properties
(iv) and (v) of Section 9.5.
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Commutation Relations Involving S

Findly, the diagona operator 5 in (vi) is

5= (3 _‘1’) ®...® (é ﬂ’f) . (9.8.43)

From (9.8.20) and (9.8.23) it follows that
Sy(v) = y(v + 2ni), (9.8.44)
and, since al columns of QR(V) are linear combinations of vectors y(v),
SQr(V) = Qgr(V+2m). (9.8.45)

Transposing, negating v, usng (9.827) and the fact that
Qr(V + Ani) = Qg(V), gives

Gz(») S= QL(U +24i) » (9.8.46)

Pogt-multiplying (9.8.45) by QRv,), premultiplying (9.8.46) by
Ql\vp), and using (9.8.38) and (9.8.39), it follows that

SQ(V) = Q(v) S= Qv+ 2m). (9.8.473)

Also, since w(fi, a\P,fi") is unchanged by multiplication by fxafin', it
follows from (9.6.1) that

SV{v) = V{v)S (9.8.47b)

From (9.8.20) and (9.8.23), as v*> +°° any eement of y(v), and hence
Q(Vv), grows at most as fast as exp(iNv). The properties (vi) of Section 9.5
now follow immediately from (9.8.47).

As was shown in Section 9.5, the properties (i)-(vi) imply the equations
(9.3.6), (9.3.8) for the eigenvaues A of V(v). Thus we have derived these
equations without using the Bethe ansatz. There are two key steps in the
working: the star triangle relation (9.6.8) and the vertex propagation
relation (9.8.9). It is worth noting that both of these are local properties,
the firg of a triangle of three vertices, the second of a single vertex.

99 Vauesofp A, v

All the equations of this chapter are algebraic identities, so they are true
for dl values of a, b, cand p, A, v, real or complex. It is not necessary to
locate their values in the complex plane until one starts the andyss of the
solution of (9.3.8), letting N—><*> and choosi ng the solution corresponding
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to the maximum eigenvalue A. (This analysis was performed in Sections
8.5-8.9)

If the vertex interaction energiese,,. . . , Yo arerea [and iy (8.1.7)],
then the Boltzmann weights a, b, ¢ given by (8.3.3) are real and positive.
When locating p, A, v there are four cases to consider, being the four
phases shown in Fig. 8.5. The p, A, v can be chosen so that:

MHWA>1a>b+c

p=—P,A=in+ A,v=—in-V,

wherep', A, V arereal andp' >0,V > A'>0.
(IWA>1b>a+c

p=—7,A=in+A,v=in+V,

wherep', A, vV arereal andp' >0,V > A' > 0.
@ty -1 < A< 1 a+ b>ela b:

p=-ip, A=liy, Vv=iw,

where p', fi, warereal and p' > 0, n> fi > \W\ .

(These are the n, w of Section 8.8.)
(IVA<-1,c>a+ b

p, A, varereal,p> 0, A > |i> .



10
SQUARE LATTICE EIGHT-VERTEX MODEL

10.1 Introduction

Lieb's (19673, b, c) solution of the ice-type, or six-vertex, models was the
most significant new exact result since the work of Berlin and Kac (1952)
on the spherical model, and the pioneering work of Onsager (1944) on the
Ising model.

Even so, as models of critical phenomenathe ice-type modds have some
unsatisfactory pathological behaviour: the ferroelectric ordered state is
'frozen' (i.e. the ordering is complete even at non-zero temperatures), and
the anti-ferrodlectric critical properties do not diverge or vanish as smple
powers of T- T (see Section 8.11).

The first of these unusual properties is certainly connected with the
ice-rule: starting from a configuration with al arrows pointing up or to the
right, the smplest deformation that can be made is to draw a line right
through the lattice (going generally in the SW-NE direction) and reverse
all arrows on this line. For an infinite lattice with ferroelectric ordering,
this costs an infinite amount of energy, S0 gives an infinitesmal contribution
to the partition function.

Sutherland (1970), and Fan and Wu (1970), therefore suggested gener-
aizing the ice-type modds as follows.

On every edge of the square lattice place an arrow;

Allow only configurations such that there are an even number of
arrows into (and out of) each site;

There are eight possible arrangements of arrows at a site, or 'vertex',
as shown in Fig. 10.1 (hence the name of the model). To arrangement
;asdgn an energy Ej{j =1,. .., 8). Then the partition function is

202
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Z= Zcexp[—(«iEi + ...+ ng)/ksT] , (10.1.2)

where the sum is over dl alowed configurations C of arrows on the
lattice, rij isthe number of vertex arrangements of type/ in configuration
C, kg is Boltzmann's constant, T is the temperature.

Thefirst 9x vertex arrow arrangements in Fig. 10.1 are those permitted
by the ice rule (Fig. 8.2). The last two (al arrows in, or dl out) are new.
Starting from the lattice state with al arrows pointing up or to the right,
one can now make local deformations (e.g. reverse al arrows round a
square) that cost only afinite energy, so one no longer expects the ferro
electric state to be completely ordered, and may hope that the mode will
be in other respects dso less pathological.

’I_’_ L L A A ¥ ¥ ‘%‘
ttf ttt
1 2 3 4 5 6 7 8
Fig. 10.1. The eight arrow configurations alowed at a vertex.

It is clear from (10.1.1) that Z is a function of the eight Boltzmann
weights
a>j = exp(-e/kgT),j=1,...,8. (10.1.2)

From Fig. 10.1, vertex 7 is a sink of arrows, 8 is a source. If toroidal
boundary conditions are imposed on the lattice, it follows that

nL=n. (10.1.3)

Similarly, reversing al vertica arrows gives vertex 5 to be asink, 6 a
source, so

Ns = Ng. (10.1.4)

Thus £, ..., £5 in (10.1.1) occur only in the combinations £5 + £6,
£7 + £g, so without loss of generality we can choose

E5=£, £7=£g (10.1.5a)

A particularly interesting situation is when we also have
£i = £2, £3=£4- (10.1.5b)

Themodel isthen unchanged by reversing adl arrows. Regarding the arrows
as dectric dipoles, this means that no external eectric fields are applied,
s0 this specidized model is known as the 'zero-fied' eight-vertex model.
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The solution of the zero-field eight-vertex model will be given in this
chapter. The full model has not been solved. In this respect the six- and
eight-vertex models differ: the former can be solved even in electric fields
(Section 8.12).

10.2 Symmetries

Consider the zero-field model and set

a = col = QL>2 b = co3 = w4, (1021)
C=00= (U, d=00,=005°
Then from (10.1.1) and (10.1.2)
Z— VUYjWi+rt2 t»W3+nd MS+ZIfi AtT+ns

T u L it i (10.2.2)

so clearly Z is a function Z(a , fc;c, d) of a, ft, c, d.

Fig. 10.2. The four arrow spins n, a, /3, v on the edges at a vertex. The vertex
configuration (fx , &, /3, v) has weight w(fi, aV/3, v) given by (10.2.3).

Fan and Wu (1970) showed that this function has several symmetries.
Let [i, a, v, fi be the 'arrow-spins' associated with the four edges round a
vertex, as in Fig. 10.2. They have value +1 (-1) if the corresponding
arrow points up or to the right (down or to the left). Then the Boltzmann
weight of the vertex in Fig. 10.2 is w(pi, a\f5, v), where

W(+, +|+,+)= W(",_|_,—)=t],
wi+, —|—, +)=w(—, +{+.-)=05, (10.2.3)
wi+, =+, =)=w(—,+|—-,+)=c¢,

wi+, +[—, =)=w(—,—|+,+)=4d,
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and w(fx, aV3, v) is zero for al other values of n, a, /3, v. (This is the
generalization of (9.6.2).) This definition can be written more neatly as

w(fi, aV3, v) = Ja(l + aPfiv) + bi(ap+ (xv) + c'(av+ /3f)
+ d(fiv+ afi)}, (10.2.4)

for dl pi, a, /?, v, where

a =h@a+b+c+d, b =i@a+ bcd), (10.2.5)
c'=¥a—-b+c—-d), d=Ha—-b—-c+d).
Suppose the lattice has M rows (labelledi =1 ,. . . , M) and N columns
(i =1,. . . ,N). Then with this definition of w,
Z=2WWne .. Wyn (10.2.6)
a, ft
where
Wij = w(fiij, a)a.1y , Hij + i), (10.2.7)
and the summation in (10.2.6) can be extended over al values (+1) of the
edge arrow spins a, , . . , awn (g HMN-
Using the expression (10.2.4) for the function w, (10.2.7) becomes
Wij=Mp + e +wf, (10.2.8)

where WAp corresponds to the Ath additive term on the RHS of (10.2.4),
and is a smple product of a weight and arrow spins, eg. W\p =
ib'a’ija’in,j-

Substituting the form (10.2.8) of wy into (10.2.6), the summand can be
expanded into 8N terms of the form

=, (10.2.9)

where each fiy is an integer between 1 and 8. Each such term (10.2.9) can
be represented by an arrow graph G on the origina lattice: at each site
(i,j) draw the fc,yth vertex arrow configuration of Fig. 10.1. There are then
two arrows on every edge, one from each of the end-sites.

Consider a particular edge, say the vertical one between sites (/ - 1 ,/)
and (i,j), with arrow spin &, Only two factors in (10.2.9) can contain
ay, namely those for sites (/ - 1,/) and (i ,j). Comparing (10.2.4) and Fig.
10.1, we find that ty is absent from (present in) either factor if the
corresponding arrow in G is up (down).

But (10.2.9) must be summed over a, ,. .., (IMN, in particular over
ocjj. If (10.2.9) contains an odd power of a;, it will give zero contribution
to the sum, so can be ignored. This leaves only terms with an even power
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of <Xif. this power can be either zero (a;, absent from both factors), or two
(ay present in each factor). In either case the corresponding two arrows
in G point the same way.

This applies to al edges, both vertical and horizontal, so aterm (10.2.9)
contributes to (10.2.6) only if all edges in G contain a pair of paralel
arrows. Replace each such pair by a single arrow pointing in the common
direction. Summing (10.2.9) over a, n now merely gives afactor 4N, which
cancels the factors 14 in each wAp. Thus (10.2.6) and (10.2.9) give

7z _y am,+m2 ,bm3+m4 c;m5+m6 a,m7+m8 (10 2 100
where m* is the number of verticesin G of typek (k= 1,. .., 8), and the

sum is over al arrow coverings G such that each vertex is one of the eight
shown in Fig. 10.1.

But (10.2.10) is precisely (10.2.2), with a, fo,c, dreplaced by &, £, c', d'.
Thus

Z{a,b:c,d) =Z(a' ,b' ;¢ ,d'). (10.2.11)

The method used in deriving this result is basically that of the ‘weak-
graph expansion' (Nagle, 1968; Nagle and Temperley, 1968; Wegner,
1973). Like the Ising model duality relation (Section 6.2), (10.2.11) relates
a high-temperature model (a ,b ,c ,d amost equal) to a low-temperature
one (a%> b ,c, d). Indeed, it will be shown in the next section that the
Ising model is a special case of the eight-vertex model: the duality relation
(6.2.14) can in fact be deduced from (10.2.11).

Some other simple symmetries (which relate high-temperature models
to high-temperature ones, and low to low) are readily deduced from
(10.1.1)-(10.2.2). Reversing dl horizontal a/rows, it is obvious from Fig.
10.1 that

. Z(a,b;c,d)=2(b,a;d,c), (10.2.12)
while rotating through 90° gives
Z(a,b;c,d)=2(b,a;c,d). (10.2.13)

Suppose M, N are even. Then the lattice can be divided into two sub-
lattices A and B such that every site in A has neighbours only in B, and
vice-versa. Reverse all arrows on horizontal (vertical) edges that have an
A site on the left (top) end. The new model is still a zero-field eight vertex
model, but with a, b, ¢, d replaced by c, d, a, b; so

Z(a,b;c,d)=2(c,d;a,b). (10.2.14)

From (10.1.3) and (10.1.4), (10.2.2) contains only even powers of ¢ and
d. From (10.2.14), Z must also be an even function of a and b. Thus
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Zlabcd) = Z(xa , b ;xc, zd), (10.2.15)

where each sign can be chosen independently.
All these symmetry relations (10.2.11)—(10.2.15) can be summarized by
introducing

wx = i(a+ b), w,=i(ab), (10.2.16)
wz = i(°+ d), w;=i(c-d),
and regarding Z as a function ZWA,. . . , wy of wi ,. .., H>, instead of
ab,cd. The symmetries then become
ZIWi, Wy, W3, Wy =Z[£WA, +w, 2w, w,], (10.2.17)

for any choices of the signs, and any permutations (i,jk]l) of
(1,2,3,4). Thus Z is unaltered by negating or interchanging any of
Wi, ... VVs

10.3 Formulation as an Ising Model with Two- and Four-Spin
Interactions

When thinking of the eight-vertex model as a generalization of the six-
vertex, it is natural to describe it in terms of arrows on lattice edges, and
view it as a model of a ferroelectric, the arrows being electric dipoles.

However, the eight-vertex model can also be formulated in terms of
spins, and viewed as a generalization of the Ising model of a magnet (Wu,
1971; Kadanoff and Wegner, 1971).

To see this, associate spins dy with the faces of the square lattice, as in
Fig. 10.3. Each spin can either have value +1, or - 1. Allow interactions
between nearest and next-nearest neighbour spins. Then the most general
translation-invariant Hamiltonian satisfying (1.7.4) is

M N
€ =- 2 2 I{oﬁijmm o, IOy O
i=ly=
+ JOijOi + u+ i + fOijOjj + i0; +i,y0i +i,y+i}. (10.3.1)

Thus this model contains a four-spin interaction between the spins round
a site. The partition function is given by (1.7.5) with H = 0: denote it by
Zl.
Now define, for dl i,j,
OC;ij=&;jO0y+| (10.3.2)

Mij = Oyis1j -
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Then (10.3.1) can be written

M N
%= - 21 21 {1, OCij +Jatty
i=1j=
+ Joyj + Jab+ijPij + Fagaerl, (10.3.3)
and, for dl /andj,
My 1y 41 = 1. (10.3.4)

To any ospin configuration there corresponds an a, ju-gpin configuration
satidfying (10.3.4). Conversdly, to any a, jugoin configuration saisfying
(10.3.4), there correspond two aspin configurations satisfying (10.3.2).

. 0 ! o Tier, - oio‘id‘lé
i i : :
o i o i 0 \ 0o i o0
H T Ty Crin
o o ‘Y o T o * o0
—*)

Fig. 10.3. The eight-vertex modd square lattice, shoan by dotted lines, and the
Stes of the dud lattice, shown as open cirdes

(To see this converse, fix one face spin, say O\ arbitrarily. Then (10.3.2)
defines the neighbouring face spins, and so on; (10.3.4) ensures that the
definitions are consistent. Thus there are just two solutions of (10.3.2),
depending on the choice of the first spin.)

It follows that

Z,=2 2[ exp(—%/ksT) , (10.35)
wherethe sumisover dl values (£1) of a,, * * » , PMN satisfying (10.3.4).
However, snce w{n, aV5, v) in (10.2.3) vanishes unless [iaflv=I,

(10.2.6) is unchanged by imposing the condition (10.3.4). Thus the sums
in (10.2.6) and (10.3.5) are the same, provided that (for [iaflv= 1)

w(g, a\p, v) = exp{[id(a+ p) + id(n+ V)
+ Jan + Jfr + J'ap]lksT}, (10.3.6)
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(sharing out the /,«;; energies between sites (i,j)) and (i-1,;), and
similarly for JhfMj- Hence
Z, = 2Zsy, (10.3.7)

where Z, is the partition function of the eight-vertex model defined above,
with ocij, iM] being the edge arrow spins, and with (using Fig. 10.1, (10.3.6)

Fig. 10.4. Thelsing spinsof Fig. 10.3. The solid and broken lineslink pairs of spins
that interact via the diagona terms (with coefficients J and /') in eg. (10.3.1).
Note the automatic division into two sub-lattices: solid and open circles.

and (10.1.2))
& = I d-I-J-IT e =+ 30-3-0-07,
= -Jhtjvt]F+r+r, a=hL-jy+j+r-r, (10.3.8)
s=g=1-J+7

Tt Tt i Tit

£7=£88=—J+J +J .

Thus this genera Ising-type model is equivdent to the general eight-
vertex model, and vice-versa. In particular, the zero-fied eight-vertex
model (0> = 0>z, coi = (f*) corresponds to the Ising-type modd with //, =
/, =0, i.e. with only diagonal and four-spin interactions. In this case, from
(10.1.2) and (10.2.2),

a=expl(/+/ +IVkeTl, b= expl(-/-/+IVkeTl (1039
c=exp[(-/+ /" -J)kT], d=exp[(/-/"-JI)ksT].

More particularly, if // = 0 then only the diagona interactions remain
and ab,c,d saisy the condition

ab = cd. (10.3.10)

Asis evident from Fig. 10.4, the Ising-type model then factors into two
independent nearest-neighbour square Ising models, one on the sub-lattice
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of solid circles, the other on the sub-lattice of open circles. These two
moddls are identical: both have interaction strength / in one direction, /'
in the other. If f$, is the free energy per site of this eight-vertex model,
then in the thermodynamic limit it follows that

/gV =lising, (10.3.11)

where /isiy is the free energy per site of the usual square-lattice nearest-
neighbour 1sng model.

The zero-fidd eight-vertex modd therefore contains as specia cases both
the zero-fidd ice-type model of Chapters 8 and 9, and the Ising model of
Chapter 7. In generd it can be regarded as two identical 1sing models, one
on each sub lattice of faces, coupled via a four-spin interaction round each
site.

104 Sar - Triangle Reation

Here | shal show how the zero-fidd eight-vertex model can be solved by
generalizing the method of Sections 9.6-9.8: thisistheway it was originally
done (Baxter, 1971a, 1972b).

The Bethe ansatz method of Sections 8.3 and 84 can in fact dso be
appropriately generalized (Baxter, 19734), but isvery cumbersome: it does
have the merit of providing formulae for the eigenvectors of the transfer
matrix, as well as the eigenvalues, but no use has yet been made of these.

To obtain the results in a form analogous to those of Section 9.6-9.8,
it is necessary to use dliptic functions. | shdl introduce them at an early
stage, though Kumar (1974) has shown that they can be deferred at Iew
until Section 10.7.

Again we try to satiffy the 'star - triangle' relation (9.6.8), only now
H@U, a\fi, v) is given by (10.2.3) rather than (9.6.2). The three equations
(9.6.12) are thereby replaced by the Sx equations

ac'a" + da'd" = bc'b" + ca'c"

ab'c" + dd'b" = ba'c" + cc'b"

cb'a’ + bd'd" = ca'b" + bc'c” (104.1)
ad'b" + db'c" = bd'a" + cb'd"

aa'd" + dc'a" = bb'd" +cd'a”

da'd' + ac'd" = db'b" + ad'c".
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These equations are homogeneous and linear in @', b", c", d'. The
Qeterminant of coefficients of the fird, third, fourth and sixth equations
is

(cdab' - abc'd)[{a® - b%)(c? - d?) + (¢ - dPA{a* b?)]. (10.4.2)
For &', b", c", d" not to be dl zero, this determinant must vanish.

The am here is to congtruct a class of transfer matrices (with weights
a, b, c,d) that dl commute with the origina matrix V (with weights a,
b, ¢, d). If Vitsdf isto be a member of this class (this seems desirable,
but it may not be essential), then we want (10.4.2) to vanish when a', b',

¢, d equal a, b, c, d. In this case the first factor vanishes, but the second
does not.

In general, therefore, we require the first factor in (10.4.2) to vanish,
i.e.

(10.4.3)
The firgt, third, fourth and sixth equations in (10.4.1) can now be solved
for a":b":c":d". Using (10.4.3), they give (to within a common factor)
a" = alcc - dd)(b’c? - cfadlc
b" = b(dc' - cd)(ac? - da?ld
¢ = c(bb -aa)(@c* da?la
d' = d{ab' - ba)(b’c? - Ca?)/b . (10.4.4)
Substituting these into either the second or fifth equation in (10.4.1),
using (10.4.3), gives
a’+ b*-c>-d®* a?+ b?-c?-d?
ab _ 75 . (LoAS5)

Define
A= (& +b°-c?- d)/2(ab + cd)
T={ab- cd)l{ab + cd), (10.4.6)

Similarly, define A', V by (10.4.6) with a, b, c, d replaced by a, b', ¢,
d'. Then (10.4.3) and (10.4.5) are equivaent to

A=A" r=r. (104.7)

It follows that any two transfer matrices commute provided they have
the same values of A and T. Apart from atrivid normalization factor, this
leaves one degree of freedom in choosing a, b, ¢, d, so a non-trivial class
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of transfer matrices can be constructed, each member commuting with
every other.

Parametrization in Terms of Entire Functions

The next step is to generdize Section 9.7, i.e. to parametrize a, b, ¢, d in
terms of four other variables, say p, k, A and v, so that a, b, ¢, d are entire
functions of v, but A, F are independent of v (and of the normalization

factor p). _
First eliminate d between the two equations (10.4.6). This gives
2A(1 +vy) ab = &+ b?- ¢ - a®b¥yPe-?, (10.4.8)
where
y=(@1-r)/(l +F) =cdlab. (10.4.9)

Eqg. (10.4.8) is a symmetric biquadratic relation between ale and blc. If
blc is given, then it is a quadratic equation for ale, with discriminant

AZ(l + y)\bl)? - [(blc)? - 1] [1 - Yblo)3. (10.4.10)
This is a quadratic form in (blc)?, and can be written as
1 - yAA( - I, (10.4.12)
where k, y depend only on A, y, being given by
Ky =y
(1 +IAY =1+ y - A%l + vf. (10.4.12)

We want to parametrize blc as a function of .some variable u (say), so
that the square root of (10.4.11) is meromorphic. As is shown in Section
15.4, this can be done by taking

blc = y-!sniu, (10.4.13)

where sn u is the Jacobian dliptic sn function of argument u and modulus
k, and the factor i in the argument is introduced for later convenience.
The square root of (10.4.11) is then en iu dn iu, 'so the solution of (10.4.8)
is

a_y[A(l +y)sniu+yeniudniy

- VAT . (10.4.14)

This is a meromorphic function of u. It can be smplified by derthing A
by

ksna=-y/y. (10.4.15)
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Then (10.4.12) and (10.4.9) give

y = sniX, y= - ksn?iX, (10.4.16)
T = (1+ ksn?id)/(1 — ksn?iA)
A = - eniXdniA/(l - ksn?/A). (10.4.17)
Using the dliptic function addition formula (15.4.21), (10.4.14) gives
ae=/A -« /niX, (10.4.18)
so from (10.4.9) and (10.4.16),
dic=-k sniu sni(X - u). (10.4.19)

The function sn u is a generalization of the trigonometric sine function:
from (15.1.4)—(15.1.6) it reduces to sn u when k= 0. Just as it was con-
venient to use the hyperbolic sine function sinhu in Chapter 9, so it is
convenient here to use the function snh u, defined by

shu=—isniu=isn(-iu). (10.4.20)

It is a meromorphic function of u, rea if uisrea (and 0< k< 1).
Using this, from (10.4.13, 16, 18, 19) we have

ab :cd = snh(A - u): snh u : QQ42)
sh A: ksnh A snhu snh(A - fi).
From (15.1.6) and (10.4.20),

ghu = -ik*Hiiuy&iiu), (10.4.22)
where the theta functions H(u), @(u) are entire. Define v by
u=i(X+ v). (10.4.23)

Using (10.4.22) in (10.4.21), the O function denominators can be multiplied
out, giving
a=-ip0(iA) H[ii(X- v)] @[U(X + V)],

= -ip O(iA) O[hi(X - V)] H[ii(X + V)],
(10.4.24)
¢ = -ipH(iX) Oii(A - V)] @\i(X + V)],

d=ipH{iX) H[hi(X -v)] H[ti(X + V)],

where p is some normalization factor. If p, A, v arereal, then so are a, b,
c,d.
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This completes the generalization of steps (i), (ii), (iii) of Section 9.5:
a, b, ¢, d are defined in terms of p, k, A, v by (10.4.24); from (10.4.17),
F and A depend only on k and A.

Keep p, k and A fixed; regard the transfer matrix V, given by (9.6.1) and
(10.2.3), as afunction V(v) of v. Then

V(V) V(V) = V(V) V(v), (10.4.25)

for dl complex numbers v,v'. From (10.4.24), a, b, ¢, d are entire functions
of v. so therefore are dl elements of V(v).

If A, uarehead fixed and k alowed to tend to zero, then shh u—> snh u.
From (10.4.21), d—Q (relative to a, b, ¢), so we regain the sx-vertex
model of Chapters 8 and 9 (A, A, u and v having the same meaning as
therein). In particular, (10.4.21) becomes (9.7.12), and (10.4.17) gives
(9.2.4).

Rdation between u, u', u"
The equations (10.4.1) are unaltered by interchanging the unprimed and
double-primed variables. Thus (10.4.7) further implies that
A=A"=A" r=F=r". (10.4.26)
The weights &, b, ¢', d [anda" , b", ¢", d"] can therefore aso be put
into the form (10.4.22), with the same values of k and A. The values of
p, u and v will be different: let us cadl them p', U’ and V' [p", u" and v'].
The firg of the equations (10.4.1) can be written
c'(aa" - bb") = a'(cc" - dd"). (10.4.27)
Substituting the expressions (10.4.19) and using the identity (15.4.23), this
becomes
sni{k- u -u")=sn/(A-u). (10.4.283)

Proceeding smilarly [but usng (15.4.24)], the fourth of the equations
(10.4.1) dso gives (10.4.27). The second and fifth give

sni(u' -u) = sn(zu"), (10.4.28b)
while the third and sixth give
sni{u' - u") = N(iM). (10.4.28¢)

The genera solution of these equations (10.4.28) is
u'=u+ u"+ Amil + 2nl’, (10.4.29)
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where /, I' are the complete dliptic integrals defined in Chapter 15, and
m, n are any integers. However, incrementing u' by 4il or 21' does not
affect (10.4.19), so without loss of generality we can choose

u=u+ U (10.4.30)

This is exactly the same as the six-vertex relation (9.7.13), so the
eight-vertex operators U, defined by (9.6.9), (10.2.3) and (10.4.22) dso
satidy the star - triangle operator relation (9.7.14). i.e.

Uiei(u) Ur(u +u”) Uiea(U”) = {/,(™) Uiea(u + ") Ugu).  (10.4.31)

Note that u" isjust the difference of u' and u. | suspect that thisis closdy
related to the 'transformation to a difference kernel' that occurs in the
Bethe ansatz, as in equations (8.8.2)-(8.8.4) and (8.13.30)-(8.13.38).
The dliptic function parametrization has been introduced here smply on
the grounds of mathematical convenience, but suppose we had originally
required that a, b, ¢, d be functions of some variable u (and &, b', c', d
the same functions of u: and a", b", c", d" of u") sothat A and T be
constants and that u" be a function only of u' — u. We would then have
been led inexorably from the star - triangle relations (10.4.1) to the dliptic
function parametrization (10.4.21), just as in Section 8.13 we were led
from (8.13.31) to (8.13.67) and (8.13.73).

105 The Matrix Q(v)

Pair Propagation through a Vertex

Now we seek to generalize Section 9.8. The first ten equations generalize
trivialy (we gill want Hy(a) to be upper-right triangular). The 'pair propa-
gation' conditions (9.8.11) become (replacing the integer i by/)
ag{+) pi+i(+) + dg{—) pjri(—) =g{(+) p(+)
bg{—) pi+ i +) + cg{+) i+ —) = gi{(—)p{(+) (10.5.1)
A=) pi+a(+) + bgd+) pj+1(—) =gi(+) p{~)
dg{+) pj++) + ag{—) pj+i(—) = gi(—-)p{-).

They are till homogeneous and linear in g/(+), 9;(-),9/(+), gj(~)-
Equating to zero the determinant of coefficients, and using (10.4.6) and
(10.4.9), we obtain

2A(L+y) - L=rx) + 1y, - y(l +1jrjsq) , (105.2)
where r- is again given by (9.8.13).
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This is a symmetric biquadratic relation between r, and r;.i. It involves
a, b, ¢, d only via the 'constants’ A and T. Further, it is exactly the same
as (10.4.8) with a, b, c replaced by rj., r, Y, respectively.

We can therefore apply the solution (10.4.21) of (10.4.8) to the relation
(10.5.2). Replacing u by t, this gives (for a particular value of/)

yANj+i = snh(A - t) /snh A | (10.5.3)
y~hj =snht/snh A,
i.e., using (10.4.16) and (10.4.20),
rj = K'snht, r.i = -K<snh(f - A). (10.5.4)

From (15.2.5) and (10.4.20), r, is unchanged by replacing t by 2*7- f,
whiler,-+i becomes —ft* snh(?+ A). Thus if '

ry = A*snhr, (10.5.5)
then two solutions of (10.5.2) are
?}‘4.1 = = k*snh(t j: . (1056)
Since (10.5.2) is a quadratic equation for r,.;, these are al the solutions.
Now consider these equations sequentially for/'= 1,. . . , N, determining
t for each value. The choice of sign in (10.5.6) can be made independently
for each /; so the most general solution for ri,. . ., rni is
r;=(— Yk!snhs;, (10.5.7)
where
si=s+ Mot ... +054), (10.5.8)
s is an arbitrary constant and each 0) has value £ 1, (These O\, . ., oy

have no connection with the Ising spins of Section 10.3). The cyclic
boundary condition ry.i = r\ is satisfied if Af is even and

oi+... + ojv=0. (10.5.9)

(Asin the six-vertex models, this condition can be relaxed for the special
values (4/m/ + 2rl)In of A, where m, r, n are integers: it is then sufficient
that (Ti + ...+ av be an integer multiple of n. Such cases are often of
particular interest: the Ising model (K" = 0) has A = 1/'))

Clearly this solution for n,..., ryis similar to that of the six-vertex
model in (9.8.15). If we set r = Ke® and let A—» 0 while keeping r fixed,
then (10.5.7) reduces to (9.8.15).
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Eliminating gj{ +) between the first and third of the equations (10.5.1),
we obtain
gj( - ) = ary — brj-p{
gl+) c—drrj.,y

(10.5.10)

Using (10.4.21), (10.5.7), (10.5.8) and the identity (15.4.23), this becomes

N nl

—'5 = (- YK snh(g + op). (10.5.11)

-

o

Taking the ratios of the first and second equations (10.5.1) now gives
[again using (15.4.23)]

ilid = (_yHICt sanls. + wlu + A)] - (10.5.12)
£(+)

We are ill free to choose Pj(+ ), g,(+) arbitrarily. An important
property in Chapter 9 was that the elements of Q(v) were entire functions
of v (or u). In Section 9.8 this came about because each g/(+) and
gj(-) was entire. From (10.5.11) and (10.4.22), this can be ensured in this
more general situation by choosing

g +) = O[i(s; +ou)], (10.5.13a)
for then
& (-) = (-)>""iH[i(s + oju)]. (10.5.13b)
Similarly, from (10.5.7) and (10.4.22), we can choose pj{ + ) so that
p{+) = G(s), p>(-) = (- V'UHfr,). (10.5.14)

Using (10.4.24), (10.4.23) and (15.4.25), the first of the equations
(10.5.1) now gives

g(+) = ph(k- u) €[ig+iOj(u + A)], (10.5.153)
so from (10.5.12),
o/(-) = ph{k - u){ - )'iH[ig + iOj(u + A)],  (10.5.15b)
where the function h{u) is defined by
h{u) = - i 0(0) H(iu) ®{iu). *(10.5.16)

The matrices Gy( £ ) now contain non-zero entries dgj(F ) instead of the
zeros in (9.8.4). Using (10.4.24), (10.5.13) and (15.4.25 or 26), their
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determinants are
det Gi{ + ) = p*{u) h(k - u) O[w,+ io,{u + A)] G[w; + io,(u - A)]
det Gj(-) = - p?h{u) h{k - u) H[iF + iOj{u + A)] H[iF + iafu - A)].
(10.5.17)

Asin Chapter 9, we can calculategi{a) in (9.8.6) by taking determinants
in (9.8.5). The determinants of P, and P;,; can again be ignored, since
their contribution to gj(a) cancels out of (9.8.7) (or we can require that
det Pi = 1). Using (10.5.15) and (10.5.17), we are left with

g/(+) = ph(u) Ois; + igi(u — A)]
g'{-) = ph{u) (- yiHli§ + ig{u - A)]. (10.5.18)

Column Vectors y{v)

The 2*-dimensional vector y has elements given by (9.8.2). Thus it is a

direct product of the two-dimensional vectors g\,. . ., On:
y=gi®gi®---®gN, (10.5.19)
where
(+
g = (*’f’f N, (10.5.20)

i.e., using (10.4.23) and (10.5.13),
_ ( B(is; + di(A + v)a;])
87\ (= y+vittlis; + 4ih + 0y}
Comparing (9.8.1) and (9.8.7), the vector y' (y") is dso defined by
(10.5.19), but with each g, replaced by gj (gj). From (10.5.15) and (15.2.5),
g'i can be obtained from gj by multiplying by ph{k — u) and incrementing
u by A', where

(10.5.21)

A'= A-2*7. (10.5.22)

Regard y, defined by (10.5.19) and (10.5.21), as a function y(v) of v (k,
A, sbeing kept constant). From (10.4.23), incrementing u by A' isequivalent
to incrementing v by 2A', so

/= {ph[i(k - V]}Ny(v + 2A"). (10.5.23a)
Similarly, using (10.5.18),
I = {ph[i{X + V]}My(v - 2k). (10.5.23b)
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It is obvioudy convenient to define a function
<p{v)ph{vi2)]™; (10.5.24)
the equation (9.8.1) can now be written ‘
VVY(V) = <p{k-Y{v + 2X) + <p(k+ V)Y{v-2K), (105.25)

so we have generalized (9.8.24) to the eight-vertex model. Again there are
many choices of y(v), corresponding to different choices of s
Oy. . ., ON'M (10.5.8), subject to (10.5.9). Let Qg(v) be a 2" by 2V matrix
whose columns are linear combinations (with coefficients that are inde-
pendent of v) of such vectors y{v). Then, from (10.5.25),

V(v) QR(V) = <A - D) QR(V + 2K) + OA + V) Qg(v - 2A").  (10.5.26)

Row Vectors y'(-v) and Matrix Q.(v)

Equations (9.8.26)-(9.8.29) generdize to the eight-vertex model, the only
explicit modification necessary being to change r in (9.8.29) tos. Letg be
defined by (10.5.8), with s, oy,. . ., 0;-i replaced by s, a[,. .., a\-
Using (10.5.19), (10.5.21) and the identity (15.4.27), we find that

N
y'(-u\s, 0)y{Ws, a) = \[TF[Sr9 + JA(a— a)) + [(wa+ ua))\
Yol
X G[§ + § + ik(oj+ o) + hivaj- uaj)], (10.5.27)
where
t=2g4{H:(0) ©,(0)] ,

F(u) = - H[hi(I' + W] H[hi(I" - «)], (10.5.28)
G(U) = Hi[hi(I' + u)] Hi[bil’ - u)].

We can now use the same inductive argument as that following (9.8.31)
to show that the RHS of (10.5.27) is a symmetric function of u and v. (We
need only (10.5.27) and (10.5.8): the definitions (10.5.28) are irrelevant.
It is necessary to split (10.5.27) into two factors, one containing only F
functions, the other containing only G functions. The inductive argument
applies to each, but one appeals initidly to the case Oj = oj for the F-factor,
<jj=- &j for the G-factor.)

Therelation (9.8.33) therefore also generalizesto the eight-vertex model,

i.e
Qdu) QR(V) = Q{v) Qd,u), (10.5.29)
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where
QYY) = Q'R{-V). (10.5.30)

QR(V) aNon-Singular Matrix

Each vector y(Vv) is given by (10.5.19), (10.5.21), (10.5.8) and (10.5.9).
There are many such vectors, since s can be any complex number, and
Oi,. . . ,oy any st of integers 1 satisfying (10.5.9). We want the set of
al such vectors to span dl 2V-dimensional space (except possibly for specia
values of v).

Asin Chapter 9,1 am not able to give afull proof of this, but it is amost
certainly so (it isfor N= 2 and 4).

It would not be generdly true only if dl determinants of dl possble
matrices QR(V) vanished identicaly for dl k, A, v. If this were so, they
would vanish for k = 0, which is the six-vertex model: in this case we know
that the eigenvalues of the transfer matrix are correctly given by assuming
QR(V) to be non-singular, and we have strong direct evidence that it is.

Let us therefore assume that QR(V) is non-singular for some value VQ.
Defining Q(v) by (9.8.38), i.e.

Q{v) = Qr(v) Q-R\WVy), (10.5.31)
the relations (9.8.39)-(9.8.42) fallow, in particular
V(v) Q(v) = Q(v) V(v)
=<f>{X-v) Qv+ 2K) + (t>(k+ v) Q(v-2A"), (10.5.32)
Q(U) Q(v) = Q{v) Qu), (10.5.33)

for dl complex numbers v, u.

Commutation Relations Involving S and R

From (15.2.38) and (15.2.4), the theta functions ©(«), H(u) satisfy
~0(u+21)= G(M), H{U + 21) = -H(u). (10.5.34)

The effect of incrementing v by 4il in (10.5.21) is therefore to negate the
function H.

Define the diagona operator 5 by (9.8.43): it has entries +1 (-1) for
row-gtates with an even (odd) number of down arrows. From (10.5.19)
and (10.5.21), pre-multiplying y by 5 is equivalent to negating every H,
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Sy(v) = y(v + 4il). (10.5.35)

This is the generdlization to the eight-vertex model of (9.8.44). The equa-

tions (9.8.45) - (9.8.47) can a once be similarly generalized (merely replace
K by 27). In particular, they give

SQV) = Q{v) S= Q(v + 4*7), (10.5.36a)

SV(u) = V(V)S (10.5.36b)

From (15.2.3b) and (15.2.4), the theta functions H(u), O(u) satidfy the
relations

Hu + W) = ig-t exp(-Umi/l) O(w) , (10.5.37)
O(M + /1) = ig~* exp(-\imill) H{u).
Define a 2" by 2" matrix R by
/0 1\ /O 1\ /0 1\
RZ{/ Il ®l |®...® | ). (10.5.38)
I o VI 0O vl 0O/

(Multiplication by R has the effect of reversing dl arrows.) Then from
(10.5.19) and (10.5.21) it follows that

N
y(v + 21) = g~" expliji 2 [sfa, + h(X + V)]/I) RSy(v). (10.5.39)
I y=i J
From (10.5.8) and (10.5.9),
N
- x
Z)Sj0j=A 7] O\
7=1 Isi</«N
= M{(a, + ... + og%o\- ... -a%}= -i M, (10.5.40)
SO
yiw + 2/") = g-" exp(Nxvi4l) RSy(v). (10.5.41)

This relation is independent of 5 and O\, . . . , oy, S0 is satisfied by al
columns of QR(V). Using adso (10.5.30), it can readily be verified that

Qr(v + 21) = g~" exp(Nnv/4l) RS Qr(V), (10-5.42)
Qdp + 21') = g~"exp(Nnv/4l) Q. (V) RS,
so, from (9.8.38) and (9.8.39),
RSQ(v) = Q(V) RS = " exp(-Nm>/41) Q(v + 21"). (10.5.433)
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From (10.2.4), w(fj,, ac\fi, v) is unchanged by negeting fx, &, /3, v. From
(9.6.1) and (10.5.38) it follows that

RV(v) = V(V)R. (10.5.43b)

The matrices Q(v), Q(u), V(v), V{u), R, S therefore commute, for al
complex numbers u and v.
From (9.6.1), (10.2.3) and (10.4.24), dl elements of V(v) are entire
functions of v. From (10.5.19) and (10.5.21), so are dl elements of Q(Vv).
This completes the generalization to the eight-vertex model of the sx-
vertex model properties (i)-(vi) given in Section 9.5. The derivation has
closdly followed that given in Sections 9.6-9.8 for the six-vertex case.

10.6 Equations for the Eigenvalues of V(v)

The vital results of the previous two sections are (10.4.25), (10.5.24),
(10.5.32), (10.5.33), (10.5.36) and (10.5.43), together with the fact that
dl elements of V(v) and Q(v) are entire functions of v.

We now generalize the 'sufficiency’ argument of Section 9.5. Since dl
matrices commute, there exists a matrix P (independent of v) such that
Vd(v), Qd(v) in (9.5.1) are diagonal matrices. Equation (10.5.23) gives
(9.4.3). Let A(v) be a particular eigenvalue of V(u), and q(v) the corre-
sponding eigenvalue of Q(v). (This function g(v) is not to be confused
with the nome g of the €lliptic functions.) Then the corresponding entry
in the matrix equation (9.4.3) is the scalar equation (9.3.6), i.e.

ANV q(Vv) = OA - V) q(v + 2A") + <p{k + V) ¢{v - 2k), (10.6.1)

but now <p(v) is defined by (10.5.24), A’ by (10.5.22).

Since dl elements of V(v), Q(v) are entire, so are A(v), q(v). Let
r{= 1) be the eigenvalue of R corresponding to A(u), q(v); and
s(= £1) the eigenvalue of 5. Then from (10.5.36a) and (10.5.43a),

q(v + 4il) = sq(v) , (10.6.2)
q(v + 21") = rsq" exp(Njtv/4l) q(v).

Integrating q'(v)/q(v) round a period rectangle of width 21' and height
47, then using Cauchy's integral formula (15.3.4), it is readily found that
q(v) has kN zeros per period rectangle. Set

n= N/2, (10.6.3)

and let vi,. . . , v, be these zeros.
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Consider the function

flo) = ato) /T 4(25Y). (1064)
where h(u) is defined by (10.5.16). From (10.6.2), (15.2.3) and (15.2.4),
f(v + 4il) = (~ysf(v), (1065)

fv + 21) = (-)"/es oxp[n(y + ...+ vy)I21\f{v).

From (10.6.4),/(u) is entire and non-zero. From (10.6.5), f(v)/f(v) is
therefore entire and doubly-periodic. From theorem 15a, it is therefore a
constant, sof(v) is of the form

f(v) = constant x exp(ry). (10.6.6)
Substituting this into (10.6.5) gives
T=jt(s| + 2n + 4p)/8l, (10.6.79)

pit. Ay = \[S\+20)V + i(rs1+2n)l + 2pT + Aipl,  (10.6.7b)

where p, p' are integers.
Combining (10.6.4) and (10.6.6), to within a multiplicative factor that
cancels out of al our subsequent calculations:

qv) = ap(TQ;thf"_YAj | (106.8)
o)

This is the eight-vertex generdization of (9.3.5). The function h(u) has
asmple zero at u=0, so setting v = Vj in (10.6.1) causes the LHS to
vanish, leaving

$A— UJ') ‘I(’-’J —2))

ot o) - g0t 2N)’ j=1,...,n, (10.6.9)
or, using (10.5.24) and (10.6.8),
hl3(2. — v;)]}” : "
—_ - ~47l , (10.6.10
{h[§(1+ vl o (" ) LA R[4(o; — v +217)] ( )
for;=1,.
These are the eight-vertex generalizations of (8.4.12). They determine
Vi,. .., Vn; (V) isthen given by (10.6.8) and A(v) by (10.6.1). There are

many solutions of (10.6.10), corresponding to the different eigenvalues.
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If W,. .., v, are distinct, then (10.6.10) ensures that the ratio of the
RHS of (10.6.1) to g(v) is an entire function, so that A(u) is entire, as
required. However, if any two of vi,. . . , v, are equal, then (10.6.10) is
not a sufficient condition for A(i>) to be entire: it must be supplemented
by further equations obtained by differentiating (10.6.1) with respect to
v and then setting v equa to the common Vj value.

For this reason, solutions of (10.6.10) are in general spurious if any two
of W,. .., Vv, are equal. (Note that in Chapter 8 we aso regected such
solutions, though in that case it was because they gave the eigenvector to
be zero.)

10.7 Maximum Eigenvalue: Location of w,..., v,
Principal Regime

Consider the case when
O<A:<l, O<AX</', |yl<A, p>0, (10.7.18)

so, from (10.4.23),
0<M<A. (10.7.1b)

From (10.4.21), the weights a, b, ¢, d dl have the same sgn; and from
(10.4.24) they are dl positive, so the redtrictions (10.7.18) are physicdly
dlowable.

From (10.4.17) and (15.4.4)

1-A%=(1 - Ks?IA/l - kP *Ap, (10.7.2)

s0, since s’ ik is negative real,
A<-1. (10.7.3)

From (10.4.6) this implies that
(a+ b)’< (c- d)> (10.7.9)

The ratio die is given by (10.4.21) to be k snh u st(A - w); this has a
maximum when u = JA, and from (15.4.24) this maximum must be less
than one, so d<c. Taking postive square roots of (10.7.4) and noting
that each RHS in (10.4.24) is positive, it follows that

ca+b+d a0 b>0 d>0. (10.7.5)

The restrictions (10.7.1) therefore imply (10.7.5); conversdly, if a, b, c,
d stify (10.7.5), then there are uniquereal valuesof k, A, v, p, u satisfying
(10.4.21), (10.4.24) and (10.7.1).
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The inequality (10.7.5) specifies a domain, or regime, in (a ,b ,c ,d)
space. Thisisthe generaization to the eight-vertex model of the six-vertex
anti-ferroelectric regime (regime IV in Fig. 8.5). The dominant Boltzmann
weight is ¢, and the ground-state energy configurations of arrows on the
lattice are either that shown in Fig. 8.3, or the configuration obtained from
it by reversing al arrows. By extending the six-vertex notation to the
eight-vertex, we are led automatically to regard (10.7.5) as the archetypal
regime.

This has its disadvantages: if we regard the eight-vertex model as a
generalization of the Ising model, as in Section 10.3, then it is natural to
focus attention on the ferromagnetic regime, when / and /' are large. The
dominant Boltzmann weight is then a, rather than c. Fortunately this can
be converted to the case (10.7.5) by using the symmetry relation (10.2.14).

In fact, it will be shown in Section 10.11 that any set of values of a, b,
¢, d can be mapped into (10.7.5) (or its boundaries: snce most properties
are continuous these present no problem) by using the symmetry relations
(10.2.11)-(10.2.17). They can equaly wel be al mapped into other
regimes, notably a> b + ¢ + d, but from now on | shall single out the
regime (10.7.5) (witha, b, c, ddl positive) and cdl it the principal regime.

Low-Temperature Limit

The equations (10.6.10) are quite complicated and for finite n have not in
general been solved. | find it helpful to first look at the following ssmple
limiting case: it gives some useful insights into the large-n behaviour.

Suppose & < E\, £3 £7 and T is smal. Then from (10.1.2) and
(10.2.1)

Oa,b,d, (10.7.6)

s0 the weights are certainly in the principal regime. It follows that k<I;
while /', A, v are large, their ratios being of order unity. From (15.1.4) the
nome ¢ is small, so from (15.1.5)

B(iu) =* 1, H(iu) ~ iq exp(jtu/2!), (10.7.7)
provided O < Re(«//') < 1. Equation (10.4.24) therefore gives
C - ptfx-, (10.7.8)
where _
q = cxp(-Jdil'H), x = exp(-jrA/2/). (10.7.9)
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Suppose Vi,. . ., Vi, are dl of order unity (or less). Then in this limit
(10.6.10) becomes, using (10.6.3),
@+ (-)"exp(-4rA')(zy. . . zy =0, (10.7.10)
where
Zj = exp(-jtvi2l), (10.7.12)
andj=1,...,n.
Equation (10.7.10) is a polynomia eguation for z. of degree n, so has
n distinct roots. We want W,. . . , v, to be distinct, so 2\,. . ., z, must be

the n roots of (10.7.10). It follows that
Z' + (-D)"exp(-4TAY(z1. . . zy =Y[(z-z,), (10712
y=i
for dl complex numbers z. Setting z = 0 and taking sgquare roots gives
4.z, = xexp(-2rA") , (10.7.13)
while (10.6.7b) and (10.7.11) give
z...Z, = rs-)" exp(-2r/') . (10.7.14)

From (10.6.7d), risreal; A' is given by (10.5.22), where A #/'. Since
r=+1ands= %1, it follows that

T=0, s= ()", z.z=r. (10.7.15)

The asymptotic formulae (10.7.7) fall if Re(u) becomes zero or negative:
in this case we must use

e(iu) = 1, H(iu) ~ X g sinh(jtu/21), (10.7.16)
for |Re(«//)| < 1. Then (10.6.8) and (10.5.16) give

a(v) = n2?* sinhKu - ;)/4l], (10.7.17)
=1
for|Re(y/l")| < 2. Setting
z = exp(-jru/2/), (10.7.18)
this can be written
qv) = O"o"z"\z. . . Zo)-*11(z -*i) * (10-7.19)

Using (10.7.12) and (10.7.13), this can in turn be written
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av) = Q"z"%z. . zyH{-2" + (*L « « 2"} «  (10.7.20)

Now determine the asymptotic form of (10.6.1) in the low-temperature
limit. If |Re(y)| <t min(A , 21' - 2X), we abtain [usng (10.5.24), (10.6.8),
(10.5.22), (10.5.16) and (10.7.7)]

AV q(v) = g™ (2. . L z)(Ri+ R, (10.7.20)
where

R = (2" R = (z.zy" (10.7.22)

The firg term on the RHS of (10.6.1) givesthe /7 termin (10.7.21), the
second gives the R, term. However, from (10.7.20), g(v) dso contains a
factor i7 + Ry, S0 this cancels out of (10.7.21), leaving

AV) =pVg™x-Nz. . . z, (10.7.23)
so, from (10.7.8) and (10.7.15),
AWV) = rcV, (10.7.24)

in the low-temperature limit.

This is indeed the correct maximum transfer matrix eigenvalue in this
limit. In fact there are two such eigenvalues, correspondingtor = +1. For
r = +1 (-1) the corresponding eigenvector is symmetric (anti-symmetric)
with respect to reversing al arrows, and the eigenvalue is positive (nega-
tive). The two eigenvalues are asymptoticaly degenerate in that their
numerical difference vanishes exponentialy as N becomes large. We have
therefore located W,. . . , v, for these eigenvalues, in this low temperature
limit. From (10.7.15), (10.7.10) and (10.7.11), their values are

v = A2 nhe + Din, j o=l (10.7.25)

In Section 8.8 and 89 we remarked that the free energy is analytic at
w (or v) = 0, even though the working for w postive differs from the
working for w negative. It is easy to see how thiscomes about in the above
equations: for v positive, R\ is exponentiadly smaler than R, in the limit
n-+ <*> sothefirst term onthe RHS of (10.6.1) dominates. If visnegative,
the situation is reversed. Thus when taking the thermodynamic limit in
(10.6.1), or smilarly in (8.4.4), the cases v > 0 and v < 0 must be discussed
separately.

However, since the factor R\ + R, is contained in q(Vv), it cancels out of
(10.7.21), i.e. of (10.6.1), so the end result is independent of whether it
is R or R, that dominates. Of course we have as yet only considered the
low-temperature limit, but this argument generdizes to al temperatures.
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108 Cadculation of the Free Energy

Let us return to non-zero temperatures, i.e. to /', A, v finite, and consider
how to solve (10.6.10) in the limit of n large.

These equations are the eight-vertex generalizations of (8.9.12), with
Vj = —iogj. In Section 8.9 we showed that we expected oc\,. . . , a, to be
real and distributed over the interval {-n, n), i.e. over a semi-period of
the relevant function sinhia/2. In the eight-vertex case the function is
h(ia/2), and the corresponding interval is (-21, 21). In the low-temperature
limit we have just observed in (10.7.25) that the iW,. . . , iv, are indeed
distributed over this interval.

One obvious way to solve (10.6.10) is therefore to assume that in the
limit n—* °° the W,. . . , v, are densdly distributed aong the line interval
(-2U, 2il), and to proceed as in Sections 8.7-8.9, thereby obtaining from
(10.6.10) a linear integral equation for the distribution function of

Here | shdl use another method: it is a refinement of the method used
in Baxter (1972b) and has the advantage that it discriminates between the
two numerically largest eigenvalues, so can be used to obtain the interfacial
tension (Baxter, 1973h).

Assumed Properties

Firg note that (10.6.7) and (10.7.11) determine r and 2\. . . z, to within
choices of the integers r,s,p,p'. Assuming that there are no discontinuous
changes within the principal regime, these integers must keep their limiting
low-density values. Hence (10.7.15) must be exactly correct throughout
the principa regime.

Set

_¢h—v)g+2n)

PO) = ST oy qo =20

This is the ratio of the firg term on the RHS of (10.6.1) to the second. In

the low-temperature limit this is RI/R2, where R\ and R, are given by
(10.7.22), so it is then true that

p(v) ~r (-)" exp(-niw/2l). (10.8.2)

For Re(tf) > 0, thisvanishesexponentialy asn-*<*>; for Re(u) < it grows
exponentialy.
Also, from (10.7.23), A(u) is congtant (for finite v) in the low-temper-

(10.8.1)
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ature limit. It therefore seems reasonable to assume (throughout the
principa regime) that:

(i) there exigs apositive real number 6 such that In[l + p(v)] isanalytic
fo O<Re(uy<6;, and In[l +Vp(V)] is andytic for
0>Re(u) > -4

@ii)) W,. . ., v, are pure imaginary,

(i) A(v) is andytic and non-zero in a vertica grip containing the
imaginary axis.

Wiener - Hopf Factorization
| shal now show that (10.6.1) does admit solutions with these properties.

Firg use (i) to make a Wiener - Hopf factorization (Pdey and Wiener,
1934; Noble, 1958) of 1 + p(v): define X+(v), X-(v) by

_ 1+ pWL
[INX+ (V)= m&?(\f/-_\/)/ﬁ] _—1—dv ,Re(v)>a, (10839

o . 1 at2l MX P ( ,
o 2 g7, XDIA SRR v Re(o) <o, (10.8.3b)

where 0 < a< a' < 6. Adding these equations and using the fact thatp(u)
is periodic of period Am, the RHS can be written as an integra round the
rectangle of - 2il, a' + HI, a+ 2il, a— 2il. Cauchy's residue theorem
then gives

X (VX-(V)=I1+p(V) _ (10.8.9)

This result can be used to define X+(v) for Re(y) =s a, and X-(v) for
Re(u) s= al.
The equation (10.6.1) can now be written as

A(v) = <t>{k+V) g(v - 2V) X (V) X-(V)/g(V). (10.8.5)

From (10.8.3), X+(v) is andytic and non-zero (ANZ) for Re(u) > 0,
while X-(v) isANZ for Re(v) < 6. The ather terms on the RHS of (10.8.5)
can be factored into products of similarly analytic functions. To do this,
note from (10.5.16) and (15.1.5) that

h(u) = -h(-u) = yexp(jtu/2l) JJ {1-""exp(-*1)}
m=0

x {1 - q"exp[-n(I' - u)/1]\,  (10.86)
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where

00

Y=70(0) Il (1- 42™)% (10.8.7)

- Substituting the expression (10.8.6) for h(u) into (10.5.24) and (10.6.8)
(with T=0) gives

() (v) = fffexp(Njiv/i4)AV) A2I' - v), (10.8.8)
qv) = yleqn(v - v - .- WAFV) G(v - 21'), (10.8.93)
= (-y)"exp[n(V! + ... + v- 'V)/4I]F(v + 21') G(v), (10.8.9b)
where
Aw)y=T[1- o exp( - ITVi2)", (10.8.10)
m=0
Fo) = 11 Hﬂ[;l - g™ exp{ - 7i(v - Vj)/21}], (10.8.11a)
j=lm=
6wy =Nt - 1™ expwu - Vj)i21}].  (10.8.11b)
Note that A(v) is a Jan(;\th(; function; while W,. . ., v,, and hence F(v)

and G(v) are unknown. The object of the fallowing manipulations is to
obtain ussful expressions for F(v) and G(v).

Substitute the results (10.8.10), (10.8.11) into (10.8.5), using (10.8.9b)
for (v —2k) and (10.8.99) for the denominator q(v). This gives, usng
(10.5.22), (10.7.9) and (10.7.15),

AP) = rpix-NL+H{v)L-(V), (10.8.12)
where
L+(v) = Alk + v) F(v + 2V - 2A) X, (V)/F(v), -
L-(v) = AQ@I' -k-V)G(v- 2K) X-(W/G(V - 2V). (10.8.13)
Let
6' = min(c5,2A,2/'-A); (10.8.14)

usng (10.7.1a), (10.8.10), (10.8.11) and assumption (ii), it is readily
observed from (10.8.13) that L+(v) is ANZ for Re(v) > 0, while L-(v)
isANZforRe(i;) < 6'. However, thislast property, together with (10.8.12)
and assumption (iii), impliesthat L+(v) isANZ for Re(i>) 5= 0. Altogether
we finaly have

LJy) isANZ for Re(u) s 0,

10.8.15
L-(v) isANZ for Re(y) < 6'. ( )
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Now repeat the working, but start by Wiener -Hopf factorizing
1+ [lp(W\.
=1 r-atd i1+ I/n(\'/)II iy
InY;(V)=-t\———— 1+ ;— —ﬂ.— >  (10-8.16)

taking the upper choice of dgns if Re(u) > - a, the lower if Re(y) <
- a, and choosing 0 < a< d. Then

Y.(VY-(V) = I+[l/p(V)], (10.8.17)
y+(u) is ANZ for Re(» > - 6, Y-(v) is ANZ for Re(v) < 0. Equation
(10.6.1) becomes

A(V) = KA - w) g(v + 2A") y.(0) YIV)I{V). (10.8.18)
Using (10.8.8), (10.8.94), (10.8.9b) for <p{X - v), q(v + 2A"), q(v), respec-
tively, this gives
Ae) = ro"Y'x "ML (V) M-(v), (10.8.19)
where
M.(v) = AQ2I' -X+V)F(v + 2X) Y. (V)/F(v + 21,

(10.8.20)
M_. (@) =A(A-0)G(y - 27 + 2A) y_¢§)/Gg).

Equations for F(v), G(v), p(Vv)

From (10.8.20), M.(y) is ANZ for Re(u) > - 6', while M_(y) is ANZ for
Re(y) < 0. Using (10.8.19) and property (iii), it follows that

M+(v) isANZ for Re(y) >'- 8, (10.8.21)
M-{v) isANZ for Re(u) «O.

Comparing (10.8.12) and (10.8.19), it is evident that
L:(V)/M.(V) = M-(W/L-(v) . (10.8.22)

The LHS of this equation is ANZ for Re(v) 3= 0, periodic of period Ail,
and —*\ as Re(i>—* + «> (thislast property follows from the definitions).
The RHS is ANZ for Re(y) « 0, periodic of period Ail, and -» constant
as Re(y)-» - ». Altogether therefore, both sides are entire (and non-
zero) and bounded. From Liouville's theorem they &rz therefore constant.
This constant must be one, so

M.(V) = Lo(v), M-(v) = L_(y) . (10.8.23)
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Using (10.8.13) and (10.8.20), the first of these equations is
Si(v) = Si(v + 21" - 2Kk) X. (V)/Y+(V), (10.8.24)
where
Si (V) = F(v) F(v + 2X)/A(v + A). (10.8.25)

Regard X+(v), Y.(v) as known functions. Then equation (10.8.24) can be
regarded as a recursion relation for St(v): solving it gives

5.(v) = Jjﬂmw +2m(l' - K]/Y.[v + 2m(I' - A)], (10.8.26)

and (10.8.25) can now be solved for F(V), giving
1 Alp + @m+ DA S.(v +4md)
F) = ,!;'[QA[U +(@m +3)ASv + (dm + )N

(From their definitions, X+(v), Y+(v), A(v) dl tend exponentidly to 1 as
Rely)—» +00, so these infinite products converge.)
Similarly, the second of the equations (10.8.23) gives

S(V) = S(v- 21" + 28) Y-(v)IXJiv), (10.8.28)

(10.8.27)

where
S(v) = G(v) G(v - 2AM(A - V). (10.8.29)

Since G(v), A{-v) tend exponentially to one as Re(u) -* -<», so do
S{v) and Y-{v)IX-{v). Thus

00

S{V) = n iV LA O A i - 2m( - A)],  (10.8.30)

_ Al(4m (1108311,
0 T-UIAmM + 3A -] S[v - @m +24) B

o

The definition (10.8.1) of p(v) can be expressed in terms of A(V), F(V),
G(V) by using (10.8.8) and (10.8.9). Use (10.8.9a) for q(v + 2A"), (10.8.9b)
for g(v - 2k), and (10.7.16). This gives
pip) = r( - )" exp( - nnvi2l) A{X- VA2I' - A + V)

xF(v + 2X)G(v + 2X-21"/[A(k+V)
X A@2I' -k-v)F{v + 21' - 2A) G(v - 2K)]. (10.8.32)
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Iterative Calculation of p(v)

These results are exact, even for finite n, provided the assumptions (i)-
(iii) are satisfied. A possible iterative method of solution, starting with
some initid guess at p(v) (satidying assumption (i) is. caculate X+{v),
Y.(v) from (10.8.3) and (10.8.16); calculate S+(v) from (10.8.26) and
(10.8.30); caculate F(v), G(v) from (10.8.27) and (10.8.31); calculate
p(v) from (10.8.32) and repeat.

Provided assumption (i) is satisfied, this procedure gives F(v) to be ANZ
for Re(u) >0, and G(v) for Re(u) < 0. From (10.8.11), vi,. . ., V, can
therefore only be pure imaginary, so (ii) is satisfied. Also, from (10.8.12)
or (10.8.19), A(y) is anaytic for -6' < Re(v) < 6, so (hi) is satidfied.

‘Now consider the case when n is large. Suppose, as is suggested by
(10.8.2), that p(v) vanishes exponentiadly with n for 0 < Re(u) < 6; and
grows exponentialy for 0> Re(u) > -8. Then from (10.8.3) and
(10.8.16), X+(v), X-{v), Y+{v), Y-(v) are exponentidly close to one,
provided that Re(u) >0, Re(v) < 6, Re(v) > - 6, Re(u) <0, respect-
ively.

For Re(u) > 0, each function S, (V) in (10.8.27) is therefore exponentialy
close to one; for Re(y) <0 so is each function S-(v) in (10.8.31). From
(10.8.32) it follows that for |Re(»)| < min(2A , 2/' - 2A)

p(v) = r (= )" exp(— nawi2) "!'_[Oiﬁ:m ::3)A + v]J

A[(4m + DA + v 4 2I'A[4m + Vk-v] A[(4m + 3A - v + 211]
Al(4m+ 3A + v+ 2'TA[(dm + A -V A[(@m + DA - v + 21]

x {1 + (termsthat vanish exponentially asn-*+ co)}.  (10.8.33)

Now use the definition (10.8.10) of A(v); together with (10.7.9) this
implies that

AWVIA(V + 21') = [1 - exp(- IvI2D]N. (10.8.34)

A quite remarkable feature of (10833) is that A(v) only occurs in the
combination (10.8.34), so

pw)=r(=Yexp(—nai2) W +—F<——==| , (10835

for |Re(w)| <min(2A, 21' - 2A), where x, z are defined by (10.7.9) and
(10.7.19), and the exponentialy smal corrections have been neglected.
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The nome q has therefore disappeared from this expression. On the
other hand, comparing (10.8.34) with (15.4.13), we see thatp(u) is related
to the dliptic functions of nome? or x. In fact, since am(u) is defined by
(15.4.13) with q replaced by of,

p(v) = r(-)" exp[ —N am(iv, k)], (10.8.36)
where Kk is the dliptic modulus corresponding to the nome
q=x (10.8.37)
and
vi=vi(2l). (10.8.39)

The function exp[—i am(iv , k)] has modulus less than one for 0 <
Re(u) < 2A, and greater than one for 0> Re(u) > -2A. Also, it is a
meromorphic function of v. The assumption (i) is therefore stisfied by
(10.8.36) with 0 < <5 < min(2A, 21' - 2A); 0 therefore are (ii) and (iii).
Further, it is dso true that this function p(v) vanishes exponentialy as
n—* oo, provided 0 < Re(u) < 6; it grows exponentidly if 0 > Re(i>) >
-6.

If we now subgtitute this expression for p(v) back into (10.8.3) and
(10.8.16) and continue the iterative procedure, we should obtain the
exponentially small corrections to (10.8.36), then the corrections to the
corrections, and so on. | have not done so, but expect that it should be
possible to prove, with full mathematical rigor, that this procedure con-
verges to a solution of (10.6.1) satifying assumptions (i)-(iii), and with
(10.8.36) as the exact large-Af solution for p(v).

Note that W,. . . , v, are the zeros of 1 + p(v), lying on the imaginary
axis. Like p(v) therefore, for large N the vaues of WII,..., v,ll depend
only onx: not onq (or 2). | find thisintriguing: | have no smple explanation
as to why it should be so.

The Functions p(v), A(v) in the Thermodynamic Limit

The lageM formulae (10.8.35) and (10.8.36) give p(v) only when-
|[Re(u) | < min2A , 21' — 2A). To obtain p(v) for other vaues of v, note
that (10.8.27) gives F(v) for dl v, but only when Re(u) > 0 do the functions
S+ give a factor which is exponentially close to unity for large n. Thus
(10.8.27) is 'useful' when Re(u) > 0, since to leading order in a large-n
expansion the unknown functions X+ (v), Y.(v), S+(v) can then be replaced
by unity. Similarly, the expression (10.8.31) for G(v) is ussful when
Re(y) <O. .



10. 8 CALCULATI ON OF THE FREE ENERGY 235

Using the second periodicity relation in (10.6.2), the function g(v), for
genera values of v, can be written as proportional to g(v*), where 0 <
Re(u*)<2/'. This function g(v*) can then be factorized by (10.8.99),
giving an expression for q(v) involving F(v) only for Re(u) > 0, and G(v)
only for Re(v) < 0.

L

0 Re{v) 21

Fig. 10.5. Regions of applicability of the forms a, b, ¢ of equation (10.8.39). Within
the broken line p(v) is exponentialy smal for large n.

Doing this in (10.8.1), using (10.8.27) and (10.8.31), we obtain (for n
large)

p(v) = pQv) for |Re(w) | < min(2A, 21' - 2A),  (10.8.3%)
P(V) = 1 for 2A < Re(») < 2/' - 2A ., (10.8.39h)
p(v) =p@{V)pQv -21) for 2/' -2A< Re(v) <2A . (10.8.39%)

where p©@(v) is the function on the RHS of (10.8.35) and (10.8.36).
Together with the periodicity relations [a consequence of (10.6.2),
(10.5.24) and (10.8.1)]

p(v + 4il) = p(v + 21) = p(v), (10.8.40)

these equations define p(v) for genera values of v. The regions of appl-
icability of the three formulae (10.8.39) are shown in Fig. 10.5. Also shown
is a broken line marking the boundary of the region in which p(v) is
exponentially smal when iV is large. From this it is apparent that in
assumption (i) of this section the maximum value of 6 is

8=min(2A,/"). (10.8.41)

Now calculate L-{v) from (10.8.13), M+ (v) from (10.8.20), and calculate
A(y) from (10.8.12), using (10.8.23) to replace L+ by M+. (This route
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gives an expression which is manifesly analytic and non-zero for -d' <
Re(u) < <5) Neglecting exponentially small corrections, the result is

Ay = roNny'N fI Al(dm +3)A + v]
m=pA[(dm + 5) A+ v]

A2 + (4m- 1) A + V] A[(4m + 3) A - V]A[2l' + (4m - 1) A - V]
XN2l +@n+ DA+ Vv AlAm+5)A-V A2l + @dm+ DA -] '
(10.8.42)

provided |Re(u)| < d.

We have solved the functional equation (10.6.1) for the functions q(v),
A(v). This is equivalent to solving (10.6.1) for W,..,v, indeed
vi,. . . v, ae the zeros of 1 + p(v), so can be obtained from &10.8.35).

These equations have many solutions, corresponding to the 2™ different
eigenvalues A(i>) of the transfer matrix V(v). In fact we have obtained
just two such solutions, i.e. eigenvalues: one with r = +1 (arrow reversal
symmetry), the other with r= -1 (anti-symmetry). From (10.8.42) they

~are equal in magnitude and opposite in dgn (to within corrections that
vanish exponentially as n—» °°).

In the low temperature limit we have verified that these are the two
numericaly largest eigenvaues. From the Perron-Frobenius theorem (Fro-
benius, 1908), a matrix with positive entries has a unique maximum eigen-
value. It follows that these are the two numericaly largest eigenvalues
throughout the principa regime (10.7.1), within which the Boltzmann
weights @, b, ¢, d are positive and our andysis is vdid.

The result (10.8.42) can of course be andyticaly continued throughout
the complex u-plane. Indeed, provided | Re(v) \ < 6, it has adirect meaning:
A(u) is the eigenvalue associated with the eigenvector which is maxima
in the principal regime (the eigenvector is independent of v). In particular,
this analytic continuation satisfies

A(Y) ARA - V) = ())(k+ V) O@BA - V), (10.8.43)
arelation to which | shal return in Chapter 13.

Free Energy

Taking logarithms of both sides of (10.8.42), usng (10.8.10), the RHS
becomes a double sum of terms like In(l - q"x°Z"), where a and b are
integers. Taylor expanding each such logarithm in powers of g™°Z", the
summations can be performed term by term, giving
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) _ S @ g 2
N7In[rA(V)] = In(py/x) 'MZ'I m(l - ) (1 +x™

(10.8.44)
Also, from (10.4.24), (10.8.7) and (15.1.5),
P et -inifYe yd2fm ~2m UM 0y —ni\ / — m i —tn\
AN Zux — X ~ut X __~—=Q K -~rX Yz ~rZz )
Inc = In(py/X) +mZ o Tl B -
(10.8.45)

As usud [equations (1.7.6) and (8.2.4)], the free energy / per site is
related to the maximum eigenvalue A by

AlkgT=" lim N~TnAngix, (10.8.46)

iV being the number of columns of the lattice.

From the Perron-Frobenius theorem (Frobenius, 1908), the maximum
eigenvaue must haver = +1. Thus A is the A(v) given by (10.8.44),
withr = +1. Eliminating A{v) and py/x between these last three equations
leaves

o

«. ™ X'X X ~Cl ) IX ~rX ~Z ~~Z )
flkeT = Inc + ~ —md g )
(10.8.47)

Alternatively, using (10.4.24), (10.8.7) and (15.4.27), one can establish
that

A 2m _2m _ m2 , m mo_oom
In(c + d) = Hpylx) - ~= + ' qre(xp+ x" - 2" z"‘),

(10.8.48)
and hence that
-flkeT = In(c + d)
o (" =g (- g™ H T (X" x " — 2 — 2T
+ 2, = &) (L 5o . (10.8.49)

109 Thelsng Case

It was shown in Section 10.3 that the eight-vertex model factors into two
identica and independent Ising models when /' = 0. The interaction coef-
ficients are termed K, L in Chapter 7; J/kgT, J'1ksT in this chapter.
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Let ki, uj, g, . . . be the variables k,u,q,... of Chapter 7. Then from
(7.6.1)

KT = Sinh(2J/keT) ST(2J'/keT). (10.9.1)

Expanding the RHS as sums of exponentials and using (10.3.9), (10.3.10)
and (10.4.6) gives

KT* = (a% + b?-c* (f)ldab = A . (10.9.2)

The ferromagnetic ordered state of the Isng modd (/>0 , />0 ,
ki< 1) therefore lies in the regime A>1, a>b + ¢ + doi the eight-
vertex model.

This regime can be mapped into the principal regime (10.7.5) by using
the symmetry relation (10.2.14), i.e. by interchanging a with ¢, and b with
d

. Do this, and then define p, k, A, v by (10.4.24), or (10.4.21). We obtain
shA = AT, (10.9.3)
» anhu = exp(-VikgT), (10.9.4)

and, from (10.9.2) and (10.4.17), noting that A is negated by interchanging
awith c and b with d:

kit=4cnildnia (10.9.5)
Using (15.4.32), it follows from (10.9.3) that
A=\V, (10.9.6)

0 A is exactly in the middle of the interval (0,/") permitted by (10.7.1).
From (10.7.9),

g= X- (10.9.7)
Also, from (15.4.32) and (10.9.5),
ki = 2fc| + K). (10.9.8)

This relation between dliptic moduli is that of the Landen transformation
(Section 15.6). If gi is the nome corresponding to k, then from (15.6.2)
and (10.9.7),

g =0 =X (10.9.9)

From (7.10.50), using (15.1.4), the Isng model spontaneous magnet-
ization can therefore be written as

1-gf S l-x
My=T] 1+q%,,_1=]'[ YT (10.9.10)
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Also, using the transformation (15.6.4) in (10.9.4), comparing the result
with (7.8.5) gives
K/=( + fc)u. (10.9.11)

With these equivalences, it can be verified directly that (10.8.47) does
indeed become the previous Ising model result (7.9.16) when /" = 0.

10.10 Other Thermodynamic Properties

Interfacial Tension

In the principal regime the eight-vertex model has long range anti-ferro-
electric order. The predominant pattern is either that of Fig. 8.3, or that
obtained therefrom by reversing al arrows.

The interfacial tension between domains of these two types can be
obtained in the same way as in Section 7.10. If Ao, Ai are the two
numerically largest eigenvalues, they are asymptotically degenerate in the
sense that

AiAg = - 1 + 0[exp(- NgkgT)], (10.10.1)

where s is the interfacial tension.

These eigenvalues A,, Ai ae the two eigenvalues discussed in the
previous section, with r = + 1, - 1, respectively. We observed there that
for large N they were equal in magnitude and opposite in sgn. To obtain
s we must keep some of the exponentially smal corrections that we
neglected in the previous section.

First re-derive (10.8.42), keeping all the X+(v), Yi{v) contributions,
and using (10.8.3) and (10.8.16). Let A¥(u) be the function on the RHS
of (10.8.42). Then it is found that, for |Re(u)| < o,

1 fa-Hil
INAGYACY)] = o I In[I + p(V)] D(v - V) dv
il Ja-
1 feaed >
Oil 253 [l + Vp(v')] D(v-v)adv', (10.10.2)
where if z x are defined by (10.7.18) and (10.7.9),
Dv)=1+2 2 (- )"‘{ i S - :12;:‘:22}. (10.10.3)

This function D(v) sdidfies the relations
D(v) = -D(-v) = -D(v + 2X) ; (10.10.4)
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in fact
D(v-k) = dn(iv,k), (10.10.5)

where dn(u,k) is the dliptic function defined in (15.1.6), and k, V are
defined by (10.8.37) and (10.8.38): again we see the occurrence of dliptic
functions with nome x, rather than q.

Equation (10.10.2) is exact, even for finite n. The leading corrections
(for large n) to A(v) can be obtained by substituting into (10.10.2) the
large-n expressions (10.8.39) for p(v).

Provided a< min(2A, 2/' - 2A), these are the expressons given in
(10.8.35) and (10.8.36). The function p{v) then has saddle points at v =
2il+ A, i.e. z= -x". Taking a= A in (10.10.2), integrating by steepest
descents therefore gives

\n[AWV/ACW)] ~p(2U + A). (10.10.6)
Setting z = -x in (10.8.35):
p(2il + X) = rk??, (10.10.7)
where
7/ 1+x7 2
= Yyt -
K= 2x !_[I (1+x4m-2) : (10.10.8)

[This quantity ki is the liptic modulus with nome . It is related to k by
*=2tf/(1+A:1).] .

Forr=+1, A(v) in (10.10.6) isAc; for r = -1 itisA]. From (10.8.42),
AQ(u) is the same for both cases except for a change in sign. Taking the
difference, usng (10.10.7), therefore gives

AilAo = -1 + O(Af). (10.10.9)

The two maximum eigenvaues are therefore asymptoticaly degenerate:
they satidy (10.10.1), the interfacia tension s being given by

exp(-g/Jfcq7) = Al (10.10.10)

This argument fals if A > 2/73, snce thenp(v') in (10.10.2) is not given
by (10.8.35) when a= A. Even so, (10.10.10) remains correct, as is shown
in Appendix D of Baxter (1973d).

When &-» 0, then g-> 0, /-* nil and shh «*e dnhu. Usng (10.4.23),
we see that the relation (10.4.21) becomes the same as (8.9.7), with d =
0. Thusthe eight-vertex model reducesto the six-vertex model, the principal
regime (10.7.5) becomes the regime IV of Section 8.10, and A, v then have
the same meaning as in Section 8.10.
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The interfacial tension of the six-vertex mode is therefore given by
(jp.10.10) and (10.10.8), in the limit g-+ 0. However, these equations are
independent of g, so they aready give the result (8.10.3) quoted above.
The definition (10.7.9) of * reduces to (8.10.2).

Correlation Length

In addition to the largest two eigenvalues A(v) of the transfer matrix V(v),
in the limit of N large it is dso possible to calculate the next-largest, and
so on. Indeed, a considerable amount of work has gone into doing such
calculations, mainly because they enter the related problem of the partition
function of the XYZ chain, which is discussed in Section 10.14 (Yang and
Yang, 1969; Gaudin, 1971, Johnson and McCoy, 1972; Takahashi and
Suzuki, 1972; Takahashi, 1973, 1974; Johnson and Bonner, 1980).

| shall not attempt to reproduce such calculations here. Let me merely
remark that for any eigenvalue it is expected (for N large) that the zeros
>,...,«, of q(v) are grouped in strings in the complex plane. All zeros
in a gtring have the same imaginary part, the zeros are spaced uniformly
at intervals of 2A, and are symmetric about either the pure imaginary axis
or about the vertical line Re(i>) = /'. Thus a string of m zeros consists of
the complex numbers

iw + W + -mk o= 1..m, (10.10.11)

where / is an integer (either O or 1).

For the two largest eigenvalues (i.e. those discussed in Section 10.8)
each string has / = 0 and contains only one zero. After these, let A, be the
next-largest eigenvalue. Johnson et al (1972a, 1972b, 1973) argued that this
would correspond to either one of the strings having 1=1, or to two of
them being replaced by a string of length two.

In fact there are 2N such eigenvalues, dl corresponding to the diagonal
operator Shaving eigenvaues=-(-1)". Inthelimit TV —» °°, and provided
A =sU', thelargest of them is given by (8.10.10), or equivaently (8.10.11),
i.e

AN T (a1 + Y
(Ao) =x2+zH]] T+ )5 575 (10.10.12)

m=l

where A, v, X, z are defined by (10.4.24), (10.7.9) and (10.7.18). (Like the
results (10.10.8), (10.10.10) for the interfacia tension, this formula does
not involve g, so has the same form for both the eight-vertex and six-vertex
models.)
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The argument following (8.10.11) ill applies, so the arrow correlation
length §is given by (8.10.12). Using (10.10.8), this can be written as

r' = 2In(l//ci), (10.10.13)

provided as before that A sEU'.
Eliminating k, between (10.10.10) and (10.10.13) therefore gives

Yo=ksT, (10.10.14)

5 here being the interfacia tension. It can now be seen why this relation
is satisfied by both the Ising model [eq. (7.10.44)] and the six-vertex model
[eg. (8.10.13)]: both are specid cases of the eight-vertex model, for which
the relation holds generally, provided that 0 =£ KIT =s\. (The Ising mode
has XII' = i, the six-vertex model has XIV = 0.)

Yet more generdly, the scding hypothesis (Widom, 1965; Abraham,
1979) predicts that, for al systems near their critical point, s and % should
saisfy a relation of the form (10.10.14).

Johnson et al (1973, equations (6.17)) aso obtained £ for W< A </,
and found that (10.10.12) and (10.10.13) fal for A > 2/73. Thisis typicd
of the calculation of the lower eigenvalues of the eight-vertex modd transfer
matrix: the results differ for various sub-intervals of theline0 < A </'. In
part this is due to strings becoming longer than the period 21' of g(v) and
hence reappearing on the other side of a period rectangle. It greatly
complicates the study of the lower eigenvalues.

It also means that many of the formulae, while appearing not to involve
g (only x and z occur explicitly), do involve it in their domains of validity.
Thisis apity: if it were true for any eigenvaue A. that A/Ao was afunction
only of x and z [as in (10.10.9), (10.10.12) and equation 8 of Johnson et
al. (19723)], then these ratios could be obtained (for N large) from the
explicit 1sing mode results.

It should be remarked that the results (10.10.10), (10.10.13) for the
interfacial tension and correlation length do not quite reduce to (7.10.18),
(7.10.43) in the pure Isng modd case. In this case, from (10.9.8) and
(10.9.9), K is the dliptic modulus with nome x?, so ki = ki is the modulus
used in Chapter 7 and we see that there are discrepancies of factors of 2.
For the interfacia tension this is because of a change of length scale: the
nin (7.10.17) corresponds to N/2 in (10.10.9). For the correlation length
it is because in the principa regime (wherein the system is ordered) the
A,s discussed by Johnson et al (1972a, 1973) lie in a different diagonal
block of the transfer matrix from A, (the corresponding eigenvalues of S
have opposite sign), so the matrix elementsfa, feoin (7.10.33) are zero:
one has to go to the next-largest band of eigenvalues. The effect of this
is to square AJ/A,, and hence to remove the i from (10.10.13). (For the
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disordered regimes the A, of Johnson et al. lies in the same diagonal block
as Ao and (10.10.13) is correct as written, providing k, A, v are defined as
in Section 10.11. Theresult then isto be compared with the low-temperature
Ising result (7.11.4).)

Spontaneous M agnetization

We have seen that the eight-vertex model can be viewed either as a model
of ferroelectricity (with dipoles represented by arrows on lattice edges),
or of ferromagnetism (with Ising spins on lattice faces). One obtains a
different order parameter depending on which viewpoint is adopted.

Let us first use the magnetic Ising picture of Section 10.3. Let O\ be a
particular spin, and let

Mo = (01), (10.10.15)

be the average value of this spin, calculated in the limit of an infinitesmally
weak applied magnetic fidd, asin (1.1.1).

Suppose that the system is ferromagnetic, so J and J' are positive, and
that/' > -max(/,/"'). Then for sufficiently low temperatures T, the Boltz-
mann weights, given by (10.3.9), will saisfy

a>b + c+ d. (10.10.16)

This regime can be obtained from the principal regime (10.7.5) by
interchanging a with ¢, and b with d, using the symmetry argument of
(10.2.14). It is the ferromagnetically ordered regime of the eight vertex
model.

Define k, A, v,p, satisfying (10.7.1), by interchanging a with ¢, and b
with d, and then using (10.4.21)-(10.4.24). Define q, X, z by (10.7.9) and
(10.7.19), and a parameter y by

g=x%. (10.10.17)

Then M, can be regarded as a function of x, y and z.

Barber and Baxter (1973) expanded M, as a series in X, with coefficients
that a priori are functions of y and z. (This is a partially summed low-
temperature series.) To order x* they found that

Afh=1+0x-2¢+ 0 + 2+ (10.10.18)

All coefficients calculated were in fact constants.
It is not difficult to see that M, must be independent of z: asin (7.10.48)
and (7.10.32), M, can be written solely in terms of a diagonal single-spin
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operator and the matrix P (U in Chapter 7) of eigenvectors of the transfer
matrix. These are independent of v, and hence z; so0 therefore is M.,

It is not obvious that Mo should be independent of g. However, the
interfacia tension is, the correlation length is (provided A < 2/73), and so
are the fird fiveterms in the jc-expanson of My- For these reasons, Barber
and Baxter (1973) conjectured that Mo is a function only of x.

However, for the pure Isng model, which from (10.9.7) is when g =
X\ M, is known from (10.9.10) to be

1 —
o= =2 (10.10.19)

s0 the conjecture implies that this formula is true for dl q.

The conjecture has been verified: M, can be obtained from the corner
transfer matrices, as will be shown in Chapter 13.

Remember that the k\ defined by (10.10.8) is, from (15.1.44), the éliptic
modulus corresponding to the nome x°, From (15.1.4b) it follows that

Mo = K\"=(1-k3)"". (10.10.20)

Spontaneous Polarization

Return now to the origina arrow formulation and let
Po = <*i>, (10.10.21)

where oc\ isthe 'arrow spin’ on some particular edge (vertical or horizontal),
having values £1 depending on the arrow direction. From (10.3.2),

Po = <dioi>, (10.10.22)

where oi, Oi are the ldng spins of the faces on either sde of the lattice
edge.

ThisPois an 'order parameter' like M. From Fig. 10.1 and (10.1.5), the
zero-fidd eight-vertex mode is unchanged by reversing dl arrows. This
symmetry can be broken by adding a field-like contribution to the total
energy of

-E* 24, (10.10.23)
i

where. E is the 'dectric fiddd' and the sum is over dl vertica (or dl
horizontal) arrows.

For aferroelectric model, where a or b is the largest of the Boltzmann
weights a, b, c, d, this field breaks the degeneracy of the ground states.
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If one now calculates (10.10.21) in the limit of a large lattice, then lets
E-»0 through positive values, the resulting expression for P, will be
non-zero if a or b are auffidently large.

For an anti-ferroelectric model, where ¢ or d is the largest of the
Boltzmann weights [as in the principal regime (10.7.5)], (10.10.23) does
not break the degeneracy of the ground states (such as that in Fig. 8.3).
It is necessary to 'stagger' E, aternating its Sgn on successve edges. Then
the appropriate limiting value of P, is again non-zero for sufficiently large
cord.

This calculation has not been carried out, any more than the Ising model
has been solved in a magnetic fidd. In fact P, itsdf has not been calcul ated,
but it must, like M,, be afunction only of x and g, independent of z. Baxter
and Kelland (1974) have conjectured that in the principa regime (10.7.5)

fioi i Jiny g
— prpdi—=—g—x
- ,.l-il kl — q T xz“) , (10.10.24)

This agrees with the six-vertex (q = 0) result (8.10.9). In the Ising case
(q=—x*) it gives, using (10.9.10), P, =MI: thisis correct, since oi and Oz
in (10.10.22) lie on digtinct sub-lattices a1d o are md;g)endent for the lsing
case. The conjecture is also correct in the limit g =/',when a =
b = 0, ¢ = d and the system is completely ordered.

Baxter and Kelland also set q = X%y, asin (10.10.17), and calculated P,
to order X* in an expansion in powers of x, with coefficients that are
functions of y. The result agreed with (10.10.24) 0 it seems very likely
that (10.10.24) is exactly correct throughout the principa regime.

Noting that the nomes g, x* correspond to the moduli k, K\, respectively,
it fallows from (15.1.7) that (10.10.24) can be written as

Pa= K[ hi{K'), (10.10.25)

where k!, k[ are the corresponding conjugate moduli, and /, 1, are the
complete dliptic integrals of the firgt kind.

10.11 Classfication of Phases

Within the principal regime (10.7.5), the free energy is given by (10.8.47).
In this case we see from (10.2.16) that

W5>W,> Wi \Wol. (10.11.2)
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For general values of a, b, ¢, d, using the symmetry relation (10.2.17),
the free energy is given by the following procedure:

(i) Calculate wy , . . . , wa from (10.2.16).
(i) Negate and re-arrange the WA , . . . , w,; as necessary to satisfy
(10.11.1).

(iii) Calculate the mapped values of a, b, ¢, d from (10.2.16). These will
lie in the principal regime,

(iv) Caculatep, k, A, v from (10.4.16)-(10.4.24), q and x from (10.7.9),
z from (10.7.18). .

(v) Calculate the free energy/from (10.8.47) or (10.8.49).

The resulting function f(a ,b,c,d)is analytic except only when one of
a, b, ¢, disequal to the sum of the other three. Thusthere are five regimes:

|. Ferroelectric:a>b+c+d, A>1,
Il. Ferroelectric. b>a+ c+d, A>1,
[11. Disordered: a, b, c,d< i(a+ b+ ¢+ d), -1<A <1,
IV. Anti-ferroelectric. c> a+ b+ d, A < -1, (principa regime) ,
V. Anti-ferroelectric. d>a+ b+ ¢, A<-1.

In regimes I, 11, IV, V the system is ordered: any such regime can be
obtained from IV by using only the elementary symmetries (10.2.12)-
(10.2.14). The interfacial tension s, correlation length |, magnetization Mo
and polarization P, are given by (10.10.10), (10.10.13) (without the |),
(10.10.19), (10.10.23), respectively; g, X, z being defined asin (iv) above.

Note that the system is aways ordered if A, as given by (10.4.6), is
numerically greater than one. It is disordered if |A| < 1.

This classification into regimes becomes more obvious if we epr|C|tIy
solve (10.4.17) and (10.4.6) for the dliptic modulus k. Squaring the second
equation (10.4.17), using (15.4.4) and (15.4.5), and eliminating sn/A
between this and (10.4.16), we obtain

A?= (1 +k'y) (1 +Any)@A + y)2 (10.11.2)
Solving this for k + k' and using (10.4.6) gives
ko + Ko* - 2 (10.11.3)
_(@-b-c-d{a-b+c+d@+b-c+dy(@a4b+c-d
Aabcd ’
(10.11.3)
B Aa'h'cd
& +fcot+2=— -+ (10.11.4)

abed
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where al, b', ¢', d' are defined by (10.2.5), and the auffix 0 means that k
is to be evaluated directly from (10.11.3) or (10.11.4), the mapping pro-
cedure (i)-(iii) above being omitted. This means that ko is not necessarily
in the interval (0,1).

In the ordered regimes I, I, 1V, V, the RHS of (10.11.3) is positive.
It is negative in the disordered regime 111.

To map Il into the principa regime it is necessary to use the duality
relation (10.2.11). Various cases arise, depending on whether b', ¢', d' are
positive or negative, but it is found that the free energy / is an anaytic
function ofa,b,c,d throughout the regime I11. This regime is disordered:
there is no spontaneous magnetization or polarization. The correlation
length is given precisely by (10.10.13).

Disorder Points

The system is disordered throughout the regime 111, but it is particularly
so when ¢' or d' vanish, i.e. when [using (10.2.5)] the point (a ,b ,c ,d)
lies on either of the surfaces

atc=b+d or a+d=b+c (10.11.5)

The procedure (i)-(v) maps these cases to eight-vertex models in the
principa regime 1V, with either a or b zero. Since k; is then the same as
k, and O, it is then apparent from (10.11.3) that k = 0. More
precisely, as the mapped a (or b) tends to zero, then £-»0 and, from
(10.4.9)-(10.4.21), v and y are proportional to k~*, and A—» °° while
[' - A remains finite. From (10.7.9), g and x both tend to zero, x being
proportional to gK From (10.10.8) and (10.10.13), k; and & therefore tend
to zero. Thus the correlation length [as denned by (7.10.41), modified as
inthe argument following (8.10.11)] becomes zero: the system iscompletely
disordered.

The free energy is given by (10.8.47), c therein being the mapped value
of ¢ and dl terms in the summation being zero, so

-flkgT=Ini(a + b + c + d). (10.11.6)
[This smple result can be understood in at least two ways. one is to note
that the mappings (10.2.11)-(10.2.15) can be used to map the model to
asix-vertex mode in the frozen ferroelectric regime | or 1l of Section 8.10;
the other isto verify that Vx = [h(a+ b + ¢ + d)]"x, where Visthe transfer
matrix and x is a vector with al elements unity—this calculation is par-
ticularly smpleif Vis replaced by the transfer matrix that builds the lattice
up diagonally.]
Such points of complete disorder occur also in the anti-ferromagnetic
triangular 1sing model (Stephenson, 1970).
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10.12 Critical Singularities

The free energy is an analytic function of a, b, ¢, d, and the correlation
length §is finite, unless

a=b+c+d or b=a+c+d
or c=a+b+d oo d=a+b+c, (10.12.0)
where a, b, ¢, d are dl non-negative. These are the critica surfaces in
{a ,b ,c ,d) space.

If the energies £,,. . . , £5 are held fixed, stidfying (10.1.5), and the
temperature Tvaried, then the point (a ,b ,c ,d) will trace out a path in
this space. If one of €, &, &, € (sy @) is less than the others, then for
aufficiently smal T this path lies inside one of the ordered regimes (regime
[). On the other hand, for large T(a= b = ¢ = d=I) the path certainly
lies in the disordered regime I11. Thus it must cross a critica surface (and
does so only once) at a critical point.

If two or more of g, £3, &;, £7 are equa and less than the others, then
the path aways lies in the disordered regime |11 and there is no critical
temperature.

Consider a point (a ,b ,c ,d) close to one of the surfaces (10.2.1) and
let

(a-b-c-d)(a-b+c + d)(a+b-c+d)(at+b+c-d)
- Wabcd :
(10.12.2)

Then this t is zero on a critica surface and in general will vanish linearly
with T— T, (T - To)It being positive. We can therefore regard this t as
the 'deviation-from-critical-temperature’ variable, and replace (1.1.3) by
(10.12.2).

The four criticd surfacesin (10.12.1) can al be mapped onto the surface
c=a+ b+ d by the trivid mappings (10.2.12)-(10.2.14). These merely
re-arrange a, b, ¢, d and map order to order, disorder to disorder. There
is therefore no loss of generality in focussing attention on critica points
onthesurfacec=a+ b + d, i.e. between regimes I11 and IV. | shdl do
this for the rest of this section.

Alternative Expressions for the Thermodynamic Properties

Consider first the principa regime 1V, where tis negative and k = k$. From
(10.11.3) and (10.12.2)
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k+ k~' = 2-4t, (10.12.3)

so k approachesone ast -» O _.

It follows that —>1 and the product definitions (15.1.5) of the theta
functions become weakly convergent. This can be avoided by using (15.7.2)
in (10.4.24), so as to express a, b, ¢, d in terms of theta functions of the
modulus K' conjugate to k.

We shall also want to compare the correct free energy in regime |11 with
its analytic continuation from regime IVV. To do this it is convenient to
work with the WA,. . . , w, in (10.2.16), rather than a, b, ¢, d. Substituting
the conjugated expressions (10.4.24) into (10.2.16), using (15.4.29) to
factor the RHS, and then using the product expansions (15.1.5), we finally
obtain

(1_ -1 r)(l_ n- IJ'Z)
Zu ] r)(l__ n- lr‘x)

wi=Ha+b)=p H

= _ - _ Sll'l(Va"Z) (1 —p )(l p2n‘|.rzr)
Wz*i(a b)“‘ p Sln(.lUZ) 1_[1(1_p x)(l — zﬂfx,),

, cos(Vi2) n (1 +p®2) (1 +p*12)

wi=¥c+d)= COS([J/Z) 2000 £1 L 280t
™ ry A j\L ry A }
w=ie-dy =g TELZIMIP22, (10124
where

p = () = exp(-2*/II"),
H = nkil', w=nvl", (10.12.5)
X = exp(ifj.), Z = exp(iw),
and p' is some normalization factor (proportional to p) that we shall not
need explicitly.
These equations, together with the restrictions (10.7.1a), i.e.

0<p<1, w|<lt<n, §>0, (10.12.6)

define p", nw and/?. Ast—* 0, p—> 0 and it is apparent that §, ju, V tend
to finite limits, these being their critical values. In particular, the critical
value of fi is given by

tan(JU/2) = (cdlabf. (10.12.7)

The free energy is given by (10.8.47) or, alternatively, (10.8.49). The
latter is more convenient for the present purposes, since it involves ¢ + d
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(i.e. 2ws), rather than c: this makes it easier to compare regimes |1l and
V.

We have just noted that fi and w tend to finite limits as t—*0 and
k> 1. Since /' then tends to nil and /to infinity, from (10.12.5), (10.7.9)
and (10.7.18) this means that g,x,z all tend to one (from below). The
sum in (10.8.49) therefore becomes an integral. Its behaviour near t = 0
can be studied by using the Poisson summation formula (15.8.1).

To do this, define

A A

« _ [coSM” - 2/3)u - cosh nu] [cosh \xu - cosh wu] an

Fiu .
usinh TCU cosh \xu

Then, noting that F(u) is an even function, that F(0) =0, and using
(10.7.9), (10.7.19) and (10.12.5), the equation (10.8.49) becomes

I - (ml"
fgT=Inec + d) + - 7z FlZ20, (10.12.9)

wad

From (15.8.1), this can be written

o

fdmmy
flkgT = Inc + d) + \ G(0) £ [cR"), (10.12.10)

where
GA:) = | exp(iku) F(u) dw , (10.12.11)
J-cc
and we have used the fact that G(k), like F{u), must be an even function.
For positive k, the integral in (10.12.11) can be closed round the upper
half u-plane and evaluated as a sum of residues from the poles at u = in,
i(n - h)n/fj,, forn =1,2, 3,.... Substituting the result into (10.12.10), the
sum over m can then be performed to give

flksT = In(c + d) + h G(0)

2 -” (cos 2ni — cos Nn cos n\x) (cos N\i — cos nw) p*"

= ncosnp (1 — p*)

- -" tf(» - | ?/vi\ -3 / (Zn—1)aip
+ 22}1( )" cotl( (n)_a%)yil(fj((zr:_”ﬁu;m wp . (10.12.12)

The equations (10.10.10), (10.10.13), (10.10.20) for the interfacial ten-
sion s, the correlation length £, and the spontaneous magnetization Mo,
are
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sksT = i In(l/fci),
|=2/In(l/fci), (10.12.13)
Mo = (1 - k)™,

where fci, defined by (10.10.8), is the dliptic modulus with nome x2.

To study the behaviour near x = |, we smply go to the conjugate
modulus and conjugate nome. The conjugate modulus is k[ =(1 - K\f ,
while from (15.1.3) (interchanging / and /'), the conjugate nome is
exp™InOt?)]. From (10.7.9) and (10.12.5), the conjugate nome is
therefore

al = exp(-;t//A) =p"'?". (10.12.14)
Replacing k, g in (15.1.4a) by K[, q[, and squaring, we obtain
, * 1 +prma'|u %
— = 2)
1~ =16p™ | (__1 o m) _ (10.12.15)

The spontaneous polarization is believed to be given exactly by
(10.10.25), i.e.

Py = kil/(k']) . (10.12.16)

Again we want to work with conjugate nomes. Replacingk, /', gm. (15.1.8)
by k', /, g and using (10.12.5), we obtain

* -
k' = pHln(Up) ]‘[I ('| ___é’n'_-_l)z’ (10.12.17)

Similarly, using k[,l,q and (10.12.14),

ES

) ; 1= pimme 2
kil = (n/g) p™* In(1/p) H (m) . (10.12.18)
n=1i -

Behaviour near Criticality

Given a, b, ¢, din regime 1V, the equations (10.12.4) and (10.12.5) define
p, n and V. The free energy, interfacial tension, etc. are then given by
(10.12.12)-(10.12.18).

On the other side of the transition, in regime 11, vvy,. . . , Wy must first
be re-arranged as in the procedure (i)-(v) of the previous section. The
effect of this is to interchange w* and > before using (10.12.4) and
(10.12.5). The free energy is again given by (10.10.12) and the correlation
length 8§ by (10.12.13); M, and P, are then zero, s is meaningless.
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However, examining (10.12.4) it is apparent that p,n, V are anaytic
functions of a, b, ¢, d even when p = 0, i.e. a the transition from regime
IV to Ill. Also, interchanging n>i and w;, therein is equivadent to smply
negating p, leaving \i and V unchanged.

It follows that/?, (i, Kcan be anayticaly continued from regime IV into
regime |11, and that these analytic continuations differ from their correct
values only in that p is negated.

Also, from (10.12.3), (10.12.5) and (15.1.4a), when t is small

p=-U16+ €"), (10.12.19)

so p vanishes linearly with t.

Look at the expression (10.12.12) for the free energy. The firg three
terms involve only ws \i, V and p%, dl of which are analytic across the
boundary between regimes |11 and 1V, being the same functions of a, b, ¢, d
on either side. Only the lagt term can therefore be in any sense singular,
and for p small the dominant contribution to it is

findkeT = -4 cot” cosft)}" p't (10.12.20)

Thidd,gis effectively the/s defined by (1.7.10a). Sincefi, wtend to finite
limits as t—> 0 and pL is non-zero, the cot and costermsin (10.12.20) are
effectivdy constants. From (10.12.19) and the above comments, the correct
value of p in either regime IV or regime |11 behaves for t smal as

p = [fJ/16. (10.12.21)
It follows that
/sing-kr", (10.12.229)

the criticd value of fi being given by (10.12.7).

Exceptional cases occur if n = nlm, where mis an integer. If mis even
the factor cot(*%/2u) in (10.12.20) is infinite. This is due to the fact that
two poles of F(u) coincide. The residue of the resulting double pole should
be calculated properly when evauating (10.12.11). The effect of thisis to
introduce an extra factor Injf|, so

/sing-MA~InM, (10.12.22b)

if jt/fi is an even integer.

If the critical value of nl\i is an odd integer, then the factor cot(*%/2%)
vanishes in (10.12.20). To obtain the leading singularity in this case
it is then necessary to consider the dependence of [i on the temperature
variable t.
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In the ordered regime 1V it follows easily from (10.12.13)-(10.12.18)
and (10.12.21) that for t small (and negative)

s§ () , M, (1t (10.12.233)
Po ~ (-f)r"n,
while in the disordered regime 111 (t positive)
rt-nrze (10.12.23b)

(The formula (10.10.13) for the correlation length % is correct only for
A =s2/73,i.e. Ix=£2"/3; however, Johnson et al (1973) showed that it gives
the correct critical behaviour even for (i > 231/3.)

Critical Exponents and Scaling

Asin Section 8.11, define a critical exponent /5, for P, analogoudly to the
definition (1.1.4) of fi for M,. To avoid confusion with the parameter fx
above, denote the interfacial tension exponent in (1.7.34) by ,u, Then from
(1.1.4), (1.7.9), (1.7.25), (1.7.34), (10.12.22) and (10.12.23), the critical
exponents a, a, /3, #, v, Vv, fis are

a= al = 2- nlfi, P= Jviefj, (10.12.24)
[} (T —n)lAp, v= vV = fig= jz2(.

Since the eight-vertex model has only been solved in zero fieds (both
electric and magnetic), it is not possible to use it to fully test the scaling
hypothesis (1.2.1). However, al the scaling predictions that can be tested,
namely (1.2.15), (1.2.16), oc= a and v= V, are indeed satisfied.

If one accepts the other scaling predictions, then the other exponents
can be calculated from (1.2.12)—(1.2.14). In particular, the 'magnetic’
y,6,r] are

y=7n/8p, 6=15 r)=J. (10.12.25)

Universality and Weak Universality

It is worth-while recapitulating the definition of n at criticality. For given
vertex energies E\, £3, £5, g, the weights a, b, ¢, d are given by (10.1.2) and
(10.2.1). The condition for criticality is (10.12.1). If £5 <£i, £3, &;, it follows
that the critical temperature T. is given by

exp(-£s/keTc) = exp(—&fkpT.) + exp(—e&fksT.)

+ exp(—&ksT,) . (10.12.26)



254 10 SQUARE LATTICE EIGHT-VERTEX MODEL
From (10.12.17) and (10.12.6), the critical value of nis given by
tan(W2) = exp[(el + & - & - g)/2ksT], O<n<n. (10.12.27)

[Other cases occur when ey €; or €; is the least energy, but they can be
trivially mapped to this case by using the relations (10.2.12)-(10.2.14).]

By varying €\, &, &5, £/, this fx can be given any value between 0 and
n. Thusthe exponentsa, fi, y, v, (is (but not d and rj) depend on the vaues
of £1,. .., £/, and vary continuoudy with them.

This contradicts the universality hypothesis of Section 1.3: that critical
exponents should not depend on the details of the interactions. Kadanoff
and Wegner (1971) argued that this variation was due to the specid
symmetries and dimensiondity of the zerofield eight-vertex model. For
instance, in the magnetic picture of Section 10.3, suppose that J, and /,,
are not both zero (in the electric picture, this means afield is applied).
Then Kadanoff and Wegner's argument suggests that the magnetic expo-
nents should be exactly those of the Isng model. From this viewpoint,
universality is expected to 'normaly' hold, the eight-vertex model being
a specid exceptional case. This has been supported by approximate renor-
malization group calculations (van Leeuwen, 1975; Kadanoff and Brown,
1979; Knops, 1980).

There are two other models which are believed to have continuoudy
variable exponents, though they have not been solved exactly. They are
the Ashkin- Teller model discussed in Section 129 (Kadanoff, 1977,
Zisook, 1980) and the sgquare lattice Isng model with ferromagnetic
nearest-neighbour interactions and anti-ferromagnetic next-nearest neigh-
bour ones (Nightingale, 1977; Barber, 1979; Oitmaa, 1981).

Suzuki (1974) proposed what may be caled 'weak universality'. Most
exponents are defined as powers of the temperature difference T- T, (6
and r\ are exceptions). Suzuki suggested that it was more natural to use
the inverse correlation length %-~' as the variable measuring departure from
criticality. For instance, instead of (1.1.4) one should write

Mo~F?, (10.12.28)

I? being a critical exponent. (This idea is quite attractive: from a math-
ematical point of view the temperature is rather an uninteresting divisor
of the Hamiltonian, while the correlation length gives valuable information
on the near-critical behaviour of the system.)

From (1.1.4) and (1.7.25),

J3=plv. (10.12.293)
Similarly, the reduced exponents for /gng, S and % are
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P="'(2-a)v, iis=ndv, y=ylv, (10.12.29)

while 6 and r\ are not affected. From (10.12.24) we have for the eight-
vertex model that

i8=|, 0=2, p=1, Flz, 6=15, r= % (101230)
al of which are fixed numbers, independent of JU.

Thus if one formulates 'weak universdlity' as the proposition that
2,0, fis ¢, 8, r\ should be independent of the details of the interactions,
then the eight-vertex modd is consistent with this hypothesis. Further, this
hypothesis connects wel with scaling, snce the scding relations
(1.2.12)-(1.2.16) predict

N o -
<5+| (10.12.31)
6-1 6-1
P=dsvr 1T e

Thus scding implies that if 8 is universal, then weak universality must
be satisfied.

10.13 An Equivalent 1sing Model

We saw in Section 10.3 that the eight-vertex model can be regarded as two
nearest-neighbour Isng models (one on each sub-lattice), linked by
four-spin interactions. Some people are unhappy a the introduction of
such four-spin interactions, feding that they are somehow 'unphysical’.
Jungling (1975) has answered this objection by showing that the eight-
vertex model, and in particular the zero-fidd eight-vertex model, is aso
equivalent to a square lattice Isng model with only two-spin interactions.
These interactions are between nearest neighbours, and between next-
next-nearest neighbours.

To seethis, consider the square latticein Fig. 10.6. Itisdrawn diagondly
and the two sub-lattices are distinguished, their sites being shown as open
circles and solid circles, respectively. Let N be the number of solid-circle
sites.

Divide the lattice into N squares, as indicated by dotted lines, each
containing one solid circle. Let the total energy be

%= - 2(/ia,am + 3OOy + J-$00m + JOiay + Jofjx + Jo;0;) ,
(10.13.1)
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where the sum is over al such squares; /,/, k, I, m are the sites within a
square, arranged as in the example in Fig. 10.6; and o(= 1) is the spin
at any site i.

This energy contains only interactions between pairs of spins; either
nearest-neighbours (e.g. 00y), or next-next-nearest neighbours (e.g. o:a;).
As usual, the partition function is

Z = 2 topf-%lkgT), (10.13.2)

the sum being over the values of dl the spins.

Fig. 10.6. Jingling's formulation of the eight-vertex model: an Ising mode on the
lattice of solid lines, with only two-spin interactions, is equivalent to an Ising model
on the lattice of dotted lines, with two- and four-spin interactions.

The summand in (10.13.2) factors into a product of N terms, one for
each square. Each solid-circle spin enters just one such term, so the
summation over its values (x1) is easly performed. Doing this for each
solid-circle spin gives

Z=E9 11 Wo, o, &, a), (10.13.3)
a

where the product is over al sguares, the superfix (0) means that the sum
is over dl vaues of dl the open-circle spins, and if

Ki = J/keT, K = JkgT, K'=J/keT, (10.13.4)
then
W(Ou 0y, O3, 04) = 2CXP(K010'3+ K’azod)
X COSh(K]U] + Kz(}z + K03 + K40'4) . (10135)
Since G\,. . ., & only have two vaues (+1 and -1), any function of

them can be written as
L+Lioy+, . +Lpoios+ ..+ L1234010008% >  (10.13.6)
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where al terms are linear in O\,. . ., &, there are 16 such terms, and
L ,. .., L2123 are constant coefficients.

The function W(o\ ,02,03, a,) is positive, so its logarithm is real and
can be written in the form (10.13.6). Further, it is an even function of
at,. .., (4, so only the even terms in (10.13.6) occur. It must therefore
be possible to find L, Ln, Lk, Lu, L23, LA, Lza, £1234 such that

W(o:, 05, 03, 05) = exp [L + 2 LijoiQj + L113401020304:|‘
L 1«('<;'«4

(10.13.7)

(Thisis known as the 'star-square' transformation: it is a generalization of
the star - triangle relation of Section 6.4.)

Substituting (10.13.7) back into (10.13.3), noting that each nearest-
neighbour pair OtOj occurs in two squares, we obtain

Z = eqML) 2.9 ex;ﬂf (Liz + La) 260 + (Las + L) 2 0py

+ L1132 00 + L2a2 OjOi + Lizss2 OinOka,] , (10.13.8)

where the summations inside the exponential are over al vertical edges
(i,/), horizontal edges (j , k), diagonal pairs (i, k) and (/ ,1), and squares
(i ,j.k,/), respectively.

Apart from the factor exp(NL), this is the partition function of an
Ising-type model on the square lattice of open circles and dotted lines in
Fig. 10.6, with nearest-neighbour, diagonal and four-spin interactions. This
is exactly the formulation (10.3.1) of the eight-vertex model, the interaction
energies J, and /, therein being given by

J/ksT = L, + Lgs, JIkgT = Ly + Lu. (10.13.9)

In general these are non-zero, so Jungling's model is equivalent to an
eight-vertex model in electric fidds (and vice-versa).

Yet more interesting is the fact that if J,3,,020A saisfy the
temperature-independent conditions

h=h J,=-Ji, (10.13.10)

then Jungling's model is equivalent to a zero-field eight vertex model.

To see this, note that K, = K3 and K, = -K;. The RHS of (10.13.5) is
then unaltered by interchanging o\ with o, or by interchanging and negating
0, and 04. It follows that (10.13.7) must take the form

W(a; ,02,03,04) = exp[L+ LiACTs + Lua204 + AM2(M + 03)(22- 04)
+ Lyuoioo:04) . (10.13.11)
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In particular, this implies that
L+ Ly=L3+L,=0, (10.13.12)

s0 J, and/, are given by (10.13.9) to be zero.

Thisformulation of the eight-vertex model highlights a potential difficulty
with universality. As explained in Section 1.3, the hypothesis admits that
critical exponents may change discontinuously when a symmetry is broken.
This is consistent with the argument of Kadanoff and Wegner (1971)
mentioned in the previous section: in the presence of fieldsthe eight-vertex
model may have fixed Ising exponents, even though it does not have these
in zero field.

In Jungling's formulation, this means that the model (10.13.1) has one
set of exponentsin general, but another set if \ = /3 and J, = —, Although
we can now see that this specid case has specid symmetry, it is by no
means obviousa priori that thisis so. The symmetry is'hidden'. Presumably
such breaking of hidden symmetries occurs in other models: it could be
hard to anticipate. '

10.14 The XYZ Chain

Closdly related to the zero-fidd eight vertex moded is the problem of
determining the eigenvalues of the operator
N

M = ~i_21[Jxofaf+1 + Jyoyj+1 + Joafof,] (10.14.2)
j=
where J,, J,, J, are constants and
oj=c, 0 =IiC|§, of=3G, (10.14.2)
ands, . . . S\, ci, .. cy are the operators defined by (6.4.17). In direct

product notation
ofmxp  DeQ@c@e®....Qe

of=e®.... Qe®dRVRe®>_ ®e (10.14.3
ol=e®.... Qe®@sQe®....Qe,

where there are N terms in each product; c, d, s occur in position /; and
g, ¢, d, s are the two-by-two Pauli spin matrices
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{1l o /°1\J/°-r /10
“"(o I\c:“_\1 g )s'\@ ﬂ\/ (10.14.4)

The of, rf, of, %t are al 2" by 2" matrices.

This operator ®C is the Hamiltonian of a one-dimensional quantum
mechanical model of ferromagnetism: there are N spins, labelled | =
1,...,N, onaline. With each spinj is associated the three-dimensional
vector o} ={of , o’;, of) of Pauli matrices; neighbouring spins/ and/ + 1
have interaction —\<jj-J- 03+, where Jis athree-by-three diagonal matrix
with elements /*, /,,, /,. The partition function of the moddl is

Zy = Trace exp(-WKkgT). (10.14.5)
Ifl=3=1J, thls is the Heisenberg model (Heisenberg, 1928; Bloch,
1930, 1932). If J,= J, = O, then W is diagona and the model reduces to

the nearest—neighbour Ising model (each spin is effectively either up or
down, and lies in the z-direction). These models can be formulated on a
lattice of any dimension, but it is the one-dimensional case that is rep-
resented by (10.14.1), and that is related to the two-dimensiona eight-
vertex model.

The case J, = J, = 0 is easly solved, being the one-dimensiona Ising
model of Chapter 2. The case J, = 0 is known as the 'XY model’, and is
related to the Ising model. Explicit expressions for al the eigenvalues can
be given (for finite N), and the partition function evaluated. This has been
done by Lieb et al. (1961) and Katsura (1962).

The case J = J, is sometimes caled the 'Heisenberg- Ising’ model.
Bethe (1931) gave the correct form of the eigenvectors of "X, Yang and
Y ang (1966) proved rigorously that Bethe's ansatz was correct, and derived
the minimum eigenvalue in the limit of N large.

When Lieb (19673, b, c) solved the ice-type models, he found that the
eigenvectors of the transfer matrix were precisely those of the one-dimen-
siona Heisenberg - Ising operator. He was therefore able to use many of
Yang and Yang's results.

Sutherland (1970) showed directly that the transfer matrix of any
zero-field eight-vertex model commutes with an XYZ operator 3. They
therefore have the same eigenvectors. | was not aware of Sutherland's
result when | solved the eight-vertex model (I did much of the work in the
writing room of the P& O liner Arcadia, in the Atlantic and Indian Oceans.
This was good for concentration, but not for communication). It should
be obvious from Sections 10.4-10.6 that such commutation relations are
closdly linked with the solution of the problem.

In fact it can be shown, for any J,,Jy.J, (Baxter, 1971b, 1972c), that 3€
is effectively a logarithmic derivative of an eight-vertex transfer matrix,
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and hence the minimum eigenvaue of 'K can be obtained. This will be
done in this section.

The calculation of Z* involves considering dl the eigenvaues. This
problem is very difficult, and in general the best that has been done is to
reduce it to one of solving a set of non-linear integral equations (see the
remarks and references regarding the corrdation length in Section 10.10).

Relation Between 9£ and V

The eight-vertex transfer matrix V is given by (9.6.1), where the weight
function wis defined by (10.2.3), or equivalently (10.2.4). These definitions
can in turn be written as

w(p, a\P, V) = i{[(« + ¢) + (a- ¢)na] 6(ji, p) 8{a, \)
+ [(b + d)-(b- dn<x] d(n, -P) 8(a - v}, (10.14.6)
whered(a,/) = 1ifa=P, 8@a,P) =0ifa* p.
First consider the case when

b=d=0, a=c=cy>0. (10.14.7)

From (10.14.6) it is then true that
wn, a\p V) = ¢ dn, p) 6{a V). (10.14.8)
Substituting this into (9.6.1), the jUi,..., » summations can at once be

performed. If V, is the matrix Vior this case, then its elements (a, /3) are
(Vo)ap = ©$ 8(s, po) 8@ .ps)... 8a, ft). (10.14.9)

Thus co™Vo is the left-shift operator that takes an arrow configuration
{<Xi,. ..,ato{ay,a , .., awy.
Now perturb about this case and set
a=c,+da, b=5b, c=c,+6¢c, d=8d, (10.14.10)

where 6a, 8b, 8c, 8d are infinitesmal incrementsin a, b, ¢, d. Let 8w, 8V
be the increments induced in the weight function w and the transfer matrix
V. Then from (9.6.1)

N
OVag=cf ™! Z e py )t owaid g\, pe) 8(aje1, P
X (10.14.11)
(note the two sets of 8s: increments and Kronecker symbols).



10.14 THE XYZ CHAIN 261

Pre-multiplying the matrix dV by VOQ\ (10.14.9) and (10.14.11) give
N

(V&' SV)ai = Cb‘;gf o « Stey-i, Pj-i) dW(y, 4+\Ps Pj+1)

X6(ar/+2>j8y+2).... (10.14.12)
From (9.6.9), using the eight-vertex function w, it follows that

V5! BV = Co\6Ui + 6Ux+ ... + dUy), (10.14.13)

where dUj is the increment in the vertex operator Uj.
Also, substituting the form (10.14.6) of w into (9.6.9), and using the
definitions (6.4.17) of § and g, Uj can be written
Uj =i{(a+ 93> + (a0) §Su1 + (b + d) CiCirs - (b- d) 5ic8/+1¢141)
(10.14.14)
or, using (10.14.2),
Uj = h{(a + ¢)3 + (b + d) ajaj.1 + (b - d) ofof., + (a - c) ofa].},

_ . . (10.14.15)
where 3 is the identity operator.

The increment dUj is given simply by replacing a, b, ¢, d in (10.14.15)
by da, db, dc, dd. Doing this, (10.14.13) becomes

N

Vo' dV = (2¢)~ E {(da + do)3 + (db + o) afaj+i
=
++ (db - dd) a]0%y! + (da - dc) ofof, J (10.14.16)

Apart from the additive term proportional to 3>, this is an XYZ operator
of the form (10.14.1).

To complete this identification, substitute the values of (10.14.10) of
a, b, ¢, d into (10.4.6). To leading order in the increments, this gives

_ Sa — d¢ _ 8b — &d
b+dd” ' b+ d°
S0 (10.14.16) can be written

(10.14.17)

Vil 8V =

N
b + &d da+ dc
2c ;'21{3,{74.&1‘9+0f0f+1+rof'0}'+1+Aofgf”}‘
0 =
(10.14.18)
If 3, 3y, J, are related to T and A by

3edd, = I-rA, (10.14.19)
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then it follows that
Vot 6V = cNihNida + 6c)3>-(8b + fid) Wiy}, (10.14.20)

where W is precisely the XYZ chain operator (10.14.1).

Suppose we keep A and F fixed while varying a, b, ¢, d. Then al transfer
matrices V will commute with one another and, from (10.14.20), with "dt.
Thusif (10.4.6) and (10.14.19) are sdtisfied, with the same F and the same
A, then the eight-vertex transfer matrix V commutes with the XYZ operator
"M. They have the same eigenvectors. [This is Sutherland's result (1970).]

If Gg db, dd, J, are positive, then from (10.14.20) it is apparent that the
maximum eigenvalue A Of V corresponds to the minimum eigenvalue
of %t. Further, a,b,c,d are then positive, so Ana IS precisely the eigenvalue
needed in the calculation of the eight-vertex free energy.

Ground-State Energy E,

Let NEo be the minimum eigenvalue of Hi. Then E, is the ground-state
energy per site. From (10.8.46) and (10.14.20), in the limit of N large, E,
is given by

d(-f/kgT) = Coft(& + 6¢c) - (6b + fid) Eo/d}, (10.14.21)

where / is the eight-vertex free energy per site, and 6(-f/kgT) is the
increment induced in -flkgT.

Up to this point, no restriction has been made in this section on A, F,
Jx, Jy, J, except that J, be positive. Now let us consider the principal
regime (10.7.5) of the eight-vertex model, wherein (from (10.4.6))

|[Fl<1, A<-1. (10.14.22)
From (10.14.19), this implies that
\IN< Ix<~Jz, (10.14.23)

so | shall call thisthe 'principal regime' for the XYZ chain. From (10.7.1),
the elliptic function parameters k, A, v arereal, and O<fc<I|,0<A</".
For given values of a, b, ¢, d, the free energy / is given by (10.4.21) and
(10.4.23), (10.7.9) and (10.7.18), and (10.8.47) or (10.8.49).

Holding F and A fixed is equivalent to keeping k and A unaltered.
Without loss of generality we can requirein this section that c = 1, so from
(10.4.21) and (10.4.23)

a= snhi(A - j;)/snhA, b= snhi(A + i>)/snhA , (10.14.24)
c=1, d=E£snHi(A -v) snhi(A + V).
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This leaves v as a variable. The case (10.14.7) corresponds to v = -A;
incrementing v by dv gives

v = -k+dv. (10.14.25)
From (15.5.1a), (15.5.5) and (10.4.20),
d
d—vsnh v=eniv dniv, (10.14.26)

for all complex numbers v. Using this formula to differentiate (10.14.24)
with respect to v, then setting v = -A, gives

da/dv = —l enik dnik/snh A, dbldv =i/snhA ,

(10.14.27)
do/dv = 0, ddidv = U snhA .

[It is now easily verified that (10.4.17) and (10.14.17) are equivalent.]
Also evaluating 6{-flksT) from (10.8.47) and (10.7.18), substituting
the results into (10.14.21) gives

— _ _JEE * (xm —_ x—mqm)Z(l __xzm)
Ey=14J, 2 ,,,Z:l (1-¢™(1 +x2”‘) s (10.14.28)

where g, x are defined by (10.7.9), / is the complete elliptic integral of the
first kind of modulus k, and

T=2J,snhA/(l + A: snh?A). (10.14.29)

An equivalent form can be obtained by using (10.8.49) instead of
(10.8.47), namely

Eo=i(=Ix+ Jy+ J)
ATy XM - g™ (@ - g™ @ - X7
~2/m =i (@ -gM{\ +¥M) '

Define a parameter / by

( 10 14.30°

| = 2k*/(1+K). (10.14.31a)

(This is the Landen-related elliptic modulus of (15.6.1.) Then eliminating
y? (which is negative) between the two equations (10.4.12), using (10.4.9)
and (10.14.19), gives

[ = (T2-T5)V (L2-1%)*. (10.14.31b)
Solving (10.4.17) for sn/A, using (10.4.20) and (10.14.19), one obtains
it snhk = (J Jy)%Jx + I)\ (10.14.31c)
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Substituting this into (10.14.29) gives

r=k-\JI-J]f, (10.14.31d)
which, using (10.14.31b), can be put into the form
T = {IIKi{J - )\ - . (10.14.32)

To summarize the results so far: if Jy, J,, J;, lie in the principa regime
(10.14.23), then the ground state energy per site of the XYZ operator
(10.14.1) is given by (10.14.28) or (10.14.30), where k, A, rare defined by
(10.14.31), g and x by (10.7.9).

Symmetries

The three Pauli matrices @], a), of can be permuted by smple similarity
transformations, so E, is a symmetric function of J,, J, and J,. Suppose,
asin (10.5.9), that N is even, and consider the similarity transformation

W-* o\alal. . . M a\a\a\ (10.14.33)

Since of anti-commutes with of and o], but commutes with al the other
Pauli operators, the effect of this on (10.14.1) is to negate J; and J,. Thus
E, is unchanged by negating any two of J, Jy, J,. These symmetries can
be used to map any XYZ operator "K into the principal regime (10.14.23).
The ground state energy per site is then given by (10.14.28) or (10.14.30).

These symmetries are of course related to those of the eight-vertex
model. From (10.4.6), (10.14.19) and (10.2.16)

Jedy:Jd, = ab + cd:ab-cd: \{a® + b - ¢ - o)
WA - W2 W W W W WEHWA D WA WA - A —wA
(10. 14, 34)

It is apparent that the eight-vertex symmetries (10.2.11)-(10.2.15), or
equivalently and more cbvioudy (10.2.17), merely re-arrange the terms
on the RHS of (10.14.34), and possibly negate two of them.

Singularities of E,

It follows from these results that E, is an andytic function of J, J, and J,
except when the two numericaly largest coefficients J, J,, J, have equal
magnitude. The archetypal caseiswhen —J, = J, > \J)\. Thisisaboundary
of the principal regime (10.14.23), and on it we see from (10.14.31) that
k = 1. The behaviour near the boundary can be obtained by applying the
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Poisson summation formula (15.8.1) to the seriesin (10.14.27). The work-
ing closely parallels that of (10.12.8)-(10.12.12) (indeed it can be obtained
thereform by differentiating with respect to w). It gives, for -J,

> J>\IW\,

-1 _m
Ey=4—-J.+1,+1, 21,{6;(0)

o

2
— 42 (cos 2rtfi — cosrut cositfi) tan nfi - Ld i (10.14.35)
«i (1—p)
an | .
-2 2 coff(n - Dali]p<™ "l -p(z""”"'*‘)},
X«=1 /

where |U/7 are defined by (10.12.5) and
G = ,f°° [cosh (jt - 2fi)u - cosh fiu] sinh |M
> sinh nu cosh Ju

expO*«)dw.  (10.14.36)

The case 7" >—J, > \J,\, can be mapped into the principal regime by
negating and interchanging J, and J,. As when interchanging Wi and w, in
the eight-vertex model, this leaves \i unchanged by negatesp. In fact \i and
p? are analytic across the boundary —J, = J,, while near it

PM\II-JIV(J5-37), (10.14.37)

so p vanishes linearly with J, + J,.
From (15.6.6), with k replaced by k', (10.14.31a) and (10.12.5):

I'(*1)* = 1w 11CY-P*)?/(1 +P™) (10.14.38)
n=y

From this and (10.14.32) is is apparent that negating and interchanging Jy
and J, Leaves unaltered the factor J/(rl") in (10.14.35), and this factor is
analytic at J, = —J,. Thus al terms in (10.14.35) are analytic across this
boundary, except for those in the last summation. The dominant singular
term is

(Eo)sing = (2 Zrfil') cot(;r?/2/i)p"". (10.14.39)

When J,= -J, then k=1, 1=1, V =\n, snhA =tanA, so from
(10.14.31c) and (10.12.5) n is given by

JylJ, = cog[i, 0<H<JZ, (10.14.40)

while from (10.14.32)
x= @l -Jf=Jsnn, (10.14.41)
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s0 (10.14.39) smplifies to
(Eo)sing = 4JT(i~'Jc sin fi coX{n?2fi) p*, (10.14.42)

p being given by (10.14.37). Provided cot(j*V/2fi) is finite and non-zero, it
follows that E, has the power-law singularity

("0)sing~|/,+/,|", (10.14.43)
at J, = ~Jx.
In fact, comparing (10.12.20) and (10.12.21) with (10.14.42) and
(10.14.37), itisapparent (for al values of n) that E, hasthe same singularity
at J, + J, = 0 as the eight-vertex free energy has at t = 0.

Some General Comments on *-Dimensional 1sing Models and (d - 1)-
Dimensional Quantum Mechanical Models

Equation (10.14.20) relates the XYZ operator 3€ with the eight-vertex
model transfer matrix V. Here V is evaluated with a,b,c,d infinitesmally
close to the values (10.14.7), for which the value Vo of V is proportional
to a simple shift operator.

As Suzuki (1976) has pointed out, such relations exist for many models.
For instance, the layer-to-layer transfer matrix of the simple cubic Ising
model is a matrix V with elements

M N
V(o,0)Y=exp 2 2 [i(KiOijO,yj + Kiojo]ss,

+ Kyayouti + Kaaljali.,) + K&qo'i,]}.  (10.14.44)

Here o={on, «++, OMN} denotes al spins in one layer of the lattice,
0* { <7ii, s+ +,O'MN) dl spinsinthe next layer.

Defining operators Sy, ¢j analogously to (6.4.17), and using the identity
(6.4.22), it follows that

(2 sinh 2Kzy"™ V = exp[K*iA + K.B)\ exp[*3C] exp[I(KiA + K,B)] ,

(10.14.45)
where tanh K¥ = exp(-2/Cz) and

M N M N

= VAN,

A_izziygi +iys B—>“ :|/y|sijs"’j+l’
M N

C=22Cpe. (10.14.46)

»=1;=1
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When K, =K, = K$ = 0, the RHS of (10.14.45) is simply the identity
operator. When K\, K,, K$ are all small, to first order

In[(2sinh275)-YY V] = It (10.14.47)

where now
M = KyA + K,B + KfC. (10.14.48)

Asin (10.14.2), sy and ¢y are the Pauli operatorsa\ and o|, respectively.
The RHS of (10.14.48) can therefore be regarded as a two-dimensional
Heisenberg-type operator, in which the quantum-mechanical spins interact
with one another only via their components in the z-direction, and an
external field of strength K% is applied in the x-direction.

If K¥ =0, the operator is diagonal and its eigenvalues are the energy
levels of the two-dimensional Ising model. For this reason the operator 3f
is known as the Hamiltonian of the two-dimensional Ising model in a
transverse magnetic field (Stinchcombe, 1973; Oitmaa and Plischke, 1977;
Pfeuty, 1977).

From (10.14.47), if we could evaluate the eigenvalues of the transfer
matrix V of the three-dimensional Ising model, then we could also evaluate
them for the two-dimensional Hamiltonian "X. Conversely, we might hope
that solving the latter problem would lead to a solution of the former.
Unfortunately neither has been solved exactly, though the approximate
methods mentioned in Section 15 have been very successful.

The above arguments can easily be extended to arbitrary dimensions and
to other lattices. However, it should be noted that the two-dimensional
zero-field eight-vertex model has an extra property that does not so gen-
eralize: its transfer matrix V always commutes with some XYZ operator,
even when V is far from its shift operator value V,.

10.15 Summary of Definitions of A, T, k, A, v, 4, X, Z p, p, W

The results of this chapter have inevitably been expressed in terms of
elliptic function parameters such as g, x,p and fi. These have been defined
as needed, for both the eight-vertex model and the XYZ chain, and some
specia cases have already been considered. For clarity, it seems helpful
to summarize their definitions in general.

For the eight-vertex model, with Boltzmann weights ab,c,d, define
A and T by (10.4.6), i.e.

= ok L 4N (10.15.1)
2(ab + cd) ab + cd y '
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_ For the XYZ chain, with coefficients J,, J,, J,, define them by (10.14.19),
i.e.
Jdid, = 1 TIA. (10.15.1b)

The eigenvectors of the eight-vertex transfer matrix, and of the XYZ
Hamiltonian, are the same functions of T and A only.

Re-arrangement Procedure

Now map the models into their principal regimes. For the eight-vertex
model this means using the procedure (i)-(iii) of Section 10.11. Let a, b,c,d
be the original values of these parameters, and &, by, ¢, d; their re-arranged
values. Then a,, by, ¢, d; lie inside the principal regime (10.7.5), or on a
boundary thereof (since the free energy, etc. are continuous functions of
a, b, ¢, d, boundary cases can be handled by taking an appropriate limit),
i.e

c¢a, + b+ dy, a0, b0, d~0. (10.15.2)

Define A;, T, by (10.15.1a), with a, b, ¢, d replaced by a,, by, ¢, d.. Then
it follows that

[ref«l, A, «-1, (10.15.3)

and equalities occur only on a boundary of the regime (10.15.2).

For the XYZ model the re-arrangement procedure is simpler. One
merely permutes J,, J,, J,, and possibly negates a pair of them, so as to
bring them into the regime (10.14.23), or onto a boundary thereof. Let
I'v Fy, F, be these re-arranged values. Then

\r I A-J (10.15.4)
Define A,, T, by (10.15.1b) with J,, J,, J; replaced by J',,J'\,%, i.e.
I.=F/F, A= (10.15.5)

then clearly these A, T, dso saisfy (10.15.3).

It was shown in (10.14.34) that the eight-vertex symmetries merely
permute the quantities ab + cd, ab — cd, \(a? +b? - ¢? - d%), and possibly
negate two of them. From (10.15.1) it follows that an equivalent definition
of F;, A, for the eight-vertex model is:

Define T, A by (10.15.18) and choose /,, J,, J, to satisfy (10.15.1b), Jy
being positive. Permute and pair negate these J, J,, J, to satisfy (10.15.4).
Now define T, A by (10.15.5).

We shdll find this alternative procedure helpful in the next section.
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Elliptic Function Parameters

The elliptic function parameters k, A are defined by (10.4.17), or equiv-
‘dently by (10.4.9), (10.4.12) and (10.4.16), using the re-arranged values
T,, A of F, A. These equations can be written as

25/ + K = (1 -rV(A?-T?), (10.15.6a)
sthA =JT (1 -r1,)/(1 +1,)7, (10.15.6b)

where snhu = —isniu and k, A must satisfy
O«fc«l, O=sA=£/" (10.15.7)

/ and /' being the complete elliptic integrals of the first kind of moduli k
and K = (1 - K)K Again, equalities occur in (10.15.7) only on regime
boundaries.

The parameter v in the eight-vertex model can now readily be obtained
from (10.4.21) and (10.4.23), using the re-arranged values of a, b, ¢, d, e.g.

snhi(A ~v) = (a/c) shhA (10.15.8)
and must saisfy

-A=Si>ssA, (10.15.9)
The parameters q,X, z are then given by (10.7.9) and (10.7.18), i.e.
g = exp(-M7/), x= exp(-JtM2l), z= exp(-«y/2/), (10.15.10)

and satisfy
ONGOEN, Nzt (10.15.11)
Findly, p, fi and w are given by (10.12.5), i.e.

p=exp(-2;r//"), \i=jtXIl', w=mIT,  (10.15.12)

O=£p«l, O=fU=sr, |w]|«ju. (10.15.13)

The models are critical when, and only when, k= 1. When this is so,
from Chapter 15 it follows that /' =in, | = <*>, g = 1, p~ 0, while from
(10.15.6)-(10.15.13), A, v, /x, w are finite, A,= -1l andx=z= 1.

10.16 Special Cases

There are three special cases of the eight-vertex model which were solved
before the general zero-fidd model, namely the Ising model of Chapter
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7, (Onsager, 1944), the 'free-fermion’ model (Fan and Wu, 1970), and the
'ice-type’ or 'six-vertex' model of Chapter 8 (Lieb, 1967a b,c). These
correspond respectively to the XZ, XY and Heisenberg - |sing cases of the
XYZ chain. In each case the critical value of /zis either O, \n or n. Felderhof
(1973) and Jones (1973, 1974) have considered these specia casesin some
detail.

Isng Model and XY Chain

As was shown in Section 10.3, the ordinary two-spin nearest-neighbour
Isng modél is a specia case of the eight-vertex model, occurring when the
condition (10.3.10) is satisfied, i.e. cd = ab. From (10.15.14) this implies
that

r=0. (10.16.1)

From (10.15.1b), this corresponds to J, being zero, i.e. to the XZ case
of the XYZ chain. Re-arranging J, J,, J, to satiffy (10.15.4) must leave
J, as the zero coefficient, so from (10.15.5)

T,=0. (10.16.2)
From (10.15.6b), (15.4.32) and (10.15.12),
A=il, n= fr. (10.16.3)

Thus ju lies exactly a the mid-point of its alowed range of vaues (0, n).

The critical exponents a, /?, v, & given by (10.12.24) are indeed the same
asthose in (7.12.12) and (7.12.14). Note that this is a case when nffi is an
even integer, so the free energy singularity contains a factor Inff|, as in
(10.12.22b) and (7.12.10). Similarly, an extra factor In}/, + J\ occurs in
(10.14.43).

Free-Fermion Model
Fan and Wu (1970) used the Praffian method mentioned in Section 7.13
to solve the eight-vertex model for the case when

iy + (0304 = (052> + (0/A)g (10.16.9)

Here wi,. . ., cog are the Boltzmann weights defned in (10.1.2). The
method works even if the conditions (10.1.5) are not stisfied, i.e. it works
for an eight-vertex model in a fidd.
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For the zero-field case, from (10.2.1) the restriction (10.16.4) becomes
a+ b?=c+ & (10.16.5)

so from (10.15.1), A = 0 and J, = 0. This model therefore corresponds to
the XY chain. Re-arranging Jy, Jy, Jy to satisfy (10.15.4) must take J, to
zero, i.e. it must transform the XKchain to the XZ chain. Then (10.15.1b)
gives '

r.=0, (10.16.6)

which is the Ising case just discussed.

The zero-field free-fermion model can therefore be mapped to an Ising
model, and has \i = \n. However, the restriction (10.16.5) ensures that
a, b, ¢, d always lie in the disordered regime Il of Section 10.11, so there
iS no transition to an ordered state.

Six-Vertex Model and Heisenberg - Ising Chain

The six-vertex model is obtained from the eight-vertex by setting d = 0,
so from (10.15.1) T =1 and

3=J, (10.16.7)

The model therefore corresponds to the Heisenberg - Ising chain, and the
eigenvectors of the transfer matrix must be those of the Heisenberg - Ising
Hamiltonian. Lieb (1967a, b, c) determined this correspondence directly
and made considerable use of it.

Take (X ,Jy,J) =(1,1, A) .thereby satisfying (10.15.1b). Permute and
pair-negate them to satisfy (10.15.4). Define the dlliptic function para-
meters, in particular k, A and (i, by (10.15.5—(10.15.13). There are three
distinct cases, and it is readily seen that they correspond to the ferro-
electrically ordered, disordered and anti-ferroelectrically ordered phases
of Section 8.10:

(i) A > 1 (ferroelectricorder): F, = —1, A/=-A,
k=0, A=/"=00, n=n.
(i) -1< A<I(disorder):T,=-A, A,=-1, (10.16.8)
k=1, k=\fi, A=-cos//.
(iii) A < -1 (anti-ferroelectricorder): T= 1, A=A,
k=0, A=-coshA, jU=0.
The case (ii) is quité remarkable, since k = 1 throughout. This is the

condition for the eight-vertex model to be critical. Thus in this phase of
the six-vertex model the correlation length is infinite [for the free-fermion
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cae of the six-vertex modd this has been verified explicitly (Baxter,
19704)]. The system is disordered only in the sense that there is no
spontaneous polarization.

Conversely, acritical eight-vertex model can be mapped to a 'disordered’
sx-vertex model.

The six-vertex model hastransitionsat A = +1 or - 1. The former occur
in ferroelectric models, such as the KDP model, and from (10.16.8) \i is
then equal to n, which is its maximum possible value. As is shown in
Section 8.11, this transition is first order, and the ordered state is frozen.
This makes it difficult to interpret the general eight-vertex results, but note
that (8.11.8) and (8.11.10) are correctly given by (10.12.24).

The A = -1 transition occurs in anti-ferroelectric models, such as the
F model. From (10.6.8), fi is then equa to its minimum value of zero. The
derivation of the critical properties (10.12.22) and (10.12.23) isthen invalid.
A proper calculation of course gives the essentia singularities of
(8.11.14)-(8.11.25), and it is impossible to sensibly define critica expo-
nents. Even so, it is worth noting that merely setting n= 0 in (10.12.24)
does give the infinite exponent (8.11.18). Also, the 'exponent relations
(8.11.26) are in fact satisfied by the genera eight-vertex moddl.

10.17 An Exactly Solvable Inhomogeneous Eight-Vertex Model

Until now in this chapter, the eight-vertex model has been taken to be
homogeneous, i.e. the vertex energies £4,. . . , £9 do not vary from site to
site. For the solvable zero-fidd case, this means that the Boltzmann weights
a, b, c, d, given by (10.1.2) and (10.2.1), are site-independent.

It is possible to weaken this requirement, in avery specia way, and ill
be able to calculate the free energy, etc. by straightforward generdizations
of the above methods. In fact, exactly the same equations apply, but the
variables are interpreted dightly more generaly.

Column Variation

To see this, first suppose that the Boltzmann weights a, b, ¢, d can vary
from column to column, but not row to row. Let a,,-bj, Cj dj be their values
in column/. There are N columns in the lattice, soj = ., N.
Consider the star-triangle reation (10.4.1), WhICh com&s from
(9.6.5)-(9.6.8). The matrices Sand S now depend on the lattice column
y to which they correspond, i.e. to their position/ in the matrix products
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in (9.6.5) and (9.6.6). Even so, it is dill true that (9.6.7) implies the
equality of (9.6.5) and (9.6.6), provided only that M is a single matrix,
independent of /.

This corresponds to w", and hence a", b"', c", d" in Section 10.4, being
independent of/. Since A" and F' are defined by (10.4.6) with a, b, c, d
replaced by a", b", c", d", they are adso independent of/. From (10.4.26),
so therefore must be A, F, A", F'.

For each column/, define p, k, A, v by (10.4.24). Then from (10.4.17),
k and A are independent of /, and are the same for the transfer matrix V
as they are for V.

Once (10.4.26) is sdtisfied, the star-triangle relation reduces to
(10.4.30). Here u and u' may depend on/, but u" may not. Let Uj(vj) be
the value of v for column/ and transfer matrix V(V). Then from (10.4.23)
it follows that

Vj - Vj = independent of/ . (10.17.1)

To summarise: define the transfer matrix Kby (9.6.1), where each weight
function w depends on the lattice column / to which it corresponds, i.e.
to its position in the product. For column /, define w by (10.2.3) and
(10.4.24), where k and A are independent of/ and

Vj=vi+v, (10.17.2)

(The normalising factor p enters trividly into the equations and may be
varied in any manner desired: here | shall regard it as constant for dl lattice
sites.)

Then two transfer matrices commute if they have the same values of
k, A, vi,. . ., vWo. Their eigenvectors are therefore independent of v: they
depend only on k, A and the differences of vi,. . . , W.

Regard V as a function V(v) of v. Then again it satisfies (10.4.25).

The working of Section 105 now generdizes easily. The ab,cd in
(10.5.1) should be replaced by fly, bj, ¢, dj. However, A and y in (10.5.2)
are ill independent of/, so ps-is ill given by (10.5.14) and (10.5.8). The
u and v in (10.5.11)—(10.5.21) should be replaced by u; and v, till related
by (10.4.23). The factors {ph[\{XzxV)]f in (10.5.23) should be replaced
in an obvious way by a product of pA{E(A £i>/)] over/=1,...,N; and
incrementing v by +2A' should be read as incrememting each v, by
+2A'. However, if Vj is put into the form (10.17.2), where each Vf is
regarded as a constant, then this is the same thing. We therefore again
obtain (10.5.32), but now (10.5.24) is replaced by

N
$(v) = ﬂ o hi¥o) + 0)]. (10.17.3)
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Provided each uy lies in the range (-A, A) the working of Section 10.8
goes through virtually as written, the main change being that the definition
(10.8.10) of A(V) is replaced by

Mv) = 1l Oil -g"exp[-Jt(vf+ v)/21]}.  (10.17.4)
m=0/=I
Note aso that the W,. . . , v, in Section 10.8 are quite different from the
W,. . ., VN of this section.

Regard the RHS of (10.8.47) as a function of the Boltzmann weights
a, b, ¢, d, the parameters q, x, z being defined as in Section 10.5. Write it
as -xp{a ,b ,c ,d), i.e

xp(a,b ,c,d) = -Inc
Ly, s 9 g T=-——"-. (10.17.5)
A m(\ - ™) (1 +X°7)

Then for the inhomogeneous system being discussed, (10.8.44) becomes
(in the limit of M large)
N

ol

;=
a remarkably smple result!
The other properties discussed in Section 10.10 are dl independent of
v, so are valid as written for this inhomogeneous model.

Row Variation

Now consider a lattice in which the Boltzmann weights a, b, ¢, d can vary
from row to row, as well as column to column. Let ay, £, ¢, dj be their
values for the site in row i and column /. For each site, define p, k, A, v
by (10.4.24) and require, for dl i and/, that

k, A = independent of i and/ , QQyj j}
Vjj =vi+ W,
where uy is the value of v at site (r,/), W,. . . , Wo and W,. . . Wi are

some parameters which are at our disposal.
The transfer matrix V now depends on the row i to which it refers, so
let us write it as Vj. Then (8.2.1) becomes

Z = Trace VxVs ...V,. (10.17.8)
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Now note that k, A and the differences of v\, vip, * . ¢ , viy ae indepen-
dent of i. From the remarks after (10.17.2), it follows that the elgenvectors
of V, areindependent of i: W,. . . , Vi dl commute. Provided each uj lies
in the range (-A,A), each V; has the same maximad eigenvector. Thus
(8.2.4) generalizes to

Z~Anax(1).... Apx(M), (10.17.9)

Amax(0 being the maximum eigenvaue of V.. From (10.17.6) we therefore
obtain
M N

INZ=-22V(y.?a»°H>da) e (10.17.10)

Like (10.17.6), thisis an amazingly smple formula: the total free energy
F = —kgT\n Z is the sum of the site free energies (but only in the limit of
M,N large, and provided the conditions (10.17.7) are satisfied). Glearly
this 'de-coupling' is connected with the commutation properties of the
transfer matrices.

Again the "-independent properties (interfecial tension, correlation
length, magnetization and polarization) must be the same as those of an
homogeneous system with the same values of k and A.

| regret that | know of no physicaly interesting inhomogeneous system
satifying (10.17.7). The staggered eight-vertex modd (with different
weights on the two sub-lattices) is extremely interesting as it contains as
specia cases the Ising model in a magnetic fidd (Wu and Lin, 1975), and
the Potts and Ashkin- Teller models (see Chapter 12). Unfortunately it
does not satisfy (10.17.7).

Even so, it can be mathematically ussful to consider these inhomogeneous
generdizations of the eight-vertex moddl. The derivation (Baxter, 1973c)
of the spontaneous polarization of the anti-ferroglectric six-vertex model
makes extensive use of the form of the dependence of the transfer matrix
eigenvectors on W,. . . , V%. The remarks after (10.17.2) will dso play a
key role in Chapter 13 in establishing the multiplication properties of the
corner transfer matrices.
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KAGOME LATTICE EIGHT-VERTEX MODEL

11.1 Definition of the Modé

With very little extra work, the results of Chapter 10 can be generalized
to a particular class of eight-vertex models on the Kagomé lattice of Fig.
11.1. Not dl Kagome lattice eight-vertex models belong to this class: the
Boltzmann weights must stify the restrictions (11.1.7). Even so, the class
isinteresting since it contains as specid casesthe triangular and honeycomb
Isng models, the triangular and honeycomb critica Potts models (see
Chapter 12), and the triangular three-spin modd (Baxter and Wu, 1973,
1974).

The eight-vertex modd can be defined for any graph or lattice with four
edges mesting at each site. (The word 'graph’ is used here for any set of

Y XX
X x

Fig. 11.1. The Kagome IaItlce, shOW| ng the three typ& 1, 2, 3 of sites. Also shown
are three particular sites P, Q, R, and some typicd right-pointing arrows.

276
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sites and connecting edges; a 'lattice’ is aregular graph.) Place arrows on
the edges (one arrow per edge). Allow onfy configurations with an even
number of arrows pointing into each site. At each dite i there are eight
possible arrangements of arrows. to arrangement; assgn an energy £; and
a Boltzmann weight

ft>,, = exp(-e,/A:gr), (11.1.1)

where kg is Boltzmann's constant and Tthe temperature. Then the partition
function is

Z= % H Wi j(.€) » (11.1.2)

where the sum is over dl configurations C of arrows on the graph, the
product is over dl sitesi, andj(i, C) is the arrow arrangement at sSite i for
configuration C.

For each sitei, we can dways label the eight arrow arrangements so that
arrangement 2 is obtained from 1 by reversing al four arrows; and smilarly
for arrangements 4 and 3, 6 and 5, 8 and 7. Then the 'zero-field' condition
is

(On= 014, 3= (On, COis=(0s CO=COig. (11.1.3)
It is then convenient to write &, by, ¢, d-for oi,, 0i, €05 €O, SO that
ma.,..., Olig = &~ a,, by by ¢, C,; dy . (11.1.4)

For the homogeneous square lattice, with the vertex arrow arrangements
ordered as in Fig. 10.1, these a, b, ¢, d; are independent of i and are the
a,b,c,d of (10.2.1).

Now consider the Kagomé lattice. It is apparent from Fig. 11.1 that there
are three types of sites. Let us cdl them smply 1, 2 and 3, and suppose
that al dtes of the same type have the same interaction energies and
Boltzmann weights. We can then use b\ to denote the value of b for all
sites of type 1, and similarly for a\, c\, d\, a,, by, ¢, dy, as, bs, Cs, Ca.

For a site of type i, order the eight vertex arrow arrangements as in row
i of Fig. 11.2. This ordering has the symmetry property that any row can
be obtained by rotating the previous row anti-clockwise through 120°.

For each dite of type I, it is useful to define a vertex weight function w;
analogoudy to (10.2.3). To connect with relevant equations in Chapters
9 and 10, it is convenient to do this in the following asymmetric way.

With each edge m associate an ‘arrow spin' ap,, with value +1 (-1) if
the corresponding arrow points generaly to the right (Ieft). (Some typica
right-pointing arrows are shown in Fig. 11.1). Consider a particular site
of the lattice, of type i, and let ft, a, /S v be the arrow spins of the
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P Ao A

b

1

b

i S Ve v e T o

XXX XX XXX

3

Fig. 11.2. The three types of vertex on the Kagomé lattice, with the eight arrow
arrangements alowed on each. The corresponding Boltzmann weights are shown
underneath.

Fig. 11.3. The three types of vertex on the Kagome lattice, showing the labelling
(i, a fl, v of the surrounding edge arrow-spins, and the labdlling r, 5, t, u of the
surrounding faces.

Table 11.1. Vaues of wiu, aS v).

H, aP, v Wy Wo H-3
+, +{+, + and —, |-, - fli & bs
+1 _|_¢ + and A y ” ft| b2 fl3
+,-|_+, - and —, +|-, + a al C3
+, +|-, —and — -|+, + dy d» ds

0cPiiv=-\ 0 0 0
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surrounding edges, arranged as in Fig. 11.3. Let w,((i, aV3, v) be the
Boltzmann weight of the corresponding arrow configuration, as given by
Fig. 11.2. Then the functions WA,w,, w3 have the values given in Table
11.1

Comparing this with (10.2.3), it is apparent that this is the same as
denning each function w, by (10.2.3), with ab,c,d replaced by
a, bi, Ci, di, except that a; and fos are interchanged. The partition function
can now be written in a form analogous to (10.2.6), namely

Z= ( 'ZYIw{a,,amn\ap,ag), (11.1.5)

X

where the sum is over dl choices a = {ai, <X, ,. . .} of the arrow spins; the
product is over al sites; and for each site the symbol i denotes its type,
and |,m,p,q are the labds of the surrounding edges, arranged in the same
way as\i, a, ft vin Fig. 11.3.

Star - Triangle Restriction

It is obvious from Fig. 11.1 that there are two types of triangles in the

Kagome lattice: up-pointing and down pointing. Consider a triangle, of

either type, and let oc\, . . . , <X(, be the arrow spins on the external edges;

j3i,jS2,ft the arrow spins on the internal edges, arranged as in Fig. 11.4.
These two types of triangles contribute factors

wilay , @Bz, Bs) wilas , Blas . ft) wy(ft | ftjay , as),
wias, B ft) Hx{ft | o fft , as) wilBs, Balas . a) ,

()

Fig. 11.4. The two types of triangles on the Kagomeé lattice. The arrow spins

arl,..., @, Pi, pi, Pi are associated with edges; the Ising spins O\,. . ., o with faces.

Equations (11.1.6) and (11.5.8) are the conditions that the total weights of the two
triangles be equal.
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respectively to the summand in (11,1-5). In each case dl remaining factors
in (11.1.5) are independent of ft, ft, ft. The summations over ft , ft,
ft may therefore be performed, giving an effective total weight for the
triangle.

This weight is a function of a , ..., dc It will be shown in the next
section that the Kagome lattice eight-vertex model is solvable if the weight
is the same for both types of triangle, i.e. if

42, wilar, 23, ft) w(ae, ftiors, ft) wilft, ftlay, as)

:ftzfcvk( as, a, [ft, ft )ws(ft,a|ft,a3s)H"1(ft, ft \asas), (11.1.6)
for dl valuesof cxue e ., a.

This is precisdy the 'star - triangle' relation (9.6.8), with w, w", W
replaced by wA\,w,, ws. It is therefore equivaent to the 9x equations
(104.1), with a,b,cda"b",c'.da,b,c.,d replaced by
ai,bi,c;,di,a,0,,05,d5,b5,@3,¢,d;. With  this notation the equatigns
(10.4.1) assume a more symmetric form, and can be written as

(aidj - bibj)c = (coy - did))by, (11.1.7)
(aibj - biaj)de = {adj - diCja ,

for dl permutations (z,/,K) of (1,2, 3).
All the corollaries of (10.4.1) that were obtained in Section 10.4 can
now be applied to (11.1.7). In particular, as in (10.4.6) define

T; = (ab; — ¢;di} (a;bj + ¢;d;)

for/ =1, 2, 3. Then from (10.4.26) it follows that Ai = A, = Az and F =
F, = F3. Taking A and Y to be the common values, we may therefore write

A=A, r=r /=1,2,3. (11.1.9)

Elliptic Function Parametrization

We can dso apply the dliptic function parametrization of Section 104 to
the equations (11.1.7). (We shdl only need it in this chapter at the end
of Section 11.7 and in Section 11.8.) Using (10.4.21), we can define k,
A, Mi, u,, M3 such that, for/=1, 2, 3,
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cij: bj: Cj: dj = sih(A - uj): snhw.: snh A: ksnh A snh uy sh(A - uy).
(11.1.10)

Here snh u is the hyperbolic sn function of argument u and modulus k, as
defined by (10.4.20) and (15.1.4)-(15.1.6). From (10.4.17), it follows that

A = -enik dnik/(l - k 97zZA) SRR
f = (1+KsPA /(I - k SP*A),

The «i, M,, «3 here correspond respectively to u, u", A - u' in Section
10.4. (Interchanging @ and &' is equivalent to replacing u' by A - «'.) Thus
(10.4.30) becomes

M;+My+Mz=A. (11.1.12)

This completes the parametrization. If the a, bj, Cj, dj satisfy (11.1.10)
and (11.1.12), then the star - triangle restrictions (11.1.7) are satisfied.
Conversely, (11.1.7) implies that there exist k, A, U\, w, u% satisfying
(11.1.10) and (11.1.12).

11.2 Conversion to a Square-Lattice Modd

In this section it will be shown that the effect of the star - triangle restrictions
(11.1.7) is to ensure that certain properties of the Kagome lattice model
are the same as those of an associated sguare-lattice model. The results
of Chapter 10 can then be used.

The argument here can be specidized to the Ising model (Baxter and
Enting, 1978), or generalized to any graph made up of intersecting straight
lines (Baxter, 19783, b).

First consider any up-pointing triangle in the Kagome lattice, e.g. the
triangle POR in Fig. 11.1. Labd the surrounding arrow spins as in Fig.
11.4. Thenthe contribution of thistriangleto the partition function (11.1.5),
summed over arrow spins on internal edges, is the LHS of (11.1.6).

Replace this contribution by the RHS of (11.1.6). The partition function
is now that of the graph shown in Fig. 11.5(a), in which the horizontal line
AB has been shifted above the ste R The site P is ill the intersection
of AB with the SW-NE line, and ill has weight function w, Similarly,
Q and R lie on the same lines as before, and have the same weight functions
(W, and ws) as before.

This procedure not only leaves the partition function Z unchanged; it
aso leaves unchanged any correlation, e.g.

{mmay . . . ay) = Z'lg a@’ag. . . ag fl "id, <x\<x, , &),  (11.2.1)
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Fig. 11.5. The Kagome fattice of Fig. 111 with: (a) the line AB shifted above R
(b) the line AB shifted up a complete row. The partition function, and al corre-
lations in the lower hdf of the lattice, are unchanged.

provided none of the arrow spins as, a$, ag ,. . . , a;, correspond to edges
inside the triangle PQR.

Suppose the lattice to be wound on a verticd cylinder and perform this
procedure for each triangle that initidly has its base on the line AB. The
result is the graph in Fig. 11.5(b): the line AB has been shifted up one
row.

Now repeat this procedure for the horizontal line above AB, then for
AB itdf, and so on until AB and dl horizontal lines above it are a the
top of the graph. Similarly, shift CD and dl horizontal lines below it to
the bottom of the graph. The end result is that the Kagomé lattice of Fig.
11.6(a) is changed to the graph of Fig. 11.6(b).

Consider any set of edges lying between (but not on) the initial lines AB
and CD, i.e. adjacent to the middle row of sites. An example is the pair
(/, K) in Fig. . 11.6. At no stage of the transformation does a horizontal line

7 \7 w

(@ (b)
Fig. 11.6. (a) The Kagom6 lattice, (b) the same lattice after dl upper horizonta
lines have been shifted to the top, and al lower ones to the bottom. The partition
function, and correlations in the central row such as (ayat) and (ana,), are
unchanged.
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The eight-vertex models on the two graphs (@) and (b) in Fig. 11.6
therefore not only have the same partition function Z, but aso the same
correlations between spins in the middle row, eg. (ga*).

Let 2M be the number of horizontal lines. Then Fig. 11.6(b) consists of
a central square lattice (drawn diagonally) region of 2M rows, ‘framed'
above and below by regions each containing M horizontal lines. All sites
in the central region have weight function wsa.

In the limit of M large, edges/ and k lie deep inside the square lattice
region. We therefore expect the correlation (ajay) to be that of the usua
sguare lattice, drawn diagonally. In particular, this implies that

(<Xj(Xk) = function only of as, frs, cs ds, (11.2.2)

and similarly for any correlation between edge spins adjacent to the central
row of sites.

Framing Boundaries

The result (11.2.2) is true even though the boundary ‘framing' regions also
become large. To see this, let V3 be the row-to-row transfer matrix in the
central region, and V, the transfer matrix in the framing regions. Then

{0CI0Ck=— bty (L2 3

where §, s, are diagonal matrices with diagona entries oj, a,, and > is a
vector whose entries are determined by the boundary conditions. Let An
be the maximum eigenvalue of W\, and set

¢ = Viiyp/All. (11.2.4)

Then (11.2.3) becomes _
(oo = o HTBVEBY 9/ v o (1129

Thisis precisdly the correlation inside a square lattice, with weight function
ws and boundary conditions corresponding to the vector (p. When M is
large, <j> tendsto anon-zero limit, namely the maximal eigenvector of Vu-
From the Perron - Frobenius theorem (Frobenius, 1908), this vector has
only non-negative entries, and so does the maxima eigenvector of Va.
They cannot therefore be orthogonal (unless the entries of one are zero
for al non-zero entries of the other, which is not to be expected). This
meansthat <p isnot apathological boundary condition on the square lattice,
and the RHS of (11.2.5) can be evaluated for M large by the methods of
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Section 2.2. These give
(aa) = M(FslAz) $&?E, (11.2.6)

where Az, £ are the maximum eigenvalue and eigenvector of Vs. This result
depends only on V3, not on the boundary condition <$>.

For amplicity | have assumed in this argument that Vn and V3 (and the
top and bottom boundary conditions) are symmetric: thisis not a necessary
restriction.

11.3 Correlation Length and Spontaneous Polarization

Return to (11.2.2). If edges/ and k are far apart, but ill lie in the central
horizontal band in Fig. 11.6, then

{qa) ~ exp[- Iy - kV%xd], . (11.31)

where %y isthe horizontal correlation length of the Kagomeé lattice. From
(11.2.2) it follows that

&G = &G(«3 03, Cs, d3), (1132)

where %so(a ,b,c,d)is the diagona correlation length of the square lattice
eight-vertex model with Boltzmann weights a, b, ¢, d as in row 3 of Fig.
11.2. This diagona correlation length has not to my knowledge been
evaluated (it would mean obtaining equations for the eigenvalues of the
diagona-to-diagonal transfer matrix, which should be possible). It pre-
sumably has the same critical behaviour as the row correlation length §
given in Section 10.10, since near criticality correlations in dl directions
are expected to become similarly long-ranged.

Consider any site of type 3 in the central row of the Kagome lattice in
Fig. 11.6(a). Let n, a, fi, vbe the spins on the surrounding edges, arranged
as in the lagt diagram in Fig. 11.3. These edges dl lie between the lines
AB and CD, so andogoudy to (11.2.2)

(@), (an),. . ., (iiafiv) = functionsonly ofag, bs, cs, ds,
being the same asthose of the
regular squarelatticemodel
withtheseweights, constructed
ontheinterior |attice of
Fig. 11.6(b). (11.3.3)

Thus al local correlations round a site of type 3 are the same as those
of the corresponding square lattice. By symmetry, analogous equivalences
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apply for dtes of type 1, and of type 2. Provided the restrictions (11.1.7)
are stisfied, dl local correlations of the Kagome lattice model can therefore
be expressed as square lattice correlations.
This means that for an edge/ of the Kagomé lattice, adjacent to a site
of type 3,
(U)P = Po(a3, bs, C3, dg), (1134)

where Po(a ,b,c,d)is the spontaneous polarization of the square lattice
eight-vertex model with Boltzmann weights a, b, ¢, d. This is given by
(10.10.24), q and x being defined in Section 10.15. It depends on a, b, c,
donly via A and I\ so from (11.1.8) the RHS of (11.3.4) is unchanged by
replacing as, bs, c3, d; by a, by, ¢, di or a, by ¢, d,. Using rotation
symmetry, it aso follows that (11.3.4) istrue for al edgesj. Thus {aj) has
the same value for al edges of the Kagome lattice.

114 Free Energy

While the framing regions in Fig. 11.6(b) do not contribute (for a large
lattice) to central correlations, they certainly contribute to the partition
function, and hence to the total Kagome lattice free energy

Fre = -kgT\nZ. (114.1)

In fact, in the limit of a large lattice we expect the bulk free energy Fxe
to be smply the sum of the bulk free energies for the three regionsin Fig.
11.6(b), the contributions from their boundaries being inggnificant. Thus

Fre = FQ + 2F¢r, (11.4.2)

where FSQ is the total free energy of the central region, Fgg is the free
energy of either the upper or lower framing regions.

Let N be the number of sites of type 1 in the lattice. Then (for N large)
there are dso N dtes of type 2, and N of type 3. There are therefore N
dtes in the central region, al of type 3, so

Fg? = Nf(ag,bg,C3,d3), (1143)

wheref(a, b, c, d) isthe free energy per site of a regular square lattice
eight-vertex model, as given by (10.8.47) and Section 10.15, and kgT is
here to be regarded as some given constant.

An expanded picture of one of the framing regionsis given in Fig. 11.7.
Painly thisis aso a square lattice, but with sites of type 1 and sites of type
2 on dternating columns. There are N sites atogether.
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From (11.1.8), dl dtes have the same value of A and of F, so the
eight-vertex model in either framing region is a column-inhomogeneous
model of precisely the type discussed in Section 10.17. Thetotal free energy
is therefore (for N large)

FFR = iNf(s M,Cy 0) + INf(ap,b2,C2,0). (11.44)

Subgtituting the expressions (11.4.3) and (11.4.4) into (11.4.2) givesthe
properly symmetric and very smple result

Fke = N[f(a]_,bucl,dl)+f(az,bz,CZ,dz) +ﬁa3,b3,C3,d$]. (1145)
\ I |\ 1
2 2 2
\ 1 1/ 1/
2 2 2
VIRVEY
2 2y 2y ]

Fig. 11.7. Expanded section of one of the framing regionsin Fig. 11.6(b), showing
the two types of sites. This is a square lattice, with different weights on alternate
columns.

11.5 Formulation as a Triangular-Honeycomb Ising Modd with Two-
and Four-Spin Interactions

Like the sguare-lattice model, the Kagomeé lattice eight-vertex model can
be formulated in terms of 'magnetic’ spins on faces, instead of 'electric’
arrows on edges.

The most symmetric way to do thisis to regard the arrow configuration
shown in Fig. 11.8(a) as a standard. (It is anti-ferroelectric: dl vertices
are of thefifth type in Fig. 11.2.) With each face r associate a spin a;, with
values +1 and — 1. Consider an edge /', with faces r and 5 on either side.
Place an arrow on it according to the rule:

[la;as=+1, pointthearrowinthenamedirectionas
thearrow onedgej inthestandard configuration; -
otherwise point it the opposite way. (11.5.1)

Do this for dl edges.
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Imagine an observer waking round any particular site, going successively
through the four faces. If he observes a change in spin from one face to
the next, then the arrow on the intervening edge is non-standard, and
conversadly. When he returns to his starting point he must have seen an
even number of changes, so there are an even number of non-standard
arrows on the four edges a each site. Since the standard configuration is
two in and two out, there must in any event be an even number of arrows
into (and out of) each site. This is the eight-vertex condition.

\/ \/

XX AVAVAY,
Y \( NARRVAVAVA

AR /c\/\ /\

(a) (b)

Fig. 11.8. (a) The standard anti-ferroelectric arrow configuration on the Kagome

lattice (not dl arrows are shown); (b) the corresponding triangular lattice con-

figuration, obtained by shrinking the up-pointing triangles of the Kagome lattice

down to points. The three sub-lattices A, B, C of the triangular lattice are dso
shown.

To each configuration of the face-spins, there therefore corresponds an
arrow covering of the edges that satifies the eight-vertex condition. Con- -
versaly, by the same reasoning as in Section 10.3, to each such arrow
covering there correspond two face-spin configurations (differing from one
another in the reversal of al spins). Using this one-to-two correspondence,
(11.1.2) can be written

Z=1211 «;d), (H-5.2)
a 1 )

where the sumis over dl configurations a={o\, 02,. . .} of the face-spins,

the product is over dl stesi, and (i, a) is the arrow arrangement at site

i for spin-configuration a.

Letr, s t, u be the faces round a site of type i, arranged asin Fig. 11.3.
Let Wi(o; ,as,a,, 0y) be the Boltzmann weight of the vertex arrow arrange-
ment corresponding to the face spins having the values &, o5, a,, 0,. Then
from rule (11.5.1) and Figs. 11.2, 11.3 and 11.8,
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Wf+ ++)= W@H , + + -) = 4,

Wt(-, +, +,+) =W,(+, +,-,+) =6,
W{+ 6+ + ,+)=Wi(-,+,-,+)=a, (H.5.3)
We(-,-,+ ,+) = Wi(-, +,+ ,-) = d,,
Wi(a,0sa,, a) = Wi(-o-as-a, -a)
= Wi(0r,-05,01,-0y),
fori=1, 2, 3 and o, 0, 0,, 0= 1. This defines the function W, and
(12.5.2) can be written as
Z = iN\[wi{&a,0s,0,,0,), (112.5.9)
a

the product being over al sites; i now denotes the type of the site, and r,
s, t, u are the surrounding faces.
From (11.5.3), the function W; can be written as

W{a,0,,0,, 0)) = MiexplKiOrO, + K\oo, + K[0,0:00,\, (11.5.5)
where M, K;, K\, K"; are related to a-, by, ¢, d; by
a = Mi exp(K; - K't - K'<), by =M, exp(-K; + K\ - K'l),
¢ = Miexp(K; + K[ + K["), d,»s =M, exp(-K,<- K\ + K"). (11.5.6)

Using this form (11.5.5) of W, it is apparent from (11.5.4) that Z (strictly
27) is the partition function of an Ising model defined on the faces of the
Kagome' lattice, with two-spin interactions between opposite faces at asite,
and four-spin interactions between the four faces round a site.

Placing a dot at the centre of each face of the Kagomé lattice, and linking
dots whose spins interact via a two-spin interaction, gives the lattice of
Fig. 11.9. This consists of a honeycomb lattice interlacing a triangular one.
The interaction coefficients Ky, K[ associated with the various edges are
shown. Let TV be the number of sites of type 1 (or type 2, or type 3) in the
original Kagomé6 lattice. Then the associated honeycomb lattice has 2N
sites, the triangular one has JV; each has 3N edges, and each edge of one
is crossed by an edge of the other. Using (11.5.5), (11.5.4) can now be
written as

Z= i(M]_MzMg)NE exp{ZK;o,0, + =K/ 0,0, + TKl0,0,00.},
(115.7)
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whefe the first sum inside the exponential is over al edges (r, f) of the
honeycomb lattice; the second is over all edges (s, u) of the triangular
lattice; and the third is over al honeycomb edges (r, t), (s ,u) being the
crossing triangular edge. In each case i (=1, 2 or 3) is the type of the
edge, asin Fig. 11.9.

Fig. 11.9. The honeycomb-triangular lattice formed by placing a dot at the centre

of each face of the Kagomeé lattice, and linking dots whose Ising spins interact via

a two-gpin interaction. The corresponding interaction coefficientsK\,. . . , Ki are

indicated; r, s, t, u correspond to the four facesin Fig. 11.3(a); mand n correspond
to the faces m and n in Fig. 11.6(a).

Thus Z is, to within a normalization factor, the joint partition function
of a honeycomb and a triangular 1sng mode interacting via four-spin
interactions on crossing edges.

Star - Triangle Restriction.

For the solvable model, the interaction coefficients K\,. . . , K'i are not
arbitrary: they must satisfy the restrictions (11.1.7), where &, &;, G, ¢, are
given by (11.5.6).

These restrictions came from the star - triangle relation (11.1.6): it is
interesting to go back to this and express it in terms of 'magnetic' spins on
the faces of the Kagomé lattice, rather than 'electric’ spins on the edges.

The relation (11.1.6) states that the two graphs in Fig. 11.4 have the
same total weight, after summing over alowed configurations of arrows
on the internal edges. To express this relation in 'magnetic’ language,
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associate spins with the faces of the graphs, as in Fig. 11.4. Then the
requirement that the two graphs have the same total weight is

2 Wi{ch asa;,0) W04 0507, 05 W05 ,01,07, o0

= 2 Wi{0, ,04,05, 05) W5(0; ,05,0i, 02) Ws(CT; , 0, Os, O4). (11.5.8)
This equation must be true for dl vaues of the externd spins
0\,. . ., 06. The summations are over the vaues of the internal spin 07
this corresponds in (11.1.6) to summing over the alowed vaues of /3,
fc, fh (only two sets of values are allowed by the eight-vertex rule).

Using (11.5.3), one can veify directly that the equations (11.5.8) are
the same as (11.1.6). Using (11.5.5), they can be written explicitly as

exp(Kioo + Kigmos + #30501) cosh(KiO2 + Kiay
+ Ky0s + K{oia03 + K50:0,0s + K3050501)
= exp(#i0,06 + Kiag02 + #30204) cosh(K 05 + Kot
+ KsO; + XTOIOECT6 + #2060102 + #302030t) (11.5.9)

Since they are equivaent to (11.1.6), they imply (11.1.7) and (11.1.8),
in particular I\ = T, = F3. From (11.1.9), this means that afc/cd, is there-
fore independent of i, and from (11.5.6) this implies

K'l = independent of i. (11.5.10)

Thus al dtes must have the same four-spin interaction coefficient,
regardiess of their type. Let us cal this coefficient amply K". Then by
considering al 64 values of Oi,. . ., 05, we find that (11.5.9) is equivaent
to the Six equations:

, cosh(K; + K; + Ky — K")
exp(2K] + 2K') - : "y
oK) - OSh(~Ki+ K+ K+ K")" (11 5 13)

cosh(K; — K; + K, + K)
cosh(X; + K, — Ky + K")’

for dl permutations (i ,j, k) of (1, 2, 3).

These are the equations (11.1.7). They are not independent, since the
second set can be easily deduced from the first. The fird set, containing
three equations, is plainly independent since it can be used to define
#{ #2,#3 for gven vdues of KyK,KsK". Alternatively,
K[,Kz Kz, K" can be regarded as given, and the equations solved for K\,
Kz, K3. ’

exp(ZK; - 2|<k) -
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Using (11.5.6), the corollaries (11.1.8)-(H-I-9) become, for/ = 1, 2, 3,
A = - sinh 26Tydnh 2Kj - tanh 2K' cosh 2*-cosh 2K] , (11.5.123)

r=-tanh2K". (11.5.12b)

Eliminating} ' (taken to be negative) between the equations (10.4.12), and
using (10.4.9), the dliptic modulus k is given by

2% (1+*) =/, (11.5.13)
where
iZ= (i - rAI(A%-r?). (n.5.14)
Using (11.5.12), this last equation can be written
22 (Lo (1= oDt = o3y g
161+ Viv;V') (V' + DI)(D] + VIV IV +yu') V- e
where

Vj = tanhK, Vj = tanhK-, V' = tanhK". (11.5.16)

Spontaneous Magnetization

The argument of Section 11.2 can be repeated in terms of face-spins,
instead of edge arrow-spins. Instead of usng (11.1.6), one uses (11.5.8).
The resulting analogue of (11.2.2) and (11.3.3) is the following.

Let Oi,. . ., oy, be any set of face spins of the Kagome lattice, dl lying
between the lines AB and CD in Fig. 11.6(a). Suppose the restrictions
(11.1.7), or equivaently (11.5.11), are satisfied. Then for a large lattice

Cn.... o) = sameasintheregular square-lattice el ght-vertex
model, withweightsag, bs, C3, ds, onthe
interior latticein Fig. 11.6(6). (112.5.17)

Thus (ox. . . . oy is afunction only of &, bz, ¢z, rf3, or equivalently of KA,
*3,K".

In particular, this means that the expectation value of any face-spin a,
is

(am) = Mo(as, bi, c3, d3) , (11.5.18)

regardless of whether o, lies in a triangular or hexagona face of the
Kagomé lattice. Without ambiguity, we can therefore cdl (a,) the spon-
taneous magnetization.
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Here Mo(ag, 63, C3, ds) is the spontaneous magnetization of the square
|attice eight-vertex model with Boltzmann weights a, b, ¢, d. It is given by
(10.10,19). Like the spontaneous polarization, it dependson a, b, ¢, d only
via A and T. These have the same vaue for al three types of lattice site,
s0 (11.5.18) is unchanged by replacing as, bs, c3, ds by ay, by ¢, d\, or by
0,,b,,C,, do. INdeed, it is obvious from the rotation symmetry of the lattice
that this must be so.

Hyperbolic Trigonometry and the Elliptic Function Parametrization

Define two further parameters co, Q by
coth2£" = cosh Q, - A coth2K" = cosh<o. (11.5.19)
Then (11.5.12a) can be written as
cosh @) = cosh 2K]j cosh 2Kj + cosh Q sinh 2K, sinh 1K]. (11.5.20)

This is the same as the relation between the sides a>, 2K|, 2K/ of an
hyperbolic triangle, with angle n + iQ between the sides 2K|, 2Kj (Onsager,
1944, p. 135; Coxeter, 1947). Other corollaries of the dtar - triangle rela
tions (11.5.11), e.q.

- cosh 2K, cosh 2K + coth 2K[ sinh 2K, snh2K;  n 15 21)
=cosh 2Ki cosh 2K" + coth 2K[ sinh 2Ky sinh 2K",

can be interpreted in terms of hyperbolic trigonometry. It seems likely that
many of the properties of the star-triangle relation, notably the 'quadri-
lateral theorem' (Baxter, 1978a), could be conveniently interpreted in this
way: as far as | know, this has not yet been done.

These ideas dso provide an alternative approach to the dliptic function
parametrization of Section 10.4. Itiswdl known that the relation (11.5.20)
can be smplified by introducing dliptic functions of modulus

/ = sinh Qfsinh a), (11.5.22)

(Greenhill, 1892, Paragraph 129). Onsager (1944, p. 144) refersto this as
a uniformizing substitution.

This/is precisely that defined by (11.5.15), so it isrelated to the modulus
k used in Chapter 10 by (11.5.13). From Section 15.6, / and k are therefore
related by a Landen transformation, so both approaches lead effectivey
to the same dliptic function parametrization, as they should.
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11.6 Phases

From (11.3.4) and (11.5.18), the spontaneous polarization and magnet-
ization of the Kagomé lattice model are the same as those of a square-
lattice eight-vertex model with the same values of A and T. From Section
10.11, it follows that the Kagomé lattice model is ordered if |A|> 1,
disordered if |A|< 1.

The archetypal ordered regime is when

Ci>a;+ bi+ d, a,>0, b>0, d=>0, (11.6.1)

fori= 1, 2, 3. From (11.1.9), it follows that A < - 1. The ground state is -
then the anti-ferroelectric arrow configuration shown in Fig. 11.8(a), or
the one obtained from it by reversing dl arrows. Since we have used this
as a standard in relating face- and arrow-spins, our resulting face-spin
interpretation of this phase is ferromagnetic: in a ground state al spins on
triangular faces are the same, and all spins on hexagonal faces are the
same. There are four such ground states.

In addition to (11.6.1), there are seven other regimes in the available
parameter space in which the system is ordered (Baxter, 19783, p. 337).
They can dl be obtained from the archetypal case by reversing appropriate
sets of spins. For example, reversing al face-spins on up-pointing triangles
is equivalent to reversing al arrows on the sides of up-pointing triangles:
from Fig. 11.2 this interchanges a; with d;; and b, with ¢;, so maps (11.6.1)
to

b>a + ¢+ d, a->0, c¢,->0, d,>O0, (11.6.2)
with A> 1.

Alternatively, reversing face-spins between alternate pairs of horizontal
lines is equivalent to reversing dl horizontal arrows. This leaves ag, fr3, Ca,
ds unaltered, but for / = 1 or 2 it interchanges a; with b, ¢; with d;. Thus
it maps (11.6.1) to

d>a + b+ c, d>a,+ b, + ¢, c3>a +fcz+c3,  (11.6.3)

al weights being positiveand A < — 1.

Two other mappings can obviously be obtained from this by using the
rotation symmetry. All eight ordered regimes can then be obtained by
combinations of these various mappings.

There is only one disordered regime, namely

O<apby,cudt<!(«-+b,+c;+d,), (11.6.9)
fori =1, 2, 3, with -1 < A <.1.
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11.7 K" = 0: The Triangular and Honeycomb Ising Models

In Section 10.3 we remarked that the square-lattice eight-vertex mode
factors into two independent Ising models if the four-spin interaction
coefficient K" is zero.

A dmilar factorization occurs for the Kagomeé lattice model. From
(11.5.10), we can st al four-spin coefficients K} simultaneoudy to zero.
The exponential in (11.5.7) then factors into two parts, one involving only
spins on the honeycomb lattice of Fig. 11.9, the other only spins on the
triangular lattice. It follows at once that

Z = KMMMo)ZniK,, Ky, K3) Zr(K[, Kz, 'K§ , (11.7.1)

where Z4(Ki, K, , KT) is the partition function of the nearest-neighbour

Isng model on the honeycomb lattice, with interaction coefficients

K\, K, Ki; and Z{K[, Kz, K?) is the partition function of the nearest-

neighbour Ising model on the triangular lattice, with interaction coefficients

K[, K5, Kj. The honeycomb lattice has 2N sites, the triangular has N.
The relations (11.5.11) can be written as

cosh(Ki + K, , Ka)
COSM-AT! + K, + Kj)

=exp(m+ mh (1L7-2)

together with two other equations obtained by permuting the suffixes 1,
2, 3. These are precisdy the Isng modd star - triangle relations (6.4.8)
(with R diminated and Kj , L, replaced by K| , Kj).

This equivalence with the Ising model star - triangle relation is even
clearer in the origina equation (11.5.9). If the K} therein vanish, it factors
into two equations, one involving only the spins o\, CTs, Os, the other
invalving 02, a4, a&. They are

ZCOSh(KICFz + Koap + K306)
= Rexp(K'i040s + K040, + KM0¥) ,  (11.7.3)

2 cosh( K 05 + KO\ + K303)
= Rexp(K[o0403 + Kfaos+ KiOsOx), (11.7.3b)

where R is a common constant. Each of these equations is precisaly the
star-triangle relation (6.4.4)-(6.4.5).

From (11.5.12b), T is zero, so from (11.5.14) and (11.5.128) we can -
choose

["'= —A =sinh 2K;sinh 2/C;,, 7=1.2,3. (11.7.4)
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This is precisaly the relation (6.4.13), with k, Kj, Lj therein replaced by
/, K'y K, From (6.4.16) and (6.3.5) it follows that

= (I-V2)HI-V2)(1-V}7 2
16(1 + viofa) (V[ + vo¥'s) (V5 + VW) (V3 + W) !

11,7.5)

where V{, \,, V3 are defined by (11.5.16) in terms of the triangular inter-
action coefficients K{, K3, K's.

Alternatively, using (6.4.12), / can be expressed in terms of the honey-
comb lattice coefficients K\, Ky, Kz as

12 - 16(1 + ZuZoZs) {2\ + ZoZ3) (Zo + Z3Z1) (Z5+ Z1232)
1. (I-zH)(1-zh)<(1-z])~

11.7 6y
where
z,=exp(-2A)), y=1,2,3. (11.7.7)

[The smilarity in form of (11.7.5) and the inverse of (11.7.6) is a
reflection of the duality relation of Section 6.3. Why they should aso
resemble the eight-vertex single-site relation (11.5.15) | do not know.]

The Rin (11.7.3) is the same as the R in Section 6.4, so from (6.4.14),
changing k, Lj, Kj to /, Kj, Kj:

R = 21 sinh 2Ki sinh 2K, sinh 2A% (117 8)
= 2/(/? sinh 2K[ sinh 2K4 sinh 2#3) «

Free Energy

In our present notation, the identity (6.4.7) becomes
Z«(Ki, Ky, Kg) = RZHK[, K3, Ki). (11.7.9)

Substituting this into (11.7.1),' taking logarithms and using (11.4.1) and
(11.4.5), gives

2InZ{K[, K% KD = In2-ATIAMAMA)  (n.7.10)
~(ksT)'N(fi +fa+f),

writing” for/(a;, bj, q, dj), which is the free energy per site of the square
|attice eight-vertex model with weights &, bj, g, dj.

These weights are given by (11.5.6). Since K} is zero, the square lattice
mode! is the product of two square lattice 1sing models. Choosing each My
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to be one, from (10.3.11) /J is the free energy per site of the square lattice
Isng model with interaction coefficients Kj, Kj.
It is convenient to work with the dimensionless free energy per site

Xp = flkgT. (11.7.12)

From (1.7.6), for alattice of N sites this is related to the partition function
Zby

V=-Hm AT'InZ. (11.7.12)

For the sguare lattice Isng model with interaction coefficients Kj, K],
ip is a function only of these coefficients. Let us write it as ipsa(Kj, Kj).
Similarly, for the triangular Isng mode with interaction coefficients
K[,Ki,K$, let us write it as ipj(K[, K{, Ki). Then from (11.7.10)-
(11.7.12),

YPAKj , K2, K" = h[\nR + rPsoiK,, K[) + rps(Kz, K'2)
+ I;’)‘SQ(KS,*O] . (H.7.13)

Also, usng (11.7.9) and remembering that the honeycomb lattice herein
has 2N sites, the dimensionless free energy per site of the honeycomb
lattice 19ng model, with interaction coefficients K, Ky, Kg, is

Yr(Ky Ko, K)=\[\NR + xpdKy, K[) + ygfKy K'o)
+ yso(Ks , Ki)]. (11.7.14)

The function \PSQ{K,K') has been obtained in Chapter 7, and (as a
specid case of the eight-vertex model) in Chapter 10. Replacing the K, L,
k of Chapter 7 by the K', K, | herein, the equations (7.9.14), (7.9.16),
(7.6.1) give, for dl values of K and K,

Xpso(K,K') = (2" rin{2[cosh2A:'cosh2*:
Db

+(1+17%2=2I""¢cos 26) ]} d6, (11.7.15)
where, smilarly to (11.7.4),
r' = sinh 2K sinh 2K'. (11.7.16)

We are free to make any choice of K[, K, K?,, or of Ku. K, K, so we
can use (11.7.13) or (11.7.14) to obtain the free energy of any regular
triangular or honeycomb Ising model. The other parameters are defined
by the three equations (11.7.2), and by (11.7.8).
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Nearest-Neighbour Corrdations

When K' = 0, (11.5.17) relates corrdations of the triangular and honey-
comb Ising models to those of the sguare. Consider the two facesm, nin
Fig. 11.6. Let oy, , 0, be the corresponding Ising spins and apply (11.5.17)
to (On0n).

Asin Section 11.5, place dots at the centre of each face and link dots
whose spins interact via a two-spin interaction. Then Fig. 11.6(a) becomes
Fig. 11.9, and m and n are vertical nearest neighbours on the honeycomb
lattice, with interaction coefficients K\, K,, Ks. On the other hand, Fig.
11.6(b) becomestwo interlaced square lattices: mand n are vertica nearest
neighbours on the square lattice, with interaction coefficients K3, K3. In
both cases the edge (m, n) has interaction coefficient AT; Since (0,,0,) IS
the same for both, it follows that

aH(Ks, Ky, K2) = g¢"Ks, ft), (11.7.17)

where gn, gsQ are the nearest-neighbour correlations of the honeycomb
and square lattices, respectively, and the first argument is the interaction
coefficient of the edge under consideration.

Similarly, considering the correlation between the spins on the two faces
in Fig. 11.6 that are next to both m and n, we abtain

OAKS K[, KS$ = gsa("3,Ks). (11718

The correlations g<Q, g#, gr are derivatives of %Q, \py, ipr. From (6.2.1)
(with K, L replaced by K', K), (11.7.12) and (1.4.4),

Oso(K,K") = -dxI>g{K,K")IdK. (11.7.19)

Similarly,
g Ki Ky Ki) = - d*Ky, K, K3)ldK,, (11.7.19b)
(K[ Ki,KQ = - dxpjiKl, K3 KtydK], (11.7.19c)

where each differentiation is performed with the other arguments kept
constant.

Alternative Derivation of the Isng Modd Free Energy

The relations (11.7.17) and (11.7.18) are not mere consequences of
(11.7.19). They contain more information.
To see this, note that (11.7.13) and (11.7.14) imply that

wn(K1 Ko K)=i[-INR + TIMXi, Ky, KQl. (11.7.20)
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(This is a smple corollary of (11.7.9).) Differentiate this equation with
respect to Kz, keeping K\ and K, constant.

TheK{, K], #3 are defined by (11.7.2). From this, (11.7.4) and (11.7.8),
one can veify that

dKioK; = - 2W, d \nR/dK3 = 2W3, L Mna 21;

dK[/dK3 = 2\N2, dK'2|dK3 = 2WX,
where

w = | sinh 2Xi sinh 2K', sinh 2K';, VN7 02)
w= wcoth2K',, r=12 3.

Differentiating (11.7.20), using (11.7.17)-(11.7.19), therefore gives

Osa(Ks, Ki) = wz + wogsQ(K[, K{)
+ Wign(Ka' K2) ~ Wsp(Ks," Ka). (11.7.23)

Since Ki, K,, Kj are independent, this is a three-variable equation for
the two-variable function gsQ(K, K'). Baxter and Enting (1978) have
shown that it, together with (11.7.19a) and the symmetry property
wPQK LK) = TP, K), completely determines gn(K ,K'). The inter-
ested reader is referred to that paper for details: equation (8) therein (with
K, L replaced by K' , K) isthe equation (11.7.23) above. Brigfly, (11.7.23)
implies that, for K and K' positive,

2K g(l) ~ b(l) tanh® x
b (1 + £ sinh?x)*

gsolK , K') = coth 2K dr, (11.7.24)

where, consistently with (11.7.4),
T! = snh 2£sinh 2K, (11.7.25)

and a(l), b(l) are functions of / only. The RHS of (11.7.24) must tend to
one as K-* + °°, which implies a linear relation between a(l) and b{l).
The symmetry of %q(K,K'), together with (11.7.19a), implies that
a(l), b(l) saisfy certain differentiad equations. Solving them gives, for
0</< oo

| al) =[x+ /) EM) + @ -/ I{h)]In, (n.7.26)
&N =20-NI{)I*,

where

h=2V( +0, (11.7.27)

and /(/1), E(I\) are the complete dliptic integrals of the first and second
kinds, of modulus /;. as defined in (15.5.9) and (15.5.13).
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Now that gsQ(K, K') is determined, the free energy can be obtained
from (11.7.19a). :

The fascinating feature of this derivation is that it uses only the star -
triangle relation, which is a local property of the Ising model. It uses it
twice: once to establish (11.5.17) and the corollaries (11.7.17), (11.7.18);
and again to establish (11.7.20). (Hilhorst et al. (1978, 1979) and Knops
and Hilhorst (1979) have shown that the star - triangle relation can also
be used to obtain the critical properties of the 1sing model via the renor-
malization group method.) This further underlines the significance of the
star - triangle relation, at least for the Ising model. | am not sure whether
the method can be generalized to the full eight-vertex model.

The result (11.7.24)-(11.7.27) of course agrees with the result of the
transfer matrix calculation of Chapter 7, namely (7.9.16) and (11.7.15).

The critical singularities at / = 1 arises not from the integral in (11.7.24),
but from the ‘coefficients' a(l) and b{l). Near 1=1 these behave as

wy 2 1-/, A1 +))
AP = 1 - —

(11.7.28)
b{l) =

This makes it clear that all square, honeycomb and triangular Ising models
have the same critical singularities in their internal energies, namely that
of b{l). The symmetric logarithmic divergence of the specific heat follows
at once, so asin (7.12.12) the exponents a, a' are given by

a=a = 0. (11.7.29)

Magnetization

From (11.5.18), the triangular 1sing model with coefficients K[, K3, K3, the
honeycomb model with coefficients K\, K,, K3, and the square model with
coefficients K, K[ (or Ky, K3, or Kz, Ki) al have the same spontaneous
magnetization. We can therefore use the sguare-lattice result (7.10.50).
With our present notation this is

Mo = (I-/3)Y8 if |/]«1, (11i7-30)

(Each Ising model is ordered if |/| =s 1, disordered otherwise.)
Comparing this with (1.1.4), and noting that at the critica temperature
/ - 1 vanishes linearly with T - T, it follows that for al three models the
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exponent /Sis
0=1/8. (11.7.31)

All other critical exponents are dso expected to be the same for the
triangular, honeycomb and square-lattice Ising models, and to have the
values given in (7.12.12)-(7.12.16). This is in agreement both with the
scaing and universality hypotheses.

118 Explicit Expansions of the Isng Modd Results

The results (11.7.13) and (11.7.15) are expressed in terms of dementary
functions and integrals thereof. This form is easy to understand, but is not
necessarily the most convenient to use. For some purposes, e.g. developing
series expansions or even direct evaluations, it may be easier to use dliptic
functions and their infinite product expansions.

Throughout this section it will be supposed that dl the interaction
coefficients K, Ko, K3, K[, Ki, Ki are non-negative. This means that for
any lattice there are only two cases to consider: low temperature (0 <
/< 1), and high temperature (/ > 1).

Sguare Lattices Low Temperature

First consider the square-lattice Ising model with interaction coefficients
Kj, K'j. Thisisequivalent to a sguare-l attice eight-vertex model with weights
&, bj, ¢, dj given by (11.5.6), M,- being one and K;' being zero.

Replace the a, b, ¢, d of Chapter 10 by these g, bj, q, dj. Replace u, v,
zby M,, Vj, Zj. Then from (10.4.21) and (11.5.6), k, A, us are given by

1=(Cjdjlcijbif=K"snh A , (11.8.1a)
exp( - 2Kj) = djlttj = Ksnhu;, (11.8.1b)
exp( - 1K]) = djlb; = K'snh(A - My). (11.8.1c)

As in Chapter 15, let /,/' be the corhplete dliptic integrals of the firs
kind of moduli k, K = (1 - K. Then from (11.8.18) and (15.4.32), we
obtain the result (10.9.6), i.e. _

A=il. (11.8.2)
From (10.4.23), (10.7.9) and (10.7.19),
u=HA+ o), q = exp(—nl/), (11.8.3)
x = exp(- nXIll), Zj =exp(-jtVj/21),
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so from (11.8.2)
q=x" (11.8.4)

Provided 0</<Il, which from the equation (11.7.4) means that
sinh 2Kj sinh2Kj >1, the free energy isgiven by (10.8.47). Using (11.5.6)
and (11.8.4), the dimensionless free energy ty = flkgT is therefore

Yso(K;, Kj) = — K; - K]
B i (- MM + Xt - A - M)
=) m{l - M\ + 2
We can write Kj and Kj explicitly in terms of x and Zj by using the infinite
product expansion (15.1.5)-(15.1.6) of the function k* sn u in (11.8.1b)

and (11.8.1c), together with the definitions (11.8.3) and (11.8.4). It is
useful to define a parameter T, and two functions 0(z) and g(2) by

(11183

#(z) = (E)i QI'C| XM _xin~1z,\1,)l

p4
X1 = xF)(z-m . 2mm)

m(1 ~ x>)(1 Yy

where x is regarded as a constant. Then, proceeding as above, we obtain

exp(-2Kj) = <Kz), exp(-2Kj) = (>, (11.8.79)

so(Ki K} = -Kj-Kj-x+ gz) + 9z).  (1187h)

This defines the function 13>sQ(kJ, Kj) for al non-negative numbers
Kj, Kj such that /, given by (11.7.4), is less than one. The parameters x
and Zj are uniquely defined by (11.8.78) and the redtrictions (10.15.11),
i.e

gz)= 2 (11.8.6¢)

o<*<l, x<Zj<x~' (11.8.8)

Xpsa(Kj, Kj) is then given by (11.8.7b).

These equations can readily be used to evaluate the function ipsQ, or to
expand tysoiKj, Kj) +Kj + Kj in powers of exp(-2K,) and exp( -2Kj).
The parameter x is small for very low temperatures (/ < 1), increasing to
one a the critical temperature (/ = 1).

(The affix / is irrdlevant in this and the next sub-section: it is included
in anticipation of the sub-sections on the triangular and honeycomb Ising
models.) :
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Sguare Lattice High Temperature

The easiest way to obtain the high-temperature (/> 1) result is to apply
the dudlity transformation (6.2.14) to the result (11.8.7). This gives

tanh Kj = 4>{z3), tanhK;= (piz™), (11.8.99)
I1>SQ(KI Kj) = - In[2 cosh K, cosh Kj]-r+ g(g) + g(z).  (11.8.9b)
Again x and z; stisfy (11.8.8). Now x is smal for very high temperatures.

Triangular and Honeycomb Lattices Low Temperature

The dimensionless free energies of the triangular and honeycomb lattices
can now be obtained from (11.7.11) and (11.7.12). Define x and z- by
(11.8.7a), for/= 1, 2, 3. From (11.7.4) and (11.5.13), / and k, and hence
g and x, are independent of/. Also, from (11.1.12) and (11.8.3), z, 2,
Zz must saisfy the relation

Zizozs =*"". (11.8.10)

The main problem isto obtain a ussful expression for In R from (11.7.8).
From (11.8.1b)

snh2Kj = i(l + ks?iuj)l(2K sniu,) . (11.8.12)

The moduli k and / are related by the Landen transformation (11.5.13).
From (15.6.3), it follows that

snh 2Kj =il[l sn(itj, 1], (11.8.12)
where
fly = (1+*)«,. (11.8.13)
Hence, from (11.7.4),
snh 2K'j = -i sn(ffiy, /). (11.8.14)

(This result can adso be obtained directly from (11.8.1c). Comparing it and
(12.8.12) with (7.8.5), we see that K;, K', ty correspond to the L, K, u of
Chapter 7.)

Again ‘we can use this infinite product expansion (15.1.5)-(15.1.6) of
the sn function, only now the modulusis/ rather than k. Using the relations
(15.6.2), (11.8.3) and (11.8.4), it follows that

ﬁ (1—x*"32) (1 —x*"1z7Y

1
i b= — . 8.1
sinh 2K] (lz,-) Wi =ra-y) (11.8.15)
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Using this result in (11.7.8), together with (11.8.7) and (11.8.10), gives

e
P SRR - 01029

From (15.6.2) and (11.8.4), the nome of the modulus/ is g = x°. Using
this modulus in (15.1.4a) therefore gives

W\ e /12
2(?) - H. (_1 g ) , (11.8.17)
which can be re-arranged as
A\ o (1 —x%4* |
2(?) B ,,1:11 (1 = x3 62 (] — x¥-2)2° (11.8.18)

Taking logarithms of (11.8.18) and (11.8.16), Taylor expanding every
term of the form In(l - X" x constant), then summing over n and com-
paring with (11.8.6), gives

In[2(x//] = 2T , (11.8.19)

3 3
InR +‘El -K)=T+ Zlfe(zy) - 9(2ri)J. (H.8.20)

j= i=
Using this equation for In R, together with (11.8.7b) and (11.7.13), the

dimensionless free energy of the triangular Ising modd is

XI>i{K[,Ki, KS
= K[ Ki-Ki- r+9(@) + 9(z) + 9(z),  (1182])

where x, z, z,, 23 are derfhed in terms of K{, K2, K3 by (11.8.10) and the
second equation in (11.8.7a), i.e.

2,2,2=*"!, ep(-2K)) = 4>{7"), >1,2,3. (11822

For the honeycomb lattice, usng (11.7.14) and the first equation in
(11.8.7a), we obtain

ZIDH(KI, Ko, K3) = -Ki -K,-K3-2t
+ g(zr') + gte’) + gte'), (11.8.23)

where )
nz22; =x71, exp(=2Kp) = <))(z), j=123  (11.8.24)
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The inequalities (11.8.8) must ill be satisfied; x and / are amdl at very
low temperatures and increase to one at the critical temperature.

For an isotropic system, 2\ = z, = z; = x~K The equation (11.8.22), or
(11.8.24), then reduces to a single equation for x.

Triangular and Honeycomb Lattices. High Temperature

Above the critica temperature, the modulus / defined by (11.7.5) or
(11.7.6) is greater than one. Smilarly to the square lattice, the easiest way
to handle this case is to apply the duality transformation (6.3.7) to the
above low-temperature results. For the triangular lattice this gives

XIITK] , Ky, K$ = -In[2 cosh K[ coshK', cosh Kfl
- 2r+ gizh) + ofZ) + gigh), (11.8.25)
where z, 2, z3, X are defined by (11.8.8) and
nzz=x,  tanhK/ = <Xz); | = 123 (11.8.26)
For the honeycomb lattice
2y«(Ki, Ky, K3) = -In[4 cosh K" cosh K, cosh K]

-1+ 8(z)) + glzy) +g(z5),  (11.8.27)
where
22:2z=x\  tanh Kj"MA),  j = 1,2,3. (11.8.28)

The parameter x is small at very high temperatures. Again 2 = z = Z3
= x~* for an isotropic system.

Magnetization

From (11.5.13), (15 6.2) and (11.8.4), the nome corresponding to the
modulus / is g* = X% Using (15.1.4b), the expression (11.7.30) for the
spontaneous magnetization is therefore equwal ent to

My = ij'

&= (11.8.29)
= o if|/]1>1,

which agrees with (10.10.19).
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This result applies to the square, triangular and honeycomb lattices. For
|/] s=1,i.e. below thecritical temperature,xisdefined by (11.8.7), (11.8.22)
or (11.8.24).

Combined Formulae for all Three Planar Lattices

The above results for the square, triangular and honeycomb lattices can
dl be combined into a ssimple form. It is intriguing that this should be so.

Fig. 11.10. The Isng modd interaction coeffidents for the square, triangular and
honeycomb lattices, as usad in (11.8.32)-(11.8.43).

Let g be the coordination number of the lattice, i.e. the number of
neighbours of any site. For the square, triangular and honeycomb lattices,
q = 4, 6 and 3, respectively. Let K\,. . . , Kq be the Isng model interaction
coefficients associated with the  edges at a site, asindicated in Fig. 11.10.

Note that this notation differs from the previous sub-sections: for the
square lattice Ki and K, replace the K, and Kj of (11.8.7) and (11.8.9),
and Kz = Ki, K* = K;; for the triangular lattice, K\, K,, Kz replace the
K[, K4, K's of (11.8.22) and (11.8.36), and Ka = K, Ks = K3, Kg = K3, For
the honeycomb lattice there is no change.

With each K, associate a parameter w;, defined as follows:

Squarelattice : W+,. . . , & = Zj, A%, Zj, 7%
Triangular lattice : WA,. . . , we = zf%>, @', zj*, zf*, zj*, zj *;
Honeycomb lattice : WA, Wy, \ys—= 2\, 2, z3. (11.8.30)

Here z- is the z, in (11.8.7) and (11.8.9); 2, 2z, z; are the z, z, z of

(11.8.22)-(11.8.28). The inequalities (11.8.8) therefore imply that
o<*<I, X<W<X~\ r=l,...,9. } (11.8.31)

The low-temperature (KI) results (11.8.7), (11.8.21)-(11.8.24) can
now al be written as

Wlo... WX\ exp(-2K,) = (pw), r = 1,...,9,7 (11.8.32a)
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rp= —h’\Kr-r+ iJ,g(w?l), (11.8.32b)

the sums being over r=1 ,gand r, 4>(2), g(2 being defined by
(11.8.6). Given K. . Kg, the equatlons (11.8.31) and (11.8.32a) define
WA, . , Wg and x. The dimensionless free energy per site of the lattice
(square trlangular or honeycomb) is then given by (11.8.32b). The mag-
netization is again given by (11.8.29).

Similarly, the high-temperature (/>1) results (11.8.9), (11.8.25)-
(11.8.28) can dl be written as

wiwy. .. wy =244 tanh K, = <HW;"), (11.8.339)
w=-In2-4Xcosh K" +T+ \E [gw) - r]. (11.8.33h)

Similarity to the Bethe Lattice Formulae

These results for the anisotropic planar lattices are very smilar in form to
those for the anisotropic Bethe lattice of Section 4.9.

In fact, if in Section 4.9 we set h= 0 and replace t, x by X%, (X/wif,
respectively, then the Bethe lattice free-energy results (4.9.4), (4.9.6)
become exactly (11.8.32), but with the definitions (11.8.6) replaced by

T=1In(l+ 4%,

$(z) = (—)}1\1-:&, (11.8.34)

1 4
g(z)_ln iz

In both (11.8.6) and (11.8.34) it is true that

#0 =1, ,(x-)=g(x")=0, g(x) = r. (11.835)
The equation (4.9.5) for the magnetization becomes
M= (1-/( + ). (11.8.36)

This is not the same as (11.8.29), but again M is a function only of 2.
For a ferromagnetic Bethe lattice model below its critical temperature,
the inequalities (11.8.31) are aso satisfied. [Above its critica temperature
x=W\= ... =Wg=1, and the Bethelattice model becomesrather trivial:
ipisexactly -In 2 -J2 cosh K;, and M of course is zero.] '
It is fascinating that there should be these correspondences between
zero-field anisotropic Ising models on two-dimensiona lattices, and on the
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infinite-dimensional Bethe lattice. | have used short series expansions to
look for similar properties for three-dimensional models, and for planar
models in a field, but with no success.

Critical Temperature

For the ferromagnetic Ising models on both the planar and Bethe lattices,
the critical point occurs when X W\,. . . ,wg differ infinitesimally from one.
Set

jc = exp(-<5), w,= exp(-a). (11.8.37)

Then from (11.8.6), (15.1.5) and (15.1.6), the planar function <p(w;) is
()Yw) = -i £* sn[l(a + 6)iljt], (11.8.38)
where k is the modulus of this section, with nome q = x* Thus
jd'/41=d. (11.8.39)

When x = 1, then k= 1 and /' = in. Using (15.7.3a) and (11.8.39),
(11.8.38) becomes

<p(w;) = tan[;r(«*, + <5)/8<g). (11.8.40a)

This is the form of the planar function 4>(w;) in the limit when <6—x0,
ajd being kept constant.

On the other hand, for the Bethe lattice it is easily verified from (11.8.34)
and (11.8.37) that in this limit

cftO = (a, + 5)126. (11.8.40b)

In either case, (11.8.32a) must be satisfied, so
at ... + a=(q4)6, (11.8.4149)
exp( ~2K,) = <tw), r=1,...,q" (11.8.41b)

Solving (11.8.41b) and (11.8.40) for a,, then substituting into (11.8.41a),
gives the following conditions for criticality for the Ising model on a lattice
of coordination number g, with interaction coefficients Ki,. . . , Kf

planar: artan(£i) + . . . + artan(®) = Jt{g- 2)14 , \(\\‘_’/0’42)
Bethe: & +...+tq=<7/~2,

where
£.=exp(-2*:;), r=l,...,q - (11.8.43)



308 11 KAGOME LATTICE EIGHT-VERTEX MODEL

For any particular planar lattice, (11.8.42) can be simplified. Let K\, K,
(K\, Kz, K3) be the interaction coefficients of the square (triangular or
honeycomb) lattice. Then the criticality conditions are:

Square: £if, + £i + £2=1,
Triangular: £,£5 + £& + £if, = 1, - (11.8.44)
Honeycomb: Cifefe - £,£53 - £s£i - CI2 - £1 ~ £2- £3+ 1=0,
1

For an isotropic lattice model, with al interaction coefficients equal to
acommon value K, the critical values of £ = exp( - 2K) are, from (11.8.42),

Planar: £=tan[jt(q - 2)/4q], (11.8.45)
Bethe: £=(d-2)14.
For the particular planar lattices these values are:
Square: g = 4, £= V'2-1= 0414214
Triangular: g = 6, £= 1/V5= 0577350 (11.8.46)
Honeycomb: A = 3,£=2-V 3 = 0.267949.

The corresponding critical values of K = JIkgT are given in Table 11.2,
together with numerical estimates for the three-dimensional lattices (Sykes
et al. 1972; Gaunt and Sykes, 1973), and with the Bethe lattice values.

Table 11.2. Critical values of K = JIksT for the Ising model on various lattices: q
is the coordination number.

G Planar Three-dimensional Bethe

3 0658479 . 0549306
(honeycomb)
4 0.440687 0.36979 0.346574
(square) (diamond) .
‘6 0.274653 0.22169 0.202733
(triangular) (smple cubic)
8 0.15741 0.143841
(BCC)
2 0.10209 0.091161

(FCC)
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Since the Bethe lattice is infinite-dimensiona (in the sense given in Section
4.2), for a given coordination number the three dimensiona estimates
should lie between the planar and the Bethe lattice results. They do.

The results (11.8.42)-(11.8.45) apply to a ferromagnetic 1sing model,
with dl interaction coefficients non-negative. Any square, honeycomb or
Bethe model can be mapped into this regime by reversing appropriate
aternating layers of spins: in this way any interaction coefficient can be
negated. For the triangular lattice only pairs of interaction coefficients can
be negated: there are four critical surfaces in (£i, £,, £3) space, namely
that given in (11.8.44), and three others obtained from it by inverting any
two of &, £, &

11.9 Thirty-Two Vertex Model

An obvious generdization of the ice-type, or six-vertex, models on the
square lattice is to place arrows on the edges of the triangular lattice so
that at each dite there are three arrows pointing in, and three pointing out.
There are then 20 possible arrangements of arrows at a vertex, so thisis
known as the 'twenty-vertex' model. With each arrangement one associates
aweight co, where; = 1,. . ., 20. The partition function is then

z=3 I! %,c), (11.9.0)

where the sum is over dl alowed arrangements C of arrows on the edges
of the triangular lattice, the product is over dl stes i, and (i, C) is the
arrow arrangement at site i for configuration C. This model has not been
solved in genera: only when certain conditions are satisfied by the weights
(Baxter, 1969; Kelland, 19744, b).

In the same way as one can generadlize the six-vertex modd to the
eight-vertex by alowing the number of arrows into each vertex to be 0 or
4, aswdl as 2, so the twenty-vertex model can be generalized by dlowing
any odd number of arrows into each vertex. There are then 32 possible
arrow arrangements at a vertex.

The arrows can be represented by bonds. leave an edge empty if the
corresponding arrow points generaly to the right (in the sense that the
arrows in Fig. 11.1 point generdly to the right), place a bond on the edge
if the arrow points to the Ieft. There are then an even number of bonds
incident to each site. The 32 possible arrangements of bonds at a vertex
are shown in Fig. 11.11. Also shown are their respective weights

©,..., W
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w w (.nJ“ G’u W,y G]_lu W wq.s Wy Wy Gy, w“
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wu w‘ﬁ wls w w, W 18

12 24 26

Fig. 11.11. The 32 dlowed bond arrangements at a vertex of the triangular lattice,
and their associated weights.

Free-Fermion Case

Sacco and Wu (1975) considered this model and showed that it can be
solved by the Pfaffian method of Section 7.13 provided that

CO0) = GiXWM2 ~ GI3d3 + O)UG>U ~ «15«15 + «16«16, (11.9.2a)
and
C06)m = (OijCOU - cogu)ji + (DjiCDjk , (11.9.2b)

for dl permutations i, j, k, I, m, nof 1,2,. . .,6 such that m< n and
i<j<k<l. There are 15 such permutations (corresponding tQ the 15
choices of m and n), and hence atotal of 16 conditions.

Cases Reducible to the Solvable Kagomé L attice Eight-Vertex Model

Another interesting class of solvable cases can be obtained from the
Kagom6 lattice eight-vertex model. In Fig. 11.1 the up-pointing triangles
of the Kagome lattice are drawn smaller than the down-pointing ones.
Imagine this process continued until the up-pointing triangles become
infinitesmal. The lattice then becomes the triangular lattice.

Each site of this triangular lattice is a 'city’, consigting of three sites of
the origind Kagome lattice. Such acity isshownin Fig. 11.4(a). The edges
round it have spins oc\,. . ., ag which are +1 if the edge is empty, - 1 if
it contains a bond. Summing over internal arrow or bond configurations
within the triangle, the total Boltzmann weight of this city is the function
of oc\,. . ., as occurring on the LHS of (11.1.6).
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It follows that if co, . . ., & are these total Boltzmann weights, for the
appropriate values of a\,. . ., 0C(,, then the 32-vertex model is equivalent
to the Kagomé lattice eight-vertex model. If the conditions (11.1.6), or

equivalent (11.1.7), also hold, then the model can be solved as in Section
11.2-11.5.

Considering al 32 vertex arrangements, this will be so if
ahs = byaaa; + C\dxds
Wy = Mbaas + dicyds
CO = Cl\aghs + d\d,C3
OJy = cicycs + b\bobs
a>is = (024 - C\<u,ag + b\dxds = Cibsbs + bycoCs (H.9.3,)
s = 3 = @Caz + dibads = biesbs + €1bacs
(056 = (023 = a\a,c; + d\d;b; = hibycz + Cicobs
&2 = @b = 0263 + aid,cz = d\bya-i + a\c,ds
e = W34 = bydyas + cayds = aydzbs + diacy
W35 = was = aybady + dicraz = biands + cydha;
and, for 1L<m< n=s6,
¢tb=to, ibm= com . (11.9.3b)

If a\,. . ., d; can be found so as to satisfy (11.9.3), which includes the
restrictions (11.1.7), then the spontaneous polarization of the 32-vertex
model is given by (11.3.4), and from (11.4.5) its free energy per site, or
vertex, is

fuov = f(a, bd, d) +f(agbyco,dy) +/(as, 63, cs3, ds), (11.9.4)

where /(a , b , ¢, d) is the free energy per site of the square lattice
eight-vertex model with weights a, b, ¢, d, and kgT is here regarded as a
constant, the same for each /.

From (11.1.8)-(11.1.12) it is apparent that there are only five degrees
of freedom: k, u, U, Uz and a single normalization factor for co, ..., Wg.
Thus (11.9.3) implies 27 restrictions on the weights of the 32-ver-
tex model. Even so, this restricted model can still be interesting, as will
be evident in the next section.

When d\ = d, = d3 = 0, therestricted model reduces to the solvable cases
of the twenty-vertex model discussed by Kelland (1974b) and Baxter et al
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(1978). In particular, these include the ‘triangular KDP' model (Kelland,
1974a): this behaves very similarly to the square lattice ferroel ectric model
of Chapter 8, having a firs order transition to a frozen ferroelectric state.

Formulation as an Honeycomb Lattice Ising Model with Multi-Spin
Interactions

Like the eight-vertex model, the 32-vertex model can be regarded as an
Ising model with multi-spin interactions. With each face rn of the triangular
| attice associate a spin oy, with values + 1 or - 1. Asin Sections 10.3 and
11.5, establish a two-to-one correspondence between spin configurations
{CT, Ol , - ..} and allowed arrow coverings of the lattice. This can be done
by taking the arrow configuration in Fig. 11.8(b) to be the standard: if the
spins on either side of an edge are equal (different), place an arrow on the
edge pointing in the same (opposite) way as the standard. Do this for all
edges. Then at each vertex, there must be an even number of non-standard
arrows on the sx incident edges, and hence an odd number of incoming
(and outgoing) arrows.

Let O\,. . ., 05 be the 9x spins round a site, arranged asin Fig. 11.4(a),
the triangle being shrunk to a point. Let W(oi,. . ., 05) be the function
whose value for spin configuration CTI , . . ., 0 is the weight of the corre-
sponding arrow configuration at the site. Then (11.9.1) can be written as

z=43TIWo (9, (11.9.5)
o i
where the sum is over all values of the spins on the faces of the triangular
lattice, the product is over dl sites i, and oy,. . ., Og are the face spins
round site i.

Negating ore,. . ., Os l€eaves unchanged the arrows into or out of site i.

Thus Wot,. . ., Of,) is an even function, i.e.
W-0,...-0¢)= W (ai .., ag). (11.9,6)

Now use the dual lattice: the spins lie on the sites of the honeycomb
lattice, the product in (11.9.5) is over al hexagonal faces i of this lattice,
and On, . . ., O(,i arethe sx spins round face i. Thus the 32-vertex model
is equivalent to an Ising-type model on the honeycomb lattice, with inter-
actions between al dx spins round each face. These interactions must be
even, o that the face weight function W satisfies (11.9.6). This equivalence
is quite general.
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Now consider the solvable case of the 32-vertex modd when the weights
satify (11.9.3). One can of course obtain dl the values of the function
W by working back through the definitions of this subsection and using
(11.9.3). For instance, W(+ , + ,+ , + ,+ ,+) corresponds to the stan-
dard vertex configuration in Fig. 11.8(b). Replacing left-pointing arrows
by bonds, from Fig. 11.11 this is the configuration with weight co,. Thus,
using (11.9.3),

W(+,+,+,+,+,+)=c0,= CCCs + bibbs.  (11.9.79)
Other examples are

W+, + , + , + +) = Cop = s + dibyds Ny 71)3

W(", -+, +, + ,-) = <0%= ddnag + dCola

More directly, we can remember that this case of the 32-vertex model
is obtained by shrinking to points the up-pointing triangles of the Kagome
lattice. Doing this in the multi-spin Ising model formulation of Section
11.5, we obtain at once the Ising spin formulation of the 32-vertex model,
the spins being those that remain in Section 11.5 after summing over those
inside up-pointing triangles. The weight function W(a,,. . ., 0g) is Smply
the total weight of the triangle in Fig. 11.4(a), summed over the centre
spin 07. This is dmply the LHS of (11.5.8). Writing the Kagome lattice
weight functions W, W, W; in the form (11.5.5), and using (11.5.10), it
follows that

W (0i,... ,00 = 2MM,M; exp(ICioiO3 + K',a30 + Kfaoi) x
cosh(K & + K;04 + K306 + K"00,03 + K'agopas + K'05060i). (11.9.8)

This jsthe LHS of (11.5.9), multiplied by the constant 2MyM,Ms.

If Wis given by (11.9.8), then the 32-vertex model is equivalent to the
general Kagome lattice eight-vertex model: they have the same partition
function and, since neighbouring lsing spins o, a, in the former are
neighbouring Ising spinsin the latter, the same spontaneous magnetization
(om) and polarization (0y0n).

If the restrictions (11.5.11) are dso satisfied (which means that the LHS
of (11.5.8) or (11.5.9) is equal to the RHS), then the Kagome lattice model
istheone solved in Sections 11.2-11.5. The tota free energy, spontaneous
magnetization and polarization of the 32-vertex model are therefore then
given by (11.4.5), (11.5.18) and (11.3.4), respectively, where N is the
number of vertices and a\,. . ., d; are given by (11.5.6).
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11.10 Triangular Three-Spin Model
Historical Introduction

The solution of the eight-vertex model (Baxter, 1971a, 1972b) excited
interest in model s with multi-spin interactions, notably the three-spin model
on the triangular lattice.

In this model, at each site i of the triangular lattice there is a spin a,
with values + 1 or - 1. The energy of a given spin configuration is

E=-J*0i0jOy, (11.10.1)

where the sum is over dl triangular faces (both up-pointing and down-
pointing) of the triangular lattice. From (1.4.1), the partition function is

Z = 2 exp[#2 OiQOjOy}, (11.10.2)
a
where
K = JkgT. (11.10.3)
The dimensionless free energy per site is
xp{K) = - lim AT InZ, (11.10.4)

where N is the number of sites of the lattice.

The triangular lattice can be divided into three sub-lettices A, B, C, as
in Fig. 11.8(b), so that any triangular face (i, j, k) contains one site of
type A, one of type B, and one of type C. From (11.10.1) it is obvious that
negating all spins on just one sub-lattice is equivalent to negating J, and
hence K. Without loss of generality we can therefore take K to be non-
negative.

Wood and Griffiths (1972), and Merlini and Gruber (1972), considered
this model and showed that it satisfies the duality relation

xp(K*) = 2K + xp{K) - In(2cosh?A:*), (11.10.53)

where
i&nhK* = exp(-2AT). (11.10.5b)

This is precisaly the duality relation (6.2.14) of the square lattice isotropic
Ising model (with L = K). The argument preceding (6.2.16) therefore
applies: if there isjust one critical point, then it must occur when K = K,
where

snh2Kc =\, K. = 0.44068679 (11.10.6)
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Griffiths and Wood (1973) used this argument and series expansons to
esimate the criticd exponents. They obtained 06=£ a =50.8,
0070 «s/3«0.071, 125 =£y" « 14, and correctly guessed that a = 2/3.
Their estimates of 0 and y' were somewhat out: /3 is actualy 1/12 and
(assuming scaling) y' is 7/6.

Suppose that a magnetic field term -wLOJ is added to the energy
(11.10.1). Let {O1)N,H be the average of aspin a, evaluated asin (1.4.4)
for afinite lattice of N sites in the presence of the fiedld H, and let

<a>= lim lim(a,)n,H, (12.10.7)

where thelimit N-* °° meansthat the lattice becomeslargein al directions.

This is the zero-field magnetization. Like the lsing and eight-vertex
magnetization, it must be zero at sufficiently high temperatures.

This is not immediately obvious. the energy (11.10.1) is not unchanged
by reversing al spins, so the usua Ising model argument of Section 17
(that M is an odd function of H, continuous for sufficiently high temper-
atures) does not apply. Instead, note from (11.10.1) that, when H = 0, E
is unchanged by negating dl spins on any two of the sub-lattices A, B, C.

Let 04,08, Oc denote al the spinson the A, B, C sub-lattices, respectively.
Then to any total configuration (0,,0B, OC) of spins there correspond three
others that can be obtained by negating dl spins on two sub-lattices. Thus
the spin configurations can be grouped in equal-energy sets of four:

(Oa , O, O), (0a , -Og, -Of) ,(-0a, Og, -Og) ,(~Oa -Og, O).

- (11.10.8)

For any single spin @, the sum of its values over four such configurations
is clearly zero. For afinite lattice, grouping configurations in such sets of
four, it must therefore be true that

tow = 0. (11.109)

At aufficiently high temperatures the limits in (11.10.7) can be inter-
changed; for finite N, (0,)n,n is acontinuous function of H, so from (11.10.9)

(oi)-~ O for aufficiently high temperatures . (11.10.10a)

On the other hand, Merlini et al (1973), and Merlini (1973), used an
argument due to Peierls (Peierls, 1936; Griffiths, 1972) to obtain lower
bounds for (0;)//. They thereby showed that

(CT) > Ofor sufficiently low temperatures , (11.10.10b)
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i.e. there is a non-zero spontaneous magnetization (g-). This proves that
there must be a critical point: a temperature T, at which (ot) just ceases
to be zero as the temperature is decreased.

Very similar remarksapply to (Ota}), wherei and; are nearest neighbours,
evaluated by the double limiting procedure of (11.10.7). This must be zero
for aufficiently high temperatures, and is expected to be non-zero for
sufficiently low temperatures. By anadogy with the multi-spin formulation
of the eight-vertex model given in Section 10.3 and (10.10.22), it is con-
venient to cal (0i0j) the 'polarization’ of the three-spin mode.

Baxter and Wu (1973, 1974) caculated the free energy of the three-spin
modd (with H=0) directly, using the transfer matrix method and a
generalized Bethe ansatz for the eigenvectors. Baxter et al. (1975) used
series expansions to conjecture the exact expressions for the spontaneous
magneti zation (o;) and polarization (Oj Oj).

Baxter and Enting (1976) noted that these results were exactly the same
as a particular eight-vertex model, and that the eight-vertex model dso
has a four-fold symmetry between spin configurations. Guided by this, they
found a transformation of the triangular three-spin mode into a sguare-
lattice eight-vertex model. All the three-spin results could then be seen to
be consequences of the eight-vertex ones.

Later, | was aso able to show that the three-spin model is a specid case
of the solvable Kagome lattice eight-vertex model (Baxter, 1978d). This
equivalence is much smpler than the Baxter-Enting one, and is the one
used in this section. From this point of view, the Baxter-Enting trans-
formation provides a way of relating these particular square and Kagome
eight-vertex models. an alternative way to that of Section 11.2.

Equivalence to a Kagomé L attice Eight-Vertex Model

In (11.10.2), perform the sum over dl spins on one sub-lattice, say C. This
can readily be done because each such spin interacts only with spins on
sub-lattices A and B. This gives

Z= 2 1Iw(oy,...,04), (11.10.11)
where
WO\, . ., 05) = 2 cosh K(0io, + O,0OT, + 0304 + CTACTS + CTs<7s + O(,0\).
(11.10.12)

The sumin (11.10.11) is over al spins on the A and B sublattices. Taken
together, these form an honeycomb lattice, as is evident in Fig. 11.8(b).
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The product is over dl faces i of this honeycomb lattice, o, . . . , ay are
the sx spins round face /.

Apart from a factor of %, whichisirrelevant for alarge lattice, (11.10.11)
is the same as the partition function (11.9.5) of the 32-vertex model.
Further, a straightforward direct calculation, using the fact that
O\, .., Of, only have values +1 or - 1, reveasthat (11.10.12) can equiv-
dently be written as

W(Oi,. . ., 0g) = 2 cosh K(a, + CT, + 05 + 0iO,a5 + 030405 + CT:CTCTI) .
(11.10.13)
But this is precisely the function W given by (11.9.8), with
Mi = IKi=0, K, = K" = K, (11.10.14)

for i= 1,2,3. Thus the three-spin model is equivalent to the Kagomeé
lattice eight-vertex model of Section 11.5, with these values of M;,
Kj, KI, K". It is interesting to note that these values are quite specia: the
triangular lattice edge interactions in (11.5.7) now vanish, and the remain-
ing two- and four-spin interaction coefficients al have the same value.

The restrictions (11.5.11) are automatically satisfied, so from the remarks
at the end of the previous section, the free energy per site of the three-spin
model is

f3ssin=f(a,b,c,d), (11.10.15)
where f(a ,b ,c ,d) is the free energy per site of the square-lattice eight-

vertex model with weights a, b, ¢, d given by (11.5.6) and (11.10.14) for
any particular value of i, i.e.

ab,cd =\, exp(-2#), exp(2/Q, 1. (11.10.16)
Similarly, the spontaneous magnetization and polarization are
() = Mfa ,b,c.d), (11 10 1)
(aman) = Poa ,b,c,d),

where m and n are neighbouring sites.

The triangular three-spin model is therefore equivalent to the square-
lattice eight-vertex model with weights a, b, c, d, in that/, (a.), (0,0, are
the same for both. Further, let O\, . . . , 0, be any set of spins that dl lie
on the heavy vertical zig-zag line in Fig. 11.8(b). Then by using (11.5.17)
and the above arguments, it is quite easy to show that (oi. . . 0,) is the
same for the three-spin model as for the eight-vertex model on the square
lattice formed by removing al horizontal edges in Fig. 11.8(b). Thus the
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two models have the same corrdation length £ in the direction of the
Zig-zag line.

Ordered Phase

The properties/, Mo, Po of the square-lattice eight-vertex mode can be
obtained from Chapter 10. If K> K, where K. is the critical value of K
in (11.10.6), then from (11.10.16)

sinh2*:>l, Oa+ b + d. (11.10.18)

Thus a, b, ¢, d lie in the principal regime (10.7.5), and the equations of
Sections 10.4-10.10 can be used directly. No initid transformation of a,
b, ¢, dis needed.

From (11.10.16), ad = be and a = d. From (10.4.21), this implies that

ket/(A-u) =1, A:snhA snhu=1. (11.10.19)

From (10.7.1) and (10.4.23), k, Aandu arereal, andO<u< A</'. The
dliptic function snh u defined by (10.4.20) is real, increases monotonicaly
from 0 to 00 as M increases from 0 to /', and from (15.2.5) and (15.2.6) it
saisfies

snh(/' -u) = {ksnhM)"*. (11.10.20)
From (11.10.19) it follows that
ku= U, A+ «=/", (11.10.21)
s0, using (10.4.23), (10.7.9) and (10.7.19),
A=fl, u=z\v, v=-U, (11.10.22)
x=q" z= g (11.10.23)

To relate these parameters to the interaction coefficient K, note from
(10.4.21), (11.10.16) and (11.10.22) that

exp(-2K) = -% %&—)z *'snh(/74). (11.10.24)
Define
p=q" (11.10.25)

Then, using (10.4.20), (15.1.6) and (15.1.5) to expand k" snh(/74) as an
infinite product, we obtain

(1 — p¥ =Ty (] = pir-1
exp(—2K) =p*nl]1 El _ﬁs,,_%g _ﬁs,,_%, (11.10.26)

which is an explicit relation betwen K and p.
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The free energy is given by (10.8.47). Using (11.10.16), (11.10.23) and
(11.10.25), this gives
Im Y3
_ - P71 = p"Y (- p*)
fiksT 2K+m§_:1 v Sm) TR (11.10.27)
The summand can be ertten as the sum of two rational functions of p )

having denoml nators 1 - p , 1 +p®™, respectively. Taylor expanding in
powers of p™, then summi ng over m and taking exponentials, gives

6n - ~¢

exp(-flkgT) = exp(2£) || lf-ﬁ——w A JH$V|\-" A2| (11+10.28)

For some purposes this form is more convenient than (11.10.27): it gives
a power series in p in which al coefficients are integers.

From (10.10.19) and (10.10.24), using (11.10.23) and (11.10.25), the
spontaneous magnetization and polarization are

Mo=n?-2 Pr 3 (111029)
- 1+p* 1—p3"
m=1 (Tpﬁ 1 +p3,,). (11.10.30)

To summarize; if K is given, then p is defined by (11.10.26) subject to
the inequality 0 < p < 1, and/, Mo, PQ are then given by (11.10.28)-
(11.10.30) (Baxter et al. 1975).

It is possible to eliminate p and express exp(—f/ksT), M,, P, as
algebraic functions of exp(-2K). The results are rather cumbersome and
not particularly illuminating: they are given in Baxter and Wu (1973,1974).

Disordered Phase

If 0<K< K, then a, b, ¢, d are not in the principa regime (10.7.5);
rather they are in the disordered regime 111 of Section 10.11. In thisregime
there is no spontaneous magnetization or polarization, so

Mo =P, = 0. (11.10.31)

To obtain the free energy, we must use the rearrangement procedures
(i)-(iii) of Section 10.11. These now imply the interchange of WA and u>
in (10.2.16), which corresponds to replacing a, b, ¢, d by

a = i(ab + cd), b =\Ya + b + c - d), HQ_22)
Gc=\a+b+c+d), d=i(ab+ c+ d).
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From (11.10.16) it follows that
a, by, ¢, d = sinh 2K, 2sinh’K, 2 codPA", sinh2A\  (11.10.33)

Like a, b, ¢, d, these new weights satisfy ad, =b,c, and a = d,. In fact
(12.10.33) can be written as

(@,brC, d) = sinh2tf (1, exp(-2K*), txtfzK*), 1),  (11.10.34)

where K* is defined by (11.10.5b).

These are the same as the origina Boltzmann weights (11.10.16), except
that K therein has been replaced by K*, and each is multiplied by sinh 2K.
The dimensionless free energy xp = f/kgT is therefore

ip(K) = - Insnh 2K + xp(K*), (11.10.35)

which is the dudlity relation (11.10.5a). Using this and the ordered-phase
result (11.10.26), (11.10.28), it follows that if p is defined by

= B -7 fn-1
L A=prT) (- gy
tanh K =[] = pmsy a= oy

then the free energy is given by

0<p<1, (11-10.36)

00 /i _6n-3\ /i _8n—4—'3(1 _pan)

- = ? —t - P 7
exp(—flkgT) = 2 cosh anl ST =)

(11.10.37)

The parameters k, A, « are now defined by (10.4.21), with a, b, ¢, d
replaced by a, by, ¢, d. Snce &,...,d. diffe's from the a,. .. ,d in
(11.10.16) only by a normaization factor and the choice of K, the equations
(11.10.19)-(11.10.23) remain valid. From (10.12.5) it follows that in both
the ordered and disordered phases

H=1JT, W=-1J. (11.10.38)

Critical Behaviour

At K = K, the three-spin modd has a critical point. Since/, Mo, PQ are
the same as for the square lattice eight-vertex model with \i = 3J1/4, from
(10.12.24) the critical exponents a, a', (1, fi. are

a=a =1 p=p~&. (11.10.39%)

The correlation length § is the same as the correlation length of the
eight-vertex model in the diagonal direction. Thisis not the row or column
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correlation length of Chapter 10, but near the critical point it is expected
that £ diverges as in (1.7.25), with an exponent v that is independent of
the direction in which § is measured. Assuming this is so, then from
(10.12.24) it must be true for the three-spin mode that

V=V o=\, (11.10.390)

This agrees with the scding relation (1.2.16). If one accepts the other
scaling predictions, then the critical exponents y, 8, rj, and the interfacia

tension exponent ns, are
y=i, 6=15, r,=1i, p,=|. (11.10.39¢)
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POTTS AND ASHKIN - TELLER MODELS

12.1 Introduction and Definition of the Potts Modéel

We have seen in Section 10.3 that the eight-vertex model is a generalization
of the Ising model. There are of course an infinite number of other such
generadizations. In this chapter | shal consider two of these: the Potts
model and the Ashkin - Teller model, both in two dimensions. Neither has
been solved exactly, but they can be expressed as staggered vertex models,
and quite a lot is known about their critica behaviour.

R. B. Potts defined the former model in 1952, at the suggestion of C.
Domb. He actualy defined two models. The first is now known as the 'Zy
model’, and supposes that at each site of alattice there is atwo-dimensional
unit vector which can point in one of N equally spaced directions. Two
adjacent vectorsinteract with interaction energy proportional to their scalar
product.

The second model is the one that will be discussed here, and referred
to simply as 'the Potts model’. This can be formulated on any graph !£, i.e.
on any set of sites, and edges joining pairs of sites. For the sake of generality
it is useful to do this: later on we shal specialize to the case when X is a
two-dimensional |attice.

Let 2E have N sites, labelled 1,2,... ,N. With each site i associate a
quantity a; which can take q values, say 1,2,. .., 9. Asin the Ising and
eight-vertex model, let us cal o; a 'spin'. Two adjacent spins < and a,
interact with interaction energy -J d(Oj, oj), where

6(0,0) =1 iio=&

=0 Ma*d. (12.1.1)
32
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The total energy is therefore
E = -J2d(oye 0), (12.1.2)

where the summation is over al edges (/,/) of the graph. It follows from
(1.4.1) that the partition function is

Zy = 2 expltf 2 G, O))} (12.1.3)
a ) )
where
K = J/kgT. (12.1.4)
Here the osummallon isover dl vaues of dl the spinsO\,. . . , gv. Thus

there are g terms in the summation.

For definiteness | have supposed that each CT, takes the vaues
1,...,q,butany qdiginct numberswould be equally good. In particular,
for g =2 we could let each o; take values +1 or - 1. It is then true that
d(a &) =¢( + 00") ; substituting this expron into (12.1.3) and com-
paring with (1.8.2), we see that the g~ 2 Potts modd (with K replaced
by 2#) is equivaent to the zero-field 1sing model.

In the next seven sections | shdl show how the two-dimensiona Potts
model can be solved at criticality (Temperley and Lieb, 1971; Baxter,
1973d; Baxter et al., 1976). There are a few other exactly solved cases:
g= 1 (whichistrivial); g = 2 (the Isng model); the square-lattice model
with g = 3 and K = -°° (this is the three-colouring problem of Section
8.13); and the triangular-lattice modd with q = 4 and K = -<», which is
a four-colouring problem (Baxter, 1970b).

12.2 Potts Modd and the Dichromatic Polynomial

It has been shown (Kasteleyn and Fortuin, 1969; Fortuin and Kasteleyn,
1972; Baxter et al., 1976) that Zy can be expressed as a dichromatic
polynomia (Tutte, 1967).

The argument is quite simple; sat

v = exp(K) - 1. (12.2.1)
Then (12.1.3) can be written as
Iy=2IT th+ " o, <) o (12.2.2)

uJ)
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Let E be the number of edges of the graph 5£. Then the summand in
(12.2.2) is aproduct of E factors. Each factor is the sum of two terms (1
and v d(Qj, a,)), so the product can be expanded as the sum of 2F terms.

Each of these 2F terms can be associated with a bond-graph on ££ To
do this, note that the term is a product of E factors, one for each edge.
The factor for edge (i ,j) is either 1 or v d(o,, Oj): if it is the former, leave
the edge empty, if the latter, place a bond on the edge. Do this for dl
edges (i,;). We then have a one-to-one correspondence between bond-
graphs on !£ and terms in the expansion of the product in (12.2.2).

Consider a typicd graph G, containing / bonds and C connected com-
ponents (regarding an isolated site as a component). Then the correspond-
ing term in the expansion contains a factor vV, and the effect of the delta
functions is that dl sites within a component must have the same spin a.
Summing over independent spins, it follows that this terms gives a contri-
bution g°v' to the partition function Zy. Summing over al such terms, i.e.
over dl graphs G, we therefore have

Zn = *LgV. (12.2.3)
G

The summationisover dl graphs G that can be drawn on ! £. The expression
(12.2.3) is a dichromatic polynomial (Whitney, 1932; Tutte, 1967).
Notethat g in (12.2.3) need not be an integer. We can dlow it to be any
positive real number, and this can be a ussful generalization. For instance,
regarding Zy as a function of g and v (as well as N), we see that

(%lnz)qz’!:¥C|I|/?Dll (]2_2‘9

and thisisjust the mean number of componentsin the percolation problem,
where each edge has probability p = v/(l + v) of being occupied. Thisis
a famous unsolved problem (Essam, 1972).

If K= -00, then adjacent spins must be different, so from (12.1.3) it is
apparent that Zy is the number of ways of colouring the sites of i£ with
g colours, no two adjacent sites having the same colour. Thisisapolynomia
in g, known as the 'chromatic' polynomial. We see from the above that
itisgiven by (12.2.3), withv=-1.

The edges of regular lattices can be grouped naturally into classes. For
instance, the square lattice has edges which are either horizontal or vertical.
It is then often convenient to generalize the Potts mode so as to dlow /
(and hence K and V) to have different values, depending on the class to
which the corresponding edge belongs. If J; is the value of / for dassr,
then the required generalization of (12.2.3) is readily seen to be

Zy=2 123 Yoo, (12-2.5)
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where the summation is over dl graphs G, C is the number of connected
components in G, |, is the number of bonds on edges of dass r (r =
1,2,3,...), ad

Ki = JJkgT, Vv, = exp(£;) - L. (12.2.6)

12.3 Planar Graphs. Equivalent Ice-Type Modé
The Medial Graph £

The remarks of the previous two sections apply to any graph i£, whatever
its structure or dimensionality. From now on let us specidize to i£ being
aplanar graph, i.e. one which can be drawn on a plane in such away that
no two edges cross one another, and no two sites coincide.

We can associate with X another graph £, as follows. Draw smple
polygons surrounding each site of i£ o that:

(i) no polygons overlap, and no polygon surrounds another,
(i) polygons of non-adjacent sites have no common corner,
(iii) polygons of adjacent sites i and ; have one and only one common
corner. This corner lies on the edge (i,/).

Let us take the corners of these polygons to be the sites of !£', and the
edges to be the edges of i£'. Hereinafter let us cal these polygons the
'basic polygons' of ££.

We see that there are two types of sites of '£'. Firdtly, those common
to two basic polygons. These lie on edges of i£ and have four neighbours
inif£'. We term these 'internal’ sites. Secondly, there can be sites lying on
only one basic polygon. These have two neighbours and we term them
‘external’ sites. (The reason for this terminology will become apparent
when we explicitly consider the regular lattices.)

The above rules do not determine i£' uniquely, in that its shape can be
altered, and external sites can be added on any edge. However, the topology
of the linkages between internal sitesisinvariant, and the general argument
of the following sections applies to any alowed choice of it'. (For the
regular lattices there is an obvious natural choice.) The graph ££ is known
asthe 'medial’ graph of i£ (Ore, 1967, pp. 47 and 124): atypicad example
isshown in Fig. 12.1.

It is hepful to shade the interior of each basic polygon, asin Fig. 12.1,
and to regard such shaded areas as 'land’, unshaded areas as 'water'. Then
££ congsts of a number of ‘islands. Each idand contains a site of i£.
Islands touch on edges of i£, at internal sites of !£'.
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Fig. 12.1. A graph £ (open circles and broken lines) and its media graph T (full
circles and solid lines). The interior of each basic polygon is shaded, denoting
land'.

Polygon Decompositions of it'

We now make a one-to-one correspondence between graphs Gon S and
decompositions of iE" as follows.

If G does not contain abond on an edge (/, /), then at the corresponding
internal site of i£' separate two edges from the other two so as to separate
theidandsi and/, asin Fig. 12.2(a). If G contains a bond, separate the
edges s0 asto join the idands, asin Fig. 12.2(b). Do this for dl edges
of <£.
The effect of this is to decompose i£' into a set of digoint polygons, an
example being given in Fig. 12.3. (We now use 'polygon’ to mean any
smple closed polygona path on if').

(a) (b)

Fig. 12.2. The two possble separations of the edges at an internal site of it" (lying
on the edge (i ,j) of SB). The fird represents no bond between i and;, the second
a bond.
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Clearly any connected component of G now corresponds to alarge idand
in ££, made up of basic idands joined together. Each such large idand will
have an outer perimeter, which is one of the polygons into which ££ is
decomposed. A large idand may aso contain lakeswithin; these correspond
to faces of G and aso have a polygon as outer perimeter.

Fig. 12.3. A graph Gon2 (full lines between open circles represent bonds), and

the corresponding polygon decomposition of ££. To avoid confuson at internal

sites, stes of ££ are not explicitly indicated, but are to be taken to be in the same
postions asin Fig. 12.1.

Each polygon is of one of these two types. Thus i£' is broken into p
polygons, where

p=C+S (12.3.1)

C being the number of connected components in G, and 5 the number of
internal faces.

The graph G has N sites and / bonds (where/=h + I, + h+ ...). The
numbers C, S N, | are not independent, but must satisfy Euler's relation

$= CN+I. (12.3.2)

(Ore, 1967 p. 48: v; therein is the total number of faces, including the
externa infinite face, 0 iy=S+ 1)

Eliminating C and 5 from the equations (12.2.5), (12.3.1) and (12.3.2),
it follows that

Zn - W2 pl2 010203

. (12.3.3)
-q p X XoX3
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where
x=q,, (12.3.4)

and the auffix 'pd' means that the sum is now taken to be over al polygon
decompositions of X'. Here p is the number of digtinct polygons in the
decomposition, and I, is the number of internal sites of class r where the
edges have been separated as in Fig. 12.2(b).

Arrow Coverings of i£'
The summand in (12.3.3) can be thought of as a product of various factors:
afactor d for every polygon in the decomposition (for example, there are

four polygons in the decomposition shown in Fig. 12.3), and a factor x; for
every site of class r where the edges of |£' have been separated as in Fig.

12.2(h).
\<

&

a >0 a<0

Fig. 12.4. Polygon corners of it' at which an observer moving in the direction of
the arrows turns through an angle or to his left, or equivaently an angle -or to his
right. Note that —n< a< n, and the angle between the edges is n—1<*|.

Thex factors are 'local’, in that each depends only on what is happening
at the appropriate site. The g* factors are not loca in this sense, but we
make them so by the fallowing device.

Define quantities A and z by the equations

o= 2cosh A, z= exp(A/2w). (12.35)

Consider a polygon decomposition of !£', such as that in Fig. 12.3. Each
polygon is made up of edges of !£', and has as many corners asit has edges.
For instance, the polygon on the left side of Fig. 12.3 has 10 edges and 10
corners. Each polygon corner is the intersection of two polygon edges.
Place arrows on the edges of X' so that a each polygon corner there is
one pointing in and one pointing out. Give each corner aweight Z', where
aisthe angle to the l&ft through which an observer moving in the direction
of the arrows turns when passing through the corner. Since edges cannot
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overlap, or mugt lie in the interval —n< a< n. Two typical examples are
shown in Fig. 12.4.

Still consdering a particular polygon decomposition of X', form the
product over al corners of these weights Z2. Then sum this combined
weight over al alowed arrangements of dl the arrows.

The result has to be qp'z. To see this, note that the arrows round a
polygon must dl point the same way: either dl anti-clockwise or dl
clockwise. In the former case, the observer turns through atotal angle In,
so the product of the corner weights for this polygon is Z". In the latter
case the angle is —2n and the combined weight is z~**. Both possibilities
can occur independently for each polygon, so each polygon gives a total
contribution Z** + Z'?". From (12.3.5) this is just 2 cosh A, i.e. gK There
are/? polygons, so the total sum must indeed be ™.

This means that we can write (12.3.3) as

Zu= 2200, L 20 (12-36)

where the suffixes 'pd' and 'ac’ denote that the outer sum is over al polygon
decompositions of X', and the inner sum is over dl dlowed arrow coverings
of the edges of X'. The product is over dl polygon corners m, a;, being
the corresponding angle a (as derined above). The weights 72" are local
properties of the corners m; o is the rule that at each corner there must
be one arrow in and one arrow oui.

Ice-Type Modd on X

Consider a particular interna site of X', lying on the edge (/,/) of X. Let
a, P, y, <5 be the angles between the four edges of X', as indicated in Fig.
12.5. There are two possible ways of separating the edges, as shown in
Fig. 12.2. In each case there are four possible arrangements of arrows.
The resulting eight possibilities are shown in Fig. 12.6, together with the
product of the corresponding x, andz'* factors. This product is the total
contribution of this site configuration to the combined summand in (12.3.6).

Note that in each case there are two arrows into the site, .and two arrows
out of it. Thus the 'ice rule' of Section 8.1 is satiffied at dl internal Sites.
If we ignore the way in which the edges are separated, then we obtain the
usual sx arrow arrangements alowed at a site (or vertex), as shown in
Fig. 12.7.

The next trick is to interchange the two summations in (12.3.6). Start
with the undecomposed graph X'. Place arrows on its edges in dl the ways
that they can occur above. This means that the ice rule must be satisfied
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Fig. 12.5. A typica internal ste of ££, showing the angles between edges. Note
that aand y lie insde basic polygons (‘islands;) of !£', while /8 and 8 lie outside.

XKoLXX

Fig. 12.6. The two possible separations of edges at an internal site of X', and the

eight alowed arrangements of arrows thereon. The product of the corresponding

X and Z' factors is shown underneath, usng the notation of Fig. 12.5 and omitting
the auffix of x,.

a each internal site, and that there must be one arrow into (and one arrow
out of) each externa site.

Every such arrow covering can occur in the combined summation in
(12.3.6), but some occur more than once. This is because arrow arrange-
ments 5 and 6 in Fig. 12.7 can each arise in two ways. Arrangement 6
comes from either of the two right-hand possibilities in Fig. 12.6, arrange-
ment 5 from the next two.

NGO 0 0 00

Fig. 12.7. The 9x possible arrangements of arrows a a Ste of !£'. Note that this
figure is oriented so that the shaded areas ('land’) are to the right and the left.
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Suppose a particular alowed arrow covering of it' contains / vertices of
types 5 and 6. Each vertex of type 1, 2, 3 or 4 corresponds to a unique
separation of the edges a that vertex, but each vertex of type 5 or 6
corresponds to two possible choices of the edge separations. Thus the
arrow covering corresponds to 2' polygon decompositions, and occurs 2
timesin (12.3.6).

However, each choice can be made independently, so thereisno problem
in caculating the total contribution of this arrow covering to (12.3.6): one
smply sums the appropriate two weights in Fig. 12.6. Thus (12.3.6) can
be written as

Zn = g7 2 11 (weights), (12.37)

where now the sum is over dl dlowed arrow coverings of if', and the
product is over dl sites of if'. Each externa site contributes a weight Z*
to this product, where a is the angle in Fig. 12.4. Each interna ste
contributes a weight cbk, where k(=1 ,. . . , 6) is the arrow arrangement
at the site, as liged in Fig. 12.7, and

oh,...,ci)e= 2\2'~? xz~°, x.2°~P,

P8+ x AT 29+ x 2 (12.3.8)

Herer isthe class of the internal site, and a, /3, y, d are the angles shown
in Fig. 12.5. It is important to note that the angles aand y lie inside basic
polygons (‘idands) of it', while /3 and 6 lie outside.

The sumin (12.3.7) is over dl arrow coverings of it' such that each site
has as many arrows pointing in as it has pointing out. For the internal sites
this is the ice rule. Indeed, comparing (12.3.7) with (8.1.1) and (8.1.3),
we see that g~""?Z is the partition function of an 'ice-type' (or 'six-vertex’)
model, generdized to dlow different weights on different sites, and to
dlow 'external’ sites of coordination number two. Thus the Potts model
on any planar graph it can be expressed as an ice-type model on the medial

graph 2'.

Four-Colour Problem

As was remarked shortly after (12.2.4), if v = -1 then Zy is the number
of ways of colouring the planar graph it with g colours. It is fascinating
to wonder whether the ice-type formulation (12.3.7) has any bearing on
the famous four-colour problem (Ore, 1967; Saaty and Kainen, 1977),
which was only recently solved (Appel and Haken, 1976, 1977; Appel et
al., 1977) dfter tantalizing mathematicians for over a century.
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Certainly g = 4 isavery specia case: A in (12.3.5) isreal for q 3= 4; for
g < 4 itis pure imaginary. In particular, for = 4 and D = -1 we have
that z=1 and x, = -£. The weights in (12.3.8) are therefore real, but
d=8 and ft), are negative. To obtain an alternative solution to the four-colour
problem we would need to show that the negative contributions to the sum
in (12.3.7) are numericaly less than the positive ones.

Another intriguing point which suggests that our transformation may be
relevant is the following. It is conjectured from numerical and other studies
that the real zeros of the colouring polynomial of an arbitrary planar lattice
cluster round limit points when the lattice becomes large. These limits are
supposed to occur at the 'Beraha numbers q = [2cos(jr/n)]?, n=
2,34, (Beraha et al., 1975, 1978; Beraha and Kahane, 1979; Tutte,
1970, 1973, 1974). From (12.3.5) we see that this corresponds ssmply to
our parameter A having the values in/2, in/3, in/4, etc.

12.4 Square-Lattice Potts Model

Equivalent | ce-Type Model

For the interior of regular lattices there is an obvious natural choice of ££,
namely to take the sites of £ to be the mid-points of the edges of ££ and
to take two sites of ££ to be adjacent if any only if the corresponding edges
of ££ meet a a common site and bound a common face. All sites of ££ are
then ‘internal’ except at the boundaries, which is the reason for our
terminology. The square lattice (£) is shown in Fig. 12.8, together with
its resulting medial graph ££'. It has two classes of edges, horizontal and
vertical, which we can cal classes 1 and 2, respectively. Define a parameter

s = exp(A/4). (12.4.1)

Then from (12.3.7), (12.3.8) and (12.3.5), we see that q™Zy is the
partition function of an ice-type model with weights

d>i,... , &% = 1, [x%,52 +x5 +x 2, (12.4.2)

r being the class of the site of £6', and the six arrow arrangements being
labelled as in Fig. 12.7.

We can eliminate the fractional powers of € by associating additional
mutually inverse weights with the tips and tails of some of the arrows. With
every arrow on a SAV-NE edge, associate a further weight st with the
site into which it points, and a weight s with the ste it points out of.
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Fig. 12.8. The square lattice i£ (open circles and broken lines) and its media lattice
££ (full circles and lines). The two classes of edges of £, horizontal and vertical,
are indicated by the numbers 1 and 2, respectively.

Obviously these weights cancel from Zy, but the individual vertex weights
u>s, @ are modified: those on sites of type 1 are multiplied by &, -2,
respectively; those on sites of type 2 are multiplied by s~*, s%.

It must be noted that the weightsin (12.4.2) are labelled as in Fig. 12.7,
where the shaded areas are to the right and left. This is the way sites of
type 1 are drawn in Fig. 12.8, but for sites of type 2 it is necessary to turn
one of the figures through 90°.

It is more convenient to use the same direction throughout. Let
coi,. . . , U>g be the weights of the six arrow configurations shown in Fig.
12.9, always using the same orientation for this figure as for Fig. 12.8. For
sites of type 1 this isthe original labelling; for sites of type 2 we have that
0)i,.. ., (06 = fth; ft>4, Gh, ft>i, fr>6, ft>5- Allowing also for the multiplications
by s* and s~* mentioned above, we obtain:

Tywel: @ ... 66 = L1, X 1+xe 1%y e | (12.4.39)
Type 2:a)!,. .. , COs = XoXo, L1, X, + e\X, + e~ (12.4.3b)

XXXXXXK

Fig. 12.9. The six possible arrangements of arrows at a site of the square lattice,
using the same orientation for dl sites.
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The weights of the external sites a the right and left of Fig. 12.8 are
now aways one. Those at the bottom and top are exp(”2) if the arrows
turn to the left, exp(-A/2) if they turn to the right.

Alternative Derivation of the Equivalence

The equivalence of the square-lattice Potts mode to this ice-type model
was firg obtained by Temperley and Lieb (1971). They used operators
which form a rather elegant and interesting algebra. For this reason it
seems worthwhile outlining this alternative approach.

Consider the Potts model on the square lattice i£. Let it have m rows
and n columns. Then in the usua way (Sections 2.1, 7.2, 8.2) we can write
the partition function as

Zv = VWVW.. . Vg, (12.4.4)

there being m Vs and m- 1 Ws. Here § is the M'-dimensional column
vector whose entries are dl unity, Vs the transfer matrix that adds a row
of horizontal edges to the lattice, and W adds a row of vertical edges. Both
Vand Ware " by ' matriceswith indices a={o\,...,a,} and & =
{ai,...,&,}, andwith elements

-1 n

Vao = oxpltf, 2 d(0], 3.)} N 6(0], &), (12459)

Woo = exp{Kz 721 &a;, of)}‘ (12.4.5b)

(Note that we do not impose cydlic boundary conditions on either the rows
or columns of !£))
Let us define matrices U\,.. . , VA-x by

(Wi-t)as =47 11,d(O}, &), (12469

n

(Un)o,r = q* 801, Gi11) ft %°i, &j) » (12.4.6b)

Thus Un is diagonal, with diagond dements g*d(Oi, <+); while f/-i is
of the form
Uii-x=e®e® ... X)e®g®eX)...®e, (12.4.7)

¢ being the unit <74ty-g matrix, and g (occuring in position / in the product)
being the g-by-q matrix with al entries equal to g~K
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From (12.4.5) and (12.4.6) it is readily observed that
V=expfa-** "+ U + ..+ Uy}, (12.4.89)

n

W= (153> + <T*Eyr), (12.4.8D)

where S> is the unit g"-by-g" matrix and v, = exp(Ky) - 1, asin (12.2.1).

The expression (12.4.89) can be put in a form similar to (12.4.8b) by
using the fact that Uf =q'U;. Alternatively, (12.4.8b) can be put in aform
smilar to (12.4.8a). We obtain

n-l
V=Y {$+q U5}, (12.4.8¢)
i=1
W= vy expighili + Us+ ... + U}, (12.4.8d)
where v, = exp(A') - 1 and
exp Kt = (v; + g)lv, = {€' + g- 1)/(e*? - 1). (12.4.9)

The matrices U\,. . . , f/xi satify the relations
Uf = g*U,, i=1,...,In-1,
UUiU = U, i=1,..2n-2, (12.4.10)
UU;Ui = U i=2,....2n -1,
v, = UU;, li—jl=2.

These relations define the agebra generated by U\,. . . , Uy~\* In par-
ticular, they define al the eigenvalues of the complete transfer matrix VW
(but not their degeneracies). They therefore define the maximum eigen-
value, and hence the large-m behaviour of the partition function.
Indeed, they define ZN even for finite m. To see this, define the matrix

R= U1U3U5...U2n-1. (12411)

Using the explicit representation (12.4.6a), or (12.4.7), we see that R is
the q" by " matrix, dl of whose entries are equal to g~"*2 Thus

R= g-""20%f, (12.4.12)

where § is the column vector in (12.4.4), dl of whose entries are one. It
is now obvious that for any " by q" matrix X,

RXR = T(X)R, (12.4.13)
where x(X) is a scaar.
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More specificaly, r(X) is q~™ ~X*. From (12.4.4) it follows that
Zn = P r(VWWW. . . V). (12.4.14)

Now forget that V, W, Ui,. . . , Uy, -I were introduced as q" by " mat-
rices, and regard them simply as operators satisfying (12.4.8) and (12.4.10).
Let X be any sum of products of U\,. . . , U,y-i and the identity operator
3>. Then from (12.4.10) and (12.4.11) it can be established that (12.4.13)
is true, and r(X) can be evaluated. Since VT¥VW. . . V can be written as
such a sum of products, it follows from (12.4.14) that Zy can in principle
be calculated in this way.

Of course | do not claim that this programme can readily be carried out
for arbitrarily large m and n; only that it can in principle be done. This
means that we do not have to use the representation (12.4.6): any set of
operators U\,..., Ui\ that satisfy (12.4.10), and for which R is not
identically zero, will be an equally good representation.

Temperley and Lieb (1971) showed that one such alternative rep-
resentation is to take U\. .., Uin-i to be 4" by 4" matrices, with
indicesa= {a\, ..., ay} and a ={qj ,. .., <2}> where each OCJ and aj
takes the values +1 and — 1, and the elements of £/; are

(Udaw =001, ai). . . d@ai-i, a-i) h(a, au.)

x h(@; , 0i+1) S@i+2, 0"+2). . . d(@zn, <&,), (12.4.15)
fori=1,...,2n- 1, where

h(+,+)=h{(-,-)=0,

h(+ ,-) = exp(-A/2), h{- +) = exp(A/2), (12.4.16)
and A is given by (12.3.5).

Regard oe\,. . ., 0cy, as representing a row of vertical, or rather near-
vertical arrows: & = + if the arrow in column:® points up, g = - if it points
down. More specificaly, let cc\, . . . , as, represent atypical row of arrows
on the edges of X', such as the top row of edges in Fig. 12.8, labelled
1,...,2n. Consider the operator $> + X\U,, using the ("-representation

(12.4.15). This acts on the arrows in positions 2/ and 2/ + 1, and can be
thought of as a 'vertex transfer matrix'. Its non-zero entries are precisely
the weights a>\,. . ., a>¢ in (12.4.3a), corresponding to the six arrow
arrangements in Fig. 12.9. Thus it is the vertex transfer matrix of a site of
type 1 in the ice-type model. From (12.3.4) and (12.4.8c), we see that V
is just the product of these matrices, fory=1,...,«- 1. Thusthe Vin
(12.4.8) is the transfer matrix for a row of sites of type 1 in the ice-type
model.
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Similarly, from (12.4.8b), (12.3.4) and (12.4.3b) we find that g~"?Wis
the transfer matrix for arow of sites of type 2 in the ice-type model. Noting
that N = mn, it fallows from (12.4.14) that

Zy = " x partition function of the ice-type model.  (12.4.17)

We can veify that external sites have weights given by the rules following
(12.4.3). The equivalence (12.3.7) therefore follows from the two rep-
resentations (12.4.6) and (12.4.15) of the operators U\,. . . , U-m+i-

Some General Comments on the Ice-Type Model

For general values of X\ and xi, the Potts model has not yet been solved.
It is one of the most tantalizing unsolved models. For instance, as was
remarked in Section 8.12, the homogeneous square-lattice ice-type model
can be solved by the Bethe ansatz method of Chapter 8, even if the
‘zero-fidd' restrictions (8.1.7) are violated. Then the definition (8.3.21) of
A becomes

A ={o)\a>2 + 0)3(1)4— O)scoe)/2(o)ic020)30)4)",' (12.4.18)

and the eigenvectors of the transfer matrix depend only on this A and the
horizontal electric field E'.

The ice-type model we are considering here is not homogeneous:. its
weights are different on the two sub-lattices (types 1 and 2, respectively).
Even so, from (12.4.3), (12.4.18) and (12.3.5) we see that

A=-coshA=-i?' (12.4.19)

for both sites of type 1 and type 2. (Indeed, from (12.3.8) this relation is
true for arbitrary planar graphs.) Thus A is uniform, but unfortunately the
Bethe ansatz method of Chapter 8 ill fails to work.

An intriguing point is that the ansatz fails even for q= 1 and q = 2,
whereas the free energy can be caculated for these cases by other methods,
the first case being trivid and the second being the Ising model. It is dso
worth noting that in this equivalence the Ising model corresponds to [x in
(8.8.1), i.e. A = -cosft, having the vdue Jt/4. This contrasts with the fact
that the Ising model is dso equivalent to the free-fermion model, as was
shown in Section 10.16. The free-fermion model is an eight-vertex gen-
eraization of an homogeneous six-vertex model with A = 0 and fi = nil.
There is therefore a relation between these \i = nlA and ju = nil vertex
models.
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Duality

One advantage of this ice-type formulation of the Potts model is that it
makes it very easy to show that the sguare lattice modd satisfies a duality
relation.

To see this, note from (12.4.3) that the weights on stes of type 2 are
similar in form to those on sites of type 1: in fact we can interchange them
by replacing x, %, by*”*, XT*, respectively, and then multiplying al type
1 weights by x,, dl type 2 weights by X\.

On the other hand, for a large lattice T, we are free to choose which
sub-lattice we designate as 1, and which as 2 (a simple way of saying this
is to say that we can replace the black squares of a chequerboard by white
ones, and vice versa). This afects the boundary conditions, but we do not
expect this to affect the way Zy grows exponentialy with N. Keeping only
such exponential factors, and regarding Zy as a function of X\ and x> (q
being fixed), it follows that

ZN{Xx , %) = (Xixo)“Zdx? , xf1) . (12.4.20)
More precisaly, we expect the large-lattice limit
y= - lim N'InzZy (12.4.21)
Af-»00

to exist. Asin (6.2.10) and (1.7.6), this is the dimensionless free energy
per site, being related to the usua free energy/by ip = f/ksT. Like Zy,
xf> can be regarded as a function of X\ and x,. Then (12.4.20) gives

V<, X)) = -In(xxo) + xp{xi', V) * (12.4.22)

This is a duality relation, relating a high-temperature Potts model to a
low-temperature one. It was first obtained by Potts (1952). We could also
have obtained it by interchanging K\ and K% in (12.4.89) and (12.4.8d),
and replacing each (/- by Ui+\. apart from boundary conditions and scalar
factors, this merely interchanges the two transfer matrices V and W.

We remarked in Section 12.1 that the g = 2 Potts model is equivalent
to the Ising modd: the relation (12.4.22) is then the square-lattice Ising
model .duality relation (6.2.14).

Location of the Critical Point
Now suppose that )\ and J, are both positive. This means that the system

is ferromagnetic: adjacent spins 'like' to be equal. From (12.2.6) and
(12.3.4), K\, K, Vi, v, and xi, x, are dl positive.
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Obvioudy (12.4.22) relates the value of " at a point (*i, X,) to its value
at {x ~f')- This mapping takes the domain 0 < XX, < 1 to the domain
XiXo > 1. Every point on the line X\X,= 1 is slf-dud.

We expect the ferromagnetic Potts model to be disordered at high
temperatures {x\ and x, small), al g possible spin-states being equdly
likely. At low temperatures {X\ and x, large) we expect it to be ordered,
one of the spin-states being preferred by dl the spins. Somewhere in
between we expect there to be a critical temperature T. at which this
spontaneous symmetry breaking just starts to occur. In the (*i, X,) plane
this must be a line, separating the disordered and ordered regions. We
expect %j)(xi ,x») to be analytic, except possibly on thisline.

We now argue as in Section 6.2. If \p{X\ , x,) is non-anaytic on a line
inside the domain 0 < X\x, < 1, then from the duality relation (12:4.22) it
must also be non-analytic on alineinsde X\x, > 1. The smplest possibility
isthat it is non-anaytic only on the sdf-dua line xX\x, = 1. (For an isotropic
system, with X\ = Xx,, this corresponds to requiring that the criticd tem-
perature be unique.) Hintermann et al. (1978) have shown that thisisin
fact the case: the critical points of the square-lattice Potts model occur
when

XX = 1. (124.23)

125 Critical Square-Lattice Potts Modd

Suppose that the condition (12.4.23) is satisfied, i.e. X, = IIX\. Then from
(12.4.3) it is evident that the weights of type 2 are dl equa to the
corresponding weights of type 1, divided by x\. Multiplying dl the six
weights a any given site by some factor is a trivial modification of the
model: it merely multiplies the partition function by the same factor. The
system istherefore effectivdly homogeneous. more precisaly, using (12.3.7)
and noting that there are N sites of type 2 in <E,

Zn= g™{"Zx, (125.1)

where Z',y is the partition function of the ice-type modd on the lattice i£
with 2N sites, each with Boltzmann weights given by (12.4.3a).

Free Energy

Since it is homogeneous (i.e. dl sites have the same weights), this ice-type
model can be solved by the methods of Chapter 8. In fact, as was remarked
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at the end of Section 8.1, vertices of type 5 and 6 must occur in pairs,
being respectively sinks and sources of horizontal arrows. Thus the weights
a>sand a> (, occur only inthe combination wsgjs. Thismeansthat the partition
function is unchanged by replacing both cos and a>¢ by their geometric
mean. From (12.4.3a) and (8.3.3) (noting that the vertex ordering in Fig.
129isthe same asthat in Fig. 8.2, after an appropriate rotation), it follows
that Z'y\Vs the partition function of a zero-field ice-type modd on <£; with
weights

0=1 b=xy, c=( +2xi cosh A+ *?)*, (125.2)

The dimensionless free energy of the Potts mode is defined by (12.4.21).
From (12.5.1), (1.7.6) and (12.5.2), it is

Vo= A\n(qVxi) + 2f/ksT, (12.5.3)
where flksT is the dimensionless free energy of the icetype model. This
has been cdculated in Chapter 8. From (8.3.21) and (12.3.5),

A = -coshA = -\q\ (12.5.4)

so there are two casesto consider: 0> A >—1,and A <-1. Intheformer
case we see that 0 < g < 4, and we use the results of Section 8.8; in the
latter case(# > 4), we use those of Section 8.9. Since ip is continuous, the
case g = 4 can be handled by taking the appropriate limits. Doing this, we
find that

y=-1Ing-<t>(x1)-<1>(xo), (12.5.5)

where X\ and x, satidy the criticality condition (12.4.23), q is regarded as
a constant, and the function (p(x) is defined as follows:

0<qgq<4 o=2csli, 0<[I<Iz/2

X =dgny/dn(u-y), 0<y<\i, (12.5.63)
= sinh(;r - n)t snh 2/f
= dt;
o) =4 fSmhMcosnfit

g=4 x=T/(1L-T, 0<T<1,
<t>(Y° I y~‘exp(-y)sechysmh2iydy: (12.5.6b)
No]
<7>4. <& =2coshA, A>0,
x = sinh B/sinh(A — ), 0<B<A, (12.5.6¢)

<P =fi +nl-|1 n" *exp(-nA) sech nk sinh 2n/J.
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For al vaues of g, this function 4>{x) satisfies the identity
dx) = dx ) =Inx. (12.5.6d)

Let Y], X, fij be the values of these parametersyy, r, /?whenx = Xj. Then
the criticality condition (12.4.23) implies that

T+72="T1+T,=1,/2+& =A. (125.7)

Indeed, Y\ "7 Yi are the expressions \{fi + w) and ijU - w) in Section
8.8, while fa and fa are the \(k + v) and £A - V) in Section 8.9. The A of
this chapter is the same as that of Chapter 8.

Theintegral in (12.5.6a) can be evaluated explicitly when fx is arational
fraction of n (e.g. nlA, J1/3, 2J31/5). For the isotropic model, with x; =
% = 1, some of these cases have been tabulated by Temperley and Lieb
(1971).

Internal Energy and Latent Heat

We can dso cdculate the interna energy of the Potts modd at its critical
point (Potts, 1952; Baxter, 1973d). To do this, wefirst return to considering
the general Potts model, not necessarily satifying the criticality condition
(12.4.23). From (12.1.2), (12.1.3) and (1.4.4), the total average energy is

(E) = keTMInZy, - (125.8)

in agreement with (1.4.6). The sguare-lattice partition function depends
on Tviaxy, andx,, and from (12.1.4), (12.2.6) and (12.3.4), X, and Tare
related by

X = o-\exp(JlksT) - 1]. (12.5.9)
Regarding Zy as a function of X\ and x% (q and iV being kept constant),
it follows that :

2

(E) = -g-"hexd{dlksT) Az, (125.10)
r = 1 dX;

Now use the expression (12.3.7) for Zy, where the vertex weights are
given by (12.4.3). For a given arrow covering of the edges of ££, let
nk(n'k) be the total number of sites of type 1 (type 2) that are in the arrow
configuration k shownin Fig. 12.9. Herek=1,. .., 6. Then (12.3.7) can
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be written more explicitly as
Zyv= q"Exf™MH1 + xi )" (1 + xi e)©
ac

X X80 + &) (X + ey, (125.11)

the sum being over dl arrow coverings of ££' that stisfy the ice rule at
each site.
From (12.5.10), (12.5.11) and (1.4.4), it follows that

€ = ~g-" NI kg DI, (12.5.12)
where
j <M3> + Ny exp(A)(Ics) | exp(-A)(Ne)
! * l+7exp(A)  1+Xiexp(-A)'  (125.13)
RV VN L N .
X2 *orexp(A) - *otexp(-A)

I

(itj) and (nj) being as usual the average values of n; and n].

We can calculate I\ and |, when the criticaity condition (12.4.23) is
satisfied, i.e. Xx, = 1. Then Zy is given (for large N) by (12.4.21) and
(12.5.5), i.e.

InZy = N[\\nq + <p(X\) + 4>(x0)], (12.5.14)

the function #(.x) being defined by (12.5.6), g being regarded as a constant.
Using this expression for Zjyin (12.5.11), and differentiating logarithmically
with respect to Xi (remembering that x, = [1Xi), we find that

A# (*i) -X<j>'(x)] =h -xih. (12.5.15)

<p'(x) being the derivative of <p(x).

This is one equation relating I\ and |,. We can obtain another by
considering the symmetry relations between the 12 averages
(«!>,..., (16> As we noted at the beginning of this section, when xx, = 1
we can renormalize the weights (12.4.3) so as to reduce them to the form
(8.3.3), where a, b, c are given by (12.5.2). These renormalizations leave
(ni),..., (rte) 'unchanged, but they make it clear that the ice-type model
(for X\X, = 1) has two symmetries: it is tranglation invariant (sites of type
1 have the same weights as sites of type 2), and it is unchanged by reversing
al arrows (this is the 'zero-field' condition).

It is rigorously known (Brascamp et al., 1973) that if ¢ >a + b, then
each of these symmetries is spontaneously broken. As is explained in
Section 8.10, the system is anti-ferroelectrically ordered and there is a



12.5 CRITICAL SQUARE-LATTICE POTTS MODEL 343

spontaneous staggered polarization P,. By considering a system in an
infinitesimal staggered electric fidd (or with staggered fixed-arrow bound-
ary conditions), we can define Po as (ti). Here T, is the polarization of the
electric dipole on edge i: it is defined asin Section 8.10, being +1 (‘right’)
if the arrow points in the standard direction of Fig. 8.3, -1 (‘wrong') if
it points in the other.

This Po is the same for al the 4N edges of £, 0

47VP,=average number of right' arrowsminusthe
average number of wrong' arrows. (12.5.16)

Each arrow adjoins just one site of type 1, and each site of type 1 is the
meeting-place of four arrows (a 'vertex'). Choose the standard configur-
ation of Fig. 8.3 to correspond to al vertices of !£' of type 1 being in the
arrow arrangement 6 of Fig. 12.9. Then by comparing these figures it
becomes apparent that arrow arrangements 1 to 4 each contain as many
wrong arrows as right ones, arrangement 5 contains 4 wrong arrows, and
6 contains 4 right ones. Thus (12.5.16) can be written as

NPo = (ne)-(ns). (125.17)

Although the two symmetries of sub-lattice interchange and arrow-
reversal are both spontaneously broken for ¢ > a + b, the combined sym-
metry is not. For instance, the ground state shown in (8.3.3) is unchanged
by reversing al arrows and then interchanging sites of type 1 with sites of
type 2. It follows that

) = <ny), <& = («@>, <G = <, (12.5.18)
(niy = (n3), (n%) ={ng, (ng)=1(ns.

The equations (12.5.17) and (12.5.18) are ill true when \a - b\ < c <
a + b. In this case the ice-type modd is disordered in the sense that there
is no spontaneous symmetry breaking (though the correlation length is
infinite, as remarked in Section 8.10). This means that (ns) = (ng), S0 Py
in (12.5.17) is then zero.

There are N sites of type 1, each site must be in one of the six possible
arrow arrangements, so « +... +ng=N. Forming the expression
i + 22 where h and 7, are defined by (12.5.13), using the symmetry
relations (12.5.18), together with (12.5.17) and (12.4.23), it follows that

xily + %0, = N{I-2x £xO Po}, (12.5.19)
where
£(*) = snh A/(l + X%+ 2xcosh A). (12.5.20)
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This is the second equation for / and 7, that we needed. Remembering
that x, = 1/xi, from (12.5.20) and (12.5.6d) we can readily establish that

x1 §(x1) = x2 8(x2) (12.5.21)
X1 ¢’,(xl) + X2 <t)'(X2) =1

Solving (12.5.15) and (12.5.19) for h and/,, using the properties (12.5.21),
it follows that

Iy = N[<I>'(%)-Kxr)P(], (12.5.22)

forr = 1, 2. From (12.5.12), the internal energy per site U = (E)/N of the
sguare lattice Potts modd is therefore

2

U= a2/, op(di/keT) [-4>'{x) £ t{x) P, (12523
r=\

| have introduced a + sign to adlow for the fact that the Sgn of the RHS
of (12.5.17) is not yet determined. If the ice model symmetries are spon-
taneoudly broken in favour of arrow arrangement 6 (5) on sites of type 1
(2), then the RHS of (12.5.17) is positive, and P, therein is the usua
spontaneous staggered polarization. On the other hand, if the symmetries
are broken in favour of arrow arrangement 5 (6) on stes of type 1 (2),
then P, is negated. From (12.4.3), the former situation occurs (for A > 0)
as X\X; approaches unity from below, the latter as xX\X; approaches unity
from above. The dgn in (12.5.23) should therefore be chosen poditive if
T approaches the criticad temperature T, from above, negative if it
approaches T, from below.

The spontaneous polarization P, has been evaduated (Baxter, 1973c) and
the relevant results are given in Section 8.10, notably in (8.10.9), (8.10.2)
and (8.9.1). Using (12.5.4), we see that there are two cases to consider:

(i)0<g=£4:0>As=—1, A pureimaginary.
The ice-type model is disordered in the sense that there is no spon-
taneous symmetry breaking (though the correlation length is
infinite). Thus Po is zero, and U is continuous across T= T.. (We
gtill expect U to be non-analytic at T= T certainly this is so for
g = 2, when the Potts model becomes the Ising model.)

(i) g»4: A<-1, A isred and is to be chosen postive. There is
spontaneous symmetry breaking; P, is positive, being given by

Po= 1] [tanhmA]>. (12.5.24)
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From (12.5.23), the Potts model therefore has afirst-order transition
a T= T with latent heat

2

L = 2g-* 2 J, exv(J/keT) Qx,) Po. (12.5.25)

For the isotropic model, with A= J,=J and xi="2 =1, we can
caculate 0'(*i) from (12.5.21). Using (12.5.9) and (12.5.23), we obtain
the smple formula

Qu =-(1+7?2"")/e (12.5.26)

Here U, is the average of the internal energy just below and just above
Te, i.e. Oy~ i(U- + U+). For q =£ 4, where there is no discontinuity in U,
thisis the internal energy at T.. This result was obtained by Potts (1952)
in his origind paper.

12.6 Triangular-Lattice Potts Mode

We can carry out asimilar programme for the Potts model on the triangular
and honeycomb lattices, i.e. we can locate the critica points, and at these
points we can calculate the free energy and the internal energy (Baxter et
al., 1978).

Let Zji and Zy be the partition functions of the Potts model on the
triangular and honeycomb lattices, respectively, where each lattice has N
sites. These partition functions are given by (12.1.3), except that for each
lattice there are three types of edges. Let us label them 1,2,3, and let
K\, K.2, K3 be the corresponding values of K. Then each partition function
depends on K\, K, K3, aswdl ason N and q.

The triangular lattice it is drawn in Fig. 12.10, together with its media
graph T (which is a Kagome lattice). From (12.3.7) and (12.3.8) we have
that

ZTN(Kl.Kz,Ka):qu', (126.1)
where Z' is the partition function of an ice-type model on ££, with weights
fl, .. . ",0)=1, 1,XnXnT* +X 3t +XJ-2 (12.6.2)

Herer = 1, 2 or 3 depending on the type of the site of i£\ the dx dlowed
arrow arrangements are thefirst sx shown in row r of Fig. 11.2. The lattice
X' has 3N sites; t and %, are defined by

t = exp(M3), x.=q fexp(K.) —]. (12.6.3)
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« &

Fig. 12.10. The triangular lattice 2! (open circles and broken lines) and its media
Kagomé lattice 56 (full circles and lines).

Triangular-Honeycomb Lattice Duality

Alternatively, consider thelattice ££; that isdual toi£. Thisisan honeycomb
lattice of 2N sites, the sites lying in the unshaded triangular faces of T in
Fig. 12.10. The medial graph of iy isalso <£' (apart from boundary effects),
but now the shaded and unshaded faces in Fig. 12.10 are interchanged. By

considering the Potts model on ££,, and again using (12.3.7) and (12.3.8),
we find that

ZULyz3, L=V 2\ (12.6.4)
where Z" is the partition function of an ice-type modd on T, with weights
S1,...d6e =Y jnl, I, A+ 12, 2402, (12.6.5)

The corresponding arrow arrangements are ordered as in (12.6.2), t is
agan given by (12.3.5) and (12.6.3), and

Y = g-\exp(L,) - 1]. (12.6.6)

Suppose that y, =x7*. Then the weights (12.6.5) are the same as those
in (12.6.2), except that they are al multiplied by y,. Multiplying all weights
of type r by any factor or merely multiplies the ice-model partition function
by a/. From (12.6.1) and (12.6.4), it follows that

ZUK:i, Ko, K3) = (qliX|X2X3)NZUAi, L2,|_3), (1267)
where

X = g-KeMKr) - 1] = ?V[exp(L,) - 1]. (12.6.8)
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This is a dudity relation, mapping a low-temperature (high-temperature)
Potts model on the triangular lattice to a high-temperature (low-temper-
ature) one on the honeycomb lattice. For the Isng modd case, when
g =2, it is equivaent to the relation (6.3.7).

Location of the Critical Point

We can associate mutually inverse weights with the tips and tails of arrows,
and incorporate these into the vertex weights. Obvioudy this leaves Z'
unchanged, but alters&>i,. . ., & e. If we use the same weights for dl edges
of the same type (e.g. for dl horizontal edges of !£"), then a>i,. . . , @ are
unchanged, Q¢ is multiplied by afactor a;, and (bg is divided by a;, where
r is the type of the corresponding site, and a\a,a-5 = 1.

We may ask whether we can use this freedom to make the ice-type
modd satidy the 'zero-field' conditions oi\'= u>i, 6h, = &, a)s = (b, for
r=1, 2, 3. The fird two conditions are automatically saisfied. The third
implies that the product of the three weights ws (forr= 1, 2, 3), isthe
same as that of the three weights «Js. These products are unchanged by the
additional arrow weights, so from (12.6.2) we must have

U@t + xt>) = YI(t + xr?). (12.6.9)
r=1 r=|
From (12.3.5) and (12.6.3), tis related to g by
q=P+r (12.6.10)

Expanding both sides of (12.6.9), |t follows that
qXXaxs + xpx3 + XX + Xk = 6.11)

This is a necessary condition for the ice-type model to be redl(JC|bIe to
zero-field form. It is aso sufficient.

What isintriguing is that (12.6.11) is aso the condition for the triangular
Potts model (or the dua honeycomb model) to be critical. This is not
obvious: unlike the Ising model, the Potts moddl does not in genera have
a star-triangle relation, so we cannot establish a triangular - triangular
dudity relation like that of Section 6.5. However, Kim and Joseph (1974)
showed that there is a star - triangle relation when (12.6.11) is sisfied
(they actually considered the isotropic case, when *i =x, =*3, but the
argument readily generalizes). The resulting mapping takes the triangular
Potts model back to itsdf (with the same interaction coefficients K, Ko,
K3). Thus the modd is self-dua at the particular temperature specified by
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(12.6.11). Kim and Joseph conjectured that this sdf-dud point is aso the
critical point. Baxter et al. (1978) generalized this argument to atriangular
Potts model with additional three-site interactions on alternate triangular
faces. They showed that this more genera mode dways has a
triangular - triangular duality relation, and that at the sdf-dud point the
three-spin interaction vanishes and (12.6.11) is satisfied. Hintermann et al.
(1978) have verified that the critica temperature is indeed this sdf-dua
temperature.

Here | shal use the variables X\, x,, X3, but is should be noted that it is
quite natural to work instead with ft, ft, ft, where ft is the value of /?in
(12.5.6) when x = x;. The condition (12.6.11) then takes the smple linear

form ft +ft + ft = A. (126.12)
(In fact ft corresponds to u, in Section 11.1, and (12.6.12) to (11.1.12).)

Critical Free Energy

Provided the criticality condition (12.6.11) is satisfied, we can cdculae
the free energy of the triangular lattice Potts modd (and of the dua
honeycomb-lattice model). One way to do thisis to shrink the up-pointing
triangles of the Kagome lattice down to points. Asis explained in Baxter
et al. (1978), the ice-type model then becomes a '20-vertex' model on a
triangular lattice. Kelland (1974b) has investigated the conditions under
which such a 20-vertex modd is solvable by the Bethe ansatz method of
Chapter 8. It turns out that these conditions are precisdly that the model
correspond to the Kagome lattice six-vertex model with weights given.by
(12.6.2) and (12.6.11). Thus Kelland's results enable us to calculate the
free energy when, and only when, the 20-vertex modd is equivaent to a
critical triangular-lattice Potts model.

(There are dso solvable free-fermion’ cases of the 20-vertex model, but
they are solved by other methods [Sacco and Wu, 1975].)

We can dso obtain the free energy by using the results we obtained in
Chapter 11. When the restriction (12.6.11) is satisfied, we can arrange the
mutually inverse 'tips and tails' arrow weights so that (12.6.2) becomes

6i,...,ft>s=a, a, b, b, ¢, c, (12.6.13)
where N .
a=1 b=x ¢ =(I+xt){+xr"), (126.14)

and againr = 1, 2 or 3 depending on the type of the site of ££ that is being
considered. The vertex arrow configurations corresponding to a;, by, ¢, are
shown in Fig. 11.2.



12.6 TRIANGULAR-LATTICE POTTS MODEL 349

The ice-type modd is now a zero-field six-vertex Kagome-lattice model.
Thisis a specia case of the eight-vertex model defined in Section 11.1, the
weights d\, d,, dj, being zero. Furthermore, when (12.6.11) is satisfied, we
can veify that the 9x 'star-triangle’ relations (11.1.7) are dl stisfied.

The free energy is therefore given by (11.4.5). Remembering that the
Kagome lattice &' has 3V dites, this equation implies that (for N large)

Z' = Z9%(xi) Z%(x2) Z%X3), (12.6.15)

where Z°8(x;) is the partition function of a square-lattice ice-type model,
with weights given by (12.6.14), dl sites being of type r. Using the results
of Chapter 8, or amply referring back to (12.5.3) - (12.5.6), we can verify
that the dimensionless free energy per site of such a square-lattice model
is

-N-InZ#(x) = -#0 o (12.6.16)

From (12.6.1) and (12.6.15), the dimensionless free energy per site of the
critica triangular Potts mode is therefore

yr(Ki, Kz, K3) = -N~' InZJK,, K Kg)
= ~}ng — ¢p(x() - <S{x) ~ <K*3) ¢ (12.6.17)

Critical Internal Energy

The equations (12.5.8)-(12.5.13) can readily be generaized to the tri-
angular lattice, giving
3

(E) = -g-* 2 Jr exp(d/ksT) I, (12.6.18)

where, using (12.6.1)-(12.6.3)
{tnd 4+ {nh exnl 1 {nd axnd =AY {nh

i — T - L PIRTAE )
A LT X CAPMAL LT AL TAIN TA)

Herer=1, 2 or 3, and n- in (12.6.19) is the number of stes of type r in
it' that are in the arrow arrangement / of Fig. 11.2.

The ratio (rij)/N is therefore the probability that a site of type r isin
arrow arrangement j. This is a locd correlation for this site, so from
(11.3.3) it depends only on a,, b, ¢;, and hence only on x.. (As usual, we
regard g, and therefore A and t, as constant.)

In fact, I, must have the same value as for a square lattice of N sites,
in which al stes have weights (12.6.2), r being the same for dl sites. But
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this |, has been calculated in (12.5.22). From (12.6.18), the internal energy
per site U = (E)IN of the triangular lattice Potts modd is therefore

3

U= g 2/, t(@/keT) [-<X%) £ R6)Pg.  (126.20)
r={

12.7 Combined Formulae for all Three Planar Lattice Potts Models

The critical free energy and internal energy of the honeycomb lattice Potts
model can readily be obtained from those of the triangular lattice, by usng
the dudlity relation (12.6.7). The results are smilar in form to those of the
square and triangular lattices. In fact we can combine them into single
formulag, just as we did in Section 11.8 for the Ising model. For dl three
attices the criticality condition is

11 [ +*exp{ ANl + xexp{-A})] = exp(4A):  (12.7.1)

the dimensionless free energy per dite is then
w=flksT=—4Ing -} E P(x), (12.7.2)

and the internal energy per site is
U= te'S)rexp(/,/*],N[-0Cr) £ £X)P], (12.7.3

the upper (lower) dgns being chosen if the criticd temperature is
approached from above (below).

The product in (12.7.1), and the sumsin (12.7.2) and (12.7.3), are over
al edges round a particular site; thus r has three vaues for the honeycomb
lattice, four for the sguare lattice, and sx for the triangular lattice. The
J: is the interaction coefficient for the rth edge in this sum, so with an
obvious notation we have /3 = J\ and 7, = J, for the square lattice; and
J*, 35, J(, =\, J2, J3 for the triangular lattice. As usual, x is defined by
(12.3.4), i.e.

% = ql\exy(dlksT) - 1]. (12.7.4)

The parameter A is defined by (12.3.5) (it is pure imaginary if q < 4),
and the functions 4>{x), £(x) are defined by (12.5.6) and (12.5.20); P, is
zero for g =£ 4, whilefor q> 4 it is given by (12.5.24).

Let g be the coordination number of the lattice (3 for the honeycomb,
4 for the square, and 6 for the triangular lattice). Then r in (12.7.1)-
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(212.7.3) runs over g values. Define

0 = 2XM. (12.7.5)

Then for an isotropic model, where \ = Ji = . . . = J, the criticaity con-
dition (12.7.1) becomes

exp(-J/ksT) = dnh(A - d) /anh(A + 6). (12.7.69)

When q = 2, then A = in/4, and this eguation reduces to the Isng model
formula (11.8.45a).

We can complete the comparison with (11.8.45) by noting that the
methods of Chapter 4 can readily be generaized to the A-component Potts
model on the Bethe lattice of coordination number g. The criticd tem-
perature of this model is given by

ep(-dkeT) = {q= 2+ q-2). (12.7.6b)

12.8 Critical Exponents of the Two-Dimensional Potts Model

We have cdculated the free energy / and internal energy U of the planar
Potts models, but we have done so only for the zero-fiedld model at the
critica temperature T.. (More accurately, we have calculated f/in the limit
when T approaches T, from above, or from below.)

This tells us that the trangition is first-order (with non-zero latent heat)
for g> 4, and is continuous (no latent heat) for q «£ 4. It does not tdll
what the critical exponents are for g ~ 4. To obtain these directly we would
have to solve the Potts model for general temperatures, which has not been
done. (Thisis avery tantdising problem as | remark in Section 14.8.)

However, we do have some information. When g = 2, the Potts model
becomes the Ising model, which was solved by Onsager (1944) and Yang
(1952). The critical exponents a, ft and 8 are given in (7.12.12), (7.12.14)
and (7.12.16). They are

a=0, j8=J, 6=15 whentf = 2. (12.8.14)

Alexander (1975) has argued that the three-state Potts model and the
hard hexagon mode (which each have three ordered states) should be in
the same universality class and have the same critical exponents. From the
hard hexagon results (14.7.12), (14.7.13), this implies that

a=h j8=i, 6=14 wheng=3. (12.8.1b)
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Similarly, Domany and Riedel (1978) argue that the four-state Potts
model and the three-spin model (each with four ordered states) should
have the same exponents, so from (11.10.39),

<*=§, j8=A, <5=15 whentf=4. (12.8.1¢)

We have seen in Sections 12.3-12.5 that the critica Potts modd is
equivalent to a zero-field six-vertex model, with weights given by (12.5.2).
We can regard this as a specia case of the eight-vertex model, in which
d=0. The A of (10.15.1) is given by (12.5.4): for q<4 we see that
0>A>-1. From (10.16.8) we see that this corresponds to a critical
eight-vertex model, with fi given by A = -cos/J,. From (12.5.4) thisimplies

d = 2cosn, O<n<\n. (12.8.2)

This fi is the parameter that enters the formulae (10.12.24) for the critical
exponents of the eight-vertex model. Den Nijs (1979) argued that the
exponents of the Potts model should also depend in a smple way on (i, or
more precisely on

y = 2/jdn. (12.8.3)

(Thisy lies between 0 and 1. Den Nijs and others refer to it asy®"-) He
conjectured that the critical exponent a of the Potts model (for q *£ 4) is

a= (2-4y)/(3-3y). (12.8.4)

Similarly, Nienhuis etal. (1980), and Pearson (1980) have independently
conjectured that

_ B=(+y)yi2. (12.8.5)
The scaling relation (1.2.12) and (1.2.13) then predict that
6= (15 - 8y + YI(\ - Y. (12.8.6)

For g = 1,2, 3, 4, the parameter y has the values §, I, |, O, respectively.
The conjectures (12.8.4)-(12.8.6) therefore agree with the values in
(12.8.1), and adso predict that

a=~l, P=&, d=m wheng=lI. (12.8.7)

(As we remarked in (12.2.4), the g = 1 case is the percolation problem.)
The conjectures are aso consistent with numerical estimates of the expo-
nents (Blumberg et al, 1980, Bléte et al., 1981), and with a
renormalization-group perturbation expansion about q = 4 (Cardy et al.,
1980). Very recently, Black and Emery (1981) have verified (12.8.4) by
using renormalization-group methods: it seems likely that (12.8.5) and
(12.8.6) are dso exactly correct.
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129 SguarelLattice Ashkin - Teler Modd

Ashkin and Teller (1943) introduced their model as a generdization of the
Ising model to afour component system. Each site of alattice £ is occupied
by one of four kinds of atom: A, B, C or D. Two neighbouring atoms
interact with an energy: EQ for AA, BB, CC, DD; £i for AB, CD; e for
AC, BD; and s; for AD, BC.

Fan (1972b) showed that this model can be expressed in terms of Ising
spins. With each site i associate two spins: s; and a. Let (s, a,) = (+
+) if there is an A atom at ste/; (+,-) if aB atom; (- , +) if C; and
(- , -) if D. Then the interaction energy for the edge (i,/) is

ei j) = 99 - JOIOj - JiSOISO) - Jp , (12.9.1)

where
-/ = (eo+ fi - e - £3)/4

= (ot E-£-£1)4 (12,92)
'/4: (eo+£3' £l - £2)/4
-Jo=(fo+ £1 + 2 + £3)/4 .

As usual, we want to calculate the partition function. From (1.4.1), this
is ' .
Zar = 22 exp[- 2 S(i ,j)lksT\ , (12.9.3)

where kg is Boltzmann's constant, T is the temperature. The summation
inside the exponential is over al edges (i ,j) of the lattice; the outer sums
are over dl values of dl the spinss; S, Sz,. . . and 0y, 02, &, . . . .
We shall find it convenient to use the dimensionless interaction
coefficients
K= JksT, K'=J/kgT, (12.9.9)
Ky=JdkeT, Ko = JJlkgT,
and the edge Boltzmann weights
N = expi-Ei/kBT),i = 1,.. ., 4 (12.9.5)

From (12.9.2), we see that

wo =exp(*: + K' + K, + Ko),  0ix= exp(K- K' - Kg< + Ko), (12:9:6)
oh = &xp(-K+ K' - K4 + K;), coi = exp(-K - K' + K*+ K,).
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Equivalence to an Alternating Eight-Vertex Modd

The above considerations apply to any lattice X, planar or not. Now let
us specidize to the case when X is the square lattice, with N sites. Then
from (12.9.1) it is apparent that we can think of the Ashkin - Teller (AT)
model as two square-lattice I1sing models (the smode and the a-model),
coupled via a four-spin interaction. '

This is amilar to the zero-field eight-vertex model, whose Hamiltonian
is given by (10.3.1) with /, = J=0. However, the geometry is different:
for the eight-vertex model the spins are arranged as in Fig. 104, the s-
spins occupying the full circles, and the ar-goins the open circles. In the AT
model the spins s; and o; both lie on dite i.

Even so, Wegner (1972) shows that the AT model could be expressed
as an aternating eight-vertex model. The trick is to apply the duality
transformation of Section 6.2 to the a-spins only.

To do this, note that from (12.9,1), (12.9.3) ¢an be written as
AT = Zi **PLE#H \&55 ¥ ~0) |ZN\L{ (12.9.7)

where
ZML} = 2 exn:[ (2;} L,;fo;o,-J , (12.9.8)

the edge-coefficient Ly being given by
La = K'+ K,SS. (12.9.9

Here N is the number of dtes of the square lattice !£; L is the set of
coefficients Ly, one for each edge of !£.

Clearly each Ly depends on the spins s and S), but for the moment let
usregard S.,. . . , sy as fixed, and consider the expression on the RHS of
(12.9.8). This is a standard square-lattice Isng model partition function,
except that the system is inhomogeneous, having interaction coefficients
Ljj that vary from edge to edge.

Now look at the duality relation (6.2.14). Using (6.2.10) (and ignoring
boundary effects), this states that if ZN(K , L) is the partition function of
a square-lattice 1sing model with interaction coefficient K for vertical edges,
L for horizontal edges, and with N sites, then

ZN(K* , L*) = [2 exp(-K - L) cosh AT
x cosh L*]"ZN(K , L). (12.9.10)
The dual coefficients K*,L* are defined by (6.2.14a).
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This relation applies to an homogeneous system. However, it is quite
straightforward to generalize the working of Section 6.2 to an inhomoge-
neous system, with interaction coefficient L;- on edge (i ,j). The result is

ZtAL*} =U[j]) [2%exp(-Ly) coshLf] ZMN},  (129.41)

where
tanh Lfj = exp(-2L,y). (12.9.12)

Here L denotes the set of dl edge coefficients L, and L* the set of L3;
ZN{L} is the origina partition function for the lattice i£, as defined In
(12.9.8); zN{L*} is the partition function for the lattice i£, that is dua to
X; Lfj is the interaction coefficient of the edge of £5 that is dual to the
edge (;,;) of iE

=

[N NP YR 2f . S S
-

Fig. 12.11. The lattice 'E (solid circles and lines) and its dua !£5 (open circles and
broken lines); (k, 1) is the edge of ifp that is dual to the edge (i, /) of 22L% and
Lij are the corresponding interaction coefficients of these two edges.

Let k, | be the sites of Xp such that (k, 1) is the edge dual to (i ,j), as
indicated in Fig. 12.11. Then

ZN{L*} = Z exp[ﬂzﬂ L,’v}tkt;] , (12.9.13)
wheret\ , ..., thare spins on the sites of i£o.

Usng (12.9.11) to express ZN{L} in terms of Zjy{L*}, substituting the
result into (12.9.7) and using (12.9.13), we obtain

Za=22 11w, (12.9.14)
Ly

the product being over dl edges (i,/) of ££ with
W, = 2 sech Lj exp[Z” + Ksis, + Ko+ LI ], (12.9.15)
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Remembering that L;; is given by (12.9.9), where ss = *1, and that L}
is given by (12.9.12), we can write Wg as

WY = exp(Asig + Bt + CsiStkt, + D), (12.9.16)
where A, B, C, D are defined by |
a=expA+ B+ C+ D)= 2\copt+ <ay)
b= exp(-A -B+ C+ D) = 2\co, - coy) A,n 9"

c = exp(-v4 + B- C+ D) = 2'\co, + c0og)
d = exp(A -B-C + D) = 2'ft), - fl>i) o

From (1.4.1), (12.9.14) and (12.9.16), Za is therefore the partition
function of a model with Hamiltonian

Es,t) = -keT NASS + Btt, + Csigtd, + D). (12.9.18)

Now take X to be the lattice of solid circles and linesin Fig. 10.4. Then
I£p is the lattice of open.circles and broken lines. The s-spins lie on X, the
f-spins on £][>" We see that (12.9.18) is the Hamiltonian of a model with
interactions between neighbouring 5-spins, and between neighbouring t-
spins, with a four-spin interaction between spins on crossing edges.

This Hamiltonian has the same general form as (10.3.1), with/, =//, =
0, with /" = kgTC, and with an extra constant energy —kgTD per edge.
To avoid confusion, let us refer to the/ and /' in (10.3.1) and Fig. 104
as Jgy and Jw'- they are of course not the same as those in equations
(12.9.1)-(12.9.4) above.

There is one dgnificant difference between (12.9.18) and (10.3.1): in
-(12.9.18) A and B are associated with the solid and broken-edges, respec-
tively, of Fig. 10.4; in (10.3.1) Js, andJfy are associated with the SW-NE
and SE-NW edges of Fig. 10.4. To put (12:9.18) into the form (10.3.1)
we must therefore allow Jg, and/gV to alternate from site to site. We can
choose (/gviiT’, JulkeT) to be {A , B) on one sub-lattice (i + j even in
(10.3.1)): it is then (B, A) on the other sub-lattice (i +j odd). The
Ashkin - Teller model is therefore equivalent to an alternating, or 'stag-
gered' eight-vertex model. From (10.3.9) (including the extra constant
energy -D/kgT), the Boltzmann weights of this eight-vertex model are
equa to the a, b, c, d of (12.9.17) on one sub-lattice. On the other sub-
lattice they are equal to a, b, d, c.

It is of course intriguing that the Ashkin - Teller model should be equiv-
dent to a staggered eight-vertex model. In many ways the equivalence is
reminiscent of that found in Section 12.4 between the Potts model and a
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staggered six-vertex model. Indeed, both equivalences can be applied to
the g = 4 Potts model (which is a special case of the Ashkin- Teller model,
with £i = & = £3): they lead to the same vertex model.

The form of the staggering in this eight-vertex model is particularly
simple, consisting merely of the interchange of the weights ¢ and d. From
(10.15.18) and (10.15.6), it follows that A, T, k and A are not staggered,
each having the same value for both sub-lattices. The staggering affects
only the eliptic function parameter v, which is negated on going from one
sub-lattice to another. Unfortunately it is still not possible to put k, A, v
into the form (10.17.7), which are the most general conditions under which
the eight-vertex model has been solved. Thus the general Ashkin- Teller
model remains unsolved.

Even so, the equivalence of the AT model to a staggered eight-vertex
model does have some interesting consequences, as | hope to indicate in
the remainder of this section.

Duality

Obvioudly, the partition function of the staggered eight-vertex model is
unaltered by interchanging ¢ and d on dl sites (this merely interchanges
the two sublattices). Write Z,r as a function of the Boltzmann weights
(Oo, ..., ah in(12.9.6). Then from (12.9.17) it follows that

Zat(«6 ,0}[,COZ, (03) = Zar((0o, DI , O, 0)3), (12.9.19)
provided that
(00 = i((00 +0)1+0) 2+ O)y) ,
(O[ = i((0o + O)1 - 0); - 0)3), (12.9.20)
(02 = X0 + 0), - O)s - 0)i) ,
0)3 = h(a>0 + 0)3 - 0)1 - 0),).

This is a duality relation, relating a high-temperature AT model to a
low-temperature one. It was obtained by Fan (1972a), who conjectured
that the critica temperature might be given by the self-dudity condition:

Qp=01+a>,+0)3. (12.9.21)

However, Wegner (1972) remarked that this is precisaely the condition for
the corresponding eight-vertex model to be homogeneous; since then
¢ = d. The homogeneous eight-vertex model has been solved in Chapter
10. It is not in general critical (even when ¢ = d), so nor isthe AT model
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under the condition (12.9.21). (The spins s, S,,. . . occur in both models,
and it is reasonable to suppose that either model is critical if and only if
the correlation (si§) decays as an inverse power of the distance ry between
sites i and /, rather than decaying exponentially. This means that if one
model is critical, then so is the other.)

Indeed, it is apparent that when /, = 0 in (12.9.1), then the AT model
factors into two independent Ising models, one for the s-spins with coef-
ficient J, the other for the ospins with coefficient /. Provided J + T, these
will have different critical temperatures. The AT model therefore then has
two critical temperatures. They lie on either side of the sdf-dual temper-
ature defined by (12.9.21), and the mapping (12.9.20) takes one to the
other.

Wegner (1972) argued that in general there should ill be two such
critical temperatures for /4 # 0, and Wu and Lin (1974) have considered
the possiblelocation of thecritical surfacesin (coi/(0g, (02/(00, (O3/000) space.
One currently unsolved problem is to locate these surfaces exactly. Pre-
sumably universality holds on these surfaces (except on certain specid lines
to be discussed below), in which case the critica exponents must be those
of the/, = O case, i.e. of the Ising model.

Other Symmetry Properties

In addition to (12.9.19), Zat satisfies various other symmetry relations. It
is unchanged by permuting /, /', /4 in (12.9.1), since this corresponds
merely to permuting §, a-,, s-,0i (any two of which can be regarded as
independent spins) at each site. It is also unchanged by negating /' and /4,
since this corresponds to negating alternate a-spins. From (12.9.4) and
(12.9.6) it follows that

Za(@)j, Wi, (0, (of) = Z,T(WO ,0)I, cop, a)s) (12.9.22)

for dl permutations i, j, k, | of O, 1, 2, 3. Thus Zxr is unchanged by
permuting the weights «o ,. . ., (03.

Another way of obtaining the duality and symmetry relations (12.9.19)
and (12.9.22) is to define the eight-vertex ‘w-weights WA, ws, ws, W, asin
(10.2.16). The symmetry relations (10.2.17) are true even for an inhomo-
geneous eight-vertex model. Applying them, using (12.9.17), we again
obtain (12.9.19) and (12.9.22).

Critical Isotropic AT Mode

If / = /', then the above argument that the AT model should have two
critical temperatures breaks down. This is a particularly interesting case:
let us refer to it as the 'isotropic' AT model. From (12.9.6) we see that it
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corresponds to imposing the condition
(Di = <« (12.9.23)

on the AT model weights.

This gtill corresponds to a staggered eight-vertex model, in which the
weights ¢, d are interchanged on alternate sites, so in general has not been
solved. However, if the sdf-duadlity condition (12.9.21) is satisfied, then
¢ = d and the eight-vertex model becomes homogeneous. Using (10.2.16),
its V-weights' are

H =i(a+ b) = 2¢0)

W, = i(a -b) = 2'\(o, + co3) (12.9.24)
ws = i(c +d) =2"\(Oi + wy)
wy=3c—-d)=0.

From (10.2.17), Zar is unaltered by interchanging w, and w, Let a, V,
c', d be the resulting new eight-vertex weights. Then we see that

a=b=20), C=2W+<@» d=0. (12.9.25)

Since d' = 0, the model reduces to a six-vertex model (in fact to an F-
model). Let /be the free energy per site of the AT model, defined as in
(1.7.6) by

flkgT = lim AT InZa+. (12.9.26)

Remembering that the vertex model has twice as many sites as the original
AT model, from (8.3.3), (8.8.9), (8.8.17), (8.9.7) and (8.9.9) it follows
that when the restrictions (12.9.21) and (12.9.23) are satisfied, then/is
given by the following equations:

2x

0>g<a)s: 00sG*/2) = (I +ﬁ), 0<p< =,
\ @) 3

- tanhasin;a Al -
fllgT = 2In(2V) + f '20Basinga s (129774
a), = o)v ~flkeT = 2In2*©i) + 4In[r(i)/2T()]; (12.9.27b)
w>0i: AR =ifl + 2V A>0,
V (0]

flkgT = 2 In(20)i) + A + 2 21 mt exp(-mA) tanh ml.  (12.9.27¢)
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Critical Exponents

The homogeneous eight-vertex mode is criticd if and only if the two
middle numbers of the set |wi|, |V\&J |wj3], |wy|, arranged in decreasing
order, are equal. In this case the symmetry relation (10.2.17) can be used
to map it into a six-vertex model of the type discussed in Section 8.8, i.e.
with -1 < A < 1. The critical exponents are then given by (10.12.24). Let
us give them a superfix '8V to denote 'eight-vertex', and give the ‘magnetic’
exponents (corresponding to introducing a fidd -HLo,) a suffix 'm'. The
‘electric’ exponents (corresponding to a field —EZgg, where i, | are
nearest-neighbours) aready have a auffix ‘€. Then from (10.12.24)

=22, B =)

0f=(2-y)/(4y),

(12928)

whae
y = 2fjJn, (12.9.29)

H being the parameter defined in Section 88. [This y is the
renormalization-group exponent that we used in (12.8.3).]

Applying these general considerations to the sdf-dua isotropic AT
model, it follows from (12.9.24) that the mode is critica provided that
(1D)3< a>\. Itsfree energy is then given by (12.9.27a), the \i therein being
the same as that in (12.9.29).

As with the Potts model, we have only evaluated the free energy/at the
critical point: we are not in a position to see how/varies with temperature
or field, so we cannot directly determine any critical exponents. Certainly
we cannot apply the homogeneous eight-vertex results (12.9.28) to the
AT model, because the models are equivalent only at criticality.

Even so, Kadanoff (1977, 1979) and Kadanoff and Brown (1979) have
used operator algebras and scding theory (Kadanoff, 1976) to relate the
critical exponents of the eight-vertex and isotropic Ashkin - Teller models.
Knops (1980) obtained the same relations by using renormalization-group
arguments; den Nijs (1981) has extended this approach, aswdl as judtifying
(1979) Enting's (1975) conjecture that 5,,= 15 for the AT model. Zisook
(1980) and Zittartz (1981) have checked some of these relations by devel-
oping perturbation expansions.

Altogether, they find that the Ashkin - Teller exponents are

a’T=(2-2y)/(3-2y), tf? = (2-y)/(24- 16y) (12.9.30)
pT=(12-8y)™".
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As with the eight-vertex model, there are two sets of critical exponents:
'magnetic’ exponents corresponding to afield -//2a,, and 'electric’ expo-
nents corresponding to afield -£20pj. | use the suffix m for the former,
e for the latter. Thus fiy, is the exponent of the order parameter {0\), /3. of
(0151).

The same arguments that give (12.9.30) aso imply the scaling relations
(1.2.12)-(1.2.16), so we can use these to abtain Yy, dm, Mm, Ye, de, rje and
v. Bath the eight-vertex and Ashkin - Teller models violate universality,
having exponents that vary continuoudy with the parameter y. Both models
satidy the relations

Un= (2- & 3)/i3n= 15, (12.9.31)
B.=(1—-a)4.

The criticality conditions (12.9.21) and (12.9.23) can be written in terms
of the interaction coefficients K, K', K;. From (12.9.6) they are

K' =K, exp(-2£,;) = snh2K, (12.9.329)
the restriction oh, < 0)\ is equivaent to
K<<K, (12.9.32b)
and the definition of pi in (12.9.27a) can be written as
cos n = i[exp(4A:y) - 1], (12.9.33)

where 0 < ft < 2nl3.

Phase Diagram of the Isotropic AT Model

Infact (12.9.32) is not the only critical line of the isotropic AT model. The
complete phase diagram has been obtained by Ditzian et al. (1980) and is
surprisingly rich. Itisshownin Fig. 12.12. There are giveregionsin (K4 , K)
space: in | the system is ferromagnetically ordered, (0\), {s\) and (0iS) all
being non-zero; in Il these order parameters are dl zero and the system
is disordered; in 111 there is partial ordering, ((XiS) being non-zero, but
(0\) and (s\) vanishing; 1V is similar to 111, except that the order is anti-
ferromagnetic, (0iS) aternating from dte to site; V is Smilar to |, except
that (oi) and (s{) are anti-ferromagnetically ordered.

The line EF, which is the boundary between regions | and 11, is the
critical line (12.9.32) discussed above. Thisis aline of continuoudy varying
exponents, fi in (12.9.29) varying from O at F to 2/3 at E. F is the point
(K,, Ky, where K, = iln 3=02746 . . .; Eiswhere KjK = -1, K> ».
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The line E'F' is dso one of continuoudy varying exponents, and is
obtained from EF smply by negating K. Indeed, negating al spins s and
Oi on one sub-lattice of & is smply equivalent to negating K, so the whole
of Fig. 12.12 is symmetric about the X, axis.

Fig. 12.12. Phase diagram of the isotropic Ashkin - Tdler modd, in (#4, K) space.

The line EF continues onto the broken line FG. Thisis the sdf-dud line
with oh, > m\. the system is not critical on this line segment; instead there
are two critical lines FB and FC bifurcating from F. Their positions are not
precisely known, but B must be the point (K.,0), and C the point
@0, hKy), where K. is the Ising-modd critical value of K, given by

snh2A; = |, K. = 04406 (12.9.34)

Thelines FB, FC map into one another under the dudity relation (12.9.20).
Thecritical exponents thereon are expected to befixed, having Ising-model
values.

Similarly, the position of the critica line EDE' is not precisaly known,
but D is the point (-K, 0) and the exponents are dso expected to be
those of the Ising model.



13
CORNER TRANSFER MATRICES

13.1 Déefinitions

Notation

In Chapters 7-10, much use has been made of the row-to-row transfer
matrix V. Multiplication by this matrix corresponds to adding a row to the
lattice. Each element of V is the total Boltzmann weight of a row of the
lattice, asin (7.2.2) and (8.2.2).

Another usgful concept is the 'corner transfer matrix' (CTM), which
corresponds to adding a quadrant to the lattice. In thissection | shall define
four such CTMs (one for each corner), and shal cdl them A, B, C, D.
| shal dso define four corresponding normalized matrices A, By, C,, Dp;
and four normalized and diagonalized matrices Ad, Bj, Cqy, Dg. Here n and
d are not indices, but merely denote 'normalized’ and 'diagonalized,
respectively.

The {a, &) element of one of these matriceswill be denoted by a further
double suffix 0&: e.g. Boj and (A,)af are the (a, &) elements of B and

A, respectively.

The IRF Model

Corner transfer matrices can be defined for any planar lattice model with
finite-range interactions, but for definiteness let us consider a square lattice
model with interactions round faces. For brevity | shal cdl this the 'IRF'
model. It is defined as follows.
To each stei of the square lattice associate a 'spin' a,. In this chapter
363
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we shall suppose that each a,-has value +1 or — 1; in the next chapter it
will be more convenient to let then have values 0 or 1; in generd they can
take any desired set of values.

Let the total energy be

% = J,e(Oi,OhOk,O|), (1311)

where the summation is over al faces of the lattice, and for each face the
i,j, k, | are the surrounding sites, arranged as in Figure 13.1(a). From
(1.4.1), the partition function is

z =2 I wer, 0, a, a), (13.1.2)

where the product is over al faces of the lattice, the sum is over dl values
of dl the spins, and

w(a ,b,cd) = exp[-e(a, b, c, d/ksT]. (13.1.3)

Thisw(a , b, ¢, d) isthe Boltzmann weight of the intra-face interactions
between spins a, b, ¢, d.
Let N be the number of sites of the lattice and define

szmzm. (13.1.4)

Then from (1.7.6), the free energy per site is
/= -kgT\nK. (13.1.5)

(a) (b)

Fig. 13.1. (a) The ordering of the stesi, |, k, | round aface of the square lattice;
(b) the quadrant lattice whose partition function is the Ay, in (13.1.8).
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Also, from (1.4.4) the expectation value of a particular spin o\ is

(o) = Z~' 2ffi IT w(oi, Oj, o, or,). (13.1.6)

The object of statistical mechanics is to calculate quantities such as K
and (oi) in the limit of alarge lattice. They are expected to be independent
of the way in which the lattice becomes large, so long as it does so in dl
directions.

The functionw{a , b, ¢, d) is at this stage arbitrary, so this |IRF modd
includes many models of particular interest in Statistica mechanics. For
instance, it includes the case of diagona interactions together with a
four-spin interaction in each face: this is the spin formulation (10.3.1) of
the eight-vertex model. More generdly, it includes the eight-vertex model
in both 'magnetic' and 'electric' fidlds, and the Ising mode in a fidd.

Ground Sate

The system will have one or more 'ground-states”: these are configurations
of dl the spins on the lattice for which the energy %, given by (13.1.1), is
a minimum. More generally, they can be defined as the configurations
which give the largest contribution to the sum-over-states in (13.1.2).

For a ferromagnetic lsing-type system there arc a most two ground
states: either al spins up, or dl spins down. For a system which includes
anti-ferromagnetic interactions, the ground state may consist of an ater-
nating pattern of spins. This state is not trand ation-invariant, even though
the energy function (13.1.1) is. There must be at least two ground states
in this case, since applying a trandational shift changes the spin configur-
ation but not its energy.

In this chapter | refer often to the 'ground-state’. By this | mean a
particular ground state, and it is important that the same ground state of
the complete lattice be used throughout. For instance, formulae for (oi)
are given in (13.1.11), (13.1.14) and (13.5.15): if the ground state is not
trandation invariant, then (o\) may depend (for sufficiently low tempera-
ture) on which ground state is used. In this case the trangdlation invariance
symmetry is 'spontaneously broken'.

The MatricesA, B, C, D

Congder the lattice in Fig. 13.1(b). Labd the left-hand spins
oi,..., Oy and the top ones of ,. .., &, asindicated. Clearly o, and
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of are both the upper-left corner spin, so
0 =0y, (13.1.7)

Fix the boundary spins, i.e. those on the sites shown as triangles in Fig.
13.1(b), to have their ground-state values. For instance, for the ferro-
magnetic Ising model they can all be chosen to be +1.

Let a denote dl the spins {oi,...,0n}; ad d dl the spins
{oi,..., &n}. Define

A& =211 w0, o) ifoi=di, (13.1.8a)
=0 ifoy#of, (13.1.8b)

where the product is now over the Im{m + 1) faces in Fig. 13.1(b), and
the sum is over dl spins on stes denoted by solid circles. Note that the
sinsO\,. . . , d, are not summed over, so the RHS of (13.1.8) isafunction
of aand &.

Define BN in the same way as AN, only with Fig. 13.1(b) rotated
anti-clockwise through 90°, o that at,..., oy lie on the bottom edge, and
oi,..., dyontheleft. Smilarly, define C,,d, D,,& by rotating Fig. 13.1(b)
twice more through 90°.

Now consider the lattice shown in Fig. 13.2. Divide it by two cuts into
four quadrants of equal size, asindicated. Let Oi be the centre spin, and

of

o

Fig. 13.2. The lattice with partition function (13.1.10). Boundary spins (on sites

denoted by triangles) are fixed at their ground state values; a\ is the centre spin;

ais the set of dl spins (including Oi) on the lower hdf of the verticd heavy line;

& isthe set of spins (including ai) on the right haf of the horizontal heavy ling;
and amilarly for o', d".
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let a, &, 0", d" be the sets of spins (including Oi) on the corresponding
haf-cuts in Fig. 13.2. Then from the definition of A, B, C, D, the product

~a,& Brf,d' *~d',d" L)<f,a , aj-l1.yj

is the product of the Boltzmann weights of al the faces, summed over all
spins other than those on the cuts. The partition function Z of the lattice
isFig. 13.2 istherefore
Z= o,a»,zav,a”Aa’a'B&Kde;d"D“»’a' (13.1.10)
The summation is over dl spin-sets o,. . ., d", subject only to the
restriction that O\=&\ = d[ = of, since each of these is the centre spin.
However, thisrestriction can be ignored since from (13.1.8b) the summand
vanishes unless it is satisfied. It follows that

Z = Trace ABCD. (13.1.11)

From (13.1.6), the average value of o\ is the ratio of the RHS of
(13.1.10), with an extrafactor oy in the summand, to its value without this
factor. It follows that

<g> = Trace &45CE>/Trace ABCD (13.1.12)

where S is the diagonal matrix whose element (0, 0) is o\

The matrices S A, B, C, D are dl block-diagona, their elements
(a, &) being zero unless O\=&\. The matrix 5 commutes with A, B, C
and D. In particular, for the Ising-type models where each Oj has value

y My s [ % ’ (: 4 » (13113)

where / here is the identity matrix. In this case, (0x) is the magnetization
M.

In (13.1.11) it is apparent that multiplication by A corresponds to
introducing the lower-right quadrant, or ‘corner’, of the lattice. | therefore
cal A the 'lower-right corner transfer matrix'. Smilarly B, C, D are
respectively the upper-right, upper-left, lower-left CTMs.

The Normalized Matrices A,, B,, Cy Dy

Lets s, s', s" bethevaues of the spin-sets o, &, 0", d" in Fig. 13.2 when
all the spins are in the ground state configuration.
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aAs, f=Bsg, (13.1.14)

7= Qy, 5 = Dy,
and define
- 1 - -
A= a~A B, =p"'B, (13.1.15)
C.=vy'C, D,=38'D,.

These matrices A,, B,, C,, D, are the normalized corner transfer mat-
rices. Their ground-state elements, e.g. {Ay)s<, are unity. We shall find
them useful when considering the limit m—* °°.

Many formulae involving CTMs are independent of the normalization
of A, B, C, D: an obvious example is (13.1.12). Thus A, B, C, D therein
can be replaced by A, By, C,, Dp.

The Diagonal Matrices Aq, By, Cqy, Dy

It is often useful to use the diagonal forms Ay, By, Cq4, Dg OF A, B, C, D
(and of A, , By, Cy, £2,), normalized so their maximum entries are unity.
These are defined by

A, =@PAQ™, B,=PQBR™ (13116)
Co= YRCGT\ D, =6TDuP~ \

where a', fi', y, 6 are scalars; P, Q, R, T are non-singular matrices; and
Ay, By, Cq, Dy are diagona matrices whose maximum entries are unity.

The matrix P is the matrix of eigenvectors of AB,C.,D,, Q of
B.C.DnA,, etc., and al matrices can be chosen to commute with S i.e.
to have the block-diagonal structure in (13.1.13). Then (13.1.12) can be
written as

(d> = Trace SAB{CyD4/TraceAB4CyDq. (13117)

For definiteness, | shall suppose that Ay, By, Q, Dy are arranged so that
their maximum entries are in the position (1,1). Then

(Adia = (50)u = (Q)u=(A)y =1 (13.1.18)

The eigenvector matrices P,Q,R T are not uniquely defined, since the
normalization of the eigenvectors is arbitrary. This means that P, Q, R,
Tcan be post-multiplied by diagona matrices. This affects Ay, By, Cq, Da,
but not their product.
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In some cases there isanatural unique choice of P, Q, R, T. For instance,
for aferromagnetic isotropic reflection-symmetric model (e.g. the isotropic
nearest-neighbour Ising model), A, B, C, D are dl equa and symmetric.
It is then natural to take P, Q, R, Tto be equal and orthornormal. Ay is
then the matrix of eigenvalues oi A, normdized to satisfy (13.1.18).

Once the diagond matrices Ay, By, Cq, Dy are known, the magnetization
is eadily obtained from (13.1.17). The main thrust of this chapter is to show
that>ld, By, Cq4, Dg can be evaluated quite easily for certain models (notably
the eight-vertex model), provided the lattice is infinitdy large. In Section
13.8 it is dso shown that sdf-consistent equations for Ag, By, Cq, Dg (and
certain other matrices) can be written down. These equations are exact
and infinite-dimensional, but they can be truncated to a finite set of
approximate equations, and these can be used to obtain good numerical
approximations to K, or long series expansions of K.

13.2 Expressions as Products of Operators

Consider the matrix f; whose dement (a, &) is
(Udo,0 = 6(a,i ) ... d(oi-i, o] i) w(Oi, i, a- ,:CT;_0
xd(0i+1,&i+1)...6(0m,& m). (13.21)

Asisindicated in Fig. 13.3, this corresponds to adding a single face to the
lattice, going in the NE to SW direction. Indeed, [/» can be regarded as
a 'face transfer matrix', or as a 'face operator'. It is analogous to the vertex

Fig. 13.3. A picture of the effect of pre-multiplying by the matrix (/; defined by

(13.2.1). This corresponds to introducing the square shown, with its appropriate

weight function w, and summing over the spin of. We use the convention that spins
on open circles are fixed, while spins on solid circles are to be summed over.
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operator of (9.6.9), the only difference being that here we are thinking in
terms of 'spins on sites, rather than ‘arrows on edges.
Two operators U, Uj commute if i and/ differ by two or more, i.e.
Uy = yjut if\i-;|>1. (13.2.2)

The corner transfer matrix A can be written asa product of face operators,
one for each of the\m{m + 1) facesin Fig. 13.1(b). To alow for the faces
near the boundary, define If,, to be the operator Uy, given by (13.2.1) with
an+l fixed to have the value s, i.e.

(Ulda™ = d(oi,0i). . . d(Oni,&m-)W(0m,S ,&m,Onri). (13239

Similarly, define U%+\ to be Un+i with crgti, Ome2, <4+i replaced by s,
t, z, i.e.

(Uz?]) = fifa, o0i). . . 6{0Om,&mW(St,Z, Oy) .  (13.2.3b)
Thus Ifrfi+i is a diagona matrix.

Letst,...,y,zands,t', ...y betheboundary spins, arranged
asinFig. 13.1(b). Then it is easy to see that
A = mcU2W™ form =2, (13 2.4)

Ifi ifAUIUIYUSU%Y - form = 3,

and in general that
A= W"9>'i. .. Wxh, (13.2.5)
where

of = CNEAt/p-iflm-» ..Uj. (13.2.6)

13.3 Star - Triangle Relation

In Section 9.6 it was shown, using the 'electric’ language of arrow spins on
edges, that two six-vertex modd transfer matrices commute provided the
‘star-triangle’ relation (9.6.8) is satisfied. This result was generalized to
the eight-vertex model in Section 10.4, and in Section 11.5 it was expressed
in the 'magnetic' language of lsing spins.

This lagt formulation can of course be derived directly. In fact it can be
written down (but not necessarily solved) for any IRF model. Let the
square lattice have Af columns and be wound on a cylinder, so that column
1 follows column N. Then the row-to-row transfer matrix V has elements
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N
Voo = [Iwo. 001,01, 00) (13.3.2)
i=
where ov+ = o, &wx =a[, a=fa , ..., o}, & ={o{,..., 0N, and

the weight function w(a ,b,c,d) is now arbitrary.
Let V be similarly defined, with w replaced by w'. Then the elements
of the matrix product V V are

(VV")gr = ; VorVirs

N
= .2 9. 4. Gloe dr,ann), (1332

where
s(a , a A\, b b)=w@b b'a") w@'b, ba) (13.3.3)

Infact s(a , a' , a\b, b" , b') isthe weight of the two adjacent squares
shown in Fig. 13.4.

a4 =m0 b

Fig. 13.4. The adjacent squares, the lower with weight function w, and the upper
with weight function w'. Their combined weight is thes(a ,a" ,a\b ,b", b") of
(13.3.3).

For given values of O\ , . . . ay and &{,..., &\, the RHS of (13.3.2) is
a matrix product. Let S(a , a'\b , b') be the two-by-two matrix (for two-
valued spins) with element s(a, a" , a \b, b" , b") in row a" and column
b". Then (13.3.2) can be written

(MWW)as = Trace Sfa M\<h, 4) S(a;, &,1CT;, o)
... 8oy, &\\ai; &i). (13.3.4)

Define S similarly, but with w and w' interchanged in (13.3.3). Then
V'V is given by (13.3.4), with S replaced by S. Clearly V and V will
commute if there exist two-by-two matrices M(a , &) such that

S(a,a|6,&') = M(a,a)S (fl,alfe,fe)[M(ft,&")]":.  (13.35)
since the matrices M will cancel out of (13.3.4).
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Post-multiply (13.3.5) by M(b , b'). Write the element (c, d) of M(a, a)
as w'{c,a,d,a), and write the two-by-two matrix products explicitly.
Then (13.3.5) becomes

2w(a,b,c,a)yw{a"', c,b,a)w'(c,b,b", b-)
= X w'@ ,aca) w@ ,b ,b" owc ,b",b",a"), (13.3.6)

for dl vaues of a, &, a"“, b, b, b".

FI% 135. Graphicd representetion of the generdized dar - triangle relation
(13.3.6): the partition functions of the two grgphs are the two Sdes of the
eguaion.

This equation can be represented as in Fig. 13.5. Define the operators
£/, asin (13.2.1), and similarly define [// and U,' by replacing w therein by
w' and w", respectively. Then (13.3.6) is equivalent to the operator relation

UinUtiu”,, = UIU'i+xU,, (133.7)

forf=2,...,m-1

Clearly this is a generdization to the IRF modd of the star - triangle
relations (6.4.27), (9.6.10) of the lsing and eight-vertex models.

For a given function w, (13.3.6) in general only admits trivial and
uninteresting solutions for w' and w". One obvious one is

w = w, Ww'(a,bcd = %ac), - (13.3.8)
which corresponds merely to the fact that V commutes with itsdf.

Solvable Cases

We are interested in finding classes of commuting transfer matrices, and
therefore in finding functions w such that (13.3.6) has infinitdy many
solutions for w and w". (One can of course dways multiply w' and w" by
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scalar factors, since these must cancel out of (13.3.6): this is not to be
regarded as a new solution.)

We have already found one such family of solutions, namely the zero-
fidd eight-vertex model. In fact (13.3.6) is the equation (11.5.8), with
O\ . ., a replaced by b', & 4a, a b, b", ¢; W, by w; W3(a,b,c, hd)
by w'(c ,d,a,b), and W{a , b , ¢, d) by w(b ,c,d,a).

Let us define p, k, A, u such that

w(@ ,b ,a ,b) = psnhA
wfa,b, -a, -b) = pksnh A snhu shh(A - u) (13.3.9)
w(a ,b,a, -b) = p snh(A - u)
w@,b,—a,b)=psnhu
fora = +1 and b = +1. Here snhu is the dliptic function of argument
u and modulus k, defined by (10.4.20) and (15.1.6).
Now define w', w"' by (13.3.9), but with u replaced by u', u", respectively.
Then from (11.5.3) and (11.1.10), these u, u’, u" correspond to the u,,

A - «i, Uz in Chapter 11. From (11.1.12) it follows that the star-triangle
relation (13.3.6) is satisfied provided

u=u+u. (13.3.10)

Regard p, k, A as fixed, and u as a complex variable. Then
w(a ,b,c,d) is a function of u, as well as of the four spins a, b, ¢, d.
Write it as wju\a ,b,c,d], or smply w[u]. Then the solution of (13.3.6)
is

w=wu, w=wu+u"l], w'=wu"1l. (13.3.11)

Equivalently, writing the operator [/, as afunction t/(w) of u, from (13.3.7)
it follows that

Ui+1(u) Uy(u + u™) Uy (u™) = Uid") Uisi(u + Uu") Ui(u), (13.3.12)

for al complex numbers u and u". This isthe relation (9.7.14), expressed
in terms of spins-on-sites, rather than arrows-on-edges.

Rotating the lattice through 90° is equivalent to replacing a, b, ¢, dby
b, ¢, d, a, and from (13.3.9) this corresponds to replacing u by A - u. Thus
w [A - u] = weight function w after rotating lattice

through9Q-. (13313
Suppose, asin (10.7.1a), that
p>0, O<*<l, O<A</', (13314
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where /' is the complete dliptic integral of the firgd kind of modulus
K = (1 - K’)K Then from (13.3.9)

wuabcd] 30  ifO=f«sA, (13.3.15)

for dl values of the spins a,b,c,d. From (13.1.3), the Boltzmann weights
w must be non-negative if the energies are real, so the 'physical’ vaues of
u are those lying on the interval (0, A) of the red axis.

In the next chapter, smilar properties will be found for a restricted hard
square model: the relations (13.3.8) are changed, but again it is possible
to express the function w in terms of a complex variable u (and certain
‘constants k and A) so that equations smilar to (13.3.9—(13.3.15) are
sdidfied. It is therefore interesting to consider the conseguences of
(13.3.10)-(13.3.15).

The star - triangle relation (13.3.6) implies that the two row-to-row
transfer matrices V and V commute. This result can be generdized to a
column-inhomogeneous modd of the type discussed in Section 10.17. Let
the Boltzmann weight function w be different for different columns of the
lattice, but in such away that k and A are the same for adl columns. For
the matrix V, let «i,. .., uy be the values of u for columns 1,. .., N.
Similarly, let u[,. .. ,uh be their vaues for V. Then the derivation
(13.3.1)—(13.3.6) of the commutativity of V and V ill applies, provided
that u", and hence w" and M, is the same for al columns. From (13.3.10),
it follows that

V'V = VVif M-- Uj isindependent of; . (13.3.16)

Thisin turn implies that the normalized eigenvectors of V depend only on
the differences of U\,. . . , un.

Product Relation for CTMs

Now consider the lattice shown in Fig. 13.6, in which faces to the right of
the centre line have weight function wju], while those to the left have
weight function w[v], and dl faces have the same value of k, and of A.

Leta={(T ,02,+..}andd={a ,&>,...}, whereof =<\.. Then o
and & together denote al the spins on the bottom row of the lattice.
Define

VW = 211 w(oi, Oj, o, a,), (13.3.17)

where the product is over al the M faces of the lattice and the sum is over
al spins on solid circles in Fig. 13.6.
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We consider two possible boundary conditions. Firstly, apply the bound-
ary conditions of Figs. 13.1 and 13.2. Then it is obvious from the definition
(13.1.7) of A, and the corresponding definitions of B and C, that

Yo = [B(U) C(W)U . (13.3.18)

where the dependence of B on the parameter u, and of C on v, is explicitly
exhibited.

wiv] wiu]

— i\ S o o
oy oy ] C, o

Fig. 13.6. Lattice with weight function w[u] for faces to the right of the heavy line,
wv] for faces to the left. Its partition function is the tp.f in (13.3.17).

Secondly, suppose instead that cylindrical boundary conditions are used,

and fix the top row of spins to have values . . . S$/2, 9,22s$,. . . . Let
s={s\,s,, * ¢+ .} ands" ={g,s;,-*+}, with s =s, Then
Yoo = (Vow}sr » (13.3.19)

where r is the number of rows, V is the row-to-row transfer matrix of this
section, aand & together form the row-index of Vin (13.3.19) while s and
s form the column-index.

In the limit of r large it follows that xp is, apart from a normalization
factor, the maximal eigenvector of V. From the remark following (13.3.16),
this eigenvector depends on u and v only via their difference u - v. Thus

Yoo = T (4, ) [X' (@ ~ 0))owr » (13.3.20)

where t'(u , v) is a normalization factor, independent of o and &, and
[X'(u—V)\;& dependson u and v only viatheir difference u — v. For later
comparison with (13.3.18), it is useful to regard [X'(u - V)]o& as the
dement (a, &) of a matrix X{u—v). Since O\=&\, X'(u—v) can be
taken to have the block-diagonal structure (13.1.13): it is not the transpose
of X(u-v).
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13.4 The Infinite Lattice Limit

To proceed further we must go to the limit when the lattice is infinitely
large and the matrices are infinite dimensional. It is not easy to be mathe-
matically rigorous in handling this limit, athough tools are available
(Ruelle, 1969). Here | shdl rely heavily on physica intuition, much of it
gained from considering low-temperature series expansions, where one
perturbs about the ground state of the system.

The parameter or in (13.1.14) is itsdf a partition function, namely that
of the lattice in Fig. 13.1(b), with dl boundary spins fixed a their
ground-state values. There are\m{m + 1) faces, so from (13.1.4) we expect
that

K= lim ™MD, (13.4.1)

If afixed number of the boundary spins a, d are changed from their
ground-state values, we expect this only to introduce an extramultiplicative
factor which tends to afinite non-zero limit as m-» °°, That is, we expect
that the limit '

lim (Aae/As), (13.4.2)

exists, provided there exists an integer r (independent of m) such that

a.,=39 and o/ =s for /s=r. (13.4.3)
However, (13.4.2) is amply the element (a, &) of the matrix A, defined
by (13.1.14) and (13.1.15). We therefore expect that

lim {Ada (134.4)

exists, and in this sense that the matrix A, should tend to a limiting
infinite-dimensiona matrix as m—* °°, Similarly, we expect B,, C,, D, to
tend to limits.

Arrange the columns of P, Q, R, T so0 that the diagona entries of
ABJCiDy in (13.1.16) are in numericaly decreasing order. Then
Aq, By, Q, Dy can be chosen so that each has its entries in numericdly
decreasing order. For a wide class of choices of the function
w(a ,b,c,d), and for sufficiently low temperatures, it appears that at,
P, W S5, P, Q R, TAy By Cq, Dg in (13.1.16) can dl be chosen to tend
to limits asm”<». This is in the sense that matrix e ements such as P*
and (Ag)jj tend to limits, for fixed; and afixed spin-set osatisfying (13.4.3).

(High temperature regimes can be handled by using ‘free-spin' boundary
conditions, but let us concentrate on the low temperature case.)
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For the ferromagnetically ordered eight-vertex mode it will be found
in Section 13.7 that Cy =Aqy, Dy = Bg. and that the largest six diagonal
elements of Aq (in the limit m—* °°), are

1,5,5%,S°,S\s\ (13.4.5)

where s = (x2)*, and x,z are the dliptic function parameters defined by
(10.4.23), (10.7.9) and (10.7.18). (The elements 0i By are given by inverting
z) At low temperatures s is smal: it increases to one as the temperature
increases to its criticd value.

More generally, for any IRF model at sufficiently low temperature, it
seems that each of the corner transfer matrices has a discrete eigenvalue
spectrum asm-*" . Thisis in the sense that for any e > 0 there are only
a finite number of eigenvalues numerically larger than e.

This is quite different from the eigenvalue spectrum of the row-to-row
transfer matrix V. If the lattice has N columns, then V usualy has a unique
maximum eigenvalue, then aband of JV eigenvaues al close together, then
another band of kN(N - 1) eigenvalues, etc. These bands become con-
tinuous in the limit N—> °°. The normalized matrix of eigenvaues of V
does not tend to a limit as N—* °°,

13.5 Eigenvalues of the CTMs

Now let us return to Section 13.3 and suppose that w is such that the
star - triangle relation (13.3.6) does admit a one-parameter class of sol-
utions for w and w"; that the members of this class are w[u\, where u is
any complex number, and (13.3.9)—(13.3.12) are satified.

The relations (13.3.18) and (13.3.20) are then true. For afinite lattice,
ilW is different in the two equations, since different boundary conditions
are imposed on the lattice. However, in the limit of an infinite lattice, we
expect the boundary conditions to be irrelevant. Eliminating iMW> using
(13.1.15) and absorbing the factors a and fi into T'(M , v), gives

Bn(u) Ci(v) = THU , v) X'(u - V), (13.5.1)

where By(u), C,(v) are the normdized corner transfer matrices of the
infinite lattice.

Three equations analogous to (13.5.1) can be obtained by successively
rotating the lattice through 90° intervals. In particular, rotating clockwise
through 90° gives

A() By(v) = H(u, ) X(u -V), (135.2)
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where T(M , v) is some scdar factor and X(u — V) is a matrix that depends
on u and v only via their difference u - v. | shal now regard (13.5.2) as
the archetypal equation, and (13.5.1) as one of its rotated analogues.
There are problems with this equation, due to the infinite dimensionality
of the matrices. The sum-over-elements involved in the matrix product on
the LHS is probably not convergent, giving a divergent factor. However,
this factor is common to dl elements of A,(u) B,(v), so can be absorbed
into T(M , v) and plays no role in the subsequent analysis. What | do expect
to be trueis that if s, S' are the ground-state values of the spins @, 0" in
Fig. 13.2, and if there exists an integer r (independent of m) such that

Oj=Sjanddj=s"forj ~ r (13.5.39)
and if Ay(u), By(v) are again defined for finite m, then the limit
lim {[An(u)Br(V)U/[An(u)Bn(V)] A, (13.5.3p)

should exist and depend on u,v only viatheir difference u —v.

Also, | expect that there exist representations in which the appropriately
normalized infinite dimensional matrices A,(u), Bn(v) exist, together with
the product A{u) By(V).

From now on | shall therefore treat (13.5.2) as anorma matrix equation.
Further, | shall assume that An(u), B{v) are not identicdly singular for
al uyv, and shal as required assume completeness of eigenvector sets.
Obvioudy 4l this is very non-rigorous. Even so, the assumptions appear
to be judtified, and the results to be exactly correct.

Symmetric Case

Thereis awedth of information in (13.5.2). It ismogt easly explored when
thereis no spontaneous breaking of the trand ation invariance of the lattice,
and when

w(@,b,c,d)=w{c,b,a,d) =w(a,d,c,b). (135.4)

In this case (which includes the ferromagnetic eight-vertex model), the
boundary spinss, t,. . . , zinFig. 13.1 are dl equal, A and B are symmetric
matrices, and C = A, D = B. Also since B is obtained from A by rotating
the lattice through 90°, from (13.3.13) it follows that

Br{V)=An{k-v), (13.5.5)
for al values of v.
Replacing v by A - vin (13.5.1) therefore gives

An(u) An(V) = TM , A- V) X(u + v -A). (135.6)
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‘Interchanging u and v, and eliminating X, gives
r(v, A - u) AuAs(v) = <u,A - 0)Alv) A*u). (13.5.7)
By considering a representation in which A,(u) is diagonal, it can be seen
that (13.5.7) implies
r(v ,k-u) = T(W,A- V) (13.5.8)
An(u) An(v) = A(Vv) Alu). (13.5.9)

From (13.5.9) and (13.5.6), the matrices A,(u), An(V), X(u + v - A)
therefore commute and have common eigenvectors, independent of u and
v. For some physical value of u, saylA, letpi,p,,P3, « * » bethe eigenvectors
of Ay(u) aranged so that the corresponding eigenvalues
a\(u),ax{u),aT{u),. . . ae in numerically decreasing order. Let
X\(u), x{u), XT,(V) ,... be the corresponding eigenvalues of X(u). Define

Afu) = P'AL(u) Plafu),
Xq(u) = P~'X(u) P/xi(u). (13.5.10)

Then Aq4(u),Xy4(u) are diagonal matrices whose top-left entries are unity.
Putting (13.5.6) into diagonal form by pre-multiplying by P'* and post-
multiplying by P, the (1,1) element gives

TM , A -v) =a{u) af{v)Ix{u + v - A), (13.5.11)
and the equation then becomes
AgU)Ag(V)=Xg(u + v -A). (13.5.12)

Any given diagona entry of (13.5.12) is a scalar equation of the same
form, and must be true for al real numbers u, v in the interval (0 , A).
Differentiating logarithmically, it is readily verified that the general solution
is, forr=1,2,3,...,

[Ag(U)]r,r = meexp(-a;u), (135.13)

where m, oc, are constants, independent of u.

For a given model, the values of m,, a, can be determined from periodicity
considerations and by considering special cases: this will be done in the
next section for the ferromagnetically ordered eight-vertex model.

Using (13.5.5) and the fact that C = A, D = B, it is obvious that A,(u),
Br{u), C,(u), Dy(u) dl commute with one another, so the P,Q,RT in
(13.1.13) can dl be taken to be P. Then

Ca(W)=Ag(U),  Dg{u)=Ba(u)=Aq(k-u). (135.14)
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Let S be the eigenvalue of S corresponding to the eigenvector p,. Substi-
tuting the expressions (13.5.13) and (13.5.14) for the eigenvaues into
(13.1.17), it follows that

©

o )
(o) = E ls*m4f exp(2a,A)/E ', exp(20>A). (13.5.15)

Asymmetric Case

It is still possible to obtain explicit forms for Ay, By, Cq, Dy from (13.5.2)
(and its rotated analogues), even if the symmetry conditions (13.5.4) and
(13.5.5) are not satisfied. It is merely a little more tedious.

First replace u, v in (13.5.2) by A-v, A-u and then eliminate
X(u - v). This gives

TA - v, A - u) Au) By(v) = r(u, VA({kK - v) B{k - u). (13.5.16)
Set u equal to some fixed value up, and suppose that Aq(Ug) is invertible,
so that (13.5.16) can be solved for B,(Vv). Substitute the result back into
(13.5.1) and post-multiply by B~\k -uQ)AnuQ). The result is
d(u) si(k -0) = 4>{u, v) Y(u - v), (13.5.17)
where
si(u) =An(U)A\uUE),
Y(u) =X(u)BAk-up)A-\uo), (13.5.18)
4>u,v) =TM , v) TA - a, A - U)TUo V) .

This equation (13.5.17) is precisely of the form (13.5.6), with v replaced
by A - v. It can be solved by exactly the same methods, giving

sE(u) =a(u)PAG(U)p-*, (13.5.19)

where P is independent of u and As{u) is diagonal. The columns of P are
arranged so that for physical values of u (or at any rate for some particular
physical value), the diagonal entries of Aq(u) are in numerically decreasing
order. The top-left entry in Ay(u) is unity. The (r , r) entry is

\Ag(U)]rr = My exp(aru), (13.5.20)

where m,, a are independent of u.
From (13.5.19) and the firs of the three equations (13.5.18), it follows
that
Ay = a)(u)y PALu) Q-\ (13.5.21)
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where Q, like P, isindependent of u. [In fact Q =An'(ug)P.] Substituting
this form for A,(u) into (13.5.16), setting u = ug, solving for Bn(v), replac-
ing v by u, and using the fact that A¢(X - u) and Ag(ug) commute, gives

Bn(U) = b,{u) QAIk-U)R-\ (135.22)

where b\{u) is a scdar factor, and R is independent of u.

Now consider the first rotated analogue of (13.5.2), namely (13.5.1).
Substituting the form (13.5.22) of B{u) into (13.5.1) is precisdly analogous
to substituting the form (13.5.21) of A,(u) into (13.5.2) and (13.5.16). The
result analogous to (13.5.22) is

Ci{u) = ci{u)RAG(U)T-\ (13.5.23)

where CI(M) is ascaar, and Tis independent of u.
Similarly, the C{u) D{v) andogue of (13.5.2) gives

Dn(u) = d*u) TAIK - u) W-, (13.5.24)

where d\{u) is a scalar, and Wis independent of u.
Substituting the forms (13.5.24), (13.5.21) of £,(«), A{V) into the
Dn{u) Ay(v) andogue of (13.5.2) gives

Ag(X- U) WPAIV) = T'(M , V) X{u-Vv), (13525

where t"(u , V) is a scdar factor. Since Ag(u) is diagonal, with element
(1,1) equal to unity, it folows from the (1,1) element of (13.5.25) that
T'(M , V) can be taken to be unity. It is then readily apparent that the
element (r , 5 of W-*P stisfies

(W-P)s =0 if txr * a . (13.5.26)

Thus W~'P is a block-diagonal matrix, independent if u.

Pogt-multiplying P, Q, R, T, W above by constant matrices with this
block-diagonal structure, we can reduce W~'P to the unit matrix, and
(13.5.21)-(13.5.24) to the form

Au) = g(u) PAUQ ~\ Biu) =hiu)QB{X-u)R-\
Cott) =i} RCL) T\ Dyu) =d(u) TDH{ k-up\ (135.27)

where Ag{u), Bg{u), Cs{u), Ds{u) art dl diagonal matrices, with elements
given by (13.5.20). For each integer r, the vaue of a is the same for al
four matrices, but m may be different. In every case cxX\ =0, mi = 1.

As for the symmetric case, the values of a, and the m, can be obtained
from periodicity conditions and specid cases. this will be done in the next
chapter for a restricted hard square model.
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Subgtituting these forms (13.5.27), (13.5.20) into (13.1.17), we again
obtain the formula (13.5.15) for the magnetization, except that nowm?*, is
to be replaced by the product of the values of m for A, B,, C, and D,.

13.6 Inversion Properties. Relation for K(K)

When u = 0 it is apparent from (13.3.9) that

w(a,b,c,d) =psnhA<5(a,c). (13.6.1)

Suppose the boundary conditions are such that s=t=...=zand s =
t' =... =y'. Then from (13.2.1)

Ui=psnhi $, (13.6.2)

where $istheidentity matrix andi = 1,. . . , m- 1. Further from (13.2.3),

(13.6.2) is aso true for the boundary matrices Uy, |/n'i that occur in
(13.2.4)-(13.2.6). It follows that

A(0) = (pshhA)M<™* 1A, (13.6.39)
and hence from (13.1.14) and (13.1.15) that
A\0) = 3. (13.6.3b)
Setting u =0 in the firg of the equations (13.5.27), it follows that
G = a;(0)/M,(0), (13.6.49)
and hence that
Aq(u) = [a(u)/a(0)] PAJIU)A; X0)P~'- (13-6.5)
From (13.5.13), the matrix Ad(u) A2'(0) is diagonal, with elements
[Adu) AZ\0}],, = exp{—au) , (13.6.6)
a being independent of u.
Let 'Kd be the diagonal matrix with entries a, a,, as,. . . , and set
#H =P, P (13.6.7)
Then from (13.6.5) and (13.1.15) it follows that
A{u) = T(M) exp(-u'X), (13.6.8)

where, noting that arcan depend on u,
X(u) = aau)la Q). (13.6.9)
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As m—* °° we expect a\{u) and 2£ to tend to limits. From (13.4.1), the
partition function per ste is therefore

*(«)= lim [T(«)]?mmd (13.6.10)
m—>

These equations have been derived for the physica vaues of u, namely
those ontheinterval (0, A) of thereal axis. For these we expect the various
large-m limitsto exist. In particular, we expect that if the diagonal € ements
of Ag(u) Aa(0) are arranged in numerically decreasing order, the largest
being normalized to unity, then any given element will tend to a limit as
nm—> °°. This means that <x\, oti, 03,. . . are non-negative and that 'K is
non-negative definite.

However, it seems that these equations can be extended to small negative
values of u, and that the resulting values of K{U) are those obtained by
anayticaly continuing the function from positive values.

[For u negative, this K(U) is not that given by (13.1.4). Thisis because
the order of the eigenvalues of exp(-u'S) is reversed and it is now the
smalest eigenvalue that is normalised to unity, instead of the largest.]

Suppose therefore that (13.6.8) is true for sufficiently smal values of u,
positive or negative. Then obvioudy

AWVACU) = TUTEU)3> . (13.6.11)

Thisresult can be obtained directly. From (13.3.9) it isreadily established
that

Ayv(u\a,b,a',d)w(-u\a‘,b,c,d) =gu) <Ha , a'), (13.6.12)

for al spins a,b,c,d and al complex numbers w, where
g(u) = p(u) p(-«) (sNh? A - snh u), (13.6.13)

and for generality | now dlow the normalization factor p in (13.3.9) to be
some given function of u (but k and A continue to be regarded as constants).
From (13.6.12) and (13.2.1) it follows that

U(u) U(-u)=g(u) 3. (13.6.14)

Thisistruefori =2, ..., m-1 and dso for If,, provided sis fixed.
It is not true for IFE+\ defined in (13.2.3b), but without doing violence to
the boundary conditions this diagonal matrix can be replaced by one for
which it is true. Since we are supposing thats=t=...—=z ands =t' =
...=1, from (13.2.4)-(13.2.6) it follows that

AWACU) = [gu)] D3> | (13.6.15)
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which is of the same form as the previous result (13.6.11). Comparing
them, we obtain

r(ur(-u) = [gw]~™ 1 (13.6.16)

Taking \m{m + 1) rootsin this equation, using (13.6.10) and (13.6.13),
gives

KUK(-U) = p(w)p(-w)[snh?A- snh?u]. (13.6.174)

A similar equation can be obtained by rotating the lattice through 90°.
From (13.3.13) this is equivalent to replacing the functions K(U), p(u) by
JOA - u), p(k - u), respectively: (13.6.17a) then gives

K(U) K(2X -U) = p{u) p(2A - u) [sth?A - ¥(A - u)].  (13.6.17b)
Let us set
p = p(u) = p'tfeiixX) 0(i«) OCA - iu) , (13.6.18)

where p' is a constant. This ensures that the parametrization (13.3.9) of
the Boltzmann weights is the same as (10.4.24) (with p replaced by p'),
and that the weights are entire functions of u. Using the formula.(15.4.19),
(13.6.17) becomes

K(U) K(-U) = p?h{k - u) h{l + u), (13.6.199)
K(U) K(2X -U) = p?h{u)h(2K - u), (13.6.19b)

where h(u) is defined by (10.5.16), i.e.
h(u) = -i 0(0) H(iu) ®{iu). (13.6.20)

We have in fact aready encountered the second equation (13.6.19).
From (13.1.5), (10.8.46) and (10.4.23), the function A(v) in Chapter 10
isrelated to K(U) by

AW) = {KLi(+v)1}Y, (13.6.21)
where N is the number of columns in the lattice of Chapter 10. Replacing

u in the second equation (13.6.19) by JA + v), and taking Mh powers, the
equation becomes

AV) AQA - V) = <p{k + V) O3A - V), (13.6.22)

where the function <p{v) is defined by (10.5.24). However, thisis precisaly
the relation (10.8.43).

The relations (13.6.19) are therefore certainly true for the eight-vertex
model, which gives me greater confidence in the assumptions used to derive
them. Analogous relations have been used by Stroganov (1979) for two
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specia cases of the '81-vertex' model, and yet others will be used in the
next chapter for a modified hard squares model.

More generally, for any IRF model we can adways define an 'inverse'
weight function w such that

w(ab,f,d)w(f,b,cd)=dia,c), (13.6.23)

for al spinsa, b, ¢, d. Define fs by (13.2.1), with w replaced by W. Then
(13.6.23) implies

Ujdi = 3>, (13.6.24)

fori = 2,...,m Write*: as afunction gr of w. DefinekW] as the
analytic continuation from w to W. Then one can use arguments similar to
those above to establish that

K[W] 4W] = 1. (13.6.25)

[Probably the simplest way is to consider the diagonal-to-diagonal transfer
matrix (ULU3US. . . Uy-i) (UoU4Ue. . . Uy). Then K can be defined as the
Mh root of the eigenvalue whose corresponding eigenvector has no negative
entries. Inverting each U, inverts al the eigenvalues, and hence inverts
K]

This equation (13.6.25) is the generadization of (13.6.17a). The gener-
dlization of (13.6.17b) is obtained by rotating the lattice through 90°, i.e.
by using the NW to SE inverse of w, instead of the NE to SW inverse W.

In the next section it will be shown for the eight-vertex model that
(13.6.17), together with some simple analyticity and periodicity properties,
determines the function K(U), and hence the free energy. It is fascinating
to speculate whether (13.6.25) does the same for any IRF model, e.g. the
Ising model in a magnetic field. Unfortunately it seems that K is then a
much more complicated function and that (13.6.25), while true, is no
longer sufficient to determine K.

13.7 Eight-Vertex Modd

Free Energy

Let us use the definition (13.6.18) of p{u) and regard p' as a constant.
Then the parametrization (13.3.9) of the Boltzmann weights is the same
as that in (10.4.24), but with p therein replaced by p'. If (13.3.14) and
(13.3.15) are satisfied, then the system is in an ordered ferromagnetic
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phase. We can therefore use the results of Section 10.8 to obtain the free
energy, and hence K(U). From (13.6.15) and (10.8.44),

e ST (2 2T

In () = In(o'vix) - 2 M- AT

where q, X, z are given by (10.4.23), (10.7.9) and (10.7.18), i.e.
q= exp{-nl'll), x= exp{-nki2l), z=x~' exp(-nu/l). (13.7.2)

Since p, k, A are regarded as constants, so are q and x. The parameter
Z varies with u. From the result (13.7.1) it can be seen that

(13.7.1)

InK(U) = analyticinadomain containing the vertical
strip 0 =s Re(u) =£ A, periodic of period 2il. (13.7.3)

These analyticity and periodicity properties, together with the ‘inversion'
relations (13.6.17), actualy define K(U).

To seethis, note that (13.7.3) impliesthat In K(U), regarded as afunction
of z, is andytic in the annulus X =£z =£ x1. It therefore has a Laurent
expansion which convergesin a domain containing this annulus, i.e. there
exig coefficients c,, independent of z and u, such that

00

INK(U) = 2 c,2', x"2"x-1. (13.7.4)

Also, from (10.8.6),
Inh(u) = Iny+ nulll - 2 x"Zn(l - q"), (13.7.5)
n¥0’
where the sum is over al integer values of n, positive or negative but not
zero, and u must lie in the strip 0 <Re(w) </'.

The equations (13.6.17) are equivalent to (13.6.19). Take logarithms of
both sides of (13.6.194). There exists a strip about the imaginary axis in
the complex u plane inside which dl functions can be expanded by using
(13.7.4) or (13.7.5). This gives

Dy + xcn) 2"
=2In(py/x) - 2 0" + gq'x~") ZVn(l - ). (13.7.63)
In both sums n runs from — °o to °°, but n = 0 is excluded in the second.
Similarly, (13.6.19b) gives
2(cy + x"¥ey) 2"

= 2\n(pyX) - 2 (" + g%>)Zn(l - q"), (13.7.6b)
n¥0
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for avertical strip about Re(u) = A. Equating coefficients of ' in (13.7.64)
and (13.7.6b), the resulting equations can be solved for ¢, to give

co = In(By/x), (137.7)
ch=cp=-0"+g%")[nl + X" (@1 -q)] torn ¥0.

Substituting these expressions into (13.7.4) gives the result (13.7.1) of
Chapter 10.

The andyticity and periodicity properties (13.7.3) could have been
guessed from low-temperature series expansions, and K(U) then obtained
by the above reasoning. Provided one is prepared to make these initial
assumptions, this method is undoubtedly the smplest way yet known for
evaluating K(U), and hence for obtaining the free energy of the eight-vertex
model.

Magnetization

The ground state of the ordered ferromagnetic phase can be taken to be
the configuration in which dl spins have value +1. Since w(a ,b,c,d) is
symmetric with respect to interchange of a and ¢, or b and d, it follows
that the corner transfer matrices A, B, C, D are symmetric and that
C=A and D = B. This case has been discussed in (13.5.4)-(13.5.15).
From (13.5.10) and (13.5.5).

As(U) = Cy(u) = P-'Aq(u) Plaiu) , (13.7.8)
B{u) = Dn(u) = PAgk - u) PlaiX - u).

The matrix Aa(u) is diagonal, with elements of the form (13.5.13), where
m\ = \ and <x\ = 0. From (13.6.3b) it follows that m = 1 for dl r, so the
diagona elements of Ay(u) are

{Adu)]..r = exp{—aw). (13.7.9)

The<X\, oci , . . . are constants, independent of u.

The Boltzmann weights (13.3.9) are periodic functions of u, of period
MI. There seems to be no problem in extending the reasoning of Section
135 to dal complex numbers u in the vertical strip 0 < Re(«) <k (if we
look at low-temperature series expansions, u only enters them via integer
or half-integer powers of the z in (13.7.2)). This implies that As{u) is dso
periodic of period MI, so from (13.7.9) it follows that

[Ad(«)]; = exp(-mirulll), (13.7.10)
whereng. n, , » * * areintegers.
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These integers can be obtained by considering the case when k—* O while
XIF and u remain fixed. Thefirst and third weightsin (13.3.9) then remain
comparable with one another, while the other two become relatively
negligible. From (15.1.6) and (13.7.2),

w@ab ,ab)—ipx!,

w(ab, -a, -b)-*0, (13.7.11)
w@ ba, -b) -*ipx' exp(-mi/2l),

w{a ,b—ab)—*0.

From (13.2.1) and (13.2.3), the matrices £/; are therefore diagonal, with
entries

(Uio,o = 2px7 1 exp[-jtu(l - a_;10j+1)/4/], (13.7.12)

fori=2,...,m+ 1, where ay.; and an.» areto be given the ground
state value of +1. From (13.2.4)-(13.2.6), the matrix A is also diagonal,
so Ad{u) is obtained by normalizing this matrix to have maximum element
unity. This gives

m+1

[Adiu]ao = bprmi S (i 1) (1 - ffi-iffui)a] . (137.13)

Comparing this with the general formula (13.7.10), and replacing the
single index r by the multiple index a={o\, 02, * * * , 0y}, we see that

m+I

«, = IE (i-1)(I-0i_io>.i). (13.7.14)
1=2

It follows that (13.7.13) is true throughout the ferromagnetic ordered
phase, in the limit of m large. By this | mean that if we consider the rth
largest diagonal element of A4(u) (for u positive), and let m* °° while
keeping r fixed, then this element tends to a limit, and this limit is given
by (13.7.13). If aisthe spin set corresponding to this rth largest element,
then there must be an integer /, independent of m, such that

oi=+I1 for i>j. (13.7.15)
It is convenient to introduce a new set of spinsfl , . . ., by
Hi = 00y,  i=l,..,m, (13.5.16)

(taking <ym1 = Oms2 = +1 as before). Then Ag{u) is a diagonal matrix
whose rows and columns are labelled by \i ={\i\,. . ., fiy}, and whose
diagonal entries are
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[Ad)]up = exp[—fm Zlf(l - u,-)m] : (13.7.17)
Also, since O\ = frfofo . . . , the5in (13.1.13) isdiagonal and has entries
S = Afifgis... . (13.7.18)

The matrices Aq(u) and Sare now direct products of two by two matrices.
Set

s= (xz --= exp(-mi/2l),

t= (X2)»= exp(—m(A — u)'2/] . (13.7.19)
Then, using (13.7..8) and (131 16),
AdU) = Co(U) = a®G [ )e-

Bu(U) :de(u)=(; i G 0‘®V0 |3)®“' (13.7.20)

§= (1 0\ (" 1® C €.
Vo -i vo H
These equations are true only in the limit m—* », when there are
infinitely many terms in each of the direct products. | firg conjectured

them in 1976 (Baxter, 1976), but could not then prove them.
Substituting them into (13.1.17) gives

00

<> =1l (L- R4 D) (] 4 xArel?) (13.7.21)

which is the formula (10.10.9) for the spontaneous magnetization of the
eight-vertex model. We have therefore established this result, originaly
conjectured by Barber and Baxter (1973).

This reasoning does not easily generalize to the spontaneous polarization:
the formula (10.10.24) is ill a conjecture.

13.8 ‘'Equations for the CTMs

In this section | return to the general IRF model of Sections 13.1 and 13.2,
and show that there are equations which relate K and the CTMs, and in
principle determine them. They have not so far proved particularly useful
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for exactly solvable models, but they have been used very successfully to
obtain high-order series expansions (Baxter and Enting, 1979; Baxter et
al., 1980) and good numerical approximations (Baxter, 1968; Kelland,
1976; Tsang, 1979; Baxter and Tsang, 1980).

Define

A* = opt

a <

t'uopuu'u <‘l3fiyy‘Z
34e¢eem+1 (13.8.1)
FyY - . ‘-"M‘1‘Zl‘

C g e
A* * ~ cfiuu'v QLyy'

Then from (13.2.5) and (13.2.6),
A-& A, A -33 A , (13.8.2)

G&Sst — G&SSt TJ

For simplicity, suppose that the ground state is translation invariant, so
thats t,u,...ands,t ,... aredl equal. (Thisis not essential, but
for a non-translation invariant system we must keep track of the boundary
conditions appropriate to the various corner transfer matrices, and this
complicates the notation.) Then eliminating 3~ and S between the equa-
tions (13.8.2) gives

A = A* (A**)T ULA* . (13.8.3)

These A* and A** are themselves corner transfer matrices, only with
the spins shifted and m reduced. In fact

(A*)aj...Om\O[...Ofn = &cno, 0[) Aoz...()m]a‘z...am‘ s (13848)
(A**)gl.,.omwi,._a,',, = 6(01 \ 0{) 6(02 , a'z)Aa,..aM...am . (1384b)

where the A on the RHS of (13.8.4a) is defined by (13.1.8) with m replaced
by m- 1, and the A in (13.8.4b) has m replaced by m — 2.

Let us refer to the lattice quadrant in Fig. 13.1(b) as being of size'mby
m'. Then (13.8.3) defines A for an m by m quadrant in terms of its values
form- 1bym-1andm- 2by m- 2quadrants. Itis arecursion relation.

There are of course analogous recursion relations for B, C and D,
obtained from (13.8.3) by rotating the lattice successively through 90°
intervals.

Recursion Relation for Ay, By, Cg, Dy

We are interested in calculating the diagona forms™y, By, Cy, Dy . There
are at least two reasons for this: for those models which have been solved
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exactly, the diagonal forms have a very simple structure, e.g. (13.7.20);
for other models only approximate calculations can be performed. In such
approximations the corner transfer matrices must be truncated to man-
ageable size. As will be discussed at the end of this section, it seems that
a very good way to do this is to work with the diagona forms of the
matrices. '

Rather than calculate the original CTMs A, B, C, D from (13.8.3) and
its analogues, and then use (13.1.15) and (13.1.16) to obtain
Ag,By,Cq,Dg, we can make the substitutions (13.1.15) and (13.1.16)
directly into (13.8.3).

First let us establish some notation. For any 2™~ by 2™ matrix X,
with elements Xg, define a 2™ by 2™ matrix X*, with elements

Xijv = d(ai,ai)X. (13.8.53)
Here the rows of X* are labelled by the double index (CT1 , /) the columns
by (o[,/). In obvious notations we can write

X o0
X*=e,0X=(, ,), (13.8.5b)

€\ being the unit two-by-two matrix.
Similarly, for any 2™'2 by 22 matrix X, define a 2™ by 2™ matrix X**
by

Xl = 8(01, 01) 802, (f,) Xq, (13.8.63)
i.e
X 0 0 0
o o x 0 o0
X** = g<8>e,®X = o X o (13.8.6b)
0 0 0 X

These definitions are consistent with the equations (13.8.4) for A* and
A** being the obvious generalizations thereof.

Let P*, Q*, AY be so defined, using the matrices P, Q, Ay appropriate
to them— 1 by m - 1 lattice quadrants. Similarly, define P**, Q**, A%*
in terms of the m— 2 by m— 2 quadrants. Let x, = aa*, where a, a* are
the scalar factors in (13.1.15) and (13.1.16), evaluated for an m by m
quadrant. Then substituting (13.1.15) and (13.1.16) into (13.8.3), using
(13.8.4)-(13.8.6), we obtain

KP,AdQ7'=A,, | (13.8.7)
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where
A=AYQ?Y (Ar)~'uprAs, (13.8.8)
= (p*yp, Q = (@y'Q
P = (P**y'\P*, Q?=(G**)" te*. (13.8.9)
K= Tl 24, (13.8.10)

All matrices in (13.8.7)-(13.8.10) are of dimension 2™ by 2". We have
used the fact that P is of the block-diagond form (13.1.13), so that P**
commutes with Ch. The auffix r can be regarded as standing for 'ratio’, and
t for 'total calculated corner transfer matrix'.

To understand this last remark, note that (13.8.7) is one of four relations
which can be obtained from it by rotating the lattice through 90° intervals.
This cydidy permutes A, B, C, D and P, Q, R, T. The four equations are

KPVAJQ;I;-AI! KQrBd'Rr_l=Bl'r
KRC;T7 = C,  KT.DP:' = D (138.11)

These equations are precisaly of the form (13.1.16). Since Aq, By, Cq,
D4 are the diagondized CTMs of the m by m lattice quadrants, it follows
that A,, B, C,, D, are adso dlowed representations of these CTMs. They
are not in genera diagonal, but appear to be 'more diagona’ than the
origind CTMs A, B, C, D: for instance, there seems to be no problem
with the convergence of the relevant matrix products in the infinite-lattice
limits. Since A, is related to A by

A oc{P*YAQ, (13812)

we can regard A, as a 'partialy diagonalized' form of A.

Suppose we have evaluated the 2™~* by 2'"! matrices A, B, Cy, Da,
Pr, Qr R., T, appropriate to m- 1 by m- 1 quadrants, and the 2™~ by
2m~ matrices Ag, By, Cq, Dy appropriate to m - 2 by m - 2 quadrants.
Then the definitions (13.8.5) and (13.8.6) give the 2™ by 2™ matrices
AZP*, Q*,A#*in (13.8.8), so we can evauate A,. Similarly, using the
rotation analogues of (13.8.8), we can evaluate B,, C,, D;. The equations
(13.8.11) can then be solved for the 2" by 2™ matrices Aq, By, Cg, Dg,
Pr, Qr, R, T, appropriate to m by m lattice quadrants.

(There is gill some freedom, notably in the normalization of the column
vectors of P, Q;, R, T, but in any given example there is usualy an
obvious sensible choice of such factors. For instance, the smplest case is
that of an isotropic reflection-symmetric model, whenA=B=C= D is
symmetric. We can then choose P,= Q, = R= T, to be orthogonal, and
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Aq = By =Cyq = Dy to have maximum eigenvalue unity. It is helpful to
keep this simple case in mind.)

Also, for large m we expect the ex' in (13.1.16) to tend to a limit, so
from (13.4.1) it follows that x, = ' ™<™?), whereicis the partition function
per site. The definitions (13.4.1) and (13.8.10) of/care therefore equivalent.

We can therefore use the equations (13.8.8) and (13,8.11) to calculate
K and Aq, By, Cy, Dg, P, On R, T, recursively for successively larger
values of m.

Truncated Equations

Let us consider in alittle more detail how we would solve (13.8.11), given
A, B,, C,, D,. Multiplying gives

K*P,AjBiCsDP7 =AB,CD.. (13.8.13)

Thus one has to diagonalize A,B,C,D;: *AsB4CyDy is the diagonal matrix
of eigenvalues (*f* being the largest), and P; is the matrix whose columns
are the right-eigenvectors. Also, if P;, Qs, Rs, Ts are the inverses of P,
Q, R, T, respectively, then Ps is the matrix whose rows are the left-
eigenvectors of AB,C,D;. Similar results for Qy,. . . , Ts can be obtained
by cyclically permuting A, B, C, D, and the definition (13.8.8) of A, can
be written as

A, = A*QHArY UPA*q . (13.8.14)

If one keeps al such eigenvalues and eigenvectors, then the diagonal
matrices Ay, By, Cy4 Dg double in size at each recursion. However, we
expect these to tend to infinite-dimensional limits. Thisisin the sense given
in Section 13.4, namely that if their diagonal elements are arranged in
numerically decreasing order, then any given such element (e.g. the 6th
largest) should tend to a limit.

This suggests a self-consistent truncation of the equations, namely to
keep only the larger haf of the eigenvalues of A,B,CD,, and the corre-
sponding right- and left-eigenvectors. This means that we are solving the
equations

KAQs = PA, (13.8.15b)
QsQr=3$, (13.8.16)

together with (13.8.14) and their rotated analogues.
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If the number of elgenvalues thereby kept is n, then it follows from
(13.8.5) and (13.8.14)-(13.8.16) that the dimensions of the various matrices
are as follows:

Ag:nXn; Al:2nx2n;  A$*:An x An;
A,:2nx2n; P,:2nXn; Qs NX2n;
Pr: Anx2n; Qf:2nxAn; U, AnxAn; (13.8.17)

and the dimensions are unchanged by cyclicdly permuting A, B,C,D and
P, QR T.

From (13.8.14), the matrices A, B,, C, D, are block- d|agond of the
form (13.1.13). The diagona elements of Ad (and of By,Cd, Dy) therefore
fdl into two sets: those from the block with S= +1, and those from the
block with S=-1. Label the dementsi=1,... ,n, and let £¢=+1 (-1)
if the dement comes fromthe S= +1 (-1) block. Then using (13.2.1), the
elements of the various matrices can be written as;

(A)i\j = f1,-6(i,) ; (ASai\auj = ciid(oi , a1}, ) ;
(A3 )ar,or.itci a0 = @0, o) K0z, B)S(E L f) 5
(Adaie i = &0, 01)a{(a) ;

Plauili = &0, &lapya;;

(@s)uai,i = (&, 01)agifai ;

(P?)ay.o0.t100.; = 0(a1 , 01)8(02, &) a:pyiay ;

(@) avitor, .5 = 8o, YXE:, )agyia; ;

(2o, 00,101,035 = 8an , )i, Iw(e, &, 02, &1) .

(13.8.18)

Here the row- and column-indices are usualy compound, and a vertica
bar is used to separate them; e.g. P* has row-index (o\ , 02 , i) , and
column-index {&\,/). The extra factors a/a- and a/ai are introduced for
later convenience.

The matrix equations (13.8.14)-(13-816), together with their rotated
anal ogues, are now finite-dimensional . Given areasonableinitia guessat the
solution, they can be solved iteratively by cdculating A,, B,, C, D,
from (13.8.14) and its analogues, then diagonalizing A,B,C,D; and selecting
the n largest eigenvalues (and the corresponding elgenvectors) to obtain
the K, Ay, Bg, Cq, Dg, P, Q, R, T;, Py, Qs Ry, Tsin (13.8.15) and its
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analogues. The equation (13.8.16) is then just a normalization condition
on the various eigenvectors.

Once a solution is obtained for a given value of n, then selecting the
n + 1 largest eigenvalues of A,B,.C,D; gives an initia guess for the next
value of n. Thus one can in principle solve the equations systematically for
n=1,2,3,..., at any rate for sufficiently low temperatures, when the
iterative procedure converges and the initial guesses are quite good.

Accuracy of a Given Truncation

The equations (13.8.14)—(13.8.16) cannot usualy be solved analyticaly,
but for finite n they can be solved numerically on a computer, or they can
be used to obtain a low-temperature series expansion of the solution. In
the latter case, one expands K and all the matrix elements in powers of
some low-temperature variable x.

Of course, for any finite value of n the resulting K, A4, etc. do not have
their true infinite lattice values, but we do expect them to converge thereto
as n-* oo.

It istherefore of interest to estimate the relative error in K that is caused -
by using a finite-n truncation. Fortunately there seems to be a smple way
of estimating this. -

Note from (13.1.11) and (13.1.17) that a significant variable is

Pi = Trace ABiCqDa. (13.8.19)

The n eigenvalues of A;B4CyDy are contained in the 2« eigenvalues of
K~* AB,C,Dt, and the largest of each is unity. Let

A = largest eigenvalue of K~*A B,CD;
omitted from AjB4CyDyg. (13.8.20)

Then in some sense this A is a measure of the relative error in p, caused
by truncating the equations to finite n. Since (c4) is a derivative of In K and
from (13.1.17) is proportional to p, this suggests that

relativeerrorin K =A . (13.8.21)

Of course thisis agreat over-smplification, since omitting one eigenvalue
afects al the other eigenvalues, and indeed dl matrix elements. However,
in actual numerical calculations (13.8.21) seems in fact to be true (Tsang,
1979; Baxter and Tsang, 1980; Baxter, Enting and Tsang, 1980).

Further, in those series expansion calculations which have been per-
formed (Baxter and Enting, 1979; Baxter et al., 1980), it has always been
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found that if A~xP, where p is some positive integer, then the relative
error in K is aso of order x°. :

This means that quite long series expansions can be obtained from quite
smal vaues of n. For instance, from (13.7.20) and (13.7.19), for the
zerofidd eight-vertex model,

L ~\ /1 0\ /I 0O\
AdBdCdDd=(0

where x is a parameter that is smal at low temperatures, so can be used
as the low-temperature expansion variable.

From (13.8.22), the firg 14 eigenvdues of AjB4CyqDy, in numericaly
decreasing order, are

i v2 vA 6 v6 v8 v8 ,10 ,10 ,10 12 y12 12 ,12 ° /io o <%\
LX,X X, X, X, X, X X X X X X X . {13.0.6J)

Keeping the firg three of these, the largest eigenvalue omitted is of
order x°. Thus even then = 3 truncation gives K correctly to order x°. Then
n = 10 truncation gives K to order x".

There are other examples for which the eigenvaues decrease ill more
rapidly: for the hard sguares model, Baxter et al. (1980) were able to
obtain the fird 43 terms in the low-densgity expansion of K, using only 13
by 13 matrices.

Variational Principle

The truncated equations (13.8.14—(13.8.16) are in fact equivaent to a
variational approximation for K.

To seerthis, usethe explicit forms (13.8.18) of the various matrices. Then
(13.8.14) becomes

a.,/OI) =2 W(£,-, £, £, OX) qika"kj. (13824)
k

Using this, (13.8.15) and (13.8.16) b
sing this, ( Kail}ﬁgn ( ) ecome _

i = 2 £%.&, Q) qikdkPkibigij, (13.8.25a)
xdgsa;= 2 wE , Ci, £y, "dP ki, (13.8.25h)
2 Guabigy =abdi,j) if6=8. (13.8.26)

H

The three rotated analogues of these equations can be obtained by
cyclicdly permuting a, b, ¢, d, and p, g, r, t, and the four arguments of
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the function w. The first such analogue of (13.8.25h) is
K afijbj = kzl w& ,&,E,, $) giadkibiqij. (13.8.27)

Comparing this with (13.8.25a), and using the analogous comparisons, it
is apparent that the equations permit solutions such that

%j=Pa, Uj=qt, pij=nj, dy= Uj- (13.8.28)
They then smplify to
zktikakbkCij =alk> gi,j) iffi=§, (13.8.29)

2 W& ,&.&, $) tapubgj = KOIPijb. (13.8.30)
ki

In both of these equations, / and/ are integers from 1 to n. Thefirst istrue
only if t; = £, the second is true for dl 7 and /.

It is useful to introduce an obvious new matrix notation. Let a be the
n by n diagonal matrix with elements a, <5(/,;"), p the n by n matrix with
elements py, etc. Then (13.8.29) and (13.8.30) become

(tabq),y, = (ab),y if £= Cy, (13.8.31a)

2 WG, &, &, &)t (apb)iqy= ic (apb),y. (13.8.31b)

These equations, and their rotated analogues, can be derived from a
variational principal. Define

Px = Traceabed ,

P2~ Trace abqcdt, H3 8 32*

P2 = Trace berdap

Pi= 2 w(£,; £, Ct, C) Uj (&pb)jaki (crd)s-,

and consider the quantity
Ky = punf(paph) - (13.8.33)

Differentiating Ky logarithmically with respect to any element of
a,...,t we find that the derivative vanishes if (13.8.31) are satisfied,
together with their rotated analogues. Further, from (13.8.31) it is readily
verified that p, = pz = Pi =k~'PS <0

Ky = K. (13.8.34)
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We therefore have a variational principle for the partition function per
ste K: Kisthe stationary value of Ky. Thisis exact in the limit of n large,
and a good approximation even for quite small n.

The equations (13.8.31)-(13.8.34) can be obtained (at least for auffic-
iently symmetric systems) from a variationa approximation to the maxi-
mum eigenvalue of the row-to-row transfer matrix V. Thisis the way they
were originaly derived (Baxter, 1968; Kelland, 1976; Baxter, 1978c).

Matrices a, b, ¢, d not Necessarily Diagonal

The equations (13.8.31) are formdly unchanged by the transformation

a—~* 8aal |>-"ab/8?,

o per’, tl-"ydS', (13.8.35)
P-» apa"' ', d~pgP?, -

—» yry*, t-» Stst,

where g, fi, y, 8 are any non-singular matrices that are block-diagona in
the sense that their elements (i, j) are non-zero only if £, = £, If the rows
and columns of the various matrices are arranged so that £ = +1 fori =
1,...,n,and £=-1fori=n"+1,. ..,n, thenit folows that a, /8,
y, 5 have the form

ZA4 0\, (13.8.36)

7

the top-left block being n' by n", the lower-right being n - n' by n - n".

The transformation (13.8.35) therefore destroys the strict diagonality of
a, b, ¢, d, but they remain block-diagona of the form (13.8.36). (Thisis
actually equivalent to dropping the origind requirement that Ay, By, Q,
D4 be diagonal, but ill insisting that they be of the form (13.1.13).)

It can in fact be useful to work in a representation in which a, b, ¢, d
are non-diagonal. In particular, in series calculations it is inconvenient to
indst that a, b, ¢, d be completely diagonal, since this can introduce
irrational coefficients. It is better to require merely that they be block-
diagonal, dl elements within a block having (to leading order) the same

power-law dependence on the expansion variable x, and any element (i |j)
being zero if £; # £.
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Graphical Interpretation

The equations (13.8.31) can be interpreted graphically. Consider the first
lattice quadrant shown in Fig. 13.7. Regard i as denoting the spins on the
left-hand edge, and £ as being the top such spin. Similarly, let / denote
the spins on the upper edge, and £; the left-hand such spin. Let & be the

pij qii Y Ll

Fig. 13.7. Lattice segments and their corresponding partition functions, or total
weights. The i andj denote al the spins on the corresponding edges.

element (i,/) of the matrix a Since a is no longer necessarily diagonal,
ay can be non-zeroif i + j, but

Bj-*0 only if £s=£/e (13.8.37)

Since £, and £, both denote the top-left spin, they must be equal. Regard
& as the 'total weight' of the lattice quadrant.

More generdly, regard a#, b?, cy, dypy, ai, rij, fy as weights of the cor-
responding lattice segmentsin Fig. 13.7, where in every case £; is the spin
at the circled end of the edge labelled i, and smilarly for £.

Now consider the composite lattice segment shown on the left of Fig.
13.8. This condgists of four pieces, with ‘weights' ti, ay, bim, gmi. Summing
over al the spins internal to this composite segment is equivaent to
summing over k,I,m, remembering that £ = £/ = £, is the spin on the site
denoted by the solid circle. But this smply gives (tabqg),y, so this is the
total 'weight' of the left-hand figure in Fig. 13.8.

Similarly, the weight of the right-hand figure is (ab),y, so0 (13.8.314) is
represented graphically by Fig. 13.8(a).
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(a) (b)
Fig. 13.8. Graphical representation of equations (13.8.31a) and (13.8.31b). Each

figure representsitstotal weight, which is given by multiplying the segment weights
(e.g. tabg) and summing over spins on interna lines.

Also, remembering that w is the Boltzmann weight of a square face of
the lattice, (13.8.31b) is represented by Fig. 13.8(b). For infinitely large
lattice segments these graphical equations have an obvious meaning: the
partition function of a semi-infinite lattice is unchanged, apart from a
normalization factor, by adding an extra column to the lattice; and this
factor is independent of the choice of the spins on the left-hand edge.

The quantities p\, p$, P2, pz are the weights of the composite lattice
shown in Fig. 13.9, so the variational principle (13.8.33) can be interpreted
graphically as indicated.

Since Ky is stationary with respect to small perturbations of ay,. . . , %
from their exact values, (13.8.33) should give reasonably good approxi-
mations to K even with quite simple choices of agyee,. . . , tg. An obvious
choice is to take them to be the exact Boltzmann weights of finite lattice
segments. If each long edge in Fig. 13.7 istaken to have r sites, then from
(13.8.34) and Fig. 13.9 an approximation to K is

w_ 1 7,07 .y fi e i.s\
j\—gt2r_ 1s2r 1AV2r2/7\ N2 r—12r A2 pr— 112 ~ iijfOf JUA
ic b
c b ! 4
X ro[w] p
id
a d |t] a
K =
c b
X i P
fd a
e I

Fig. 13.9. Graphica representation of the variationa principle (13.8.33)
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where Z.,, is the partition function of a rectangular lattice of m rows and
n columns. Appropriate boundary conditions should be applied: at low
temperatures the boundary spins can be fixed at their ground-state val ues.

For a given sze of the matrices a,. . . , t, this approximation is nothing
like as good as can be obtained by solving (13.8.31) and (13.8.32) exactly.
Even so, it is moderately satisfactory, and has been discussed by Enting
and Baxter (1977).

Throughout this section | have supposed that the ground state is trans-
lation invariant. If it isnot, and the trandation invariance is spontaneoudy
broken, then one must define several corner transfer matrices A and a
one for every distinct position of the corner relative to the grpund-state
spin configuration of the infinite lattice. Similarly for the matrices B, C,
D,b,....t

The equations (13.8.31) can be extended to other planar lattices, notably
the triangular lattice (Baxter and Tsang, 1980). (In some ways this is a
smplification, since the equations are of lower degree.)

They can aso be extended to three dimensions. one obvious way being
to write down the generalization of Fig. 13.9, which will involve a cube
diced into 27 pieces by 6 cuts! Unfortunately the resulting equations are
quite complicated and involve ‘corner tensors with three indices, There
is no analogue of matrix diagonalization for these tensors, and as yet the
equations have not been investigated.



14
HARD HEXAGON AND RELATED MODELS

14.1 Historical Background and Principal Results

From an historical point of view, an excellent example of the use of corner
transfer matrices is provided by the hard hexagon model. This is a two-
dimensional |attice model of agas of hard (i.e. non-overlapping) molecules.
In it, particles are placed on the sites of the triangular lattice so that no
two particles are together or adjacent. A typica dlowed arrangement of
particles is shown in Fig. 14.1. If we regard each particle as the centre of
a hexagon covering the Sx adjacent faces (such hexagons are shown shaded
inFig. 14.1), then the rule only alows hexagonsthat do not overlap: hence
the name of the-model.

. For alattice of N sites, the grand-partition function is

NT3
Z=£z"g(n,Al), (14.11)
n=0

where g{n, N) is the alowed number of ways of placing n particles on the
lattice, and the sum is over dl possible values of n. (Since no more than
1/3 of the sites can be occupied, n takes vaues from 0 to N/3.) We want
to calculate Z, or rather the partition-function per site of the infinite lattice
*:= |lim z'W (14.1.2)
Af->°=

as afunction of the positivereal variable z. This zis known asthe ‘activity'.
This praoblem can be put into 'spin’-type language by associating with
each dte i avariable o, However, instead of letting o, take values +1 and
— 1, let it take the values 0 and 1. if the site is empty, then a; = O; if it is
full then a, = 1. Thus o is the number of particles at sitei: the 'occupation

402
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Fig. 14.1. A typical arrangement of particles (black circles) on the triangular lattice,
such that no two particles are together or adjacent. The Sx faces round each particle
are shaded: they form non-overlapping (i.e. "hard") hexagons.

number'. Then (14.1.1) can be written as
Z=>1"_ A (1% %) (14.1.3)

where the product is over al edges (i ,;) of the triangular lattice, and the
um is over dl vaues (0 and 1) of dl the occupation numbers
o,.. . , am

This form of Z is very dmilar to the Isng modd partition function
(1.8.2). In fact it was shown in Section 19 that the general nearest-
neighbour Ising model in a field is equivaent to the lattice gas with
nearest-neighbour interactions. The hard hexagon modd is a limiting
specid case of the latter.

We expect thismodel to undergo aphase transition from an homogeneous
flud state a low activity z to an inhomogeneous solid state a high
activity z.

To see this, divide the lattice into three sub-lattices 1, 2,3, so that no
two dtes of the same type are adjacent, as in Fig. 14.2. Then there are

Fig. 14.2. The three sub-lattices of the triangular lattice: sub-lattice 1 consists of

al stes of type 1, and smilarly for sub-lattices 2 and 3. Adjacent sites lie on

different sub-lattices, a close-packed arrangement of particles (black circles) is

shown: al sites of one sub-lattice (in this case sub-lattice 1) are occupied, the rest
are empty.
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three possible close-packed configurations of particles on the lattice: either
al sites of type 1 are occupied, or al sites of type 2, or dl sites of type 3.

Suppose we fix the boundary sites as in the first possibility, i.e. al
boundary sites of type 1 are full, and all other boundary sites are empty.
Then for an infinite lattice the second and third possibilities give a negligible
contribution to the sum-over-states in (14.1.3).

Clearly, sites on different sub-lattices are no longer equivalent. Let p,
be the local density at a site of type r, i.e., using (1.4.4),

pr=(@)=722a,z"-"IT (1 - oflj), (14.1.4)

where / is a site of type r.

When z is infinite, the system is close-packed with all sites of type 1
occupied, so p\ = 1, p, = P3 = 0. We can expand each p; in inverse powers
of z by considering successive perturbations of the close-packed state. For
a site / deep inside a large lattice, this gives

m=1-2z"- 522 34z-% - 2672" - 20372"° - ... (141 5)
P2 = ps = Z%+ 973 + 80z"* + 965z"° +

The system is therefore not homogeneous, since p\, pi, ft, are not all
equal. This contrasts with the low-activity situation: starting from the state
with all sites empty and successively introducing particles, we obtain

Pi = ft = P3 = zIZ+ 582°- 5192 + 48567° - ... (14.1.6)

To al orders in this expansion it is true that pi = ft = ft.

The system is therefore inhomogeneous for sufficiently large z, and
homogeneous for sufficiently small z. [Assuming the series converge: pre-
sumably a proof of this can be constructed using arguments similar to
Peierls (1936).] There must be a critical value z. of z above which the
system ceases to be homogeneous. Since the homogeneous phaseis typical
of afluid, and the ordered inhomogeneous phase is typical of a solid, the
model can be said to undergo afluid - solid transition at z = z.

Two related quantities of interest are the mean density

P="'(Pi + Pi + Ps)/3 = z(d/d2) In* , (14.12.7)
and the order parameter
R = P1-P2 = P1-P3- (14.1.8)

Note that R is by definition zero for z =s z.. For z> z, we expect it to be
positive.
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Numerical Calculations

Several approximate numerical calculations were made of this model before
it was solved exactly (Baxter, 1980). They are interesting in that they led
to the exact solution.

Runnels and Combs (1966) calculated the maximum eigenvaue of the
transfer matrix for lattices of finite widths. By extrapolating to an infinite
width lattice they estimated z. = 11.12 + 0.1.

Gaunt (1967) developed the series expansions (14.1.5) and (14.1.6)
to orders z=°, 7%, respectively. From these he estimated

z. = 11.05 +0.15. (14.1.99)

He adso observed that K(Z) appeared to have only two singularities in the
complex z-plane, a z=2z and a z = zyp, where NP stands for 'non-
physical' and

Znp = -0.0900 + 0.0003 (14.1.9p)

He speculated that z. and zyp might be the two roots of some simple
quadratic equation, so he formed their sum and product, giving

Z. + zyp = 1096 +0.15, (14.1.10)
zzyp =-0.995 +0.014.

Gaunt then conjectured that these numbers might be exactly 11 and — 1,
respectively, in which case z is given by

z?2-112¢-1=0, z; = i(ll + 5 V5) = 11.09017... (14.1.11)

Unfortunately he did not publish this conjecture. This was a pity, sSihce we
shal see that it is exactly correct.

Metcaf and Yang (1978) did some more finite width lattice calculations
for the specid case z = 1. They found that to four-figure accuracy

InK = 03333 (14.1.12)

and conjectured that hue was exactly 1/3.

Baxter and Tsang (1979) aso looked at the case z = 1, but used the
truncated corner transfer matrix eguations (13.8.31), modified appropri-
aey for the triangular lattice. We argued that dnce z < z, the CTM
method should converge rapidly and give good numerica results. The
results were indeed very encouraging for the CTM method: truncating the
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matricesto 2x 2,3x 3,5x 5, 7x 7 and 10 x 10 gave
Intc=0.333050,
0.333 242657,
0.333242721958, (14.1.13)
0.3332427219761,

_ 0.3332427219761,
respectively.

Table 14.1. The corner transfer matrix eigenvalues ay,. . . ay, for the hard hexagon
model with z= 1. The values are approximate, being calculated from finite
truncations of the triangular lattice analogue of the matrix equation (13.8.31).
The eigenvalues occur in groups of comparable magnitude, and it is sensible to
include all members of a group. For this reason the truncations used are 2x 2,
3 x 3,5 x 5,7 x 7andlO x 10. Each a; isgiven for successively larger truncations,
and clearly each is tending rapidly to alimit. This limit is its exact value for the
infinite-dimensional corner transfer matrix.

a,

o=

2X%2 3x3 5x5 7X7 10 x 10

1.0 10 10 10 - 10
0.7603903  0.7608436  0.7608440 0. 7608440 0. 7608440
-0.2548910 -0.2549635  -0.2549636  -0. 2549636
0.06499191  0.6500641 0. 06500641
0.04944546 0. 4945972 0. 04945974
-0.01657025 -0.01657427
-0.01260704 -0.01261043
0. 004225773
0. 004224830
0. 003214313

Boo~woobswn e
ROOROROORO

Obvioudy Metcaf and Yang's conjecture was wrong, but some fasci-
nating properties were emerging. In Table 14.1 are given the values of the
eigenvalues a; of the corner transfer matrix A, normalized so that the
largest is unity, for each truncation.

These eigenvalues divide naturally into two classes, corresponding to the
two diagona blocks in (13.8.36). One of these blocks corresponds to the
corner site being empty, the other to it being full. Let £ =0 if a; comes
from the former block, and £; = 1 if & comes from the latter. The values
of £ are shown in Table 14.1.
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In Table 14.2 are given the vaues of aia’al, a\ail(a,al), a\a(Ja\ and
affl,/(a2fl8). It appears that these quantities are tending towards one as the
matrices became larger. This is consistent with the assertion that in the
limit of infinitely large matrices (which is when the eguations are exact)

a = «(E)x" fori2* 1, (14.1.14)
where
' X = flalal (14.1.15)

and n; is a non-negative integer.

Table 14.2 Values of 04/03, etc., for successively larger truncations.

5x5 TX7 10 x 10
ada\ 0.999 777 067 0.999 999 853 0.999 999 999
asi{a:3) 0.999 711 560 0.999 999 539 0.999 999 999
aslal 0.999 757 797 0.999 999 849
07/(020]) 0.999 730 684 0.999 999 592

The reason this was fascinating is that the corresponding a; of the eight-
vertex model are all integer powers of somevariablex, or s, asin (13.7.20).
If the hard-hexagon model has a similar property, then perhaps it aso can
be solved exactly. '

Dr Tsang therefore repeated the calculations for 2 = 0.7, and | used a
series-expansion computer program to expand partialy the firgt few a in
powers of 2 (for smal 2) and of 2'* (for large 2). Again our results were
fully consistent with (14.1.14).

Exact Solution

Indeed, at this stage it was not difficult to guess the exact solution for the
functions K(Z) and R(2). Defining x asin (14.1.15), | expanded 2 to order
30 in a power series in x (for z<z). Guided by the eight-vertex model
results, | then put this expansion into the form

= —x Y[{I-x")*", (14.1.16)
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and found that

Cl,...,c»=5-5,-5,50,5, -5, -5,5,0,
5,-5,-5,5,0,5,-5,-5,5,0,
5,-5,-5,5,0,5,-5,-5,5. (14.1.17)

It was then not hard to guess that
z = -X[HX)/G(X)]>, (14.1.18)

where

GWZQEQ'* S 4y (xS v iy

HO) = N[ (1-3"-3) (1->5™2)] -2,

(14:1.19)

=}
1l

The same computer run gave K to order 29 in x. Writing it as a product
like (14.1.16), it was not quite so obvious, but still very plausible, to guess
that to all orders

CHW) <2V) fr (L) (20 ) watom
K= GZ(x) M (1 _xfm—S) (] _x(m—l) (1 _xfm)z AAZ||‘>

where

00

GOO=n(i-*)- (14.1.21)

These infinite products are of the type that occur in the dliptic theta
functions (15.1.5). For large z, | computed z, K, R only to relative order
9 in their x- expansions. Even so, this was enough to suggest that these
functions could be written in terms of similar theta function products,
namely

z=x"TGX/MHX]>, (14.1.22)

. Mx—lf'a’G?l{x) QZ(xS) -FT Q _Ixsnvz) (1 _Ax3m—1)1 s
n\xX) « = 1 vy X))

R = Q(x) QO)/Q*() (14.1.24)

As x decreases from 0 to —1, the z in (14.1.18) increased from O to z,
where Z. is given by (14.1.11). Also, asx increasesfromOto +1, thezin
(14.1.22) decreases from °° to z.. This suggests that the guesses (14.1.18)
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and (14.1.20) apply throughout the fluid phase 0<z<z (with
0>x> -1), while (14.1.22)-(14.1.24) apply throughout the solid phase
Z> Z. (with o<;E< 1). The guesses dso agree with Gaunt's conjecture
(14.1.11) for the postion of the critica point.

Having guessed the exact answer, the next step was to look for a way
of deriving it. This calculation is given in Sections 14.2-14.7, and itsdf
uses corner transfer matrices. It is not mathematicaly rigorous, in that
certain analyticity properties of K are assumed, and the results of Chapter
13 (which depend on assuming that various large-lattice limits can be
interchanged) are used. However, | believe that these assumptions, and
therefore (14.1.18)-(14.1.24), are in fact correct.

14.2 Hard Square Model with Diagonal Interactions

Asisshown in Section 10.4, thefirst step in the solution of the eight-vertex
model had been to set up aclass of commuting row-to-row transfer matrices.
Guided by this, | looked for lattice models whose transfer matrices com-
muted with that of the hard hexagon model. This led me to draw the
triangular lattice asin Fig. 14.3(a). The hard hexagon model then becomes
a sguare lattice model, in which nearest-neighbour sites, and next-nearest
neighbour sites on NW - SE diagonals, cannot be simultaneoudy occupied.
| then generalized this model to one in which nearest-neighbour sites
cannot be smultaneoudly occupied, and diagonaly adjacent particles inter-
act. Thisis a specid case of the IRF model of Chapter 13: the partition
function is given by (13.1.2), where each o, takes the values 0 or 1, and

W(a b.c d)= mz,\a+b+c+d)ueLac+nﬁra+b_c+ d
ifab=be=cd=da=0, (1421
=0 othewise.
(a) (b)

Fig. 14.3. (a) The triangular lattice, drawn as a square lattice with one set of
diagonas, (b) The diagonas associated with the interaction coefficients L, M in
(14.2.2).



410 14 HARD HEXAGON AND RELATED MODELS

Here a, b,c, d each take values 0 and 1; mis atrivia normalization factor;
t cancels out of the partition function; L and M are diagond interaction
coefficients, asindicated in Fig. 14.3(b); z isthe activity. The hard hexagon
model isregained by takingm=1, L=0and M = - ».

Sar - Triangle Reation

Consider two such models, one with weight function w, the other with
weight function w'. As is shown in Section 13.3, their row-to-row transfer
matrices will commute if there exists a third function w' such that the
dar-triangle relation (13.3.6) is satisfied, for al vdues 0, 1 of a, a, a“,
b, b', b". Take w (tv") to be given by (14.2.1), with z, L, M, t replaced
by Z, L', M', t' (z' , L" , M" , ). For convenience, interchange L' and
M', invert t', and define

s= (ZZ')V(tt' t). (14.2.2)
Then (13.3.6) reduces to jusf seven digtinct equations, namely
(Z 2') =s+if2e", (14.2.3a)
@' 2)' =s+jfel, (14.2.3b)
(zZ')' =s+.i2 e, (14.2.3c)
2z22') M= & + Bl Y (14.2.3d)
Z(2'2)le" = & + S (14.2.3e)
7' (zzf e =& + ST, (14.2.3f)
g M M M e (14.2.39)

which for the moment we shall refer to smply as (a)-(g). Forming
€"'(a)-€’-(b) gives the simple corollary
(z'*e-'-zr e zh = («8-€")s. (14.2.3h)
Multiplying (c), (f), (g), by s, s\ s~', respectively, we see that the
equations are homogeneous and linear in thefive expressions
9 s & S\ sTlzreM, (14.2.4)

with coefficients that are independent of s, Z', L", M".

For any five equations (or four equations not involving M"), the deter--
minant of these coefficients must vanish: requiring this is equvaent to
diminating s, Z', L", M" between the equations. Doing this, we are left
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with the three equations

A=Al 1=123, (14.2.5)
where
Ar=z7H1 — ze- My,
Ag = zi(et + &M — &Lt H) | (14.2.6)
As = z*e" + eM-e"M- z e,

and A{, A, A3 are defined similarly, z L, M being replaced by Z, L', M.
[The equations (&), (b), (d), (e) give A! =A{ ; (h), (¢), (d), (e) give
Az =A% ; (h), (d), (e), (f), (9) give Az = AEJ
The three equations (14.2.5) are a aufficient condition for the star-
triangle relation (14.2.3) to have a solution for s, Z*, L", M". A corollary
of (14.2.6) is

AlA, - 1= (Az-Ai-A)zZe™, (14.2.7)

Suppose Ai, A, Az are given: normaly (14.2.7) will then define
z*exp(L + M). The first equation (14.2.6) then gives z*, and the second
gives L and M. It follows that in general the only solutions of (14.2.5) are
zZ, L', M =2z M, Lorz L, M: these are not very interesting or useful,
since they imply merely that the transfer matrix commutes with itself and
its transpose.

However, suppose Ai, A,, A; stisfy the congtraints

2= ) 3= Al + 2.
A, = Af, Az=Ai + Af (14.2.8)

Then (14.2.7) no longer defines z*exp(L + Af), so (14.2.6) has infinitely
many solutions for z, L, M. The transfer matrices corresponding to these
solutions al commute.

From (14.2.6) the constraints (14.2.8) are both satidfied if

z=(1-eYH@-e"MEM- e -eY. (14.2.9)

St A =Ai ie _
A=z-"(1-ze'"™™). (14.2.10)

If two models differ in their values of z, L, M, but have the same value
of A and both satidfy (14.2.9), then their transfer matrices commute.

Note that (14.2.9) is satidfied for dl z in the limit L-» 0 and M-+ -°°,
which is the hard hexagon model. It is not so stisfied if L, M—> 0, which
is the hard sguare model. Indeed, numerical solutions by Baxter et al.
(1980) give no indication for hard squares of any smple property like
(14.1.14) for the eigenvalues of the corner transfer matrix.
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Elliptic Function Parametrization

Eliminating z between (14.2.9) and (14.2.10) gives
A2LeM o (L 1) («,« 1) ((L+M _ L _gV)  (14.2.11)

Given A, this is a symmetric biquadratic relation between €= and €”. As
is shown in Section 15.10, such arelation can be parametrized in terms of
dliptic functions, the genera form being

e = <p(v), M=<t>{v-X), (14.2.12)
where the function (p(v) is defined by
<t>{v) = %H(v + @) H(v - a)l[H{v + b) H(v - b)]. (14.2.13)

Here H(V) is the dliptic theta function of argument v and modulus k, as
defined by (15.1.5); k, A, £, a, b are constants. (We have replaced the
symbolsuy, I, t], A, /j, of Section 1510 by v, k, A, a, b, and have chosen the
lower sgn in (15.10.14).)

From (15.2.3), <p(V) is periodic of periods 2/ and 2H', i.e.

<p{v+ 21) = <p(v+ 2H") = (j)(-Vv) = (p(V) (14.2.14)

where/and /' are the complete dliptic integrals of the first kind of moduli
kand K = (1 - A, respectively. '

[Given L, it follows that the first equation (14.2.12) has many solutions
for v, obtainable from one another by incrementing v by integer multiples
of 2/ and 2H, and possible negating. However, dl of these ill give only
two distinct solutions for € in (14.2.12): this is correct, since (14.2.11) is
quadratic in this variable.]

Let vo be a vaue of v for which € = 1. Then from (14.2.12) and
(14.2.13),

| = H(vo + b) H(vo - b)I[H{vo + @) H(v, - &)]. (14.2.15)

From this and (14.2.14), it follows that (j)(v) - 1 vanishes when v =

Vo + 2ml + 2inl', so it contains a factor H(v - vp). Since it is even, it dso

contains a factor H(v + Vp). Arguing as at the end of Section 15.3, or
smply applying the identity (15.3.10), it follows that

e-1=<p{v)-1

_ _H(@ + b)H(a-b) H(v + vo) H(V - v

" H(a + vo)H(a - vg)H(v + b)H(v -b)

To relate A, a, b, vy, consider some specia vaues of L and M. If

€ = 1, then (14.2.11) gives €' = 0 or °0. From (14.2.16), v is either v,

k14 2 16}
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or -VQ- Associating these values of €” and v, respectively, it follows from
(14.2.12) and (14.2.13) that we can choose

a=VeX, b=-ve-X. (14.2.17)

If & = 0°, then (14.2.11) gives both solutions for € to be 1, while
(14.2.12) gives v = b or -b. The RHS of (14.2.16) mugt therefore vanish
for v= —X £ b, and this gives the extra condition

H(2X+ 2vg) = 0. (14.2.18)

The genera solution of this is vo= -X + ml + inl', where m and n are
integers. However, smultaneoudy incrementing v, vo, @, —b by ml + inl’
leaves cf)(v) and <p(v—A) unchanged, so without loss of generaity we can
choose

Vo=-X. (14.2.19)

Substituting these forms of € and €" back into (14.2.11) [using (14.2.12)
on the LHS, (14.2.16) on the RHS], we obtain the relation

A-2INA) IABA) Hi{p + 2A) H(v - 3A)/II*(2A)
= [I42A) H{v + A) H(v - 2A) - H\K) H%3X) H(V) H(v - A).  (14.2.20)

This has to be an identity, true for dl complex numbers v. Setting
v=3A and v=0gives

H{X) #3(3A) = H\2X) H{AX), (14.2.21)
A% = IN2A)HY(A) 113(3A)]. (14.2.22)

These conditions ensure that the ratio of the RHS of (14.2.20) to the
LHS is an entire doubly periodic function of v, equal to one when v = 0.
From Liouville's theorem the ratio is therefore equal to one for al complex
numbers v, and the identity is established.

Settingu, v, X, y = 0, A, 2A, 3A in (15.3.10), we abtain the identity

H\2X) H{4X) - H(X) H\3X) = H\X) H(5X) , (14.2.23)
s0 the condition (14.2.21) is equwalent to
H\X) H (GA) =0 (14.2.24)

The solutions A = 2ml + 2inF (where m, n are integers) of this equatl on
are spurious, since from (142 12) and (14.2.14) they imply that € = e
It follows that

A=(2m/ + 2in|')/5 , (14.2.25)
where m and n are integers, not both divisible by 5.
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We can choose A to have any of these values. From now on let us take
A=25. (14.2.26)

(Other choices merely lead to related parametrizations; for instance A =
2¥775 is equivaent to using dliptic functions of conjugate modulus.)

Rather than work with the variable v and the dliptic theta function
H(v), it is convenient in this chapter to transform to the variable

w =JIvi21 (14.2.27)
and the function

dyu,g®) =sinm 11 (1-2¢"cosam + " (1 - g™

n=|
= H{W)I{2q"). (14.2.28)

(This notation is non-standard: the usual dliptic 6\ function contains the
factor 2qK Snce 6\ enters our equations only via ratios of the form
6i(u, g?)/di(u' , g°), this factor is |rrelevant It is convenient to remove it
here, smceweshall sometlmeﬁwantq to be negative: our present definition
ensures that Oi(u , g°) then remains real.)

Using this definition to replace the functions H in (14.2.13), (14.2.15),
(14.2.22) by 6\, and writing 6\{u , g°) smply as 0i(w), wefinally obtain the
parametrization

oo o) [ ]
o)l (o) 5] 420
#=[i(W » &)} UL

wherewe have used theidentity 6i(u) = 6i(jt — u). From (14.2.9) it follows

that
z = tf(f) fIfoO fIf(f - «)/[tf (0 et(f + «)] * (1423])

We can use this parametrization to explicitly solve the full set of star -
triangle relations (14.2.3). Let L', M', Z be given by (14.2.29) and
(14.2.31), with u replaced by u'. Smllarly, let L", M", Z' by obtained by
replacing u by u". Take g’ to bethe samethroughout Then al theequations
(14.2.3) are satisified, provided only that

u+ U+ u'=JT/s, (14.2.32)
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5= (%) 6w o) o)/ [61(Z) (5 + )

2n ., 2,
Xel(?+u)91('5—+u)]. (14_233)

Regions in the L, M Plane

We are interested in values of L and M such that z, as given by (14.2.9),
ispositive. Thesevauesliein the unshaded regionsin Fig. 14.4, the shaded
regions corresponding to negative vaues of z.

= -TT/O

Fig. 144. The sx regimesin the (L, M) plane, asliged in (14.2.37). Shaded areas

ae ugpwscd, snce (14.2.9) gives z therein to be negative. Regimesl, 11, V are

disordered, Il and VI havetnm%yla ordering, IV hassquare ordering. The sydem

is critical on the (1, 11), (111, V) ad (V, VI) boundaries, wheren[qA| = A, the
vaues of u on the (L, M) axes are indicated.

We can regard (14.2.29) as a mapping from the variables L, M to the
variables o, u. Thisis rather like a transformation from Cartesian to polar
coordinates: ¢ increases from — 1 to +1 as we go out radialy from the
origin through an unshaded region, while u increases as we move anti-
clockwise round the origin. The three cases -a/5 <M <0, 0 <M < n/5, and
JT/5<U<2JT/5 correspond respectively to the unshaded parts of the
lower-right, upper right and upper-left quadrants.

We therefore take L, M to satidfy the restriction

z>0 (14.2.34)
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where z is given by (14.2.9). We dso take of and u to satisfy
-Ko<l, -JZI5< U< 2TCI5. (14.2.35)

The mapping from (L , M) to (g7, u) is then one-to-one.
When g = 0 it is obvious from (14.2.28) and (14.2.30) that A = *Ac,

where
A=[sin(f)/sin(f)]>”
=B+ V3.

We shdl need to distinguish the cases when o > 0 from those when
o < 0. This leads us to divide the unshaded areas in Fig. 144 into six
regions.

LA>A,g'<0-a/5<u<O0,

I: 0<A <A, >0, -a/5<u<0,
Il: -A.< A<0, >0, O<u<a/5, (14 2 37)
IV:IA<-Ao <0, O<u<n/5, | |
V:A>A, <0, n/5< u< 2n5,
VI:0<A <A, ¢>0, a5<u< 2al5.

(14.2.36)

Regions V and VI differ from | and 1l only in the interchange of L and
M. Thisis equivaent to merely rotating the lattice through 90°, so without
loss of generality we hereinafter consider only regimes I, 11, 111 and V.

We can dassfy these regions as disordered or ordered by considering
the following limits:

I:  L-*O,Mfinite: ZA'N0.

I: L, -Af-~+00: z-exp(-L-M); A-*0.
I:L,M-"+00. z-exp(-L-M); -A->0.
IV: 2-~ +00, Land M finitee  -A"1-~,

In these limits the dominant contribution to the partition function comes
from the following states, respectively:

I. the vacuum.
II: astate such as that shown in Fig. 14.5(a), in which every third site
is occupied. Forming a triangular lattice by adding diagonals as in
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Fig. 14.3, this state becomes that of Fig. 14.2. There are three such
states, corresponding to occupying any one of the three sub-lattices
of the triangular lattice.

[11: the vacuum.

IV: aclose packed square-lattice state such asthat shownin Fig. 14.5(b),
in which every second gite is occupied. There are two such states.

@ (b)

Fig. 14.5. (a) Typica ground-state in regime I, (b) in regime IV. Solid circles
denote particles. The other ground states can be obtained by uniform trandglations,
giving three ground-states of type (@), two of type (b). If we add diagonals to the
lattice as in Fig. 14.3.(8), then the particles in (a) occupy one of the three sub-
lattices of the resulting triangular lattice. We therefore refer to (a) as 'triangular
ordering’, (b) as 'square ordering'.

The heavy lines divide each lattice into four quadrants, corresponding as in Fig.
132 to the corner transfer matrices A, B, C, D (the shape of the outer boundary
has been changed: thisisirrelevant in the thermodynamic limit). The &i, (h, <h,. . .
in (14.4.26) are the ground-state values of the o\, Oi, 03,. . . in thefigures, so both

figures correspond to taking k = 2 in (14.5.1).

The states in 11 and |V are ordered, in that the trandation invariance
of the lattice is spontaneoudly broken. We expect this to persist for finite
values of L, M, z aufficiently close to the appropriate limits.

Morestrongly, we shall calculate the order parameter R given by (14.1.8).
It is zero in regimes | and |11, positive in regimes Il and 1V. Thus | and
[l are disordered regimes, while Il and IV are ordered.

We shdl aso find that R vanishes on the boundary between regimes |
and |1, and between |1l and 1V, and that the free energy is singular across
this boundary. The system istherefore critical on this boundary, i.e., when
o= 0and A = +Ac.
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Boltzmann Weights

From (14.2.1), the Boltzmann weights of the allowed spin configurations
around a face are:

(Oi = w(0,0,0,0) =m,
<« = w(l, 0,0,0) =w(0,0,1,0) =mzr\
co; = w(0,1,00) =w(0,0,0,1) =mzt, (14.2.38)
o = w(l, 0,1,0) =mZt%,
CDs = w(0,1,01) = mZt%e".
Using the expressions (14.2.29), (14.2.31) for L, M and z, we can choose

m and t so that
= m'B(—+ u)/ﬂ (')
! ! 5 ! 5}

w, = (m'1t') 6i(u) / [31(-’53) 91(2_5:3)]4’
w=m't o (g - u) / el(g) , (14.2.39)
wy = (m'it'?) 8, (Z?n_ u)/ﬁl(zsf) ,

wenin(E)/of3)

The parameters m' and f' are related to the origind m and f. They enter
the working rather trivially, the partition function for a lattice of N faces
being proportional to m", and independent of t'.

Conjugate Modulus Parametrization

We shall assume and use certain andyticity and periodicity properties of
the partition-function-per-site («e), and of the eigenvalues of the corner
transfer matrices. These properties are most easily expressed and under-
stood by making a 'conjugate modulus' transformation from our variables
g’ and u to new variables x and w. [This variable w is not to be confused
with the Boltzmann weight function w{a , b, c, d).]
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We use the rdations (15.7.2) and (15.1.5) to write the infinite product
in (14.2.28) in terms of the conjugate name q'. We shdl find it convenient
to express the results in terms of the function

I(w.q) =1l (1- g~w) (1 -g'w-) (1-q") (14.240)

Basicadly this is merely another way of writing the dliptic theta function.
A useful symmetry property is

f{w,q)=f{gw-\q). (14.2.41)

We shdl sometimes write f(w, g) amply as f{w), the particular nome g
being understood.

If of is positive we can convert (14.2.28) directly from (15.7.24). If it is
negative we first split the product in (14.2.28) into terms with n even and
with n odd, and then use (15.7.2a) and (15.7.2d). This gives the identities

6‘1(U *I) - *( ) ((p[ 2u(r ~ “)]f( ~tmie | o =4nre)

(14.2.42)
¢
Let us define parameters x, w, a as follows
land 1V (-1<$2<0): N2=_exp(-e)
X = -exp(—j&ISe), w = exp(2jr«e) (14.2.43)
llandIll (0<g®< 1): g’ = exp(-e)

X = exp(-47?/5e), W = exp(—4mulc).

Then by using the identities (14.2.42) in (14.2.30) and (14.2.39), we can
define m' and t' so that

land IV (-1 < x < 0):

A" = X[ f(x)/F(A)]°, A = f{xw)lf(x),
a>i = <xr-\-x?HWI[FIFPA]N o = r/(AV)1(MP) (14.2.449)
ft> = r? wi{xw-)If(x), O)s = rf(x*w Vif(x?),
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IlandHI O <x< 1):

A2 =x-W)/1<]®, «d = FOAW)/FOA),
002 = X HWIAXOAN  a)s = ripw-)If{K), (14.2.440)
€0a = r'2WIAW-)IF{X), cos = r’w-f(xw)/f(x).

Here/(w) = f(w , x) is the function defined by (14.2.40), with g therein
replaced by x°. The parameter r is proportional to t', and is at our disposal;
a = x1ischosen to ensure that a>2 is positive.

From (14.2.33) and (14.2.39), it follows that

1 I>w>xE : Kw<x~% (14.2.45)
"n: \>w>x; IV: \<w<x~2
landHI: a= +1; llandlV: a=-I. (14.2.46)

One advantage of this parametrization is that x is smal in the limit of
extreme order or disorder. This means that the infinite product in the
definition (14.2.40) of f(w,x°) is rapidly convergent, and it is essy to
compare our results with high-density or low-density series expansions.

14.3 Free Energy

To recapitulate, the parametrization (14.2.44) comes from solving the
star - triangle relation (13.3.6). If two models have the same vaue of X,
but different values of u and r, then their row-to-row transfer matrices
commute. The Boltzmann weights are entire functions of u.

These properties are very smilar to those of the eight-vertex model
(Section 10.4). Further, we put (14.2.3) into a symmetric form by inter-
changing L' and AT, which from (14.2.29) is equivaent to replacing u' by
(flr/5) - u'. If we had not done this, then (14.2.32) would have been

u=u+u" (14.3.1)

This is the same equation as (13.3.10). It follows that (13.3.16) and
(13.5.16)-(13.5.27), with A replaced by Jt/5, are vaid for this model.

We now seek to calculate the free energy by the matrix-inversion trick
given in Section 13.6. To do this we need analogues of the eight-vertex
modd equations (13.6.17a), (13.6.17b) and (13.7.3).



14.3 FREE ENERGY 421

First Inversion Relation

Definethe single-face transfer matrix £,-asin (13.2.1), where the Boltzmann
weights w(a,b,c,d) are given by (14.2.38). Restrict the spin-set o=
{o\.. . ., o} to take only values in which no two adjacent spins are both
unity. This restriction corresponds to ignoring forbidden spin configurations
and can be written as

0. = 0 fori= 1,2,...,m-1. (14.3.2)

Restrict & ={o[,. . ., (f} similarly. Then for m = 3 there are five allowed
values of aand &, namely {0,0,0}, {0,0,1}, {0,1,0}, {1,0,0}, and
{1,0,1}. With this ordering, U, is thefive-by-fivematrix

o0 0 oh 0 6
' 0 0, 0 0 O

U=l oh 0 o, 0 0 |. (14.3.3)
0 0 0 o3 O

© 0 0 0 o,

(From now on we restrict al transfer matrices to act only between
allowed states of aline of spins, i.e. states satisfying the restriction (14.3.2).
This reduces the size of the matrices. This reduction is peculiar to the
generalized hard-hexagon model, and is connected with its solvability,
since it reduces the number of conditions implicit in the star - triangle
relation (13.3.7).)

Clearly U, can be arranged as a block-diagonal matrix consisting of the
blocks

(“" “"),(ws), (s) - (14.3.4)

Us2  0)s

More generally, so can any matrix I/;, for m=3 and 2=£i=em- 1 It
follows that if we define

d> = 0>4/(0>i054~ 8)2), > = -0)2/(«10)4 -ft>22)

dy .= wil, 0)s = 0)il0)io), - O)i), (14.3.5)
0-)5 =« *_\
and define fle in the same way as (/,; but with o>!,. . ., 05 replaced by
0>i,..., 05, then i '
UiUi = 3, (14.3.6)

where 3 is the identity matrix.
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From the definition (14.2.40) of f(x , g), with q = X°, we can establish
the identity

WIOAWFORW)  xPw)  wiaw)f(x/w) o
) X 1) 1) . KD

(The proof is smilar to that of (15.3.10): take the ratio of the LHS to the
RHS, and regard this as a function of w; show that it is anaytic for 0 <
|w| <°°, and is unchanged by replacing w by x°w; it is therefore bounded,
and by a smple generdization of Liouville's theorem it is therefore a
constant; setting w = 1 gives this constant to be unity.)

. The Boltzmann weights (Oj (fori=1,...,5) are defined by (14.2.44)
as functions of r and w (regarding x asa given constant), so we can write
them as «;(r, w). Substituting these definitions into (14.3.5) and using the
identity (14.3.7), we find that

(bi=%o){r-"w-}), i=1,...,5, (14.3.8)
where the factor £is given by

I and 1V: % = fix@)I\fixew)fixciw)] (14-3-9)

Il and I11:  § = AX)I\fixw) fixiw)].

Thus replacing a>Xx,..., to* by a)\,..., u>s is equivalent to inverting r and
w in (14.2.44), and multiplying each weight by 8.
Obviously we can now regard each matrix U; as a function of r and w.

Since £- is linear in the weights a>i,. . ., cos, (14.3.8) implies that U, =
ZUiirt, w"Y). The relation (14.3.6) therefore gives
§ Utir, w) Uiirt, w?) = 3-. (14.3.10)

This is a relation satisfied by the face transfer matrices U,,Us,...,
defined as functions of r and w by (13.2.1), (14.2.38) and (14.2.44). In fact
it is the inversion relation (13.6.24). Define *: to be the Mh root of the
eigenvadue of the diagonal-to-diagona transfer matrix (C/if/3.. . U™i)
x(U,U4. . . Uy), choosing the eigenva ue corresponding to the eigenvector
with al entries non-negative. Then it is easly seen that K is independent
of r (changing r is merely equivalent to a diagonal smilarity transformation
on the transfer matrix). It is ill a function of w, and it follows from
(14.3.10) that it satisfies

ZKiw)Kiw~1) = 1. (14.3.11)
Thisisthe'inversion' relation (13.6.25). When w hasthe ‘physicd’ values
in (14.2.45), then the Boltzmann weights a>i,. . . cos are dl postive and

K is the partition-function per site, as in (13.1.4). For other values of w
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(notably those abtained by passing through the point w = 1), it seems that
this K is the analytic continuation of the 'physical’ K(W).

Second Inversion Rdation

The inverson relation (14.3.11) and (14.3.12) is the analogue of the
eight-vertex model relation (13.6.17a). We ill need the anaogue of
(13.6.17b). Thisis a second inversion relation, obtained by working in the
SE-NW direction, instead of the SW-NE.

Remember that w(o;, g¢, a, ai) is the Boltzmann weight of the intra-
face interactions between spinson sitesi, j, k, |, wherei, j, k, | are arranged
asin Fig. 13.1(a). Clearly, rotating the lattice through 90° is equivalent to
replacing w(a ,b ,c ,d) by w(b ,c,d,a). From (14.2.40) this is in turn
equivaent to interchanging 0>i with 0)3, and <, with <o,

Let V; be the SW-NE face transfer matrix. It is given by (13.2.1), with
w(a ,b ,c,d) replaced by w{b,c,d,a). Its inverse V; can be obtained
smilarly to theinverse (7; of £s: al we have to do isinterchange the suffixes
2 and 3, and the auffixes 4 and 5, in the eguation (14.3.5). Doing this and
repeating the working as far as (14.3.10), we obtain

r) Vi(r, w) Vi{rllr, wiw) = 3>, (14.3.129)
where
5= —xig(x), x'(x), xp(x), —x " Y(x), (14.3.12b)
Wo = —Cx~32xx~2
inregimes |, I, 111, 1V, respectively, and
r, = fix)f)r[\x\fiw) fiwl/w)], (14.3.13)
fix) = fix)/fix’) = Hix)/G(x), (14.3.19)

Gix) and #(*) being defined as in (14.1.19).

Actually, there are an infinite number of relations of the form (14.3.12),
corresponding to multiplying wo by an integer power of x°*2. The particular
ones given above ensure that w is as close as possible to 1, while lying on
the same side of unity as the physical values of w given in (14.2.45).

Just as (14.3.10) implies (14.3.11), so does (14.3.12) imply the relation

nx(w) {whiw) = 1. (14.3.15)
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Analyticity of K(W)

For ‘physical’ values of w, i.e. those satisfying (14.2.45), the function K(W)
in (14.3.11) and (14.3.15) is the partition function per site (13,1.4). For
other values it seems that it is the analytic continuation of the 'physical’
K(W). More strongly, from series expansions it seems that

Infw"" K(W)] = analyticinan annulus
a< |w|<b containing the (14.3.16)
pointsw =1 and w = w.

Heren=0, 8, 0, i inregimes |, I1, I, IV, respectively.

This analyticity property is the analogue of the relation (13.7.3) for the
eight-vertex model. | have not proved it, but it seems to be correct:
arguments in its favour can be deduced from the corner transfer matrix
equations (13.8.31); it dso leads to results in regime | that agree with
(14.1.18)-(14.1.20), and hence with the origina order 29 hard hexagon
series expansions mentioned in Section 14.1. Hereinafter | shal assume
that (14.3.16) is correct.

Calculation of K(W)

The equations (14.3.11), (14.3.12) and (14.3.16) are the analogues of
(13.6.17a), (13.7.17b) and (13.7.3). Just as the latter set can be solved for
the free energy of the eight-vertex model, so can the former be solved for
the free energy of our generalized hard-hexagon model.

To do this, note that (14.3.16) implies

00

Infw~"ic(H")] = 2w, (14.3.17)

where the summation is convergent for \WA in the neighbourhood of 1, and
in the neighbourhood of wg. In the neighbourhood of 1, (14.3.9) and
(14.2.20) give

In§=do+ E di(W'+ W), (14.3.18)
where, for n> 0O,
land IV: do = 21n/(x%), dn= (& + )N -x"] (143 10)
Iland I11: do = 21Inf(x), dn = O+ X)[n( - x")].
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Taking logarithms of both sides of (14.3.11), substituting these Laurent
expansions and equating coefficients of powers of w, we obtain

Cn + C'n = 'dn, n&o. (14.3.20)
Similarly, (14.3.15) gives
Cn + Woc-, = -d'y - 2nIn Wodn,o (14.3.21)

where the d', are the coefficients of the Laurent expansion of Inr\ in an
annulus containing the point w = w,. From (14.3.13), (14.2.45) and
(14.2.46), these are given by

di> = \n{iiwr' {{x)f>)\x\}, (14.3.22)
dn= (I + x> wo™/[an(l -x**")], n¥0.

The equations (14.3.20) and (14.3.21) can now be solved for the
coefficients ¢,, giving

o= -M>, (14.3.23)
Co={WU'n~dy)I(I ~W") for* *0.

More explicitly, from (14.3.19) and (14.3.22), together with the above
definitions of a and wy, we obtain

G =-In/(*3) inregimesl and 1V, (14.3.24a)
=-In/(*) inregimesil andl1ll,
and, for n # 0,
I c=-* (1 + XY[n( - + x*N]
: o= -X"( X"+ X - xX*/[n(l - X" (1 -x*)]
;e = - X"+ I\ - )] (14.3.24b)
IV: cg = - X" + X)[n(l - @1 +x"].

The partition function per site, namely K(W), can now be obtained at
once from (14.3.17), remembering that \i = 0, \. 0, \ in regimes |, 11, 111,
IV, respectively. The resulting series can be smplified by working with
wyx/ (04 OF), rather than K. Using (14.2.44), we find that

. V(X" + x'“)Q/\P - w-")
I WecorK/axcos) = - Inw - Vi ATXMN=

o

i =ilnH,. 2r—" 3 ~

=]
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i In (C»IK/O)4 W5 = 0

o XYW~ w )
Ot LA
n=1 p{l+x2n) . (14-3:25)
Taylor expanding the denominators in the summand, summing each

term over n, and using the definition (14.2.40), these results can be written
as

Iv: =—flaw-—

I; an/(waws) = w flow, x°) f(ew , x)/[foow ™", 29 fxw ), x9)]
1 = w2, x3)/f(xw, x°)
11 =1
IV: = wtfixw, xyfOaw~', x%). (14.3.26)

These product expressions (14.3.26) are vdid for all values of w satisfying
(14.2.45), even though the sums in (14.3.25) are not dways convergent.
(This lack of convergence is merely due to the fact that < and coi have
zeros at w=x and w=x~'in regimes | and IV, respectively.)

14.4 Sub-Lattice Densities and the Order Parameter R

We can obtain the sub-lattice densities, defined by (14.1.4), by using the
corner transfer matrix methods of Section 13.5. We can then caculate the
order parameter R from (14.1.8).

Diagonal Form of the Corner Transfer Matrices

As we remarked after (14.3.1), the equation (13.3.10) is satisfied by our
parametrization of the generalized hard hexagon model. Regarding A.,
B.,C.,Dn, as functions of w, we therefore again obtain the product relation
(13.5.1) and its rotated analogues. Again this leads to the relations
(13.5.27), where A4(U), By(u), Cq(u), Dy(u) are al diagonal matrices of
the form (13.5.20), i.e.

[AdG)];; = m; exp(au) , (144.1)

and similarly for By(u), Cy(u), Dg(u). The coefficient a$ is the same for all
four matrices, m: may be different.

We only need to calculate these coefficients g and m.. This can be done
by considering the case u = 0, by using the inversion property (14.3.12),
and by considering the limit *—» 0; as will now be shown.
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The Case « = 0 and the First Inverson Reation

When u=0, it is clear from (14.2.43) that w= 1. From (14.2.44) and
(14.2.38), it follows that the Boltzmann weight function (not to be confused
with the variable w) is then

w(abcd)= P+ %ap). (14.4.2)
This in turn implies that when u = 0, then
A=C=A,=C,=L, (14.4.3)

where L is the diagonal matrix with elements
L(tf!, th, e e ¢ \o[, ti, ¢+ ) =r¥ (Vi, 0i) KR 09... (14.4.4)
Setting M = 0 in (13.5.27), it follows that
Q=a(0) L7'P Ay, (14.4.5)
T=¢(0) LTIR CA0).

All the matrices are block-diagonal, their elements being zero unless
CTi = df. It follows that L commutes with them all. Substituting the expres-
sons (14.4.5) for Q and Thack into (13.5.27), we can re-define the scalar
factors ai(«), b\(u), C{u), d{fu), and the diagona matrices Ad(u),
Bd{U), Cd{U), Dd(U), s0 that

Au) = a(u) PAgu) Pt,  Br{u)=biu)PBy(k-U)R-\ (14 4 ¢
Cn(u) = c(U)RC4{U)R-\  Dp(u) =di(u)RDy(k-u)p-\
where ai(0) = Ci(0) = 1 and
AL0)=Q(0) =L . (14.4.7)

These matrices may depend on the parameter r in (14.2.44), but the
dependence is quite trivid: A,(U), Ag(u), C{u), Q(M) are dl of the form

L x (matrix independent of r); (14.4.8)

Bn(u), By(u), Dy(u), D{u) are of this form, but with L replaced by L"*;
P and R are independent of r.

The elements of the diagonal matrices Ayq(u), By(u), Cy(u), Ds{u) are
al of the form (14.4.1), <Xj being the same for al four matrices. Using
(14.4.7) it follows that

[Adu)]u = [Ca(U)]u = r°i exp(gM), (14.4.9)
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where (Xj is independent of both uand r, and s, = 0 or 1, being the value
of Oi for the element (;',). From (14.4.6), exhibiting explicitly the depend-
ence on r of A, and C,, it follows that

An(r, WAL, -u) =aiu)af-u) 3>, (14.4.10)
Cn(r,U)C{r-\ -u) = ¢ (U)C,(-H) .

To within a scalar factor, the inverse of A|(r , u) is therefore A«(r™, -u);
and similarly for C,.

We could have predicted this inversion property directly from (14.3.10),
using (14.2.43) and the fact that A and C are products of operators [/, as
in (13.2.4) and (13.2.5).

The Second Inversion Relation

The operator V, is defined by (13.2.1), with the Boltzmann weight function
w(a ,b,c,d) replaced by w(b ,c,d,a). This is in turn equivaent to
interchanging u>i with 0t3 and W4 with a>s. The corner transfer matrices B
and D are then given by (13.2.4) and (13.2.5), with each £/, replaced by
V,; using the appropriate boundary spins s, t,. . , V.

We want to use the second inversion property (14.3.12) to obtain equa-
tions for B and D analogous to (14.4.10), but we have to be careful. For
a start, when u = up then w = wp, and it can be seen from (14.3.12b) and
(14.2.44) that only in regimes Il and IV is ah, then zero. Thus only in
these regimes is V., (and hence B and D) then diagonal. This means that
we cannot in general construct equations analogous to (14.4.7).

More seriously, consider the particle configuration in Fig. 14.5a. This
is one of the three possible ground-states of the system in regime Il (the
other two are obtained by first shifting all particles one site to the right,
and then repeating). The upper-right corner transfer matrix is B, and it
is obvious that in the ground-state limit (x = 0) it is mapping the spin-state

0O0I0O0I0OI...
(on the upper vertica heavy-line segment, starting at the centre) to the

spin-state
Ol OO0l 00t 00. . .

(on the right horizontal heavy-line segment).

For an infinite system, this effect will persist to non-zero values of x, in
that B will map a vector space T to a vector space °W. Here T is the space
of functions tp{o\, CT, ,. . .) subject to the condition that

03*—>1, chkt\—0 dek— <x> ; (14.4.119)
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while °W is the corresponding space such that
Ourrz—> 1, oyand g —*0 ask-»<x>. (14.4.11b)

Since V and W are didtinct, it makes no sense to multiply B by itsdlf.
What we can doisnote, using Fig. 14.5a,thatDmaps'WtoT. Remembering
that B, differs from B only by a scaar factor, and smilarly for D, and D,
from (14.3.12) and (14.2.43) it follows that

Bn(r , u) D{rilr, 2up - u) <* 3, (14.4.12)

where U, is the value of u when w = w,. Subdtituting the expressions
(14.4.6) for B, and D, into this equation, we obtain

Befk - U) Dg(X - 2up + U) = y(u) L\L ~?, (14.4.13)

where y(u) is a scalar factor and L, is the value of L when r—r.
From the remarks following (13.5.27) and (14.4.9), B4yX —u) and
Dy(X — u) are diagonal matrices whose (J ,/') dements are of the form

[By(k - W)]j,f = mir-i exp(-"«), (14.4.14)
[Dg{X - W], = mf rsi exp(- OCIU) |,

where the coefficients mj and m'f are independent of r and u. Looking at
the (/,/) element of (14.4.13), and subgtituting these expressions, we
obtain

mimf = y(u) r$ exp(2a,iio) (14.4.15)

Clearly y(u) is independent of u, so it can be written Smply as'y.

In (13.1.17) we expressed the loca density (oi) in terms of Ay, By, Cy
and Dg. Since this equation was obtained from (13.5.27) and (13.1.12)
(with A ,B ,C, D replaced by their normalized values A, , B, , C, , £,),
it follows that the Aq, By, Cqy, Dg in (13.1.17) are the A4(u), By(X - u),
Q(M), Dd{X—u) of thissection.

(The parameter A plays no role in this section: effectivdy it is just part
of the notation for By and Dy, considered as functions of u.)

We can therefore substitute the expressions (14.4.9) and (14.4.14) for
Aq, By, Cd, Dy directly into (13.1.17). Doing this, we find that r and u
cancel out of the resulting expression: (Thisis asit should be, since we can
use arguments similar to those in (7.10.28)-(7.10.48) to write (CTI) as
fplSpR, where Shere is the diagond operator with elements Oi, and %l>
and tyg are the left- and right-elgenvectors of the row-to-row transfer matrix
V. This Vis defined in (13.3.1): it isindependent of r and its eigenvectors
are independent of u. Hence (oi), and al correlations within a single row,
must be independent of r and u.)
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We obtain ’
C> = 28> < | 0@ mjmf (14.4.163)
Using (14.4.14), this result can in turn be written as
<> = 2y ? exp(2arg) /S rp exp(28>«) (14.4.16b)
From (14.4.9) it follows that
«T) = Trace S"(ro, «0)/TraceA%r g, Up). (14.4.17)

The Coefficients a;

We dill have to calculate the coefficients gj. To do this, we fird invoke a
periodicity property, just as we did in obtaining (13.7.10) for the eight-
vertex model.

From (14.2.43) it is apparent that incrementing u by is (or Hein regimes
Il and I11) leaves w unchanged. From (14.2.44) this leaves the Boltzmann
weights, and hence the diagona matrices Ay, By, Cq, Dg, unchanged.
Further, it seemsthat these matricesareanayticin avertical strip containing
the points u = 0 and u = Uy, S0 the expressions (14.4.9) and (14.4.14) must
apply throughout this strip. These expressions must therefore be periodic
of period ie (or He), which implies that

land IV: g = 2jtn/le, (14.4.18)

[l and I 0CJ = -Annle,
where each «- is an integer. From (14.4.9), the diagona elements of

Agr , U) are therefore

[Adr | «)];.;=1-%0>". (14.4.19)
Since the § and n. are integers, they can be calculated by considering
any suitable limiting or specia case. In particular, consider the case when
x—* 0 while w remains fixed. Then 0>i in (14.2.44) tends to zero, so from

(13.21) and (14.3.3) the matrices |/; are diagonal. So therefore is A.
Further, from (14.2.43) the Boltzmann weight function is

w@abcd) — =r"*%@yr.™g(g 0), (14.4.20)
where
r=0 inregimesl and IV (14.4.21)

=1 inregimesll andlll.
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Substituting this expression into (13.2.1), it follows that £, is a diagonal
matrix with elements

{Ui)o,0 = ra-i*3c . Bpps Tax ! (14.4.22)
From (13.2.1)-(*-2.5), for a finite lattice A is given by
A= U,%UI..UzZ,,, (14.4.23)

wheré Xyt and an., are to be given their ground-state values. Using
(14.4.22), it follows that the diagona elements of A are

rulwo;+203+3oq+.., + Wity +1
LT

X vy~ (13" X774+ - o+ maganit 2) (14'4_24;

From (13.1.15) and (14.4.6), the matrices A and Aj differ only by a scalar
factor and a smilarity transformation. Both are diagonal, so the Smilarity
transformation can a worst only re-arrange the diagond entries.

Let CTi, &i,. . . ,"CT 2 be the ground-state values of oi, .. . an+2. Then
it turns out that these values maximize (14.4.24) (with r = 1), so we can
take A4 to be the diagonal matrix with entries

[AJoo = f®w" (14.4.25)
where a denotes the spin-set { oi,. . . , ay} and

W (14.4.26)
n(o) :'.=21i(0s+1 =~ 0042 = Oier + 10,0i42)

Painly this result is of the expected form (14.4.19), the only difference
being that the index j is replaced by a. Clearly s(0) and n(o) are integers,
S0 (14.4.25) isvalid not just in the limit x—* 0, but for al x (provided we
take the limit m-> «). From (14.4.17) it follows that

{ad = 2 oufrwti** /2 ii®w"® e (14.4.27)
a | a

This is a general formula for the density at a givéh dte (site 1). In
caculating the sum it should be remembered that a,. .. , an are not
completely arbitrary: they must satisfy the requirement

g0+, =0 fori=1,...,m. (14.4.28)

As was remarked after (14.3.3), this condition is implicit in the above
working, being built into the definition of the vector spaces on which the
transfer matrices act. It corresponds Smply to the fact that no two particles
can be adjacent.
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Symmetries

The corner transfer matrices A, B,C, D satisfy various symmetry relations.
We have not used these in this section but it is helpful to be aware of
them.

From (14.2.38), the Boltzmann weight function stisfies the relations

w(a,b,c,d) =w{c,b,a,d) =w(a,d,c,b) (14.4.29)

These are precisaly the relations (13.5.4). They imply that the modd is
symmetric with respect to reflection through either diagonal. In regimes
[, Il and IV this symmetry is not spontaneously broken (regime IV is
ordered, but from Fig. 14.5(b) it is apparent that each of the ground states
has this symmetry). It follows that

[,1I,IV: A=A'=C=C'", B=B'=D=D" (14.4.30)

The matrices P and R in (14.4.7) are then equal and orthogonal.

The ground statesinregime |l areindicated in Fig. 14.5(a). It isapparent
that these are symmetric on reflection through the SE-NW diagonal, but
not through every SW-NE diagonal. This means that in genera we only
have the relations

II: A=A", Cc=C", B=D" (14.4.31)

The matrices P and R are orthogonal, but not necessarily equal.

On the other hand, if the centre site lies on the preferred sublattice in
Fig. 14.5(a), then the SW-NE reflection symmetry is in fact preserved
and (14.4.30) ill applies: thisis the k = 1 case of regime |1, as dassfied
in the next section.

145 Explicit Formulae for the Various Cases. the Rogers- Ramanujan
I dentities

The sumsin (14.4.27) can be evaluated, but there are seven different cases
to consider. One reason for thisisthat n(o) has a different form in (14.4.26)
depending whether r is 0 or 1. Another reason is the boundary condition
that CT+i and a,,+i have their ground state values. In regimes | and |11 the
ground state is unique:

land1ll: &,=0, /=1,2,3,-° (14.5.198)
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In regime 1V the system has square ordering, asin Fig. 14.5(b). There
are two ground states:

IV: Q2+ =1, O2j++i = 0, dl integers /, (14.5.1b)

where k = 1 for one ground state, and k = 2 for the other. In regime Il
the system has the triangular ordering of Fig. 14.5(a), the three ground
states being:

II: 03j+=I, cfij+ i =0, dlintegers/, (14.5.1¢c)

where k= 1, 2, 3, for the three ground states, respectively.

To evauate (14.4.27) we therefore firg fix the regime and (if we are in
Il or IV) the value of k. We then perform the summations over a=
{0\, Oi,.. . oy}, subject to the condition (14.4.28). We find that the sums
converge to limits asm—* °°. The result isthe density p, or (in regimes ||
and 1V) the sub-lattice density py.

Performing the oi-summation explicity, (14.4.27) can be written as

Pk = <d> = "F(1)/[F(O) + rIF ()], (1452
where
Foyn 2 wg® (145.3)

and the auffix k j§ redundant in regimes | and I11. Our calculations therefore
proceed in'three stages. calculate F(Q) and F(1) from (14.5.3); then cal-
culate (oi) from (14.5.2); and (for the ordered regimes) calculate R from
(14.1.8).

Regime |

From (14.4.21) and (14.3.12by):
T=0 wo=-X\ ri=-xG(X)IH{x), (14.5.4)
where - 1<x < 0 and G(x), H(X) are defined in (14.1.19). From (14.5.3),
(14.4.26) and (14.5.1a), we have
F(CTO= 2  N2'3'3«4+.., (14.55)

0l,0},...,.0m

where g=m =x%. ThusO<q< 1.
First consider the ground state, with Qi, ch,,... dl zero; then consider
the states with one of them unity; then two of them unity; and so on.
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Taking the limit m—* °° and remembering the restriction (14.4.28), we
obtain
4
q q
0)=1+ + +
O = T T
q,,z
+ + ...
A-9)(1-¢)--(1-¢q" (14-5-6)
2 6
q q
Fl1)=1+ + +
W=l Tt i—oa-o
#in +1}
+ 2 g n
{\-a){\-a)---(I-a")
These series are well-known in the mathematical theory of partitions
(Andrews, 1976, Chapter 7). From (14.5.5) it is farly easy to see that

F()/F(0) (which is the ratio that enters (14.5.2)) is the smple continued
fraction

UL+ qgl{\ + g\ \ +q7 e ))) . (145.7)

What is by no means obvious, but was proved by Rogers (1894) and found
by Ramanujan (1919), is that

F(0) = 211 - )1 - ¢)(1 =g - gH(1 ~¢g") -]
= Glg), (145.8)
)=V - A <)L -g)o- '~ )

= H(a),

where the functions G(g) and H(qg) are those defined in (14.1.19). Thus
these functions occur not only in the formula (14.5.4) for I3, but dso in
our results for F(0) and F(I). Using the dlliptic function identity (15.9.2),
the expressions (14.5.8) can dternatively be written as

o

= -1 4 Y Snin +1) -2 _ 2.n+2’
FO =10@1" 2 (g™ =gy,

o

A1) =[Q@]" 2 (-1'¢""* g™ - ™),

=

where
GO?) = 11(1-<?")e (14.5.10)

The identities implied by (14.5.6) and (14.5.8) are known as the
Rogers-Ramanujan identities. There are many generdizations of these
identities (Slater, 1951), and it is a remarkable fact that many of them
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occur naturally in the course of our present working. For instance, sub-
stituting (14.5.8) into (14.5.2), using (14.5.4) and q = x°, we obtain

p= -xG(X) HEO)/[HX) GO -xG(X) HX®)].  (145.11)

It turns out that the denominator in this expression can be written as a
smpleinfinite product of the type that occur in the theta function expansions
(15.1.5). Ramanujan stated (Birch, 1975, eg. 8), and Rogers (1921) proved
that

HX) G(®) - x G(x) HX®) = P(X)/P(C), (14.5.12)
where
POO-ryl-*#""1)- (14513
Thus we findly find that the dendity is
p=-x G(x) HX®) PC)/PA). (14.5.14)

It is fascinating that these Rogers- Ramanajuan type identities should
occur in this problem, and it is of course very convenient to thereby smplify
theresults. Thisis particularly useful when we come to examine the critical
behaviour when x| —* 1. G(X), H{x) and P{x) can al be related to eliptic
functions, and their behaviour near \x\ = 1 can be obtained from "conjugate
modulus” identities such as (15.7.2). | know of no such straightforward
techniques for handling the original expressions (14.5.6).

Regime Il

Regime | is the smplest case to handle; but regime 11 is the most difficult.
The function n(a) is more complicated and there are three ordered states
to consider. These correspond to k= 1, 2, 3in (14.1.5¢), and each hasiits
own F(0), F(I) and loca sub-lattice density px.

From (14.4.21) and (14.3.12b),

t=1, wo=x"%, r=x""H(x)/G(x), (14.5.15)
where O<x< 1. From (14.5.3), (14.4.26) and (14.5.1c) it follows that
Fa)= 2  grppee ot (14.5.16)
<72,0j,...,am

where q = X2, the inner summation is over integer values of i from Horn,
di is given by (14.5.1¢c), and a\,..., an must satisfy (14.4.28).
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We can develop recurrence relations to evaluate F(0) and F(I). Define
Glo, g+)= 2 q21(7#°2'ai+1+&i+1) (14.5.17)
01+2

am

where now the inner summationisfromi = 1toi = m. Then by considering
explicitly the sum over Ol,,, it is readily verified that

G4(0,0)=]8/[G/+,(0,0)+G,+i(0,1)]
G,0,1) = p,g-'G.i(l , 0) (14.5.18q)
G,(1,0) =j8,[G.i(0,0) +qG.1(0,1)],
where
A=(qd ii(-k+ )/3isaninteger , (14.5.18b)
=1 otherwise,
and that
F(O) = Go(0,0) = Go(l,0), F(1)=Go(0,1). (14519

Each G{a,&) tends to a limit as m-»<», and these limiting values
satisfy

0,(0,0) =(l-ay' + €(q),
GO.,) =q( -ag\l -+ €q) , (14.5.20)
GA1,0) =1+ O(q’)

provided that / is large and (/ - k)/3 is an integer.

The recurrence relations (14.5.18), together with the large / boundary
conditions (14.5.20), define the G/. We can then obtain F(0) and F(I) from
(14.5.19). Exhibiting the *-dependence by writing these as F(0) and F(l),
we find that

Fi(O)=1+29+ Iq'+ 4’ + 5=+ &P + lIg° + .. .

Fi(l)=1+¢*+ 203+ 3q* + 4q° + IQ° + ...

Fa(0) =F3(0) =1+q+29°+3q¢°+5q* +7¢° + 100" +. ..

Fo1) =Fo(l) =q+0*+29° +2q"+ Ag°+5¢° + 8¢’ +. .
(14.5.21)

In regimes |, 11l and 1V we can readily write F(0) and F(I) in explicit
series forms like (14.5.6) (this can be done by regarding G; as a function
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of /, and expanding it in powers of ', as in (14.5.35)). We can then use
appropriate analogues of the Rogers- Ramanujan identities (14.5.6)-
(14.5.8) so asto write F(0) and F(I) as smple products of theta functions.

In regime |l this program is more complicated. However, Andrews
(1981) has shown that each F(0) and F(l) can be written as a double
series, and from this he has established that

-]

Fi(0) = [Q{gV 2_§-|)yM<<+ DN-4% _ F*+* L qqh _ My >
(14.5.223)

(D) =[Q(]™ 20(_1)nq15n(n+1):z[q._|n _g DT e _ " 42
(14.5.22b)

F,(0) = F+(0) = [Q()]~ {(;I)"gi Mn+ )26« Bn+6)  (14.5.220)

Fo(l) =F3(1) =q[Q{q)V 2n_(0-|j-A“"M"?’"-g“*?’). (14.5.22d)

These expressions are similar to (14.5.9): the most obvious difference being
that the firs two involve the sum of two theta-function series, instead of
just one.

First consider the cases k = 2 and 3. Using (15.9.2) and the definitions
(14.5.8), (14.5.10) of the functions G, H, Q, we can write (14.5.22¢) and
(14.5.22d) as

F2(0) = F5(0) = Qa™)[Q(e) H(g)], (145.23)

Fo(1) = Fa(l) = Q{d*)[Q(a) G(@)]-

From (14.5.15) et seg, we have that r\ =x~"H{x)IG(x) and q = .
Substituting the expressions (14.5.23) into (14.5.2), it follows that

fh = P3 = x®>H(X) HOO/[G(X) G(®) + X*H(X) HOA)].  (14.5.24)

Now we consult the list of Ramanujan's identities given by Birch (1975),
and find from eg. (6) therein that

G(¥) G(x) +x*H(X) H(xX’) = [QX)]Y[Q(X) Q)] (145.29)
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s0 (14.5.24) smplifies to
P2 = Ps = x’H{X) HOE) Q{X) QOC)/[Q0A)]? (14.5.26)

The case k = 1 is more complicated, but from (14.5.22a) and (14.5.22b)
we can establish that

F(O) = [GK) QUE) - H(X) QUNX QLA+ (aes2n
Fx(1) = [G(¥) QX +x*H(x) QO)/Q(Y).
(To do this we expand the numerators on the RHS as series, using the
identities implied by (14.5.8) and (14.5.9). For H{X)Q{x) and G(X)Q(X)
we break their seriesinto three parts; termswithn= 3r, withn= 2>r + 1,
and with n= 3r + 2. After some cancellations, and remembering that
q—x°, we regain (14.5.22). In particular it follows that each RHS in

(14.5.27) can be expanded in integer powers of x*: something that is far
from obvious.)

Substituting these expressions for Fi(0) and Fi(l) into (14.5.2), using
(14.5.15), we obtain

m = H{X) [G(X) Q) + XH(x) Q))M{x’) [G(x) G(x*)
+ X*H(X) HOA)} (14.5.28)

Again we can use Ramanujan's identity (14.5.25) to amplify the denom-
inator, giving :

= HE) Q) [G() Q) +xH() QUAINQEA)*  (14.5.29)

Substituting these expressions for p\ and pi into (14.1.8), the order
parameter is

R = pi-p= GEHK) [QX/Q)]? (14.5.30)
= Q) QM)
=11 (L-x") (@ -0 - % (14.5.31)

This expression is rather smilar to that for the order parameter of the
eight-vertex model, namey (13.7.21).

Regime 111

In this case the analogues of (14.5.15) and (14.5.16) are
r=1, wy=x, ti=xH{XIG{X), (14.5.32)
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Flo)= 2 glot-<w+2) (145.33)
05....Om

whereO <x< 1, q =X and <7pi = an:2 = 0. Thisisthe sameas (14.5.16),
except that g is inverted and the d, are zero. We can therefore evaluate
F(0) and F(I) by using the recursion relations (14.5.18), with g inverted
and Pi = 1, together with (14.5.19). Again we take the limit of m large.
The boundary conditions are then that for / large

G{0,0) =1+ 6{(¢")
G(0,)=®(q) (14.5.34)
G(1,0)=(1-¢)"" + 0(¢".

We can expand the G/ in powers of g, and systematically evaluate the
coefficients from (14.5.18) (with q replaced by g~). Doing this, we find
that

Gi(0,0)= 2, q"an,
G{0,1) = 2;1 g, (1 -, (14.5.35)

0

GIO=T" /(" T Y,

where ag = 1 and
a =" fl.-i/Ul -g") 2 -if*Y) (14.5.36)

for n 5= 1. Evauating the a, from thislast relation, it follows from (14.5.19)
that

x

Fo)=S 2211 -9 -¢)...(1 —¢"

n=0

X (@1 -g{\ )\ -o). .. (Q-?2*""Y], (14537

F(l) = 2 q3n(n+i)!2
20 A" oyl ~g?) ... (a"?")
X(I-g(1-¢)1-¢"...(1 —¢"*N].

Just as the regime | series (14.5.6) could be smplified by using the
Rogers-Ramanujan identities, so can (14.5.37) be smplified by using the
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further identities (46) and (44) in the list compiled by Slater (1951). These

ive
’ F(0) = G{o) QA{d)IHa), (14.5.38)
F()=H(@)Aa)/QAa).
From (14.5.2) and (14.5.32), it follows that
p = xHX) HOA[GX) G(X*) + x H(X) HO)]. (14.5.39)
Ramanujan stated (Birch, 1975, eq. 2), and Rogers (1921) proved that

G(X) GO + xH{X) H) = [P(-¥)]% (14.5.40)
where P(x) is defined by (14.5.13). Thus (14.5.39) smplifies to
p = xH(X) HOA)/[P(-X)]% (14.5.41)

Regime 1V

This regime is ordered and we have to distinguish the two cases k = 1 and
k=2in (14.5.1b). From (14.4.21), (14.3.12b), (14.4.26) and (14.5.3),

T=0, wo=x~% ri=-x*GX/MH(X), (14.5.42)
FCTo = 2 J(<i~<S) (14.5.43)

where -1 <x< 0, g = X*. The & are defined by (14.5.1b) and the sum-
mation is as usua over al values (0 or 1) of 0,,. .., ay, that saisfy
(14.4.28), where Opyi = am+i-

Asin regimes Il and |11, we can set up recursion relations that define
F(0) and F(l). Define

GICT) = 2 Atoli-<*"i) (14.5.44)
Te1.ee0 s 0m
where now the inner sum is over i =/,..., m. Considering explicitly the
contributions from of+i = 0 and o/,; = 1, we find that

G.(0) = A[GLi(0) + g-'Gi1(1)], (14.5.453)

where
A=l if/-"iseven, (14.5.45b)

=qif/l—Aisodd.
Clearly

F(0) = Gy(0), F(1)=G,(l). (14.5.46)
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Each G/(CT) tends to alimit as m—* <», and these limiting values satisfy
the boundary condition

Gi0)->(I-g)-\ G,(l)->las/-»00, (14.5.47)
provided / - Kk is even.

We can expand G;(0) and G;(1) in powers of ¢. Substituting the expan-
sions into (14.5.45) and equating coefficients, we find that, for / - k even,

G(0) = 2<7"V(i-<7°™1),
n=0

Gil)="*2yay, (145.48)

where ag = 1 and
a, = qMaril{l - g - o), (14.5.49)

This last equation can be solved sequentialy for a\, a,, a-$, etc; F(0) and
F(1) can be obtained from (14.5.46) and (14.5.48). (For k = 2 we need G;
for / - kodd: this can readily be found from (14.5.45).) Exhibiting explicitly
the dependence of F(0) and F(I) on k by writing them as F(0) and F(l),
we find that

Fi(0) = é g -9 —g)... (1 —g*™h],
n=0

o

FD=2 “M1-9)(1-¢)...0~g™],
(14.5.50)

L

F0) = 2 g1 (L= 4) ... (1 —¢™)],

F) = 23 400 — ) =) .. (L = g™ h)].

Again we look at the list of Rogers - Ramanujan-type identities compiled
by Slater (1951). From her equations (94), (99), (98) and (96) we find that
F(0) = H(-q)/P(a),

F(1) = G(-g)/P(q) , (14551)
FA0) = G(g*)/P(q),
Fa(l)=agH(ayP(a),
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where again the functions G, H, P, Q are defined by (14.5.8), (14.5.13)
and (14.5.10).
Substituting these results into (14.5.2), using (14.5.42) and q = X%,

(H = G G-X)[G{x) G(-X?) -xHX)H(-x*)] (14"52)
P2 = x3G(X) HX®)/[H(X) G(X*®) - X*G(X) H(X®)]

The firgt of these denominators does not appear to have been explicitly
studied by Ramanujan, but he did state, and Watson (1933) proved, that

G(X) H(-X) + G(-x) H() = 2[P(x))]? (145.53)
(thisis eq. 23 of Birch, 1975). Further, Rogers (1894) showed that
G(-x) = QUAIHK) + H(=x)1/12Q0x")] , (145.54)

H(-X) = QUAIGH) - G(-X)]/[2xQ(x»)].
From these three identities it follows that
G(X)G(-x*) -xHH(-x*) =P(->). (14.5.55)

Also, Ramanujan stated (eq. 5 of Birch, 1975), and Rogers (1921)
proved that

H(X) G(x™) - x*G(X) H(X*®) = P{-¥). (14.5.56)
Using these last two identities, we can therefore smplify (14.5.52) to
P = G)G(—yP(-X), (14.5.57)

(h = 3G(x) H(X™)/P(~X).
Rogers (1894) proved that
H®) = QUAHX) - H(-X)]/[23Q(x*)]. (14.5.58)

Substituting this expression for H(x*), and the expression (14.5.54) for
G(-x"), into (14.5.57), we find that the mean total density is

P=i(p! + Pi) = iG(X) H(-X) [P{¥)]3 (14.5.59)
and the order parameter is
R = p-p=GEHK[POA)]?
= [QUAf QEA{QMX) [Q(*)]?% (14.5.60)

=na XN X - 2 - 27
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This has a amilar form to the order parameter (14.5.30) in regime 11,
and the eight-vertex model order parameter (13.7.21), being a ratio of
products of Q-iunctions.

This completes the derivation of the sub-lattice densities and order
parameters of the generalized hard hexagon model. | have discussed the
four regimes separately, but we can now see some common features. we
can write down recursion relations defining F(0) and Fi(l). In regimes I,
11, and 1V these can be solved to give F(0) and Fy(l) as infinite series.
We can then use the appropriate Rogers - Ramanujan-type identities, as
liged by Slater (1951), to write F(0) and Fy(l) as infinite products of
theta-function type. (In regime Il this program is more difficult, but it till
turns out that F(0) and Fi(l) can each be written as a sum of at most two
theta-f unction products.) Further, when we substitute the results into
(14.5.2), we find that the denominators can be smplified by usng some
of the Ramanujan identities listed by Birch (1975). Findly, in regimes Il
and IV the order parameter R = pi - pi is found to be a smple ratio of
products of Q-functions.

It is fascinating that these Rogers-Ramanujan and Ramanujan-type
identities occur so frequently in this working. With the benefit of hindsight,
we can see Sgnas of thisin the star - triangle relations (14.2.3), in particul ar
the dliptic function parametrization of (14.2.11). This led automatically
to (14.2.29)-(14.2.30), and thence to (14.2.44). This last equation abounds
in factors/(* x°) andf(Xx°). From (14.2.40), (14.1.21) and (14.1.19),
these are just the functions H(x) Q(x) and G(x) Q(X). The natural occur-
rence of these functions (particularly their ratio) should perhaps have
warned us to expect the Rogers-Ramanujan identities to occur.

14.6 Alternative Expressions for the K, p, R

Our results can be summarized as follows. Given a hard square model with
activity z and interaction coefficients L, M satisfying (14.2.9), calculate
A from (14.2.10). Determine from (14.2.37) the regime in which the model
lies (if V or VI, interchange L and M). Calculate x and w (and m, t and
r) from (14.2.38) and (14.2.44). Then the partition-function-per site K is
given by (14.3.26), and the density p (or, in regimes Il and 1V, the sub-
lattice densities px and order parameter R) are given by the appropriate
equations in Section 14.5.

All these results are expressed in terms of infinite products. These
converge well when x is small, which is the condition for extreme disorder
or extreme order. They can readily be compared with low-density or
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high-density series expansions. However, they converge poorly when |x|
is close to one, which is when |A| is close to A and the system is near-
critical. It is then convenient to convert the products into forms which
converge rapidly for \x\ close to one.

Part of this procedure has been performed already: we merdly return
from the 'conjugate modulus equatlons (14.2.44) for w and x to the original
equations (14.2.29)-(14.2.31) for of and u.

Partition-Function-Per-Site K

To convert the equations (14.3.26) for K, we use the identity (14.2.42) in
reverse, going from/-functions to *-functions. Doing this we find we aso
need the dliptic theta function

8(u, g = [1 0 - 2¢7'cos2u +.%-2)(1 -g?")  (146.1)
rc =l

which satisfies the ‘conjugate modulus' relation

Ou(u, e=°) = (.2.;,!)* exp[- A+ Mo/ (- o0, enin). (1462)

From (14.3.26), usng (14.2.43) and (14.2.38), and then applying the
identities (14.2.42) and (14.6.2), we obtain the following expressions for
the partition-function-per-site in the four regimes:

n 5u 10/3\ In Su 3
94(6- ~r , PYi [~ 31?"Ql )

A7

I kf(mzel™) = ,
x Su 1m3) (E Su 10!3)
34 (6 + 3 P 81 3 + 3 P

i {" T ) |/ 3\ Tp

I =1, (14.6.3)
: —o (F_% Sja (™, ™M 5)

Here = ~A\A (14.6.4)

where this is the q defined by (14 2.28) and (14.2.29). Thus we have now
expr%d our results for *: in terms of the parameters o and u discussed
in (14.2.29)-(14.2.39).
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The parameter in isintroduced in (14.2.1) as a smple factor that mul-
tiplies al Boltzmann weights. It therefore multiplies K, SO tdmisindepen-
dent of m. This means that (13.3.26) and (14.6.3) are correct for al values
of m (notably m = 1), even though we made a particular choice of min
(14.2.44).

Sub-L attice Densities pcx and the Order Parameter R

The results of Section 14.5 are dl expressed in terms of the functions G(x),
H(X), Q(X), P(x), where

G(¥) = E| [ -x") (1 -5y, (14.6.53)
HX) = n,[@ - x5 @ - X>2)]-4 (14.6.5b)
Qx) = nlil\(l X", (14.6.5¢)
P(x) = 31\(I-x2"-1). (14.6.5d)

We can use the identities (14.2.42) and (14.6.2) to convert these infinite
products into forms which converge rapidly for x close to + 1, or to - 1.
(To do thiswe start by congidering (14.2.42) in the limit u-* 0, and taking
cube roots of each side. This gives the conversion formulae for Q(x). The
remaining formulae can then be obtained directly.)

This procedure introduces two more functions, G\(x) and H\(x), defined

by

G = sVl - 2'cod] + X", (14659
\ =1 _

H(9 = (2 siz@v' - oxcosy x2”\'J~X. (1465
We obtain the identities

Q(e™%) = (2/e) exp "~ Q 2exp[ -4%e]) . (14669

P(e™) = 2* exp [~j-a- ] /P(exp| - 2rfle]), (14.6.6h)



446 14 HARD HEXAGON AND RELATED MODELS

G(e') = exp [ -~ + 7] Gllexpf - 4/5€]),  (14660)
tf(e"®) = exp [~ + A] A(expf - 47M/5e]),  (14.6.6d)
Q(- € = (relexp [~ - N Q(-exp| - jZle]), (14.6.6¢)
P(-e% = ep [+ P(-e - %) . (14660
G(-e-) = exp [-~+A] lIx(- expl - H25¢]),  (14.6.60)

I(-e*) =exp [~+7] d(- exp| - IZ¥5E) . (14.6.6h)
Applying these identities to the formulae in Section 14.5 for p and R,
we find that
I: p = Hii - p) Hiip™) Pi -p’yPi -p°),
Il: P2 = p; = H,ip) Hip™) Qip’) QipyQip™?) ,
R=pi-P2=  i3\V5)s°Q(p°)  Qip)IQ°(p™),
l:  p = Hiip) H&wPX -p°*), (14.6.7)
IV: = HM ~P) Hi ~PY)IP{ -p*),
P2 = Hi( — p) Hi(p")/P( - p*?),
P=i(pi +fh) = H* ~ P) Hip“VPp%),
R = pe= (2IV5>Y%( - P) QPYIQU -P) QP

In regime |l there is no smple product formula for pi, or for the mean
density p= (pi + pi + Pi)I?>, but one can establish that p is expandable in
integer powers of p™.

The parameter p in (14.6.3) and (14.6.7) is defined by (14.6.4), where
eisin turn defined by (14.2.43), and of therein by (14.2.28)-(14.2.31). In
particular, from (14.2.30) we can take p to be defined by

AP =]/, (£p)/G1(£p), (14.6.8)

choosing the positive sign in regimes |l and 111, the negative dgns in
regimes | and 1V; p is non-negative.
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Critical Singularities
Our results are now in a form where we can discuss the behaviour across
the IHI and III IV regime boundaries. From (14.2.37) these occur when
A=+A.andg’=p= 0.

We have only solved the general model, i.e. the hard square model with
diagonal interactions, when the congtraint (14.2.9) is satisfied. This means
that we cannot consider the full (L , M, 2 parameter space: only the
two-dimensional surface (14.2.9).

Consider a line in that surface, crossing the boundary line A = + A
non-tangentially at a point C. Consider K, p and R as functions of position
aong the line. They are analytic except at C; R is identically zero on the
disordered side of C (regimes | and I11), positive on the ordered side
(regimes |l and 1V). Thus C is a critical point.

The parameters u and of are defined by (14.2.28)-(14.2.31). Both are
analytic functlons of position aong the line, even a C. At C, u is non-
Zero, Wh|Ie o vanishes linearly with position. We can therefore take of
(or —P) to be our 'deviation-from-criticality' variable, corresponding to
tin Section 1.1.

More precisaly, let us here definet to be given by the following equations:

ht=-q’=p; U:t=-P=-p; (14.6.9)

Nt = o’=p; Wit = g’= -p.
Then t is positive for disordered regimes and negative for ordered ones,
as in Section 1.1. It vanishes linearly at the critica point C. We warnt to
obtain the leading behaviour of K, p, R as functions of t, for t small.
Thisisreadily done, using the results (14.6.3) and (14.6.7) together with
the definitions (14.2.28), (14.6.1) and (14.6.5). We find that
-L-M

land|l:-

= 5u)/3
= —_—i‘]‘?(i n 51));3]] {1 = 2V3 [ sin(10u/3) + 6(£*%)}

n: =1, (14.6.10)
IV:  =1-4(-tfsn5M + 0(f%),
land 1l: p = pe sgn(f) [f"/V5 + 0(0 ,
Hl: p=pe V5 + C(f¥?), (14.6.11)
IV:p=p.+ 0(0
I1: R= (3/V5) (- 0Y{1 +t+ 2(- 0%+ 6(t})}, (14.6.12)
IV: R= (2V5) (- 0"I -t + G(t%)}.
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Here pe, the critical density is

pe = (5 - V5)/10 = 0.27639 . . .. (14.6.13)

We expect R and the dominant singular parts of K and p to behave for
smal t as

R~{-tY, Kgns~t>-<, Poas~ti-* (14.6.14)

where 0, a, a are the critica exponents of (1.1.14) and (1.7.9). From
(14.6.10)-(14.6.12), this is the case for this model, and across the HI
boundary

o=o0r=1/3, 0=1/9 (14.6.15)
while across the 111-1V boundary
a=-1/2, a=3/4, 0=1/4. (14.6.16)

For the genera hard sguare model, with weight function (14.2.1), the
mean density p is related to K by (14.1.7), the differentiation being per-
formed with L, M held fixed. This means that if we consider K, p and JR
adong a line parallel to the z-axis in (z ,L ,M) space, then aand ain
(14.6.14) must be the same. However, we are unable to do this, since we
can only consider lines on the surface (14.2.9). Thus a and a are not
necessarily equal, and indeed we see that they differ along the 111-1V
boundary.

The ground state in 1V is either that shown in Fig. 14.5(b), or the one
obtained by shifting each particle one lattice space to the right. These are
the ordered ground states of the usual hard-sguare model, which is (14.2.1)
with L = M = 0. It seems likely that our critical 111-1V boundary line lies
on the same critical surface as the hard square mode critical point (z =
37962 . .., L=M=0). Since the exponents (14.6.16) apply only to the
surface (14.2.9), it is not surprising that they differ from those expected
for hard squares, namdy a= a=0, 0= 18 (Baxter et al., 1980). Even s0,
it is disappointing that they seem to have no connection at all.

14.7 The Hard Hexagon Model

We started this chapter by discussing the hard hexagon model, i.e., the
triangular lattice gas with nearest-neighbour exclusion. In order to solve
it, we generdized it to the hard-square model with diagonal interactions.
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In Sections 14.2-14.6 we have considered this more general model; let us
now return to the original hard hexagon model.

To do this, we let m, L, M in (14.2.1) tend to the vaues 1, O, - »,
respectively. From (14.2.29) it follows that

un-n/5, (14.7.1)
while from (14.2.10) and (14.2.30),

1=A?= [e,(z?”,ql)/el(-s’f,qz)]s, (14.7.2)

the function 6\ being defined by (14.2.28). If the activity z is given, then
vvze can regard (14.7.1) and (14.7.2) as defining our two parameters u and

There are two cases to cons der, corresponding to g being negative and
positive, respectively. From (14.7.2) these in turn correspond to z < z. and

2> Z, Where

Z= I/ Si nz-?yI Si n'ﬂi')5
\ 3

= [11+ V5)]°
= }(11 + 5V5) = 11.09017 .... (14.7.3)

We see that this is the value (14.1.11) conjectured by Gaunt (1967).

The case z< z is the u = —jt/5 limit of regime I, while z > z is the
corresponding limit of regime . We define x as in (14.2.43). Then from
(14.2.10) and (14.2.44), x is related to z by:

<z z = -X[HX/G(X)]>, (14.7.4)
2z 7= x\GXIH{X]>

where G(x) and H(x) are the Rogers-Ramanujan functions defined in
(14.1.19) and (14.6.5). These are precisdy the relations conjectured in
(14.1.18) and (14.1.22), so the x of this section is the same as that of
Section 14...

To obtair. K, wefirst re-normalize the weights & . . . , (05 in (14.2.44)
to ensure that co\ is unity. This meansthat min (14.2.38) and (14.2.1) is
unity. Using these re-normdized weights, and remembering that f(w) in



450 14 HARD HEXAGON AND RELATED MODELS
(14.2.44) means/(w ,X°), from (14.2.44) we have that

_few L ) et ) flxe, )

L oo = FOoW, ) FE) (14.7.5)
2 5
I1: (1)40)5/0)1 few 715525))? (xw i )fg\x *)

We now use (14.3.26) (which is true for adl normdizations of
CDl,...,09 ad takethellmltw—» —/5. From (14.2.43) this meansthat
w—> x2|nreg|mel w—>Xx"*inregimell. In both casesthe RHS of (14.3.26)
has asimple pole at thisvaue of w, but thisis cancelled by a corresponding
zero of (14.7.5). Wefind that K isindeed given by (14.1.20) and (14.1.23).

For z < z, the density p is given a once by (14.5.14). For z > z, the
sub-lattice densities py pi, Pi, and the order parameter R, are given by
(14.5.29), (14.5.26) and (14.5.30). Thislast formulaisthe same as (14.1.24)
s0 we see that al the conjectures of Section 14.1 have been verified.

Critical Behaviour

To study the behaviour near z = z,, we use the dternative forms of the
results, as given in the previous section, speciaizing them to the hard
hexagon model.

Thefirst stepissmply to notethat g7 is given by (14.7.2). Using (14.2.28)
and (14.7.3), this equation can be written explicitly as

=zl [(| ; 2A-co§_.</‘ + o/l - V»COSYS  f1%)]. (1476

This defines of for al rea positive values of z; f is negative for z < z,
positive for z > z.

To obtain the smal-g expansion of K, we use (14.6.3) together with
(14.2.29) and (14.2.31). We take m=\ and let U-»-JT/5. Usng the
functions Q{x), P(x), d(X), Hx{X) defined in (14.6.5), we find that:

ez 3 V3 G\{q) Q\q) Qp) _P*(p'™)
“ 5 HI(T) Q°(P™) P(P") ' (14.7.7)

. _3V3 GI@)A)AR)
Z- 2K THig S
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where p is defined by (14.6.4), i.e. p = \g?\. The critical value K¢ of K is
obtained by setting o° =p = 0 in either of these formulag, giving

Kc = 3V3sin(2/5)[10 sin*(#5)] (14.7.8)
= [27(25 + IVsyiSO]* = 2.3144

For z < z, the dendity p is given by the first formula in (14.6.7). For
Z> z. the regime Il formulae apply: in particular, the order parameter is

R= (3/V5)p"°Q(p°) Q)IQ*(p™™). (14.7.9)

From (14.7.6) it follows that g is an anaytic function of z a z = z,
having a Taylor expansion of the form

o = (z - z)I(5V5z) + O[(z - z)3]. (14.7.10)

These results are exact. To obtain the critical behaviour we expand them
in powers of of and p, keeping only the first two or three terms. This gives

0= (z-2)/(5V5 z) + 6{(z - 2)%,

K = K{\ + f (V5- 1)<?+ 3<7° + 6(¢")}, (14.7.11)
p = p.+ sgn(g?) | V5 + 6(g)

R = (3VE) (@)™ {I~q* + 2™ + O(g")}.

Here p.=(5 - VT)/10 is the critical density of Section 14.6. The last
equation (for R) applies only for z> z; the firg three apply for both
Zz> z. and z < z.. Défining the critica exponents a, &, fi in the usual way
by (14.6.14), with t replaced by z— z,, we again obtain (14.6.15), i.e.

a=a= 1313= 1/9. (14.7.12)

Using these values, the scding hypothesis relations (1.2.12)-(1.2.16)
predict that the other critical exponents are:

y=13/9, 6=14, (14.7.13)
JX=V= 56, r\ = 4/15.

The results (14.1.18)—(14.1.24) involve dliptic functions of nomes x°,
%, x2 and x. It should be possible to obtain algebraic relations between
these functions (just as the Landen transformatlon of Section 15.6 relates
elliptic functions of nomes q and g?), and hence to eliminate x from the
results. This program has been carried out by Joyce (1981) for the relation
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between z and the order parameter R, for z > z.. He finds that
V>H5 + 1Qs + )3 = (27s + VO) (2435 + /593, (14.7.14a)
where
V= véR, s = 1257/(Z% - Ilz - 1). (14.7.14b)

Thus R is an algebraic function of z

14.8 Comments and Speculations

In this chapter we have used the "matrix inversion" trick to calculate the
free energy, and have calculated the sub-lattice densities and order par-
ameters by diagonalising the corner transfer matrices. Unlike the eight-
vertex model calculation in Chapter 10, we have not obtained exact equa-
tions for al the eigenvalues of the row-to-row transfer matrix. As a result,
we have not been able to calculate the interfacial tension and correlation
length.

This has very recently been done (Baxter and Pearce, 1982). Regard m'
and t' in (14.2.39) as fixed. Then the Boltzmann weights to-,, and the
row-to-row transfer matrix V, are functions of u. One can verify that

V(Uu)V(U+A)=<t>(k-u) A + u)3> + ¢j)(u) V(K- 2A), (14.8.1)
where 3> istheidentity matrix and
A =25, <p(u) = [m6i(u)/d)]" . (14.8.2)

As usual, the star-triangle relation implies that V(«) and V(w) commute,
for al complex numbers u and v. We can therefore choose arepresentation
in which V(«) is diagonal, for al u. Then (14.8.1) is a functional relation
for each eigenvalue. Together with the analyticity and quasi-periodic
propertiesof V(M) , thisrelation in principle enables one to calcul ate every
eigenvalue, for finite N. The free energy, interfacia tension and correlation
length can thus be calculated. The results of course agree with (14.3.26).
They aso give

H=v=Vv' = 5|(> (14.8.3)

for the critical exponents of the original hard-hexagon model. Together
with (14.7.12), it follows that the scaling relations (1.2,14a), (1.2.15) and
(1.2.16) are sdtisfied.

We have seen in Sections 10.1 and 10.3 that the eightrviertex model-
contains as specia cases the previously solved Ising and six-vertex models.
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When F. Y. Wu and | solved the three-spin model in 1973 and 1974, it
appeared then to be a quite distinct model. Howeve, as has been shown
in Section 11.10, it can be expressed as a specid case of the eight-vertex
model.

Will history repeat itsdf for the hard hexagon model? More precisdly,
will a more general model be solved that contains both the eight-vertex
and hard hexagon models as specia cases? | doubt it. For one thing, the
fact that the critical exponent 6 is 15 for the former, and 14 for the latter,
model, suggests that the two are quite distinct. On a more detailed level,
the star - triangle relation (13.3.6), or equivalently (11.5.8), contains many
more eguations than unknowns. For the eight-vertex model the two
spin-reversal symmetries reduce the number of equations by a factor of
four, from 64 to 16. For the generaized hard hexagon model, the require-
ment that no two particles be adjacent eliminates 44 of the 64 equations.
they just become 0= 0. The reasons for success in the two cases are
therefore quite different, and its seems to me unlikely that one can trace
a continuous path of solvable models from one to the other.

Can one extend these methods to Ising-type models in three dimensions?
One can extend the star - triangle relation (13.3.6) or (11.5.8), getting a
"tetrahedron relation”, as has been shown by Zamolodchikov (1981).The
trouble is that one then has 2™ equations to saisfy (instead of 2°), and it
is difficult to see where to begin. More serioudly, one very useful property
in two dimensions does not go over to three. If the mode factors into two
independent models, one on each sub-lattice of the square or simple cubic
|attice, then the weight functions w factor. The planar star - triangle relation
then factorsinto two identical relations (each being the original 1sing model
dtar - triangle relation of Section 6.4); but the three-dimensional tetrahed-
ron relation factors into two non-identical relations, one of which is trivia
and seems to preclude interesting solutions.

Even so, Zamolodchikov has found strong evidence that the tetrahedron
relations do have some (non-factorizable) solutions. It will be fascinating
to examine these and see if they correspond to interesting Statistical
mechanical models.

Of course one would dill like to go much further in two dimensions.
The Ising modd in a magnetic fidd remains unsolved. Indeed the only
models that have been solved in the presence of an appropriate
symmetry-breaking fidd are the spherical model of Chapter 5, and the
KDP ferroelectric model of Section 8.12. Only such solutions give a com-
plete check on the scding hypothesis (Section 1.2), and give the form of
the scading function hy{Xx).

It seems unlikely that the "commuting transfer matrix" trick can be used
to solve the Ising and other models in the presence of a fied, or even the
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non-critical Potts model. The only hope that occurs to me is that just as
Onsager (1944) and Kaufman (1949) originaly solved the zero-field Ising
modd by using the algebra of spinor operators, so there may be similar
algebraic methods for solving the eight-vertex -and Potts models. (Some
credence to this hope is given by the fact that the diagonalized infinite-
lattice corner transfer matrices of the eight vertex model have the smple
direct product form (13.7.20).)

If so, it is conceivable that such methods might work for a staggered
eight-vertex model, in whichtheweights are different on the two sublattices,
but the combinations A and T in (10.4.6) are the same. In particular, one
can dill define a single parameter n for this model, using (10.4.17) and
(10.12.5). The case n = nil corresponds to T = 0: the model then factors
into two independent staggered Ising models, -and these can be solved
algebraicaly. (Similarly, so can the "free fermion" case A = 0: see Section
10.16.) In attempting to generalize such algebraic methods it would be
natural to look firg at other values of nthat are smple fractions of n, e.g.
(i = n/3, 3JT/4, etc.

If this could be done, it would indeed be a giant step forward. Many
fascinating models can be expressed as specid cases of such a staggered
eight-vertex model, notably the non-critical Potts model (Section 12.4),
the Ashkin- Teller model (Section 12.9), and even the Isng modd in a
magnetic fidd (Wu, 1979). Obvioudy it would be foolish to pin al one's
hopes on such a possibility, which has evaded attainment for at least a
decade. At the same time, | fed it is equally foolish to dismiss it out of
hand.
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15
ELLIPTIC FUNCTIONS

15.1 Definitions

The usual dliptic functions are functions of two variables, which we can
take to be the nome q and the argument u. Usudly g isregarded as agiven
real constant, with vaue between 0 and 1; while u isregarded as avariable,
in general complex.

The half-period magnitudes |, F (usualy caled K, K') are then given
by

= 14 20l 1 2
I= [I(1— — Hg) (15.1.1)
I' = 7T-1In(g-Y), (15.1.2)
0
g=exp(-*/77). (15.1.3)

The modulus k and the conjugate modulus k' are given by

T 149" \4

"=4q!nl__[1(1+q§«-1) , (15.1.4a)
® 1- -1y 4

keﬂ(ﬁgﬂﬁ‘_‘) . (15.1.4b)
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The theta functions are

— 4n —
H{u) = 2<fsn2“_ \1 2q" oS +4q )(1 a™)

00

Hdu) =V oos? Il (I + 207" cos”™ +,A.(1 -
(v s ( q- oS (-7 (15.1.5)

o) = || (1-21cos T+ g 2) (1= g

x
T

I'd . T 4 }
Oi(«) =11(1+ 29" cosy- + 94"-237 (1-4d".

The Jacobian elliptic functions are
M = A H(u)/®(u),
cnu = {KIKHI{wI®{u), (15.16)
dn« = fc™* Oi(u)/0(u).
Multiplying (15.1.1) by (15.1.4b) gives the relation
i (1 _qn)ziﬁ‘ (15.1.7)
=i\l +¢g" 4
Also, from (15.1.1), (15.1.2) and (15.1.4a),

NS = S P LY
K' = mHmI/q)E(TfH) . (15.1.8)

15.2 Analyticity and Periodicity

The theta functions H, Hi, 0, Gi are entire functions of u (i.e. they are
analytic everywhere). Their zeros are dl smple. In particular the zeros of
H(u), @(u) are given by

Hu) =0 whenu = 2ml + linl', (15.2.1)
0(«) =0 whenu=2ml +i(2n - 1)1, (15.2.2)
where m, n are any integers.
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From (15.1.6); sn u, en u and dn u are therefore meromorphic (i.e. their
only singularities are poles). Their poles are dl smple and occur when
(15.2.2) is sdtisfied.

The function H(u) satiffies the quasi-periodic relations

H(u+ 21) = -H(u), (15.2.39)
H(u + 2W) = -g" exp(-mwl) H(u) . (15.2.3)
The other theta functions are related to H(u) by
H{W=H(U + 1), 0,(u) = O(w +/),
0(M) = -iq exp(imwJ) H(u + W), (15.2.4)
0i(w) = g exp(iniu/r) H(u + | + U".
It follows that sn, en, dn saisfy the relations:
sn(-M) = -snu, cn(-«) =enu, dn(-«) =dnu
sn(u+ 21)= - snu
cn(w +27) = -enu
dn(u + 21) = dnu (15.2.5)
sn(«+2U")=snu
cn(«+2U") = -enu
dnw + 2iT) = -dnu,
and
s« + W) = Oksnw)~,
cn(« + U = -idnu/(ksn«), (15.2.6)
dn(«+ily=-jenulsnu.

Any upright rectangle of width 2/ and height 2H' in the complex M-plane
isknown asa period rectangle (Fig. 15.1). Any function/(M) satisfying the
relations

I(«+ 21) = £1(M), f(u+ 2il') = +f(u), (15.2.7)

is said to be doubly periodic (or perhaps anti-periodic). If such afunction
is known within and on a period rectangle, then its value a any point in
the complex plane can be obtained by repeated use of (15.2.7). To within
a sign, dl values that it attains are attained within and on any period
rectangle.
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Fig. 15.1. A typica period rectangle (shown by broken lines) in the complex
u-plane. It has width 2/ and height 21"

15.3 General Theorems
Theorem 15(a)

A well-known theorem in complex variable theory is Liouville's theorem,
which states that if a function is entire and bounded, then it is a constant.
A useful corallary for this chapter is:

“if a function is doubly periodic (or anti-periodic)
and is analytic inside and on a period rectangle, then it
is a constant. (1531

The proof is smple: since it is analytic in a closed region, it is certainly
bounded. From the double periodicity it is therefore anaytic and bounded
everywhere. From Liouville's theorem it is therefore a constant.

Theorem 15(b)

If a function f(u) is doubly periodic (or anti-periodic)
and meromorphic, and has n poles per period rectangle,
then it also has just n zeros per period rectangle.
(Multiple poles or zeros of order r being counted r

times.) (1532
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Proof: choose a period rectangle such that f(u) has no poles or zeros on
the boundary (since they are isolated, this must be possible). Consider the
integral

£ [I(«)//(<)] da, (1533)

where C is the boundary of the rectangle, traversed anti-clockwise as in
Fig. 15.1. The integrand is analytic on C and is grictly doubly periodic,
so the contributions to (15.3.3) from the two sides (and the top and bottom)
cancel. Thus (15.3.3) is zero.

On the other hand, if /(«) has n poles and m zeros within the rectangle,
then f'(u)/f(u) has n poles with residue -1 and m poles with residue +1.
These are its only singularities, so by Cauchy's integral formula

_’L]_[/'(«)//(«)] dw = 2m (m-n). (15.3.4)

Since the LHS is zero, it follows that m = n, which is the theorem.

Theorem 15(c)

If a function f(u) is meromorphic and satisfies the (anti-) periodicity
conditions
I(H+2) = (-1)7(«) (15.35)
f(u + 2ii") = (-iyf(u),
wherer, sareintegers; and if /(M) has just n poles per period rectangle,
a Mi ..., «, (counting a pole of order r asr coincident smple poles),
then

I(«) = Cc™I1] [H(u - Vj)/H(u - uj)], (15.3.6)

where C, A, V,. . . V, are constants satisfying
Bi+... .+ =Mi+...+u,+ (r+2m)/-i(s+ 2n)F, (15.3.7)
A = fctfo + 2n)//, (1538
and m, n are integers.

Proof: from theorem 15(b),/(M) has n zeros per rectangle. Let these be
W,. .. vyand let $(M) be the product in (15.3.6), ignoring for the moment
the restriction (15.3.7).

Now consider the function

[f'(w)if()] — [¢'(w) @(u)] « (15-3.9)
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From (15.2.3) and (15.3.5), thisis gtrictly doubly periodic. Since/(u) and
0(u) have the same zeros and poles, the function (15.3.9) is analytic. From
theorem 15(a), it is therefore constant.

Integrating, it follows that /(«) must be of the form (15.3.6). The
conditions (15.3.7) and (15.3.8) are necessary to ensure that (15.3.5) is
satified.

This is a truly remarkable result: any double periodic meromorphic
function must be expressible in the form (15.3.6). For this reason there is
a bewildering array of identities between dliptic functions. many sums of
products of such functions will satisfy the conditions of this theorem; if
their zeros can be located, then they can be explicitly factored asin (15.3.6).

It is helpful to think of (15.3.6) as a 'generalization’ of the fundamental
theorem of algebra, which states that any polynomial of degree n can be
factored into n linear forms.

These theorems are extremely powerful. They will be useful in the next
section to obtain a number of algebraic identities satisfied by the dliptic
functions, but perhaps the smplest example of the use of theorem 15(a)
is the identity

H(u + xX) H(u - X) H(v + V) H(v - V)
- H{u +y) H(u - y) H(v + x) H(v - X) (15.3.10)
= H(x - y) H(x +y) H(u + v) H(u - v).

To prove this, regard X, y, v as constants and u as a complex variable.
Let/(u) betheratio of the LHSto the RHS. From (15.2.3),/(u) isperiodic
of periods 2/ and 2¢7. It is meromorphic, with possible smple poles when
M=xv+ 2m + 2m/', for any integers m and n. Plainly the LHS of
(15.3.10) vanishes when u = v or u = —v, so these poles are removeable.
By periodicity, so are dl the others; /(«) is therefore entire and doubly
periodic. From theorem 15(a), it is therefore a constant. Setting e~y gives
this constant to the unity. This proves the identity (15.3.10).

Note that this derivation does not use the explicit formula (15.1.5) for
H(u). It needs only the following properties: (a) H(u) is entire; (b) H(u)
satidies the quasi-double-periodicity conditions (15.2.3); (c) H(u) is odd,
i.e. H-u) = -H(u).

154 Algebraic | dentities
Rdations Between sn, en, dn

Consider the expression
[H3(0) 8*(M) - 0(0) H\{u)] IH\u). (154.1)
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Clearly this is a meromorphic function of u, with possble double poles
whenH{u) = 0, i.e. whenu = 2ml + 2inF. However, the numerator clearly
vanishes when u =0, and snce it is even, 0 does its derivative. Thus
(15.4.1) isanalytic a u = 0, and hence is anaytic insgde and on the period
rectangle centred on the origin.

From (15.1.6) and (15.25) it is eadly seen that (15.4.1) is (drictly)
doubly periodic, so from theorem 15(a) it is a constant. Setting u = | fixes
this constant, giving

Hf(0) S(u) - eO)HI(u) = QI(0)H\u). (154.2)
From (15.1.5), the definitions (15.1.4) can be written
** = Hiioye"o), (15,4 3)

k* = 0(0)/0i(0).

Dividing (15.4.2) by HI(0) 0%(w), using (15.1.6) and re-arranging, it
follows that

onfu + snfu = 1. (15.4.4)
Incrementing u by il' and using (15.2.6), this adso gives
dn?u + KX st™M = 1. (15.4.5)

" These identities (15.4.4) and (15.4.5) make the dliptic functions par-
ticularly suitable for parametrizing expressions involving sgquare roots of
two quadratic forms. For instance, if one had the equation

y=x(I -xd"+ (1 - IBA*, (15.4.6)
an obvious parametrization would be to set
X = snu, (154.7)
whereupon (15.4.4)-(15.4.6) would give
y=snuenu+dnu. (15.4.8)

This would ensure that x and v are both single-valued meromorphic func-
tions of u, which can be a very convenient feature in carrying out some
complicated calculation involving them. Unless k? = 0 or 1, such a para-
metrization cannot be performed in terms of elementary functions.

From (15.1.6), (15.4.3) and (15.2.4), it is readily verified that

sn/=1, dnl=K. (15.4.9
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Setting u = 1 in (15.4.5) therefore gives the relation

12+ K?= |, (15.4.10)
between the two moduli.
If 0<q< 1, then it is obvious from (15.1.4) that k and k' are positive.
From (15.4.10) it follows that
O<Jfc<l, O<fc'<l. (154.11)

The Modified Amplitude Function

Another useful function for our purposes is
Am(u) = -i Infiit* sn(« - W)]. (154.12)
From (15.1.6) and (15.1.5),

AQO --"[*fhal PRI A-1] o <55

z = exp(i;rwi/) . (154.149)
Taking logarithms term by term and Taylor expanding each logarithm, the
summation over n can be performed to give

where

2
AM(«) = " + 2 %, gf+ o Mmnurr) | (154.15)

provided |Im(w)|<£/".

For real u, thisfunction isreal, odd and monaotonic increasing. It stisfies
the quasi-periodic relation

Am(u + 2I) = Am(u) + jr. (15.4.16)

Itis no;[/meromorphic, snce it has logarithmic branch cuts at u = 2ml +
Kn - £)/".

Theusua dliptic amplitude function isam(w), which isgiven by (15.4.15)
with q replaced by °. Such transformations from dliptic functions of nome

g to nome ¢ are common: they are known as Landen transformations,
and will be discussed in Section 15.6.

Addition Formulae for Theta Functions

The theta functions stisfy the following identities, for al complex numbers
M and v. Each can be proved quite Smply by regarding the ratio of the
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LHS to the RHS as a function of u and verifying, usng (15.2.4) and
H(0) = O, that this is entire and doubly periodic. From theorem 15(a) it
is therefore constant. Setting u = 0, this constant is found to be unity.

H(U) &(u) Hi(v) 0i(u) - H(v) &Vv) H{u) Su)

= H(u - V) O(w + V) #i(0) 0i(O) , (15.4.17)
H(u) 8!(«) Hdv) ®&{v) - H{u) O(w) H(v) &{V)
= H(u - v) ©i(w + V) Hi(0) 0(0), (15.4.18)

H%{u) @W) - ©(M) H\V) = H{u - v) H{u + v) 0%(0). (15.4.19)
Incrementing u by il' in (15.4.19) and using (15.2.4) and (15.2.3) gives
0%(u) 0» - H\u) HW) = &(u - v) O(u + v) 0%0) . (15.4.20)

Dividing each side of (15.4.17) by the corresponding side of (15.4.20) and
using (15.1.6) and (15.4.3) gives the addition formula for sn:
. sNnM envdnv—enu dnu snv o -
Nw - v) = J3J i . (15.4.21)
v 1-Ksu sy v

Other addition formulae are:
—isn(iT—u—v)enuenv-cn(//'—u-v)snusnv
= AT dn(i/' -u-v), (15.4.22)

)@ - «)snfa - ) - snu snv

I—Asusvea—us@-v) oo (@ -u-v), (15.4.23)

snven(a- u) - nu sn(a- M _ sn@ -u-v)

sna—«)snv—sn(a- v) nm - Nna ’ {15.4.24)

0(«) O(u) O(a - M) O(a - u) - H(M) //(U) /l(a - u) H{a - V)
=0(0) 0(a) O(M - v) O(a- «- V), (15.4.25)

H(u) //(a - v) 0(«) O(a - u) - 0(>) O(a - V) H(u) H(a - u)
= 0(0) 0(a) //(u - Uy H(@ - u - v) , (15.4.26)

0(M) O(y) - H(u) H(v) = -Zq{H$(ir +u-vV)] HliU -u+ v)
X HWET + u+ V)] H[h(U" -u- y)]/[//:(0) Ox(O)], (15.4.27)
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0(u) H(v) + H(u) G(y) = 2 H[i(u + V)\ @[h(u + v)]
x H,[i(« - V)] el[J(u - W]/[#(0) er0)], (15.4.28)

HI(Qif(U) - HUH(V) =2HBU +u + )] HBU +u +v)]
x 9[i(/ +u-v)] Oi[E(/ + u - VIVIBO) B(0)], (15.4.29a)

Hi(M) H{V) + H(u) Hi(v) = 2#[£(« + »)] Hi[4M + V)]
x €i(u - V)] 9i[J(« - »VIO0) &,0)], (15.4.29b)

Specid Vdues of sn, en, dn

From (15.1.5), (15.1.6), (15.2.6), (15.4.4) and (15.4.5), $isreadily verified
that a

sn0=0, cn0=dn0 =1, (15.4.30)

sn/=l, en7=0, dn/= fc, (15.4.31)

SH = ik enW=(1+KN dni/f =1 +KK (15432

155 Differentid and Integral Identities

Consider the expression
X=sn'(u)/(cnu dnu), (15.5.19)

where the prime denotes differentiation with respect to «, g being kept
constant. Differentiating (15.4.4) and (15.4.5) gives

X= - cn'(«)/(snu dnu), (15,5,1b)
= - dn'(«)/(A:® sn u cnu). (15.5,lc)

Substituting the expressions (15-1.6) for sn, en, dn and remembering
that the theta functions are entire, the above equations (15.5,1) give

TEwewm Toan AWAY (e
where in each case . . . stands for an entire function. From the first
expression above for X, X has poles only when Hi(u) or ©1(M) vanishes.
From the second, it does not have poles when H,{u) vanishes. From the
third, it does not have poles when 0i(u) vanishes.

It follows that X has no poles and is therefore entire. From (15.2.5) it
is doubly periodic, so it is a constant.
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Obtaining sn u from (15.1.6) and (15.1.5), then letting u-> 0, we obtain

’ k- -]
., Snu — g _ A3
im =~ =760 Ta-»c. d053)

Using (15.1.1), (15.1.4) and (15.1.5), this gives the Smple result
lim (snu)lu = 1. (15.5.49)

0
[In fact, the definition (15.1.1) of / can be regarded as chosen to ensure
(15.5.4).]
Equation (15.5.4) ensures that sn'(0) = 1, while from (15.1.6) and
(15.4.3) it is obvious that cn(0) = dn(0) = 1. Evaluating the constant X by
setting u = 0 in (15.5.18) therefore gives

X=1. (155.5)

Using (15.4.4) and (15.4.5) to express en u and dn u in terms of sn u,
(15.5.18) becomes a first-order differential equation for sn u.
It can be integrated to give

=J'snu dt
“Thoa-Aa-EAF (15:5.6
Defining 0 such that
_ snu=4n0, (155.7)
(10.5.6) can be written
u= \*r.—%R—u— (15.5.8)
o (1-kat*ay

Thisis the usual integral form of the relation between u and sn u. Care
has to be taken in choosing the path of integration and the sgn of the
integrand, but for u rea and between 0 and 1 there is no problem: sn u,
en u, dn u are then dl positive, and 0 < snu < 1. Thusu isthen given by
the real integral (15.5.8), with positive integrand and 0 < <p < \n.

Now let «->/. From (15.1.6), (15.2.4) and (15.4.3), sn/= 1. Hence
<p=\nand (15.5.8) becomes

fa/2 dor
I="' | —3 5 n (15.5.9)
Jo (1-krsnfay
which is the usua expresson for / as the complete dliptic integral of the
first kind, of modulus k.

If M is positive pure imaginary, then so is snu; while enu and dnu are

real and of the same sign. Thus -i sn u increases monotonically with Im(w),
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and is finite for 0 =sIm(«) </'. In this case the appropriate path of inte-
gration in (15.5.8) is the pogtive imaginary axis. Again the integrand is
positive.

From (15.1.5) and (15.1.6), sw becomes infinite in the limit u-*U'.

Setting a= ifi, (15.5.8) gives <55)
P=f(1+k| Ry -

Thisis an integral expression for /'. It can be reduced to a more standard
form by the substitution

tany=sinh/3, ' (15.5.112)
giving, usng (15.4.10),

P <556
=T p-rW 1
Comparing (15.5.9) and (15.5.12), it is obvious that the relation between

[ and k is the same as that between /' and K. /' is the complete dliptic
integral of the first kind, of modulus K'.

The complete dliptic integral of the second kind, of modulus k, is
E=|

o

(1-Jc?sin’y)* dy. (15.5.13)

Small-it Behaviour of sn u, H(u)

When | < 1itis easly seen from (15.5.6) and (15.1.6) that
snw~u, H(u) ~K0(0)u. (15.5.14)

15.6 Landen Transformation

Exhibit the dependence of g, I, /', snu, enu, dnu, etc. on the modulus
k by writing them as qgt, h> 1'k, sn(«, K), cn(«, k), dn(u, k), etc. If

=21 +k), u= (I+K)u, (15.6.1)

then by replacing u, k, tin (15.5.6) by 0, I, (1 + K)tl{\ + kt%}, resmctiveiy
(and noting that sn/ = 1, snil' = <»), it can be verified that
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=+ Kl, //=J21+*)/E, q,= qi, (15.6.2)

Isn@, /) = 2t saw , *)/[I +ksnu, K)}, (15.6.3)

& sn(u, A) =[1 - dn(vo, N[/ n(fl , )] » (15.6.4)

Solving (15.6.1) for k, using (15.6.2) and replacing k, | by >n, fc, we obtain
m= (I-K)/(I+k), gm=dl (15.6.5)

From (15.1.1) and (15.1.4b), it follows that

I(K/my = in Il (1 - 4" + <) (15.6.6)
n=y

157 Conjugate Modulus

Set

x(U) = (/11 exp[-*M?/(411)]. (15.7.1)

Then
H(u k) = - ixiu) H{iu, k), (15.7.29)
@(u, k) = x(u) HNu , K) , (15.7.2b)
H1(u,k)=x(u)e(iu,k), (15.7.2¢c)
e{u,k=xLu)g(iuk), (15.7.2d)
sn(«,k)=- ix(u,kK)enlu, k"), (15.7.39)
cn(«, k) = len(ic, K), (15.7.3b)
dn(«, A) = dn(iw , K)/cn(iu, k). (15.7.3c)

These identities can be proved by using theorem 15a. For instance, both
sides of (15.7.24) are entire functions of u, with smple zeros at 2ml + 2inF,
for dl integers m, n. Their ratio is therefore entire. Using (15.2.3) we can
veify that it is doubly-periodic, so from theorem 15ait must be a constant.

As is often the case, it is much harder to obtain this constant than it is
to obtain the rest of the equation. One way is to reason as follows.

The relations (15.7.2b)-(15.7.2d) can be obtained from (15.7.2a) by
replacing wby «+i/",« +/,M + [+ W, respectively, and using (15.2.4).
It follows that (15.7.248)-(15.7.2d) are dl valid, except possibly for the
incluson of some extra common factor on the RHS.
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This factor must be independent of u, but may depend on A, or equiv-
aently on
£=1'11. (15.7.4)

Let us write the factor as c(e) and define a function

RE = € e**™ H(- ¢'%) (15.7.5)
n=I
From (15.1.5), (15.5.9) and (15.5.12),
g=exp(-ne), g = exp(-nle) (15.7.6)
where q is the nome corresponding to the modulus k, and ¢' is the nome
corresponding to the conjugate modulus K = (1 - K)K Taking the limit

u—*0in (15.7.2a), including our till-to-be-determined factor c(e), using
(15.1.5) and (15.7.5), it follows that

Re) = c(e) RXe-Y). (15.7.7)

Similarly, multiplying (15.7.28) and (15.7.2b) and taking the limit «-»0,
we obtain
R\e?2) Re) = c\e) Ri2le) Re~). (15.7.8)

We can obtain a third equation by replacing ein (15.7.7) by €ll. Elim-
inating R(e) and R{ell) between the three equations gives

cofel) = c\e). (15.7.9)

Further, from (15.7.7) it is obvious that c{e~') = Vc(e). Replacing ein
(15.7.9) by 2/e, and using this inversion property, it follows that

o@ = a\dl). (15.7.10)

It follows at once that c(e) = c*(e). Since c(e) is rea and non-zero, this
implies that

cle) =1I. (15.7.11)
Thus the factor multiplying the RHS of (15.7.2) is in fact unity: the

equations are correct aswritten. The equations (15.7.3) follow from (15.7.2)
and (15.1.6).

15.8 Poisson Summation Formula

,,.2co_wf(”d) = d-* 2@ g(im's), (15.8.1)
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where .
g(k)=f. exp(ikx)f(x)dx. (15.8.2)

This identity is true for any function f(x) that is analytic for real vaues
of x, and for which the integral (15.8.2) is absolutely convergent (Courant
and Hilbert, 1953, pp. 75-77). It can be used to express series such as
(15.4.15) in aform which converges rapidly as ¢—* 1. This corresponds to
going from dlliptic functions of modulus k to ones of modulus K'.

159 Seies Expansons of the Theta Functions

tf(n) =2 2 (-1)"-y"~"?sin[(2n - Ymil2l\, (15914

n=I

o(u) = 1 + 22I (-1) V2 cos(nmi/l), (15.9.1b)
#i(u) =2 2 <P cog (2« - 1)mi/2i], (15.9.1¢)
Oi(«) =1+ 212 / cos(nmi/l), (15.9.d)

Zo ( _ l)nqn(n+1)f2(z —r _ gn +l)
n=l

SN@-qY)A-qZ) L-q). (1592

To establish the identities (15.9.1), note from (15.1.5) that H(u) is an
entire function, odd and anti-periodic of period 21. It therefore has a
Fourier expansion of the general form

Hu) = 21 K sn@n = \)TMI2)\, (15.9.3)

From (15.2.3b) it follows that hn.; = - q2”hn , and hence that
hn= 2¢{-)™'q"™-"N\ (15.9.4)

where c is some constant. Subgtituting this result into (15.9.3); replacing
Mbyu u+U', u+l, u+l+ U, regpectively; and using (15.2.4); we
obtain the four |dent|t|es (15.9.1a8)- (15 9. 1d) except that each has an extra
factor ¢ multiplying the RHS.
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Asin Section 15.7, it isthe evaluation of ¢ that causes the most problems,
It is independent of M, but may depend on k, or equivaently g. Let us
write it as ¢(q) and define two functions

s =Ua-gmra-¢, (15.9.5)
0=1

T(g) =1 + 2"2:(-1)" "2, (15.9.6)

Setting u = 0 in (15.9.1b), including our dtill-to-be-determined factor
c{q), and using (15.1.5), we obtain

S(0) = ¢(a) T(a). (15.9.7)

Similarly, multiplying (15.9.1b) by (15.9.1d), setting w =0 and using
(15.1.5), we get

W) =c(@)dalj-)"g™ ", (15.9.8)
Setm=r+ sn=r—s Then (15.9.8) becomes
5V) =cdg 22 (- ) 2. (15.9.9)

Here r and s are either both integers, or both haf-an-odd-integer. In the
latter case the sum over s vanishes, the terms occurring in pairs of equal
magnitude and opposite sign. Thus we can restrict the sum to al integer
values (positive, zero or negative) of r and s. We then have

Sq) = Hq) THG) . (15-9.10)
Replacing g in (15.9.7) by f and comparing with (15.9.10), it follows that
c(a)=c(0). (15.9.12)

However, it is obvious from (15.9.7) that ¢(q) is Taylor expandable about
g = 0 with leading term one. Subgtituting the Taylor series into (15.9.11)
and equating coefficients, we find at once that

c(q) = I. (15.9.12)

Theidentities (15.9.1) are therefore correct aswritten. The other identity
(15.9.2) isacorollary of (15.9.1a), be ng obtained by using (15 1 5) setting
z = exp(imi/l), and replacing g by d.
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1510 Parametrization of Symmetric Biquadratic Relations

Inthels ng, eight-vertex and hard hexagon models we encounter symmetric
biquadratic relations, of the form

ady’ + by + xy?) + c(¢ + VP) + 2dxy + e(x+y)+f= 0. (15.10.1)

Here x and y are variables (complex numbers), and a, b, ¢, d, e, f are
given constants.

Any such relation can conveniently be parametrized in terms.of dliptic
functions. To see this, fird gpply the bilinear transformations

x->(ax + P)l(yx + 8), y-»{ay + P)/(yy + 8), (15.10.2)

where a, S y, 8 are numbers (in general complex) such that a8 + /3y. In
general we can choose a, ft, y, 8 so asto make b and evanish in (15.10.1),
and so that a = f# 0. (Exceptional cases can arise, but these can be handled
by taking an appropriate limit.) Dividing (15.10.1) through by a, the
biquadratic relation assumes the canonical form

XY + 1+ (¢ + y?) + 2dxy = 0. (15.10.3)
This can be regarded as a quadratic equation fory. Its solution is
y=-{dx£V[-c+ (-1-A*-cx*\}/(c+x). (15.104)

The argument of the square root is a quartic polynomia in x. It can be
written as a perfect square by transforming from the variable x to the
variable u, where

x = K'snu, (15.10.5)

sn u being the Jacobian eliptic sn function of argument u and modulus k,
where

k+ k= (d®-1- Al (15.10.6)
Using (15.4.4) and (15.4.5), the argument of the square root is
-c[l-(* +Arv +*1 |
= - ¢(l - sw) (1 - K snu) = - ¢ cnfu dnu. (15.10.7)
Define a parameter 1/ by
¢ = - l[Jc sn™>7). (15.10.8)
Then from (15.10.6) it follows that we can choose the sign of r\ so that
d= enrj <inri/(ksn’rj). (15.10.9)
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Subgtituting these expressons into (15.10.4), it fdlows that
snKcn.dn”sn.cn.dnu

y=k 1 -k stV s73

(15.10.10)

Using the addition theorem (15.4.21), this result simplifies to
y = Ksn(w = rj). (15.10.11)

Thusy is given by an equation of the same form as the equation (15.10.5)
for x, but with u replaced by u % rj.
Put another way, if we transform from x, y to u, v according to the rule

x = k*snu, y = Ksnv, (15.10.12)

then the canonical biquadratic relation (15.10.3) simplifies to the pair of
linear relations

v=u+rj or v-rt]. (15.10.13)

We can now go back to the general biquadratic relation (15.10.1), using
the transformation (15.10.2). This of course changes c and d , and it should
be remembered that the ¢ and d in (15.10.6)-(15.10.9) are those of
(15.10.3). Even so, it is still true that there exist parameters k and r\ such
that (15.10.1) reduces to

x= 4>{u), y= 4>(uzri), (15.10.14)
where the function (p{u) is defined by
4>{u) = (ak'snu + /9yA*snu + 6). (15.10.15)
Define two further parameters A, \i by
snA = - Jc*jga, snp= - kbly. (15.10.16)

Then (15.10.15) can be written as
<p(u) = (aly) (snu - sn A)/(sn u-snp). (15.10.17)

Using (15.1.6) to express the sn function as a ratio of theta functions,
then applying the identity (15.4.28) (with u negated), we obtain

<P(u) = constant x_.<»— A) r(yy - 2/H-A) (1510 18

where the function T(U) is defined by
r(u) = H(ul2) o(m/2) . (15.10.19)

From (15.1.5), to within a constant factor, T(M) is the elliptic //-function
with q replaced by d' and ull by w/(2/). From (15.6.2), this means that they
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are related by a Landen transformation. In fact
T(U) = congtant x H{u',t), (15.10.20)
where
[=2kM1+ A), U =1(1+Ku. (15.10.21)

Modify each of u, A, (x by subtracting7 and then multiplying by 1(1 + K).
Multiply rf by 1(1 + k). Then (15.10.18) becomes
' H{u-X,)H{u + Xt)

<p(u)=constantxi_)|(u - fi,) H{u +n,0)"’

(15.10.22)

and (15.10.14) is unchanged.
The general symmetric biquadratic relation (15.10.1) therefore can be
reduced to the form (15.10.14), where <p(u) is given by (15.10.22), or

equivalently by

*«) = condtant X 2>t 06~"ff "jx (15.10.23)
sn'(u, 1) - %n\n,1)
The multiplicative constant herein, and the parameters/, A, fx, 1/, are inde-
pendent of x and y , being determined solely by the coefficients a ,. . . f
in (15.10.1). In any specific case we can obtain these parameters by
subgtituting the expressions (15.10.14) and (15.10.22) for x and y directly
into (15.10.1), and then considering particular values of u .

There are many excdlent books on dliptic functions. | mention Whittaker
and Watson (1915, Chapters 20-22), Neville (1944) and Bowman (1953).
| find particularly useful the identity list in Sections 8.110-8.197 of Grad-
shteyn.and Ryzhik (1965): once one is familiar with the use of the theorems
in Section 15.3, it isusually straightforward to verify any particular identity,
as | hope | have managed to indicate.
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240

Bethe ansatz, 139, 168
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Coexistence curve, 29

Commuting transfer matrices, see also

star-triangle relation
eight-vertex model, 214
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model, 370-372
hard hexagon model, 452
ice-type model, 180-181, 185-186
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Corner transfer matrices, 363-401
eight-vertex model, 385-389
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432
Correlation length, 19
eight-vertex model, 241-243, 284
hard hexagon model, 452
ice-type model, 154-155
one-dimensiona 1sing model, 36
planar 1sng model, 118, 120
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transfer matrix, 36, 115-118
Correlations, 10, 18-19
one-dimensional Ising model, 35-36

planar Ising model, 297-298
Critical exponents, 4, 17, 19, 20, 29,
see also scaling hypothesis and
scaling relations
Ashkin-Teller model, 360-361
Bethe lattice 1sing model, 58
classcal values, 30-31
continuoudy variable, 8, 253-254,
361
eight-vertex model, 253-255
hard hexagon model, 448-452
ice-type model, 157, 160, 165
mean-field 1sing model, 4—%6
one-dimensiond 1sing model, 38
planar Ising model, 122
Potts model, 351-352
spherical model, 69-71
three-spin model, 320-321
Critica point, 3, 10, 28
Ashkin-Teller model, 359-362
Bethe lattice 1sng model, 54, 307-
308
eight-vertex model, 248
hard hexagon model, 405, 447, 449
ice-type model, 156
mean fidd 1sing model, 44
numerical values for the isotropic
Ising model, 77, 308
one-dimensiond Ising model, 37
planar Ising model, 77-78, 87, 120-
121, 307-308
Potts model, 338-339, 347-348
sphericad model, 67
three-spin model, 314
Curie point, 2, 44, see also critical
point
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Dichromatic polynomial, 324
Difference kernel, transformation to,
145, 171

Dimer problem, 124-126

Disorder points, 247

Duality,
Ashkin-Teller model, 357
eight-vertex model, 206
planar 1sng model, 73-80, 86-87
Potts model, 338, 346

Dual lattice, 74, 79

Eight-vertex model, 202-321
‘electric’ arrow formulation, 202-
204, 276-279
'magnetic’ spin formulation, 207-
210, 286-289
Elliptic functions, 45573
conjugate modulus identities 419,
444-446, 467-463
in eight-vertex model, 212-215
in hard hexagon model, 412-415
in planar 1sing model, 102-103
in square-lattice four-colouring
problem, 171-176

Ferroelectric ice-type modd in a fied,
160-165
Ferroelectric phase
of eight-vertex model, 246
of ice-type model, 151
F model, 129
Four colour problem, 331-332
Free energy, 16-17
Bethe lattice 1Sng model, 55-56,
59, 306
critical Potts model, 339-340, 348-
350
eight-vertex model, 236-237, 285-
286
hard hexagon model, 408, 426, 444,
450

ice-type model, 145-150

inversion relation for, see inversion
relations

mean fidd 1sing model, 42

one-dimensional 1sng model, 34

planar Ising model, 110-111, 296-
306

spherical model, 61-64
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three-spin model, 319-320
Free-fermion model, 270-271, 310

Hard hexagon model, 402-454
Heisenberg chain, see XYZ chain
Hyperbolic trigonometry and the star-

triangle relation, 292
Hyperscaling, 7

Ice model, 127-129, 148
Ice-type model, 127-201
Interfacial tension, 20, 110-114, 152-
153, 239-241, 452
Internal energy, 9, 16
critical Potts model, 344-345, 349-
351
spherical model, 64
Inversion relations for loca transfer
matrices, free energy, and
corner transfer matrices, 383-
387, 421723, 427-429
Ising model, 19-32, see also edific
properties, e.g. free energy
Bethe lattice, 13, 47-59, 306-309
mean fidd, 13, 39-46
one-dimensional, 12, 32-38
planar, 72-126, 294-309
relation of d-dimensionad mode to
a (d-I)-dimensional quantum-
mechanical model, 266-267

Kagomé lattice, 276-277
KDP model, 129

Landen transformation, 466-467
Latent heat of Potts model, 345, 349-
351
Lattice gas, 24-30
hard hexagons, 402, 409
mean fidd, 46
Liouville's theorem, 458
Locd transfer matrices Ui
edge transfer matrices for the planar
Ising model, 84-85, 124
face transfer matrices for the
general two-dimensional IRF
model, and for the hard hexagon
model, 369, 421
inversion relations for, see inverson
relations
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vertex transfer matrices for the ice-
type and eight-vertex models,
188

Magnetization, 1-4, 17, 21-23, seealso
spontaneous magnetization

Bethe lattice ISng model, 52-54, 59
mean-field 1sing model, 41
one dimensiona 1sng moddl, 34
spherical model, 64

Mean-fidd model, 13, 39-46

Media graph, 325, 332-333, 345-346

One-dimensiona Ising model, 12, 32-
33
Order parameter, see also spontaneous
magnetization and spontaneous
polarization
hard hexagon model, 404, 438, 442,
446, 451

Pair-propagation through a vertex,
194, 215

Partition function, 8-9, 16, 25

per site, see free energy

Percolation problem, 324

Pfaffian, 125

Phase transition, 1-3, see also critical
point

Poisson summeation formula, 468-469

Polarization, see also spontaneous
polarization
ferroelectric ice-type model,
162-165

Potts model, 322-352

Renormalization group, 11
Rogers-Ramanujan and related
identities, 434-443

Scding hypothesis, 4-7, 37
full verificetion for the one-

dimensiona Ising, mean-fied
Ising, Bethe lattice Ising,
spherical and ferrodectric ice-
type models, 37, 46, 58, 71, 165

Scaling relations between critical
exponents, 6, 20, 21
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verification of (a,n,p) relations for
the planar lsing, ice-type, eight-
vertex, three-spin and hard
hexagon models, 122, 160, 253,
321, 452
verifications for other models, see
scding hypothesis
Series expansions, 10, 22-23, 395-396,
404
Six-vertex model, see ice-type modd
Specific heat, 16
Spherica model, 13, 60-71
Spontaneous magnetization, 1-4, 23
Bethe lattice Isng model, 57, 306
eight-vertex model, 243-244, 291,
389

mean-field 1Sng model, 44
planar 1sng model, 119, 299, 304-
306, 389
spherica model, 68-69
three spin model, 319
Spontaneous polarization and
spontaneous staggered
polarization
eight-vertex model, 244-245, 253,
285
ice-type model, 153-154, 157, 159
three-spin model, 319
Star-triangle relation
eight-vertex model, 210-215, 279-
281, 289-291
genera two-dimensiona IRF
model, 370-374
hard héxagon model, 410-411
ice-type model, 187-192
operator form, 83-85, 124, 188,
192, 215, 372-373
planar Ising model, 80-86, 92-93,
122-124
three-dimensional, 453
Susceptibility, 4, 18
divergent for the spherical model,
70

Thirty-two vertex model, 309-313

Three-colourings of the sguare lattice,
165-179

Three-spin model, see triangular three-
pin model
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Transfer matrix

commutation, see commuting
transfer matrices

corner, see corner transfer matrices

edge, see locd transfer matrices Ui

eight-vertex model, 185, 214

face, seelocd transfer matrices Ut

genera two-dimensiona IRF
model, 371

hard hexagon model, 452

ice-type model, 130-131, 185

one-dimensional Ising model, 33-34

planar Isng model, 85-86, 89-96

three-colourings of the square
lattice, 167

vertex, see loca transfer matrices
UY

Triangular lattice gas with nearest-

neighbour exculsion, see hard
hexagon model
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Triangular three-spin model, 314-321
Twenty-vertex model, 311-312

Universdlity, and violations thereof, 7-
8, 253-255, 361-362

van der Waal's equation of state, 13,
30-31

Wave numbers, in the Bethe ansatz,
143-144, 169-170, 177

Weak-graph expansion, 206

Wiener-Hopf factorization, of eight-
vertex model eigenvalue
equation, 229, 231

XYZ chain, 258-267, 269-272

Zymodel, 322















Several two-dimensional lattice models in statistical mechanics
have been solved exactly, notably the Isiny, spherical, ice, eight-
vertex and hard-hexagon models. “Their solutions are presented
here, and it is shown how they give invaluable information on
critical behaviour, particularly- on universality. Emphasis is laid
on the development of the calculational techniques and methods
from one model to the next, and on \'arious unihing features such
as the star-triangle relation.
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