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PREFACE

This book was conceived as a slim monograph, but grew to its present size
as I attempted to set down an account of two-dimensional lattice models
in statistical mechanics, and how they have been solved. While doing so
I have been pulled in opposite directions. On the one hand I remembered
the voice of the graduate student at the conference who said 'But you've
left out all the working—how do you get from equation (81) to (82)?' On
the other hand I knew from experience how many sheets of paper go into
the waste-paper basket after even a modest calculation: there was no way
they could all appear in print.

I hope I have reached a reasonable compromise by signposting the route
to be followed, without necessarily giving each step. I have tried to be
selective in doing so: for instance in Section 8.13 I discuss the functions
k(oc) andg(a) in some detail, since they provide a particularly clear example
of how elliptic functions come into the working. Conversely, in (8.10.9)
I merely quote the result for the spontaneous staggered polarization Po of
the F-model, and refer the interested reader to the original paper: its
calculation is long and technical, and will probably one day be superseded
when the eight-vertex model conjecture (10.10.24) is verified by methods
similar to those used for the magnetization result (13.7.21).

There are 'down-to-earth' physicists and chemists who reject lattice
models as being unrealistic. In its most extreme form, their argument is
that if a model can be solved exactly, then it must be pathological. I think
this is defeatist nonsense: the three-dimensional Ising model is a very
realistic model, at least of a two component alloy such as brass. If the
predictions of universality are corrected, then they should have exactly the
same critical exponents. Admittedly the Ising model has been solved only
in one and two dimensions, but two-dimensional systems do exist (see
Section 1.6), and can be quite like three-dimensional ones. It is true that
the two-dimensional Ising model has been solved only for zero magnetic
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field, and that this case is quite unlike that of non-zero field; but physically
this means Onsager solved the most interesting and tricky case. His solution
vastly helps us understand the full picture of the Ising model in a field.

In a similar way, the eight-vertex model helps us understand more
complicated systems and the variety of behaviour that can occur. The hard
hexagon model is rather special, but needs no justification: It is a perfectly
good lattice gas and can be compared with a helium monolayer adsorbed
onto a graphite surface (Riedel, 1981).

There is probably also a feeling that the models are 'too hard' math-
ematically. This does not bear close examination: Ruelle (1969) rightly
says in the preface to his book that if a problem is worth looking at at all,
then no mathematical technique is to be judged too sophisticated.

Basically, I suppose the justification for studying these lattice models is
very simple: they are relevant and they can be solved, so why not do so
and see what they tell us?

In the title the phrase 'exactly solved' has been chosen with care. It is
not necessarily the same as 'rigorously solved'. For instance, the derivation
of (13.7.21) depends on multiplying and diagonalizing the infinite-dimen-
sional corner transfer matrices. It ought to be shown, for instance, that the
matrix products are convergent. I have not done this, but believe that they
are (at least in a sense that enables the calculation to proceed), and that
as a result (13.7.21) is exactly correct.

There is of course still much to be done. Barry McCoy and Jacques Perk
rightly pointed out to me that whereas much is now known about the
correlations of the Ising model, almost nothing is known about those of
the eight-vertex and hard hexagon models.

There are many people to whom I am indebted for the opportunity to
write this book. In particular, my interest in mathematics and theoretical
physics was nurtured by my father, Thomas James Baxter, and by Sydney
Adams, J. C. Polkinghorne and K. J. Le Couteur. Elliott Lieb initiated
me into the complexities of the ice-type models. Louise Nicholson and
Susan Turpie worked wonders in transforming the manuscript into immacu-
late typescript. Paul Pearce has carefully read the proofs of the entire
volume. Most of all, my wife Elizabeth has encouraged me throughout,
particularly through the last turbulent year of writing.

R. J. Baxter
Canberra, Australia
February 1982
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1

BASIC STATISTICAL MECHANICS

1.1 Phase Transitions and Critical Points

As its name implies, statistical mechanics is concerned with the average
properties of a mechanical system. Obvious examples are the atmosphere
inside a room, the water in a kettle and the atoms in a bar magnet. Such
systems are made up of a huge number of individual components (usually
molecules). The observer has little, if any, control over the components:
all he can do is specify, or measure, a few average properties of the system,
such as its temperature, density or magnetization. The aim of statistical
mechanics is to predict the relations between the observable macroscopic
properties of the system, given only a knowledge of the microscopic forces
between the components.

For instance, suppose we knew the forces between water molecules.
Then we should be able to predict the density of a kettleful of water at
room temperature and pressure. More interestingly, we should be able to
predict that this density will suddenly and dramatically change as the
temperature is increased from 99°C to 101°C: it decreases by a factor of
1600 as the water changes from liquid to steam. This is known as a phase
transition.

Yet more strange effects can occur. Consider an iron bar in a strong
magnetic field, H, parallel to its axis. The bar will be almost completely
magnetized: in appropriate units we can say that its magnetization, M, is
+ 1. Now decrease H to zero: M will decrease, but not to zero. Rather,
at zero field it will have a spontaneous magnetization Mo.

On the other hand, we expect molecular forces to be invariant with
respect to time reversal. This implies that reversing the field will reverse
the magnetization, so M must be an odd function of H. It follows that

1



2 1 BASIC STATISTICAL MECHANICS

M(H) must have a graph of the type shown in Fig. l.l(a), with a dis-
continuity at H = 0.

This discontinuity in the magnetization is very like the discontinuity in
density at a liquid-gas phase transition. In fact, in the last section of this
chapter it will be shown that there is a precise equivalence between them.

Fig. 1.1. Graphs of M(H) for (a) T< Tc, (b) T= Tc, (c) T> Tc.

The iron bar can be regarded as undergoing a phase transition at H = 0,
changing suddenly from negative to positive magnetization. In an actual
experiment this discontinuity is smeared out and the phenomenon of
hysteresis occurs: this is due to the bar not being in true thermodynamic
equilibrium. However, if the iron is soft and subject to mechanical dis-
turbances, a graph very close to that of Fig. l.l(a) is obtained (Starling
and Woodall, 1953, pp. 280-281; Bozorth, 1951, p. 512).

The above remarks apply to an iron bar at room temperature. Now
suppose the temperature T is increased slightly. It is found that M(H) has
a similar graph, but Mo is decreased. Finally, if T is increased to a critical
value Tc (the Curie point), Mo vanishes and M(H) becomes a continuous
function with infinite slope (susceptibility) at H = 0, as in Fig. 1.1 (b).

If T is further increased, M{H) remains a continuous function, and
becomes analytic at H = 0, as in Fig. l.l(c).
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These observations can be conveniently summarized by considering a
(T, H) plane, as in Fig. 1.2. There is a cut along the T axis from 0 to Tc.
The magnetization M is an analytic function of both T and H at all points
in the right-half plane, except those on the cut. It is discontinuous across
the cut.

Fig. 1.2. The (T ,H) half-plane, showing the cut across which M is discontinuous.
Elsewhere M is an analytic function of T and H.

The cut is a line of phase transitions. Its endpoint (Tc, 0) is known as
a critical point. Clearly the function M(H, T) must be singular at this
point, and one of the most fascinating aspects of statistical mechanics is
the study of this singular behaviour near the critical point.

MO(T)

Fig. 1.3. The spontaneous magnetization Af0 as a function of temperature.
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The spontaneous magnetization is a function of T and can be defined as

M0(T)= lim M(H,T), (1.1.1)
tf-»0+

the limit being taken through positive values of H. It has a graph of the
type shown in Fig. 1.3, being positive for T<TC and identically zero for
T>TC.

Critical Exponents

The susceptibility of a magnet is defined as

Il (u.2)

When considering critical behaviour it is convenient to replace T by

t = {T-Tc)ITc. (1.1.3)

Then the thermodynamic functions must have singularities at H = t = 0.
It is expected that these singularities will normally be simple non-integer
powers; in particular, it is expected that

MQ(T) ~(-tY asf-»(T, (1-1-4)

M{H,Tc)~Hm as//-»0, (1.1.5)

X(0,T) ~n asf-*0+ , (1.1.6)

X(0,T) ~(-t)~y asf-»O~. (1-1-7)

Here the notation X ~ Y means that XIY tends to a non-zero limit. The
power-law exponents /3, d, y, y' are numbers, independent of H and T:
they are known as critical exponents.

For brevity, the phrase 'near Tc' will be frequently used in this book to
mean 'near the critical point', it being implied that H is small, if not zero.

1.2 The Scaling Hypothesis

It is natural to look for some simplified form of the thermodynamic functions
that will describe the observed behaviour near Tc. Widom (1965) and
Domb and Hunter (1965) suggested that certain thermodynamic functions
might be homogeneous. In particular, Griffiths (1967) suggested that H
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might be a homogeneous function of M1/p and t. Since H is an odd function
of M, this means that near Tc

HlkTc = M\M\6-lhs(t\M\-Vfi), (1.2.1)

where /S and S are numbers (as yet undefined), k is Boltzmann's constant,
and hs{x) is a dimensionless scaling function. A typical graph of hs(x) is
shown in Fig. 1.4: it is positive and monotonic increasing in the interval
-XQ<x < °°, and vanishes at -x0.

Note that (1.2.1) implies that H is an odd function of M, as it should
be.

Fig. 1.4. The scaling function hs(x) for the square-lattice Ising model (Gaunt and
Domb, 1970).

The scaling hypothesis predicts certain relations between the critical
exponents. To see this, first consider the behaviour on the cut in Fig. 1.2.
Here H = 0, t < 0 and M = ±M0. From (1.2.1) the function hs(x) must be
zero, so x = —xQ, i.e.

t=-xo\M\vl>. (1.2.2)

The relation (1.1.4) follows, so /3 in (1.2.1) is the critical exponent defined
in (1.1.4).

Now set t = 0 (1.2.1). Since hs(0) is non-zero, this implies that near Tc

H~M6, (1.2.3)

in agreement with (1.1.5). Hence the 6 in (1.2.1) is the same as that in
(1.1.5).

Differentiate (1.2.1) with respect to M, keeping t fixed. From (1.1.2)
this gives

{kTcXYl = - p-'xhiix)] (1.2.4)
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where
. (1.2.5)

Again consider the behaviour on the cut in Fig. 1.2. Here x has the fixed
value —xo, so

Z"1 ~ I M P " 1 - ( - * ) « * - x ) . (1-2.6)
This agrees with (1.1.7), and predicts that the critical exponent y' is given
by

y' = /3(<5-l). (1.2.7)

To obtain (1.1.6) from the scaling hypothesis, we need the large x
behaviour of the scaling function hs(x). This can be obtained by noting
that for fixed positive t, we must have

H~M asM-»0. (1.2.8)

Comparing this with (1.2.1), we see that

h&c)~xKa-» as x - K » . (1.2.9)

From (1.2.1) and (1.2.9), it follows that for arbitrary small positive t,

H-t^-^M asM-»0, (1.2.10)

so from (1.1.1),

^ O . r j - r * - " asf-^0+. (1.2.11)

Comparing this with (1.1.6), and using (1.2.7), we see that the scaling
hypothesis predicts the exponent relations

l ) . (1.2.12)

Other exponents a, v, v', r\, n will be denned in Section 1.7, but for
completeness the various scaling predictions are listed here:

or+2/3 +
;'»(2-»?!

fi+ V =

dv =

Y
)v

•2

•2

= 2,

-a,

- a,

(1.2.13)

(1.2.14)

(1.2.15)

(1.2.16)

where d is the dimensionality of the system.
A partial derivation of (1.2.14) will be given in Section 1.7, but it is

beyond the scope of this book to attempt to justify all these relations: the
interested reader is referred to the articles by Widom (1965), Fisher (1967),
Kadanoff et al. (1967), Hankey and Stanley (1972), Stanley (1971) and
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Vicentini-Missoni (1972). Their relevance here is that exactly solved models
can be used to test the relations, and indeed we shall find that scaling
passes every possible test for the models to be discussed.

The scaling relations (1.2.12)-(1.2.15) are in good agreement with avail-
able experimental and theoretical results, and the scaling function hs(x)
has been obtained approximately for a number of systems (see for example
Gaunt and Domb, 1970).

The last relation (1.2.16) involves the dimensionality d. It is derived by
making further assumptions, known as 'strong scaling' or 'hyperscaling'.
It is expected to be valid for d ^ 4, but there is some question whether it
is consistent with available numerical results for three- and four-dimensional
models (Baker, 1977). The total set of equations (1.2.12)-(1.2.16) is
sometimes known as 'two exponent' scaling, since if two independent
exponents (such as 6 and fi) are given, then all other exponents can be
obtained from the equations.

1.3 Universality

Consider a system with conservative forces. Let s denote a state (or
configuration) of the system. Then this state will have an energy E(s),
where the function E(s) is the Hamiltonian of the system.

The thermodynamic properties, such as M(H, T) and Tc, are of course
expected to depend on the forces in the system, i.e. on E(s). However,
it is believed (Fisher, 1966; Griffiths, 1970) that the critical exponents are
'universal', i.e. independent of the details of the Hamiltonian E(s).

They will, of course, depend on the dimensionality of the system, and
on any symmetries in the Hamiltonian. To see the effect of these, suppose
E(s) can be written as

E(s) = £„(*) + kE^s), (1.3.1)

where E0(s) has some symmetry (such as invariance under spatial reflection)
and Ei(s) has not. The critical exponents are then supposed to depend on
A only in so far as they have one value for A = 0 (symmetric Hamiltonian),
and another fixed value for A + 0 (non-symmetric). For example, there
would be two numbers #>, ft such that

P = Po ifA = O

= ft if A # 0, (1.3.2)

/3 being discontinuous at A = 0.
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On the other hand, if E0(s) is some simple Hamiltonian and Ei(s) is
very complicated, but they have the same dimensionality and symmetry,
then /3 should be completely constant, even at A = 0. The implications of
this are far reaching. One could take a realistic and complicated Hamil-
tonian E(s), 'strip' it to a highly idealized Hamiltonian £0(5), and still
obtain exactly the same critical exponents. For instance, on these grounds
it is believed that carbon dioxide, xenon and the three-dimensional Ising
model should all have the same critical exponents. To within experimental
error, this appears to be the case (Hocken and Moldover, 1976).

There are some difficulties: there is usually more than one way of
describing a system, in particular of labelling its states. In one of these
there may be an obvious symmetry which occurs for some special values
of the parameters. In another formulation this symmetry may not be
obvious at all. Thus if the second formulation were used, and these special
values of the parameters were accidentally chosen, then the critical expo-
nents could be unexpectedly different from those appropriate to other
values.

Also, in this book the solution of the two-dimensional 'eight-vertex'
model will be presented. This has exponents that vary continuously with
the parameters in the Hamiltonian. This violates the universality hypoth-
esis, but it is now generally believed that such violations only occur for
very special classes of Hamiltonians.

It should be noted that scaling and universality, while commonly grouped
together, are independent assumptions. One may be satisfied and the other
not, as in the case of the eight-vertex model, where universality fails but
scaling appears to hold.

1.4 The Partition Function

How do we calculate thermodynamic functions such as M(H, T) from the
microscopic forces between the components of the system? The answer
was given by John Willard Gibbs in 1902. Consider a system with states
s and Hamiltonian E(s). Form the partition function

Z = *£exp[-E(s)/kT], (1.4.1)
s

where k is Boltzmann's constant and the summation is over all allowed
states s of the system. Then the free energy F is given by

F=-kT\nZ. (1-4.2)
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Also, the probability of the system being in a state s is

Z-l&xp[-E(s)lkT), (1.4.3)

so if X is some observable property of the system, such as its total energy
or magnetization, with value X{s) for state s, then its observed average
thermodynamic value is

(X) = Z'12 X(s) exp[ -E{s)lkT\. (1.4.4)
s

In particular, the internal energy is

U=(E)

= Z-l^E(s)exp[-E(syicT], (1.4.5)
s

and by using the above definitions (1.4.1) and (1.4.2) we can verify that

^ , (1.4.6)

in agreement with standard thermodynamics.
The basic problem of equilibrium statistical mechanics is therefore to

calculate the sum-over-states in (1.4.1) (for continuum systems this sum
becomes an integral, for quantum mechanical ones a trace). This will give
Z and F as functions of T and of any variables that occur in E(s), such as
a magnetic field. The thermodynamic properties can then be obtained by
differentiation.

Unfortunately, for any realistic interacting system of macroscopic size,
including the examples mentioned above, the evaluation of Z is hopelessly
difficult. One is therefore forced to do one or both of the following:

A. Replace the real system by some simple idealization of it: this
idealization is known as a model. Mathematically, it consists of
specifying the states s and the energy Hamiltonian function E(s).

B. Make some approximation to evaluate the sum-over-states (1.4.1).

1.5 Approximation Methods

Let us consider the step (B) above. Some of the better-known approxi-
mation schemes are:

(i) Cell or cluster approximations. In these the behaviour of the whole
system is extrapolated from that of a very few components inside
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some 'cell', approximations being made for the interaction of the
cell with the rest of the system. Examples are the mean-field (Bragg
and Williams, 1934; Bethe, 1935), quasi-chemical (Guggenheim,
1935) and Kikuchi (1951) approximations. They have the advantage
of being fairly simple to solve; they predict the correct qualitative
behaviour shown in Figs. 1.1 to 1.3, and are reasonably accurate
except near the critical point (Domb, 1960, pp. 282-293; Burley,
1972).

(ii) Approximate integral equations for the correlation functions,
notably the Kirkwood (1935), hyper-netted chain (van Leeuwen et
al., 1959) and Percus-Yevick (Percus and Yevick, 1958; Percus,
1962) equations. These give fairly good numerical values for the
thermodynamic properties of simple fluids.

(iii) Computer calculations on systems large on a microscopic scale (e.g.
containing a few hundred atoms), but still not of macroscopic size.
These calculations evaluate Z by statistically sampling the terms on
the RHS of (1.4.1), so are subject to statistical errors, usually of a
few per cent. For this reason they are really 'approximations' rather
than 'exact calculations'.

(iv) Series expansions in powers of some appropriate variable, such as
the inverse temperature or the density. For very realistic models
these can only be obtained to a few terms, but for the three-
dimensional Ising model expansions have been obtained to as many
as 40 terms (Sykes et al., 1965, 1973a).

The approximation schemes (i) to (iii) can give quite accurate values for
the thermodynamic properties, except near the critical point. There is a
reason for this: they all involve neglecting in some way the correlations
between several components, or two components far apart. However, near
Tc the correlations become infinitely-long ranged, all components are
correlated with one another, and almost any approximation breaks down.
This means that approximations like (i), (ii) and (iii) are of little, if any,
use for determining the interesting cooperative behaviour of the system
near Tc.

Method (iv) is much better: if sufficient terms can be obtained then it
is possible, with considerable ingenuity, to obtain plausible guesses as to
the nature of the singularities of the thermodynamic functions near the
critical point. In particular, the best estimates to date of critical exponents
in three dimensions have been obtained by the series expansion method.
However, an enormous amount of work is required to obtain the series,
and the resulting accuracy of the exponents is still not as good as one would
like.
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(v) There is another approach, due to Kadanoff (1966) and Wilson
(1971) (see also Wilson and Kogut, 1974; Fisher, 1974): this is the
so-called renormalization group. In this method the sum over states
(1.4.1) is evaluated in successive stages, a 'renormalized' Hamil-
tonian function E{s) being defined at each stage. This defines a
mapping in Hamiltonian space. If one makes some fairly mild
assumptions about this mapping, notably that it is analytic, then it
follows that the thermodynamic functions do have branch-point
singularities such as (1.1.4) at Tc, that the scaling hypothesis (1.2.1)
and the relations (1.2.12)—(1.2.16) are satisfied, and that the expo-
nents of the singularities should normally be universal (Fisher, 1974,
p. 602).

In principle, the renormalization group approach could be carried
through exactly. However, this is more difficult than calculating the par-
tition function directly, so to obtain actual numerical results some approx-
imation method is needed for all but the very simplest models. The fas-
cinating result is that quite crude cell-type approximations give fairly
accurate values of the critical exponents (Kadanoff et al., 1976). The reason
for this is not yet fully understood.

To summarize: approximate methods (step B) either fail completely near
Tc, or require considerable acts of faith in the assumptions made.

1.6 Exactly Solved Models

Another approach is to use step A to the fullest, and try to find models
for which E(s) is sufficiently simple that the partition function (1.4.1) can
be calculated exactly. This may not give useful information about the values
of the thermodynamic functions of real systems, but it will tell us quali-
tatively how systems can behave, in particular near Tc. In fact if we could
solve a model with the same dimensionality and symmetry as a real system,
universality asserts that we should obtain the exact critical exponents of
the real system.

There is a further condition for universality, which was not mentioned
in Section 1.3. In most physical systems the intermolecular forces are
effectively short ranged: in inert gases they decay as r~7, r being the distance
between molecules; in crystals it may be sufficient to regard each atom as
interacting only with its nearest neighbour. The infinite-range correlations
that occur at a critical point are caused by the cooperative behaviour of
the system, not by infinite-range interactions.
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If, on the other hand, sufficiently long-range interactions are included
in E(s), they clearly can affect the way the correlations become infinite
near Tc, and it comes as no surprise that critical exponents can be altered
in this way. Thus universality only applies to systems with the same range
of interactions. To obtain the correct critical behaviour, a model of a real
system should not introduce non-physical long-range interactions.

Unfortunately no short-range genuinely three-dimensional model has
been solved. The simplest such model is the three-dimensional Ising model
(which will be defined shortly): this has been extensively investigated using
the series expansion method (Gaunt and Sykes, 1973), but no exact solution
obtained.

The models of interacting systems for which the partition function (1.4.1)
has been calculated exactly (at least in the limit of a large system) can
generally be grouped into the following four classes.

One-Dimensional Models

One-dimensional models can be solved if they have finite-range, decaying
exponential, or Coulomb interactions. As guides to critical phenomena,
such models with short-range two-particle forces (including exponentially
decaying forces) have a serious disadvantage: they do not have a phase
transition at a non-zero temperature (van Hove, 1950; Lieb and Mattis,
1966). The Coulomb systems also do not have a phase transition, (Lenard,
1961; Baxter, 1963, 1964 and 1965), though the one-dimensional electron
gas has long-range order at all temperatures (Kunz, 1974).

Of the one-dimensional models, only the nearest-neighbour Ising model
(Ising, 1925; Kramers and Wannier, 1941) will be considered in this book.
It provides a simple introduction to the transfer matrix technique that will
be used for the more difficult two-dimensional models. Although it does
not have a phase transition for non-zero temperature, the correlation length
does become infinite at H = T = 0, so in a sense this is a 'critical point' and
the scaling hypothesis can be tested near it.

A one-dimensional system can have a phase transition if the interactions
involve infinitely many particles, as in the cluster interaction model (Fisher
and Felderhof, 1970; Fisher, 1972). It can also have a phase transition if
the interactions become infinitely long-ranged, but then the system really
belongs to the following class of 'infinite-dimensional' models.

'Infinite Dimensional' Models

To see what is meant by an 'infinite dimensional' system, one needs a
working definition of the effective dimensionality of a Hamiltonian. For
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a system with finite or short-range interactions in all available directions
there is usually no problem: the dimensionality is that of the space
considered.

For other systems, a useful clue is to note that the dimensionality of a
lattice can be defined by starting from a typical site and counting the
number of sites that can be visited in a walk of n steps. For a d-dimensional
regular lattice and for n large, this is proportional to the volume of a box
of side n, i.e. to nd. The larger the dimensionality, the more close neighbours
there are to each site.

If the number of neighbours becomes infinite, then the system is effec-
tively infinite-dimensional. Such a system is the mean-field model discussed
in Chapter 3. In Chapter 4 the Ising model on the Bethe lattice is considered.
This 'lattice' has the property that the number of neighbours visited in n
steps grows exponentially with n. This is a faster rate of growth than nd,
no matter how large d is, so again this model is infinite-dimensional.

The results for these two models are the same as those obtained from
the mean-field and Bethe approximations, respectively, for regular lattices
(Section 1.5). Thus these two approximations are equivalent to replacing
the original Hamiltonian by an infinite-dimensional model Hamiltonian.

Kac et al. (1963/4) considered a solvable one-dimensional particle model
with interactions with a length scale R. For such a model it is appropriate
to define 'close neighbours' as those particles within a distance R of a given
particle. They then let 7?—» °° and found that in this limit (and only in this
limit) there is a phase transition. From the present point of view this is not
surprising: by letting R—>™ the number of close neighbours becomes
infinite and the system effectively changes from one-dimensional to
infinite-dimensional. A remarkable feature of this system is that the equa-
tion of state is precisely that proposed phenomenologically by van der
Waals in 1873 (eq. 1.10.1). All these three 'infinite-dimensional' models
satisfy the scaling hypothesis (1.2.1), and have classical exponents (see
Section 1.10).

The Spherical Model

As originally formulated (Montroll, 1949; Berlin and Kac, 1952), this
model introduces a constraint coupling all components equally, no matter
how far apart they are. Thus it is 'unphysical' in that it involves infinite
range interactions. However, Stanley (1968) has shown that it can be
regarded as a limiting case of a system with only nearest neighbour inter-
actions. The model is discussed in Chapter 5. It is interesting in that its
exponents are not classical in three dimensions.



14 1 BASIC STATISTICAL MECHANICS

Two-Dimensional Lattice Models

There are a very few two-dimensional models that have been solved (i.e.
their free energy calculated), notably the Ising, ferroelectric, eight-vertex
and three-spin models. These are all 'physical' in that they involve only
finite-range interactions; they exhibit critical behaviour. The main attention
of this book will be focussed on these models.

It is of course unfortunate that they are only two-dimensional, but they
still provide a qualitative guide to real systems. Indeed, there are real
crystals which have strong horizontal and weak vertical interactions, and
so are effectively two-dimensional. Examples are K2NiF4 and Rb2MnF4

(Birgenau et al., 1973; Als-Nielsen et al., 1975). The models may provide
a very good guide to such crystals.

What is probably more unfortunate is that most of the two-dimensional
models have only been solved in zero field (H = 0), so only very limited
information on the critical behaviour has been obtained and the scaling
functions h(x) have not been calculated. The one exception is the ferro-
electric model in the presence of an electric field, but this turns out to have
an unusual and atypical behaviour (Section 7.10).

1.7 The General Ising Model

Most of the models to be discussed in this book can be regarded as special
cases of a general Ising model, which can be thought of as a model of a
magnet. Regard the magnet as made up of molecules which are constrained
to lie on the sites of a regular lattice. Suppose there are TV such sites and
molecules, labelled i = 1, . . . , N.

Now regard each molecule as a microscopic magnet, which either points
along some preferred axis, or points in exactly the opposite direction. Thus
each molecule / has two possible configurations, which can be labelled by
a 'spin' variable a, with values 4-1 (parallel to axis) or -1 (anti-parallel).
The spin is said to be 'up' when o; has value +1, 'down' when it has value
— 1. Often these values are written more briefly as + and -. Let

a = {tfi,. . . , aN}

denote the set of all N spins. Then there are 2N values of o, and each such
value specifies a state of the system. For instance, Fig. 1.5 shows a system
of 9 spins in the state

a= { + , + , + , - , + , - , + , - , - } . (1.7.1)
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The Hamiltonian is now a function E(o\,. . . , aN) of the N spins
O\,. . . , oN, or more briefly a function E(o) of a. It is made up of two
parts:

E(o) = E0(o) + Ex(a), (1.7.2)

where Eo is the contribution from the intermolecular forces inside the
magnet, and E\(o) is the contribution from the interactions between the

• 0 0
7 8 9

o • o
4 5 6

Fig. 1.5. An arrangement of spins on a square lattice with labelled sites. Full circles
denote up (positive) spins, open circles denote down (negative) spins.

spins and an external magnetic field. Since OJ is effectively the magnetic
moment of molecule i, E\{o) can be written as

El(a) = -Hiloi, (1.7.3)

where H is proportional to the component of the field in the direction of
the preferred axis. From now on we shall refer to H simply as 'the magnetic
field'. The sum in (1.7.3) is over all sites of the lattice, i.e. over i =
1.....JV.

In a physical system we expect the interactions to be invariant under
time reversal, which means that E is unchanged by reversing all fields and
magnetizations, i.e. by negating H and a\,... , aN. It follows that Eo must
be an even function of a, i.e.

E0(oi,... ,aN)= £ o ( - c r , , . . . , -aN). (1-7.4)

These relations define a quite general Ising model, special cases of which
have been solved. From a physicist's point of view it is highly simplified,
the obvious objection being that the magnetic moment of a molecule is a
vector pointing in any direction, not just up or down. One can build this
property in, thereby obtaining the classical Heisenberg model (Stanley,
1974), but this model has not been solved in even two dimensions.

However, there are crystals with highly anisotropic interactions such that
the molecular magnets effectively point only up or down, notably FeCl2

(Kanamori, 1958) and FeCO3 (Wrege et al., 1972). The three-dimensional
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Ising model should give a good description of these, in fact universality
implies that it should give exactly correct critical exponents.

The gaps in Sections 1.1, 1.2 and 1.4, notably a statistical-mechanical
definition of M(H, T) and the critical exponents a, v, 17, (i, can now be
filled in. From (1.4.1), (1.7.2) and (1.7.3), the partition function is a
function of N, H and T, so can be written

ZN(H, T) = 2 exp{-[E0(o) - H 2 o^lkT). (1.7.5)

Free Energy and Specific Heat

Physically, we expect the free energy of a large system to be proportional
to the size of the system, i.e. we expect the thermodynamic limit

f(H, T) = -kT lim N'1 In ZN(H, T) (1.7.6)

to exist, / being the free energy per site.
We also expect this limit to be independent of the way it is taken. For

example, it should not matter whether the length, breadth and height of
the crystal go to infinity together, or one after the other: so long as they
do all ultimately become infinite.

From (1.4.6), the internal energy per site is

u{H,T) = -T2-^[f(H,T)/T]. (1.7.7)

The specific heat per site is defined to be

C(H,T)=-^u(H,T). (1.7.8)

It has been usual to define two critical exponents a and 0/ by asserting
that near Tc the zero-field specific heat diverges as a power-law, i.e.

C(0,T)~ra asf-^0+, ( 1 7 9 )

where t is defined by (1.1.3).
The difficulty with this definition is that C(0, T) may remain finite as t

goes to zero through positive (or negative) values, even though it is not
an analytic function at t = 0. For instance C(0 , T) may have a simple jump
discontinuity at t = 0, as in the mean-field model of Chapter 3.

To obtain an exponent which characterizes such behaviour it is better
to proceed as follows.
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Let /+(0 , T) and /_(0 , T) be the zero-field free energy functions for
T> Tc and T <TC, respectively. Analytically continue these functions into
the complex T plane and define the 'singular part' of the free energy to be

/,(0 , T) =/+(0 , T) -fj(p , T). (1.7.10a)

Near T = Tc this usually vanishes as a power law, and a can be defined
by

fs(0,T)~t2'a asf-*O. (1.7.10b)

This definition is equivalent to (1.7.9) (with a' — or) for those cases
where M(0, T) is continuous and C(0, T) diverges both above and below
Tc.

It used to be thought that the only possible singularity in /(0, T) was a
jump-discontinuity in some derivative of /. If the first r — 1 derivatives
were continuous, but the rth derivative discontinuous, then it was said that
the system had a 'transition of order /•'. In particular, a discontinuity in u
(i.e. latent heat) is called a first-order transition.

While it is now known that this classification is not exhaustive, such
behaviour is included in (1.7.10): a transition of order r corresponds to
2 - a= r. In particular, a = 1 for a first-order transition.

From (1.7.8), the definition (1.7.10) implies that w(0 , T) contains a term
proportional to tl~a. Since u(0, T) is usually bounded, it follows that

(1.7.11)

The exponent a may be negative.

Magnetization

The magnetization is the average of the magnetic moment per site, i.e.,
using (1.4.4),

M(H,T) =N~1(o1 + .. . +oN), (1.7.12)

= N Z,N 2J \O\ + . . • + ON)
a

x exp|-[£0(a) - «X a ,Wj . (1.7.13)

Differentiating (1.7.5) with respect to H, and using (1.7.6), one obtains
that in the thermodynamic limit (iV—» °°)

T). (1.7.14)
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Since the summand in (1.7.5) is unchanged by negating H and a, ZN and
/a re even functions of H, so M is an odd function, i.e.

M{-H,T) = -M(H,T). (1.7.15)

From (1.7.12) it lies in the interval

T)^1. (1.7.16)

Differentiating (1.7.13) with respect to H and using (1.1.1) and (1.4.4),
the susceptibility is

= jM
X~ dH

= (NkT)-1{(M2)-(M)2}, (1.7.17)
where

4l = 2 o i . (1.7.18)

Using only the fact that the average of a constant is the same constant,
(1.7.17) can be written

X=(NkT)-1([M-(M)f). (1.7.19)

Thus x is the average of a non-negative quantity, so

The magnetization M is therefore an odd monotonic increasing function
of H, lying in the interval (1.7.16), as indicated in Fig. 1.1.

Note that for finite JV, Z is a sum of analytic positive functions of H, so
/and M are also analytic. The discontinuity in Fig. 1.l(a), and the singularity
in Fig. l.l(b), can only occur when the thermodynamic limit is taken.

The critical exponents /?, 6, y, / associated with the magnetization have
been denned in Section 1.1. The scaling relations (1.2.13) can be obtained
by integrating (1.7.14), using the scaling hypothesis (1.2.1).

Correlations

The correlation between spins i and j is

<oMoj>. (1-7.21)

If Eo(o) is translation invariant, as is usually the case, (o;) is the same for
all sites i, so from (1.7.12),

r ) . (1.7.22)
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Also, gy will depend only on the vector distance ri; between sites i and /,
i.e.

&y = g(r,y), (1.7.23)

where g(r) is the correlation function.
Away from Tc the function g(r) is expected to decay exponentially to

zero as r becomes large. More precisely, if k is some fixed unit vector, we
expect that

g(xk) ~x ' T e -* e a s * ^ * , (1.7.24)

where x is some number and § is the correlation length in the direction k.
The correlation length is a function of H and T, and is expected to

become infinite at Tc. In fact, this property of an infinite correlation length
can be regarded as the hallmark of a critical point. In particular, it is
expected that

where v and v' are the correlation length critical exponents.
It is a little unfortunate that £also depends on the direction k. However,

near Tc this dependence is expected to disappear and the large-distance
correlations to become isotropic (see for example McCoy and Wu, 1973,
p. 306). Thus the exponents v and v' should not depend on the direction
in which f is defined.

At the critical point itself, the correlation function g(r) still exists, but
instead of decaying exponentially decays as the power law

g(r) ~ r~d+2-\ (1.7.26)

where r\ is a critical exponent.
In scaling theory, these properties are simple corollaries of the correlation

scaling hypothesis, which is that near Tc, for r ~ |,

g(r) ~ rd+2'r>D(r/§,t\H\-lV6). (1.7.27)

The susceptibility / can be expressed in terms of g(r). To do this, simply
sum (1.7.21) over all sites i and/. From (1.7.17) it immediately follows
that

X = (NkT)'1 XXstj- (1.7.28)

i j

For a translation-invariant system,

2 gn = 2 g(r,7) = independent of i, (1.7.29)
/ i
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so (1.7.28) becomes
(1.7.30)

where 0 is some fixed site in the lattice.
Near Tc the function g(r) is an isotropic bounded slowly varying function

of r, so the summation can be replaced by an integration, giving

(1.7.31)

Making the substitution r = x% and using (1.7.27), it follows that near Tc

X~¥~n. (1.7.32)

The scaling relations (1.2.14) now follow from the definitions of y, y',
v, v' and the equality of y and y'.

Interfacial Tension

This quantity is denned only on the cut in Fig. 1.2, i.e. for H = 0 and
T< Tc. If the cut is approached from above, i.e. H goes to zero through
positive values, the equilibrium state is one in which most spins are up. If
the cut is approached from below, most spins are down.

At H = 0 these two equilibrium states can coexist: the crystal may consist
of two large domains, one in one state, the other in the other. The total
free energy is then

F = Nf+Ls, (1.7.33)

where Nf is the normal bulk free energy and Ls is the total surface free
energy due to the interface between the domains. If L is the area of this
interface, then s is the interfacial tension per unit area.

It will be shown in Section 1.9 that there is a correspondence between
the magnetic model used here and a model of a liquid-gas transition. In
the latter teminology, s is the surface tension of a liquid in equilibrium
with its vapour, e.g. water and steam at 100°C.

The interfacial tension is not usually emphasized in the theory of critical
phenomena, but it is one of the thermodynamic quantities that can be
calculated for the exactly soluble two-dimensional models, so is of interest
here. It is a function of the temperature T.

As T approaches Tc from below, the two equilibrium states become the
same, so s goes to zero. It is expected that near Tc

s{T)~(-ty, (1.7.34)
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where \i is yet another critical exponent, the last to be denned in this book.
Widom (1965) used scaling arguments to suggest that near Tc

s(T) oc |(0 , T) M2(0 , T)/X(0 , T), (1.7.35)

from which the scaling relation (1.2.15) follows. He also obtained the
hyper-scaling relation (1.2.16).

1.8 Nearest-Neighbour Ising Model

The discussion of Section 1.7 applies for any even Hamiltonian E0(o),
subject only to some implicit assumptions such as the existence of the
thermodynamic limit (1.7.6) and a ferromagnetic critical point.

The simplest such Hamiltonian is one in which only nearest neighbours
interact, i.e.

E0(o) = - J 2 op, (1.8.1)

where the sum is over all nearest-neighbour pairs of sites in the lattice.
This is the normal Ising model mentioned in Section 1.6. If / is positive
the lowest energy state occurs when all spins point the same way, so the
model is a ferromagnet.

A great deal is known about this model, even for those cases where it
has not been exactly solved, such as in three dimensions, or in two dimen-
sions in the presence of a field. For instance, one can develop expansions
valid at high or low temperatures.

From (1.7.5), the partition function is

ZN = 2 exp| K 2 op,,+ h E oil , (1.8.2)
o L ('.;') > J

w h e r e

K = JlkT, h^HlkT, (1.8.3)

so ZN can be thought of as a function of h andK From (1.7.6) and (1.7.14)
the magnetization per site is

M = 4" lim N~l In Z^h , K). (1.8.4)
oh N-*°°

It is easy to produce a plausible, though not rigorous, argument that M
should have the behaviour shown in Fig. 1.1, and that there should be a
critical point at H = 0 for some positive value Tc of T. This will now be
done.
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For definiteness, consider a square lattice (but the argument applies to
any multi-dimensional lattice). The RHS of (1.8.2) can be expanded in
powers of K, giving

ZN = (2coshh)N{l + 2NKt2

+ NK2 [(2N -I)t4 + 6t2 + 1] + <3(K3)}, (1.8.5)

where

t = tanhh. (1.8.6)

Substituting this expansion into (1.8.4) gives

M = tanh h {1 + 4 sech2fc [K + (3 - 7f2) tf2 + €(K3)]}. (1.8.7)

All terms in this expansion are odd analytic bounded functions of h.
Assuming that the expansion converges for sufficiently small K, i.e. for
sufficiently high temperatures, it follows that for such temperatures
M(H, T) has the graph shown in Fig. l.l(c). In particular, it is continuous
at H = 0 and

MQ(T) = Af(0, T) = 0 , T sufficiently large . (1.8.8)

Alternatively, at low temperatures K is large and the RHS of (1.8.2)
can be expanded in powers of

u = exp(-4/0. (1.8.9)

The leading term in this expansion is the contribution to Z from the state
with all spins up (or all down). The next term comes from the N states
with one spin down and the rest up (or vice versa); the next from the 2N
states with two adjacent spins down (or up), the next term comes from
either states with two non-adjacent spins, or a spin and two of its neighbours,
or four spins round a square, reversed; and so on. This gives

ZN = e2m+m{l+Nu2e-Zh

+ 2Nu3 e'ih + %N(N - 5) «4 e~4h

* -6h + Nu4 e-8* + €(u5)}

+ 2Nu3 e4* + iN(N - 5) uA e4/!

+ 6Nu4 e6h + Nu4 e8* + 0(u5)}. (1.8.10)

The first series in curly brackets is the contribution from states with
almost all spins up, the second from states with almost all spins down.
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Equation (1.8.10) can be written

Zjv = e"**.*) + e"*-*.*>, (1.8.11)

where

V(h,K) = 2K + h + u2 e~2h

+ 2M3 e"4'1 + u\-2i e~*h + 6 e'6h + e"8*)

+ 0(M5) . (1.8.12)

To any order in the w-expansion, ip(h , K) is independent of N, provided
N is sufficiently large.

If h is positive, the first term on the RHS of (1.8.11) will be larger than
the second. In the limit of N large it will be the dominant contribution to
ZN, so from (1.8.4)

= l-2u2 e,-2h - 8M3 e"4*

- M4(-10 e"4* + 36 e-6h + 8 e ^ )

- 0 ( M 5 ) ifh>0, (1.8.13)

and the spontaneous magnetization is

M^T) = lim M
h-*o+

= 1 - 2M2 - 8M3 - 34M4 - 0(w5) . (1.8.14)

If these expansions converge for sufficiently small u (i.e. sufficiently
low temperatures), then Mo is positive for small enough u. Remembering
that M(H, T) is an odd function of H, it follows that at low temperatures
M(H ,T) has the graph shown in Fig. 1.1 (a), with a discontinuity at
H = 0.

The function Mo(T) is therefore identically zero for sufficiently large T,
but strictly positive for sufficiently small T. At some intermediate tem-
perature Tc it must change from zero to non-zero, as indicated in Fig. 1.3,
and at this point must be a non-analytic function of T. Thus there must be
a 'critical point' at H = 0, T= Tc, where the thermodynamic functions
become non-analytic, as indicated in Fig. 1.2.

This argument does not preclude further singularities in the interior of
the (if, T) half-plane, but Figs. 1.1 to 1.3 are the simplest picture that is
consistent with it.

Parts of the argument, or variants of them, can be made quite rigorous.
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For instance, as long ago as 1936 Peierls proved that M0(T) is positive for
sufficiently low temperatures (see also Griffiths, 1972, p. 59).

The argument fails for the one-dimensional Ising model. This is because
the next-to-leading term in the low temperature u expansion comes from
states such as that shown in Fig. 1.6, where % line of adjacent spins are all

Fig. 1.6. An arrangement of spins in a one-dimensional Ising model that contributes
to next-to-leading order in a low-temperature expansion Full circles denote up

spins, open circles down spins.

reversed, rather than just a single spin. There are \N{N - 1) such states,
instead of N, so even to this order ZN is not of the form (1.8.11). This of
course is consistent with the fact that the one-dimensional model does not
have a phase transition at non-zero temperatures.

1.9 The Lattice Gas

As well as being a model of a magnet, the Ising model is also a model of
a fluid.

To see this rather startling fact, consider a fluid composed of molecules
interacting via some pair potential (j>(r). Typically this potential will have
a hard-core (or at least very strong short-range repulsion), an attractive
well and a fairly rapidly decaying tail. The usual example is the Lennard
- Jones potential

0(r) = 4e[(rc//-)12 - {r<Jrf} (1.9.1)

shown in Fig. 1.7(a).
Instead of allowing the molecules to occupy any position in space, restrict

them so that their centres lie only on the sites of some grid, or lattice. If
the grid is fairly fine this is a perfectly reasonable step: indeed it is a
necessary one in almost any numerical calculation.

Since <p(r) is infinitely repulsive at r = 0, no two molecules can be centred
on the same site. With each site i associate a variable s, which is zero if the
site is empty, one if it is occupied. If there are N sites, then any spatial
arrangement of the molecules can be specified by s ={s\,. . . ,sN}. The
number of molecules in such an arrangement is

n=si + . .. +sN, (1.9.2)
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<P(r,

- e - •

cp(r
(a)

- e - -
(b)

Fig. 1.7. Interaction potentials for a model fluid: (a) Lennard-Jones, (b)
square-well.

and the total potential energy is

E = (1.9.3)

where the sum is over all pairs of sites on the lattice (not necessarily nearest
neighbours) and 0,y = 0(fy) is the interaction energy between molecules
centred on sites i and /.

The grand-canonical partition function is then

Z = 2 exp[(«ju - E)lkT), (1-9.4)

where (X is the effective chemical potential (for classical systems the con-
tribution of the integrations in momentum space can be incorporated into
H).
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In appropriate units, the pressure is

P = N-1kTlnZ, (1.9.5)

the density is the average number of molecules per site, i.e.

p = (ri)/N

- —
~ dfx '

and the compressibility is

T~ pdP
1 an

(1.9.7)

the differentiations being performed at constant temperature.
The Lennard - Jones potential (1.9.1) is a fairly realistic one, but the

qualitative features of the liquid - gas transition are not expected to depend
on the details of the potential: it should be sufficient that it have short-
range repulsion and an attractive well. Thus 0,y should be large and positive
when sites i and / are close together: negative when they are a moderate
distance apart; and zero when they are far apart. The simplest such choice
is

0 i f f = / ,

= - e if i and / are nearest neighbours ,

= 0 otherwise. (1.9.8)

This corresponds to the 'square well' potential shown in Fig. 1.7(b), which
is often used in model calculations.

Letting <f>a = + °° is equivalent to taking the potential to be infinitely
repulsive if two molecules come together, i.e. to prohibiting two molecules
from occupying the same site. This feature has already been built into the
formulation, so if <£,y is given by (1.9.8), then from (1.9.3) the energy is

£=-e2si»/, (1-9.9)

the sum now being only over nearest-neighbour pairs of sites on the lattice.
It is now trivial to show that (1.9.4) is the partition function of a

nearest-neighbour Ising model in a field. Replace each s, by a 'spin' o;,
where

o; = 2 $ , - l . (1.9.10)
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Thus o; = -1 if the site is empty, +1 if it is full. If each site has q
neighbours, there are $Nq nearest-neighbour pairs, and eliminating n, E,
su...,sN between equations (1.9.2), (1.9.4), (1.9.9) and (1.9.10) gives

Z = 2 exp| e 2 OiOj + (2/* + eq) 2 ot

+ N(heq + 2iz)]/4kT] . (1.9.11)

Comparing this with (1.8.2) and (1.8.3), it is obvious that, apart from
a trivial factor, Z is the partition function of an Ising model with

7 = e/4, H = (2fi + eq)/4. (1.9.12)

Using also (1.9.5)-(l-9.7), (1.7.6), (1.7.14) and (1.7.18), one can establish
the following expressions for the lattice gas variables in terms of those of
the Ising model:

e =

fi =

P =

P =

:T =

47,

2H-2qJ,

-iqJ + H-f,

1(1 + M),

\%-

(1.9.13)

(1.9.14)

(1.9.15)

(1.9.16)

(1.9.17)

The known general behaviour of the Ising model can now be used to
obtain the form of the equation of state of the lattice gas. To do this,
consider a fixed value of T. Then (1.9.15) and (1.9.16) define P and p as
functions of H. Using also (1.7.14) and (1.7.20), it is easily seen that

| | = l + M>0, ~iX^0, (1.9.18)

so both P and p are monotonic increasing functions of H. When H is large
(positive or negative) the dominant term in the Ising model partition
function is one in which all spins are alike, so

f-*-hqJ-\H\ as//->±<*>. (1.9.19)

From (1.7.14), (1.9.15) and (1.9.16) it follows that

P->0 andp->0 a s t f -> - ° ° , (1.9.20)

P ~ 2 i / a n d p - » l astf->+<». (1.9.21)

Since P and p are monotonic increasing functions of H, from (1.9.20) they
must be positive.
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For T> Tc, f and M, and hence P and p, are continuous functions of
H. Thus P is a monotonic increasing function of p, and a monotonic
decreasing function of the volume per molecule

v = p~l. (1.9.22)

As v increases from 1 to °°, P decreases from infinity to zero.
For T < Tc, M is a discontinuous function of H as shown in Fig. l.l(a).

Thus p and v have a discontinuity (but P does not).

1 2 3 4 5 6 v

Fig. 1.8. Typical (P ,v) isotherms for a simple fluid whose intermolecular inter-
actions have a hard core. The upper two isotherms are for temperatures greater
than Tc, the middle one is the critical isotherm (T = Tc), and the lower two are for

temperatures less than Tc.

Noting also that the expansion coefficient

-i(dv\

of a fluid is usually positive (an exception is water between 0°C and 4°C),
it follows that the (P, v) isotherms of the lattice gas (in any dimension
greater than one) have the general structure indicated in Fig. 1.8. These
are typical isotherms of a fluid in which the intermolecular potential has
a hard core.

The point C in this figure is the critical point, and corresponds to the
critical point H = 0, T = Tc in Fig. 1.2.

Since M = 0 at this point, we see from (1.9.14) and (1.9.16) that the
critical values of \i, p and v for the lattice gas are

vc=2. (1.9.23)
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At T= Tc, from (1.1.5) and (1.9.16) we expect that

vc-v~Hvs asH-*0. (1.9.24)

Since P - Pc is proportional to H for small H, it follows that near C the
equation of the critical isotherm is

P-Pc~(vc-v)d. (1.9.25)

For T< Tc an isotherm breaks up into three parts: that part to the left
of the broken curve in Fig. 1.8, corresponding to fairly high densities and
to a liquid state; the low-density part to the right, corresponding to a gas;
and the horizontal line in between, corresponding to the two-phase region
where the liquid can co-exist with its vapour. The broken curve is known
as the co-existence curve. It corresponds to the cut in Fig. 1.2, where
H = 0 and M = ±M0(T). From (1.9.16) and (1.9.23), we see that on this
curve

\p-pc\ = M0(T). (1.9.26)

From (1.1.3), (1.1.4) and (1.9.22), it follows that near Tc, the equation
of the co-existence curve in the (v , T) plane is

\v-vc\~{Tc-Tf. (1.9.27)

Near the critical point P - Pc is proportional to t, so from (1.9.27) the
equation of the co-existence curve in the (v , P) plane is

Pc-P~\v-oc\
vp. (1.9.28)

Equations (1.9.25) and (1.9.28) relate the exponents 6 and fi to the
liquid - gas critical point. To do the same for a, y and y', first note that
M = 0 on the line segment H = 0, T> Tc in Fig. 1.2. From (1.9.16) this
line segment therefore corresponds to the critical isochore v = vc. From
(1.7.7)-(1.7.9) and (1.9.15), and (1.1.6) and (1.9.17), it follows that

d2P/dT2~ra, kT~rr (1.9.29a)

as C is approached from above along the critical isochore v = vc.
The line segment H = 0, T< Tc in Fig. 1.2 corresponds to the co-

existence curve in Fig. 1.8, so

~(-0~ f l f ' , kT~(-ty* (1.9.29b)

as C is approached along the co-existence curve, the differentiation being
performed on this curve.

These definitions (1.9.29) of a and a1 are the analogue of (1.7.9), and
suffer from the same difficulties. If dP/dT is not continuous, or if 32P/dT2
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does not diverge at C, it is better to use the analogue of (1.7.10) and define
a single exponent a as follows.

Let P+(T) be the pressure when v = vc and T > Tc;P-(T)be the pressure
when v lies on the co-existence curve and T<TC. Analytically continue
these functions into the complex T-plane and define PS(T) and a by

PS(T) = P+(T) - P-(T) ~ t2-a. (1.9.30)

To summarize this section: the Ising model of a magnet is also a model
of a lattice gas; it merely depends whether one uses 'magnetic language'
(spins up or down) or 'particle language' (sites occupied or empty). In the
second language the critical exponents 6, fi, y, y', a are defined by (1.9.25),
and (1.9.28)-(1.9.30).

The magnetic language is more convenient in theoretical calculations:
it clearly exhibits the symmetries of the Hamiltonian and the thermodyn-
amic functions, notably the relation M(-H) = -M(H).

1.10 The van der Waals Fluid and Classical Exponents

There are phenomenological equations of state, notably that proposed for
continuum fluids by van der Waals (1873):

P = kT/(v - b) - a/v2 (1.10.1)

where a and b are constants. This equation is valid only outside the co-
existence curve, which curve is defined by the Maxwell equal area con-
struction (Pathria, 1972, p. 376) which ensures that P and \i are continuous
along any isotherm. As we remarked in Section 1.6, it is the exact equation
of state of a model solved by Kac et al. (1963/4).

The critical exponent definitions (1.9.25), (1.9.28-30) apply to any liquid
- gas critical point, not just that of the simple lattice gas of Section 1.9.
Equations such as van der Waals predict that near Tc the critical isotherm
is a cubic curve, and the coexistence curve a parabola. From (1.9.25) and
(1.9.28) this implies

<5 = 3, j3 = i. (1.10.2)

Also, the van der Waals equation (1.10.1) has a critical point at

Tc = 8a/27bk, vc = 3b. (1.10.3)

Near this point it is readily verified that kT~ t~l, so

y = / = l . (1.10.4)
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On the critical isochore it is easily seen from (1.10.1) that

P-Pc = 4at/27b2, (1.10.5)

while on the coexistence curve a more complicated calculation gives

P-Pc = {AaUlb2) [t + 6t2/5 + <3(t3)] (1.10.6)

Thus 82P/dT2 is finite at C but has a jump discontinuity on going from the
critical isochore to the co-existence curve. The definitions (1.9.29) of a
and a1 fail, but (1.9.30) gives

a=0. (1.10.7)

The values (1.10.2), (1.10.4), (1.10.7) of the critical exponents are
known as the classical values. They satisfy the scaling relations (1.2.12)
and (1.2.13), and are the values given by the simple 'infinite dimensional'
mean field and Bethe lattice models (Chapters 3 and 4). They are not
correct for the nearest-neighbour Ising model in two or three dimensions,
but it is now generally believed (Fisher, 1974, p.607) that they are correct
in four or more dimensions.



2

THE ONE-DIMENSIONAL ISING MODEL

2.1 Free Energy and Magnetization

Ising proposed his model in 1925 and solved it for a one-dimensional
system. The solution is presented in this chapter, partly because it provides
an introduction to the transfer matrix technique that will be used in later
chapters, as well as for the intrinsic interest of a simple exactly soluble
model. The one-dimensional model does not have a phase transition at
any non-zero temperature, but it will be shown that it has a critical point
at H = T = 0, that critical exponents can be sensibly defined, and that the
scaling hypothesis and relevant scaling relations are satisfied.

1 2 3 N

Fig. 2.1. The one-dimensional lattice of TV sites.

Consider an Ising model on a line of N sites, labelled successively
/ = 1, . . . , iV, as shown in Fig. 2.1. Then the energy of the model is given
by (1.7.2), (1.7.3) and (1.8.1), i.e.

N N

E{a) = - J 2 OjOi+l - H^ZOJ. (2.1.1)
y = l y = l

Here site N is regarded as being followed by site 1, so that oN+i in (2.1.1)
is to be interpreted as O\. This is equivalent to joining the two ends of the
line so as to form a circle, or to imposing periodic boundary conditions on
the system. This is often a useful device, partly because it ensures that all
sites are equivalent and that the system is translationally invariant. In

32
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particular,
= <<>2> = • • • = ( o N ) , (2.1.2)

so from (1.7.12) the magnetization per site is

M{H,T) = (ax), (2.1.3)

where 1 is any particular site of the lattice. This result is true for any
translationally invariant system.

From (1.8.2), the partition function is
N N

ZiV = 2 exp K 2 O)Oj + 1 + h 2 o\ (2.1.4)
a I j = \ ; = 1 J

where

h = HlkT. (2.1.5)

Now we make a vital observation: the exponential in (2.1.4) can be
factored into terms each involving only two neighbouring spins, giving

ZN = 2 V(oi, o2) V(o2 , CT3) V(o3, CT4) . . .

.••V(oN-i,oN)V(oN,(h), (2.1.6)

where
V{JO,&) = exp[Ka& + hh(o+ o1)]. (2.1.7)

This is not the only possible choice of V: it could be multiplied by
exp [a(o— &)] (for any a) without affecting (2.1.6). However, this choice
(in which each ho, is shared equally between two V's) ensures that

a), (2.1.8)

which we shall see is a useful symmetry property.
Now look at the RHS of (2.1.6): regard the V(o, &) as elements of a

two-by-two matrix

+) V(+,-)\/eK+h K

Then the summations over 02, (h,. . . , aN in (2.1.6) can be regarded as
successive matrix multiplications, and the summation over O\ as the taking
of a trace, so that

ZN = Trace V*. (2.1.10)

At each stage in the procedure, matrix multiplication by V corresponds
to summing over the configurations of one more site of the lattice. The
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matrix V is known as the transfer matrix. In later chapters we shall see that
transfer matrices can be defined for two- and higher dimensional models.
Equation (2.1.10) is then still satisfied, but unfortunately V becomes an
extremely large matrix.

Let Xi, X2 be the two eigenvectors of V, and Ai, A2 the corresponding
eigenvalues. Then

\xi = kjxj,j=l,2. (2.1.11)

Let P be the two-by-two matrix with column vectors xi, x2, i.e.

P = (xi,x2) . (2.1.12)
Then from (2.1.11)

Mi o \
VP = P . (2.1.13)

VO hi

Since V is a symmetric matrix, it must be possible to choose xi and x2

orthogonal and linearly independent. Doing so, it follows that the matrix
P is non-singular, i.e. it has an inverse P"1. Multiplying (2.1.13) on the
right by P"1 gives

Ih 0 \
V = P IP" 1 . (2.1.14)

\0 A2/
Substituting this expression for V into (2.1.10), the matrix P cancels out,
leaving

/Ai 0 \N
ZN = Trace ) = X? + Xg. (2.1.15)

\0 A2/

Let Ai be the larger of the two eigenvalues and write (2.1.15) as

AT1 In ZN = In h + A?"1 ln [1 + (XJX{f\. (2.1.16)

Since |A2/Ai| < 1, the second term on the RHS tends to zero as N—><x>.
Thus from (1.7.6) the free energy per site does tend to a limit as
N—* 0°, namely

f(H ,T) = -kT lim / T 1 ln ZN
N

= - kT\n[eKcoshh + (e2Ksinh2h + e-2*)*] . (2.1.17)

Differentiating this result with respect to h, using (1.7.14) and (2.1.5),
igives

^ _
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The free energy is an analytic function of H and T for all real H and
positive T. The magnetization M(H, T) is an analytic function of H, with
a graph of the type shown in Fig. l.l(c). Thus the system does not have
a phase transition for any positive temperature.

2.2 Correlations

From (1.4.3), (2.1.1), (2.1.7), the probability of the system being in the
state o = {o\, . . . , ON} is

ZN
l V(oi, ai) V(02, Oi) V(oi ,ai)...V(oN, ol). (2.2.1)

Thus the average value of (say) O1O3 is

{o\&i) — ZN 2J O\ V(OI , 02) V{&i, 03) 03
a

V{oi,Oi)...V{oN,Oy). (2.2.2)

This can also be written in terms of matrices: let S be the diagonal matrix

(2.2.3)

i.e. S has elements
0(0, u ) = OOyO, u ) . yL.LA)

Then the

so

Similarly

RHSof

, if 0 « / •

(2

- i

.2.2) can be written as

ZN
l Trace SVVSV . .. V ,

(0103) = ZN1 Trace SV^V^"2 .

*N,

{OiO>) = ZN1 Trace SV'-'SVW+I '^ ,

<CT;> = ZN1 Trace SV".

(2.2

(2.2

(2.2

(2.2

.5)

.6)

•7)

.8)

Note that the translation invariance of the system is explicitly shown in
these equations: (o;) is independent of i and (oioy) depends on i and / only
via their difference / — i.
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Define a number 0 by the equation

cot20 = e2*sinh/i, O < 0 < ^ . (2.2.9)

Then a direct calculation of the eigenvectors of V, using (2.1.9), (2.1.11)
and (2.1.12), reveals that the matrix P can be chosen to be orthogonal,
being given by

/cos 0 - s i n 0 \
P= I. (2.2.10)

Vsin 0 cos 0/
The expressions (2.2.7), (2.2.8) are unchanged by applying the similarity

transformation (2.1.14) to both V and S, i.e. replacing V, S by

/Ai 0
p-iyp =

VO A2 (2.2.11)
/ cos2<2> -sin2d>\

P^SP
—sin 2$ — cos 2</>

respectively.
Substituting these expressions into (2.2.7) and (2.2.8), and taking the

limit N—» oo (keeping / - i fixed), we obtain

(otOj) = cos2 20 + sin2 20 ( jY~ ' , (2.2.12)

(Oi) = cos 20. (2.2.13)

Together with (2.1.3), this second equation gives us an alternative
derivation of the magnetization M(H, T). The result is of course the same
as (2.1.18) above.

From (1.7.21), (2.2.12) and (2.2.13), the correlation function^ can now
be evaluated. It is

gij = (OiOj) - <Oi> (O})

= sin220(A2/Aiy"' (2.2.14)

for j^i.
Since |A2/Ai| < 1, we see immediately that gy does tend exponentially to

zero as / - i becomes large, and from (1.7.24) the correlation length § is
given (in units of the lattice spacing) by

^=[ln(A,/A2)]-
1. (2.2.15)
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2.3 Critical Behaviour near T = 0

It is true that |A2/Ai| < 1 for all positive temperatures T and all real fields
H. However, if H = 0, then

lim (A2/Aj) = 1.
:r->-o+

The correlation length £ therefore becomes infinite at // = T = 0. We
remarked in Section 1.7 that a critical point can be defined as a point at
which f = «>, so in this sense // = T = 0 is a critical point of the one-
dimensional Ising model.

This is interesting because it enables us to make some tests of the scaling
hypotheses discussed in Sections 1.2 and 1.7. We shall find that the tests
are satisfied.

The scaling hypothesis (1.2.1) is formulated in terms of M, H and
t = (T - Tc)/Tc. However, if Tc = 0 it is more sensible to replace these by
the variables M,h = HlkT, and

t = exp(-2K) = exp(-2J/kT). (2.3.1)

Then h and t measure the deviation of the field and temperature, respec-
tively, from their critical values.

The scaling hypothesis (1.2.1) is equivalent to stating that the relation
between M, h and t is unchanged by replacing them by

for any positive number A. Thus another way of writing (1.2.1) is (for h,
t small)

M = h\hf1-1(t>(t\h\-vl3S), (2.3.2)

where (j)(x) is another scaling function, related to h(x).
For the one-dimensional Ising model, we see from (2.1.18) and (2.3.1)

that if \h\ <1, then

M = hl{tL + h2)K (2.3.3)

Clearly M is a function only of tlh, so the scaling hypothesis (2.3.2) is
indeed satisfied, with

pd = 1, 8 = 00 , (2.3.4)

and

<t>{x) = (x2+l)-K (2.3.5)
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The exponent relations (1.2.12) and (1.2.13) are consequences of the
scaling hypothesis, so must be satisfied. From these and (2.3.4) it follows
that

flf=l,j8 = O , y = l . (2.3.6)

Also, if h = 0 we see from (2.1<9) that the eigenvalues of V are

h = 2 cosh K, A2 = 2 sinh K, (2.3.7)

so from (2.3.1)

VA2 = (1 + 0/(1 - 0 • (2-3.8)

When t< 1, equation (2.2.15) therefore becomes

%~{2tTx, (2.3.9)

which is of the scaling form (1.7.25), with

v=l. (2.3.10)

At the critical point kx = A2, so from (2.2.14) the correlation function g,y
is a constant. This is of the scaling form (1.7.26), with

f f = l . (2.3.11)

We can now use these values of the exponents to test the scaling relation
(1.2.16) and the second of the relations (1.2.14). They are indeed satisfied.

The other relations v= v', pi+ v = 2- a cannot be tested, since they
involve functions defined in the ordered state 0 < T < Tc and h = 0. This
state does not exist for this model.

The definition (2.3.1) of t is somewhat arbitrary: the RHS could be
replaced by any positive power of exp(—2K). The effect of this would be
to multiply each of 2 - a, y and v by the same factor. In view of this, we
can only say of the critical exponents of the one-dimensional Ising model
that they satisfy

2-a=y=v, (2.3.12)

j 8 = 0 , 5 = o o , i , = i .

Despite the fact that Tc = 0, these exponents are still of interest: they
can be compared with the Ising model exponents for 2, 3 and higher
dimensions.
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THE MEAN FIELD MODEL

3.1 Thermodynamic Properties

In any statistical mechanical system each component interacts with the
external field and with the neighbouring components. In the mean-field
model the second effect is replaced by an average over all components.

Consider a nearest-neighbour Ising model of N spins, with Hamiltonian
given by (1.7.2), (1.7.3) and (1.8.1). If each spin cr,has q neighbours, then
the total field acting on it is

H + J^oj, (3.1.1)

where the sum is over the q neighbouring sites j. In the mean-field model
this is replaced by

H + (N— X)~lqJZJOJ , (3.1.2)

the sum now being over all N - 1 sites j other than /. This is equivalent
to replacing the Hamiltonian by

(3.1.3)

where the first sum is over all the iN(N - 1) distinct pairs (i,/).
This 'mean-field' Hamiltonian (3.1.3) is the one that will be considered

in this chapter. As was remarked in Section 1.6, it is in a sense 'infinite-
dimensional', since each spin interacts equally with every other. It also has
the unphysical property that the interaction strength depends on the number
of particles. Nevertheless, it does give moderately sensible thermodynamic
properties.

39
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For a given configuration of spins, the total magnetization is
N

M = ^Oi, (3.1.4)
i = i

and (3.1.3) can be written (using oj =1) as

E{o) = -iqJ(M2 - N)/(N -\)-HM. (3.1.5)

Thus in this model E{o) depends on O\,. . . , oN only via M. This is a
great simplification: the sum over spin-values in the partition function can
be replaced by a sum over the allowed values of Ji, weighted by the number
of spin configurations for each value.

From (3.1.4), if r of the spins are down (value -1) and N — r are up
(value +1), then

M = N-2r. (3.1.6)

/N\There are I I such arrangements of spins, so from (1.7.5) the partition

function is
N

Z=^cr, (3.1.7)
r = 0

where

- 2r)2 - N]/(N - 1)

+ PH(N-2r)}, (3.1.8)

and

P=l/kT. (3.1.9)

Also, from (1.4.4), the average magnetization per site is
N

M = AT1^) = (i _ 2rlN) = Z"1 2 (1 - 2r/N) cr. (3.1.10)

The properties of c0 ,. . . , cN are most readily obtained by considering
dr =cr+\/cr. From (3.1.8)

dr = — = ^f exp{-2PqJ(N - 2r - l)l(N - 1) - 2j3/f}. (3.1.11)

We are interested in the case when N is large. As r increases from 0 to
N—l, the RHS of (3.1.11) increases from large values (of order N) to
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small values (of order N'1). Provided fiqj is not too large, this decrease
must be monotonic. Then there must be a single integer r0 such that

dr > 1 for r = 0 ,. . . , r0 - 1

dro^l (3.1.12)

dr < 1 for r = r0 + 1 , . . . , N - 1.

Since cr+i =drcr, it follows that cr increases as r goes from 0 to rQ,
decreases as r goes from r0 + 1 to N, and that cro is the largest cr.

When N and r axe both large, (3.1.11) can be written

(3.1.13)

where, for -Kx< 1,

^ - 2/3//]. (3.1.14)

Let x0 be the solution of the equation

#c o ) = l. (3.1.15)

Then, when N is large, r0 is given by

1 - 2ro/N = x0. (3.1.16)

Regarded as a function of r, cr has a peak at r = ro, the width of the
peak being proportional to NK Although this width is large compared to
one, it is small compared to N. Thus across this peak 1 - 2rlN in (3.1.10)
can be replaced by 1 - 2rrfN. Since values of r outside the peak give a
negligible contribution to the sums in (3.1.7) and (3.1.10), it follows that
the magnetization per site is

M = l-2ro/N = xo. (3.1.17)

From (3.1.14) and (3.1.15), M is given by <p(M) = 1, i.e.

M = tanh[(qJM + H)/kT]. (3.1.18)

This equation defines M as a function of H and T. It was first obtained
by Bragg and Williams (1934). The free energy can now be obtained by
integration, using (1.7.14), or more directly by arguing that when N is large
the sum in (3.1.7) is dominated by values of r close to r0, so

-Pf= lim N'llnZ
N—><*>

= lim AT1 lnc,,,. (3.1.19)
S-K»
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Using (3.1.8), Stirling's approximation

n\ ~ (2n)k e"" nn+i,

and (3.1.17) and (3.1.18), it follows that

-flkT = i ln[4/(l - M2)] -iqJM2/kT.

This gives / as a function of M and T.

(3.1.20)

(3.1.21)

From (3.1.18),

3.2 Phase Transition

H = -qJM + A:T artanh(M). (3.2.1)

This equation can be used to plot H as a function of M, for -1 < M < 1.
The graph can then of course be reversed to give M as a function of H.
If qJ < kT, then the resulting graph is similar to Fig. l.l(c), i.e. a typical
high-temperature graph, with no spontaneous magnetization.

However, if qJ > kT, the graph looks like that in Fig. 3.1 (a). This graph
is not sensible, since for sufficiently small H it allows 3 possible values of
M, whereas M is defined by (1.7.12) or (1.7.14) to be a single-valued
function of H.

The source of this contradiction is in the statements preceding equation
(3.1.12). If qJ > kT, then the RHS of (3.1.11) is not a monotonic decreasing
function of r: instead it behaves as indicated in Fig. 3.2.

If H is sufficiently small, then there are three solutions of the equation
dr = 1, as indicated in Fig. 3.2. This means that cr has two maxima, as

M
i

-1+ - 1 - -

(°) (b)

Fig. 3.1. M as a function of H for T = 0.94 Tc; (a) shows all solutions of (3.1.18),
(b) is the correct graph obtained by rejecting spurious solutions.
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10-•

0 N

Fig. 3.2. dr as a function of r for T = 0.94 Tc, @H = 0.006 and N large.

shown in Fig. 3.3. Together with the intervening minimum, these corre-
spond to the three solutions for M of equation (3.1.18). If H is positive
(negative), then the left-hand (right-hand) peak is the greater.

It is still true that the sum in (3.1.7) is dominated by values of r close
to r0, where rQ is the value of r that maximizes (absolutely) cr. Thus if
(3.1.18) has three solutions and / / is positive, we must choose the solution

0
Fig. 3.3. cT as a function of r for 7"= 0.94 Tc, pH = 0.006 and N = 100. As N
increases, the maximum becomes larger and more sharply peaked. The other two

turning values correspond to the spurious solutions of (3.1.18).
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with the smallest value of r0, i.e. the largest value of M. Conversely if H
is negative. Doing this, the multi-valued graph of Fig. 3.1(a) becomes the
single-valued graph of Fig. 3.1(b). This is similar to the typical low-tem-
perature graph of M(H) shown in Fig. 1.1. In particular, there is a spon-
taneous magnetization Mo given by

Mo = tanh(^r/M0/A:r), Mo > 0 , (3.2.2)

provided that qJ > kT.
Thus the mean-field model has a ferromagnetic phase transition for

temperatures below the Curie temperature

Tc = qJlk. (3.2.3)

3.3 Zero-Field Properties and Critical Exponents

Spontaneous Magnetization and /3

Set

t=(T-Tc)/Tc; (3.3.1)

then, using (3.2.3), the equation (3.2.2) can be written as

Mo = (l + r) artanhMo. (3.3.2)

For T just less than Tc the spontaneous magnetization Mo is small but
non-zero, so artanhMo can be approximated by Mo +Mo/3 . Solving the
resulting equation for Mo gives

(3.3.3)

Thus Mo is effectively proportional to (—t)K From (1.1.4) the critical
exponent /? exists and is given by

j8 = i. (3.3.4)

Free Energy and a

Let / / -> 0 for T> Tc. Then M-> 0 and from (3.1.21) the free energy is
given very simply by

-//AT = In 2. (3.3.5)
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On the other hand, if T < Tc then M-* Mo. For Mo small it follows from
(3.1.21) that

-//AT = In 2 + IM&1 - qJIkT)

+ MllA + O(Mg) . (3.3.6)

Using (3.2.3), (3.3.1) and (3.3.3), when t is small and negative the free
energy is therefore given by

-//AT = In 2 + 3t2/4 + €(t3). (3.3.7)

From (1.7.7), (1.7.8), (3.3.5) and (3.3.7), we see that the free energy
and internal energy are continuous at T = Tc, but the specific heat has a
jump discontinuity. The definition (1.7.9) of the exponents a and ex1 is
meaningless, but the alternative definition (1.7.10) gives

or=0. (3.3.8)

Susceptibility and y, y'

Hold T fixed and differentiate (3.2.1) with respect to H. Using (1.7.17),
(3.2.3) and (3.3.1), it follows that the susceptibility % is given exactly by

M2)]. (3.3.9)

Now let / /-> 0. If T> Tc then M-> 0, giving
1 (3.3.10a)

If T< Tc then M—>Mo. Using the approximate relation (3.3.3) we then
obtain that near Tc

X~{-2qJt)~K (3.3.10b)

Thus at Tc the zero-field susceptibility becomes infinite, diverging as t~l.
From (1.1.6) and (1.1.7) the exponents y and y' are given by

y=y ' = l. (3.3.11)

3.4 Critical Equation of State

Using (3.2.3) and (3.3.1) the exact equation of state can be written as

HlkTc= - M + ( l + f)artanhM. (3.4.1)
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Near the critical point M is small. Taylor expanding the function artanh M,
(3.4.1) gives

HlkTc = M2 (| + tM~2), (3.4.2)

neglecting terms of order tM3 or M5.
Comparing this result with (1.2.1), we see that the scaling hypothesis is

indeed satisfied for this model, with

*,(*) = i + x , (3.4.3)

j8=i, 6 = 3 . (3.4.4)

This agrees with (3.3.4) and it is easy to verify that the scaling relations
(1.2.12) and (1.2.13) are satisfied. Indeed they should be, since they are
consequences of the scaling hypothesis.

The values (3.3.4), (3.3.8), (3.3.11), (3.4.4) of the exponents are the
same as those of the van der Waals fluid discussed in Section 1.10, i.e.
they are the classical values.

Since each spin interacts equally with every other, correlations are not
distance dependent, nor can the model have two physically separated
coexisting phases. Thus the exponents v, r\ and \i are not defined for this
model.

3.5 Mean Field Lattice Gas

Regarding a 'down' spin as an empty site and an 'up' spin as a site containing
a particle, the above model is also one of a lattice gas. Making the
substitutions (1.9.13)-(1-9.16) in (3.2.1) and (3.1.21), we find that the
chemical potential (i and pressure P are given by

H=-qep+kT\n\pl{l-p)}, (3.5.1)

P=-kTln(l-p)-iq£p2. (3.5.2)

Here p is the density, i.e. the mean number of particles per site. It must
lie in the range 0 < p < 1.

Equation (3.5.2) is the equation of state of the mean-field lattice gas.
Comparing it with (1.9.31), and noting that v = p"1, we see that it is very
similar to the van der Waals equation. Both equations are of the form

P = kT(Kp)-ap2, (3.5.3)

where a is a constant and the function #(p) is independent of the tem-
perature T. Indeed, there are solvable models which have exactly the van
der Waals equation of state (Kac et al., 1963/4).
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ISING MODEL ON THE BETHE LATTICE

4.1 The Bethe Lattice

Another simple model that can be exactly solved is the Ising model (or
indeed any model with only nearest-neighbour interactions) on the Bethe
lattice. Like the mean-field model, this is equivalent to an approximate
treatment of a model on, say, a square or cubic lattice (Bethe, 1935).
However, it can be defined as an exactly solvable model, and this is what
we shall do here.

Consider the graph constructed as follows: start from a central point 0
and add q points all connected to 0. Call the set of these q points the 'first
shell'. Now create further shells by taking a point in shell r and connecting
q - 1 new points to it. Do this for all points in shell r and call the set of
all the new points 'shell r + V.

Proceeding interatively in this way, construct shells 2,3, . . . ,n. This
gives a graph like that shown in Fig. 4.1. There are q(q - I) '"1 points in
shell r and the total number of points in the graph is

q[(q - 1)» - \}l{q - 2) (4.1.1)

We call the points in shell n 'boundary points'. They are exceptional in
that each has only one neighbour, while all other points (interior points)
each have q neighbours.

Such a graph contains no circuits and is known as a Cayley tree. From
our point of view it can be thought of as a regular 'lattice' of coordination
number q (i.e. q neighbours per site), provided the boundary sites can be
ignored.

There is a problem here: normally the ratio of the number of boundary
sites to the number of interior sites of a lattice becomes small in the

47



48 4 ISING MODEL ON THE BETHE LATTICE

thermodynamic limit of a large system. Here it does not, since both numbers
grow exponentially like (q - 1)". To overcome this problem we here
consider only local properties of sites deep within the graph (i.e. infinitely
far from the boundary in the limit «-»<»). Such sites should all be equiv-
alent, each having coordination number q, and can be regarded as forming
the Bethe lattice. (This distinction between the Cayley tree and the Bethe
lattice is not always made, but does seem to be useful terminology. I am
grateful to Professor J. Nagle for suggesting it to me and drawing my
attention to a relevant article [Chen et al., 1974].)

Fig. 4.1. A Cayley tree (with q = 3 and n = 4), divided at the central site 0 into
three sub-trees. They are identical, but here the upper sub-tree is distinguished by
indicating its sites with solid circles. Each sub-tree is rooted at 0. The site 1 adjacent

to 0 in the upper sub-tree is shown. The spin at 0 is Oo, that at 1 is Si.

Put another way, if we construct an Ising model on the complete Cayley
tree, then the partition function Z contains contributions from both sites
deep within the graph, and sites close to or on the boundary. The contri-
bution from the latter is not negligible, even in the thermodynamic limit.

If one considers the total partition function, then one is considering the
'Ising model on the Cayley tree'. This problem has been solved (Runnels,
1967; Eggarter, 1974; Miiller-Hartmann and Zittartz, 1974) and has some
quite unusual properties. We shall not, however, consider this problem
here. Instead we shall effectively consider only the contribution to Z from
sites deep within the graph, i.e. from the Bethe lattice.

Some motivation for this choice is given by series expansions. If one
makes a low temperature expansion as in Section 1.8 for any regular lattice,
then to second order the only properties of the lattice that one needs to
know are the number of sites and the coordination number. To third order
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one needs the number of triangles in the lattice, to fourth order the number
of tetrahedra (i.e. clusters of 4 sites all connected to one another) and
other highly connected 4-point sub-graphs, and so on. An interesting simple
case is when there are no circuits at all, and hence no triangles, tetrahedra,
etc. Then one obtains the Ising model on the Bethe lattice as denned here.

4.2 Dimensionality

Consider any regular lattice. Let m\{=q) be the number of neighbours per
site, m2 the number of next-nearest neighbours, mj, the number of next-
next-nearest neighbours, etc. Then cn =1 + m\ + m2 + . . . + mn is the
number of sites within n steps of a given site. For the hyper-cubic lattices
it is easy to see that

lim (In c)/ln n = d , (4.2.1)

where d is the dimensionality of the lattice.
The relation (4.2.1) is also true for all the regular two and three-dimem

sional lattices, and can be regarded as a definition of the dimensionality
d.

Now return to considering the Bethe lattice. In this case cn is given by
(4.1.1). Substituting this expression into (4.2.1) gives d= °°, so in this
sense the Bethe lattice is 'infinite-dimensional'.

4.3 Recurrence Relations for the Central Magnetization

Consider an Ising model on the complete Cayley tree (but we shall later
ignore boundary terms, thereby reducing it to the Bethe lattice). The
partition function is given by (1.8.2), i.e. by

Z = 2P(CT) , (4.3.1)
a

where

P(o) = exp\K X dOi + h 2 ojl • (4-3-2)

The first summation in (4.3.2) is over all edges of the graph, the second
over all sites. The P(o) can be thought of as an unnormalized probability
distribution: in particular, if oQ is the spin at the central site 0, then the
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local magnetization there is

2 / Z . (4-3.3)

From Fig. 4.1 it is apparent that if the graph is cut at 0, then it splits up
into q identical disconnected pieces. Each of these is a rooted tree (with
root 0). This implies that the expression (4.3.2) factors:

P(a) = exp(Aao) U G»(ob|^), (4-3.4)

where s® denotes all the spins (other than a0) on the y'th sub-tree, and

Qn{oo\s) = exp K 2 StSj + KsiOo + h 2 « ; , (4.3.5)

Sj being the spin on site i of the sub-tree (other than the root, which has
spin ob). Site 1 is the site adjacent to 0, as in the upper sub-tree of Fig.
4.1. The first summation in (4.3.5) is over all edges of the sub-tree other
than (0,1); the second is over all sites other than 0. The suffix n denotes
the fact that the sub-tree has n shells, i.e. n steps from the root to the
boundary sites.

Further if the upper sub-tree in Fig. 4.1 is cut at the site 1 adjacent to
0, then it too decomposes into q pieces: one being the 'trunk' (0,1), the
rest being identical branches. Each of these branches is a sub-tree like the
original, but with only n — 1 shells. Thus

9 - 1

G*(ob|s) = exrftfoosi + fax) FI Q.-ifcik®) (4.3.6)

where ^ denotes all the spins (other than s^) on the ;th branch of the
sub-tree.

These factorization relations (4.3.4) and (4.3.6) make it easy to calculate
M. Let

gn(O6) = 2 Qn{Oo\s) . (4.3.7)
s

Then from (4.3.1) and (4.3.4),

(4.3.8)
<*>

Similarly, from (4.3.3) and (4.3.4),

(4.3.9)
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Let

*«=&.(-)/«»( + )• (4-3.10)

Then from (4.3.8) and (4.3.9),

Thus M is known if xn is. To obtain xn we sum (4.3.6) over all the spins
s, i.e. over si and the fi\ to give, using only (4.3.7):

gn(oo) = 2 expiKooH + hsr) fo.-ifo)]'-1 (4.3.12)

Remembering that ob and 5i are single spins, with values +1 and — 1,
performing the summation in (4.3.12) for o0 = +1 or - 1 , taking ratios and
using (4.3.10), we obtain

xn = y(xn-y), (4.3.13)

where the function y(x) is given by

y(x) = [e'K+h + eK-hx'>-1]/[eK+h + e^"***- 1 ] . (4.3.14)

Equation (4.3.13) is a recurrence relation between xn and xn-\. It is easy
to see that

= 1, (4.3.15)

so (4.3.13) defines xn, and (4.3.11) defines M.

4.4 The Limit n -> «

Hereafter we consider the ferromagnetic case, K > 0. Then y{x) increases
monotonically from exp(—2K) to exp(2#) as x goes from 0 to ».

The recurrence relation (4.3.13) can be thought of graphically by sim-
ultaneously plotting v = y(x) and v = x.

Let Pn-i be the point {xn-\, v(*n_i)) in the (x, y) plane. To construct
Pn draw a horizontal line through Pn-\ to intercept the line y = x at a point
(3n. Now draw a vertical line through Qn. Its intercept with y = y(x) is the
point Pn.

There are two cases to consider: either the line y = x crosses the curve
y = y(x) once, or it crosses it three times, as shown in Fig. 4.2. In the
former case the point Pn will always monotonically approach the cross-over
point A as n—> », as indicated in Fig. 4.2(a). Thus xn and M tend to a
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limit as n becomes large, as we expect. This M is therefore the local
magnetization of a site deep within the Cayley tree, i.e. the magnetization
per site of the Bethe lattice.

If there are three cross-over points, then the outer two (A and C in Fig.
4.2(b)) are stable limit points of (4.3.13), while the centre one (B) is
unstable. If Po lies to the left (right) of B, then Pn tends to A (C). Thus
again Pn tends to a limit, giving the magnetization M for the Bethe lattice.

o

Fig. 4.2. Typical sketches of the function y(x) given by (4.3.14), with z =
exp(—2K). In (a) the curve intercepts the straight line y = x only once, at A. Two
typical sequences of points Pn = (xn , y(xn)) are shown, one starting to the right of
A, the other {Po , P{, Pi,. . .} to the left. All such sequences converge to the limit
point A. In (b) there are three intersections A, B, C. A sequence {Pn} grows in the
direction of the arrows, never crossing A, B or C. Thus A and C are stable limit

points, B is an unstable fixed point.

We need some more convenient rule to determine which stable fixed
point, A or C, is the one approached. The borderline case is when Po is
the point B, i.e. when x = 1 is a solution of the equation x = y(x). From
(4.3.14) this occurs when, and only when, h = 0. If h > 0, then Po lies to
the left of B so Pn tends to A. Conversely, if h > 0, then Pn tends to C.

Summarizing, when n-* °° the magnetization is given, using (4.3.11),
by

p2A _ r 9

, (4-4.1)Af = • .2*

where x is a solution of
x = y(x). (4.4.2)

If there are three solutions, the smallest must be chosen for h > 0, the
largest for h < 0.
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These equations can be written in a more conventional form by defining

z - e'2K, pi = e'2h, jui = fix11'1. (4.4.3)

Then, using (4.3.14), (4.4.2) gives

x = (z + jUi)/(l + juiz) . (4.4.4)

From (4.4.3), (4.4.4) and (4.4.1) it follows that

Hi/fi = [(z + jui)/(l + H\z)]q~l, (4.4.5a)

(4.4.5b)

The first of the equations (4.4.5) defines ^; the second gives the mag-
netization M. These are the same as the results of the Bethe approximation
for a lattice of coordination number q (Domb, 1960, pp. 251-254).

4.5 Magnetization as a Function of H

Now suppose T, and hence K, is fixed and consider the variation of x and
M with h = HIkT. Using (4.3.14) the equation (4.4.2) can be written

e» = x1-l(e2K _ xy(Q2Kx _ -Q (4.5.1)

All the xn are positive, and so is the limit point*. For the RHS of (4.5.1)
to be positive it follows that x must lie in the interval

e~2K<x<e2K. (4.5.2)

Clearly (4.5.1) defines h as a function of x, for fixed K. (This function
is of course not the same as the scaling function hs(x) of Section 1.2.)
Differentiating (4.5.1) logarithmically gives

„ &h „ 2sinh2K
2x— = q - l - - —— TT. (4.5.3)

dx H 2 c o s h 2 K - x - x l v '

For x in the interval (4.5.2), the RHS of (4.5.3) has its maximum at
x = 1. If this maximum is negative, i.e. if K < Kc, where

Kc = iln[q/(q-2)], (4.5.4)

then h decreases monotonically from » to 0 as x increases from
exp(-2#) to exp(2K). Hence for given real h, (4.5.1) has one and only
one real positive solution for x, and x is an analytic function of h for
-00 < h < 00.
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If, on the other hand, K > Kc, then dh/dx is positive for x sufficiently
close to one. From (4.5.1), h = 0 when x = 1, so the function h{x) has a
graph of the type shown in Fig. 4.3.

For sufficiently small h, (4.5.1) therefore has three solutions for x. From
the discussions of Section 4.4, if h > 0 the limit point of the sequence given
by (4.3.1) corresponds to the smallest solution for x. If h < 0 it corresponds
to the largest solution.

o
! \

Fig. 4.3. A typical sketch of h as a function of x for T < Tc.

Considering the behaviour as h decreases from +°° through zero to
-oo, it is therefore apparent from Fig. 4.3 that x is an analytic function of
h, except at h = 0, where it jumps discontinuously from the smallest to the
largest solution.

In all cases x is a decreasing function of h, satisfying

x(-h) = Vx(h). (4.5.5)

From (4.4.1) it follows that M is an odd function of h. It increases
monotonically from — 1 to 1 as h increases from -oo to oo and is analytic
if K < Kc. If K> Kc, then it is analytic apart from a jump discontinuity at
h = 0.

This is precisely the typical behaviour of a ferromagnet that was outlined
in Section 1.1. Thus the Ising model on the Bethe lattice exhibits ferro-
magnetism, with a critical point at H = 0, T- Tc, where

c = hln[q/(q-2)]. (4.5.6)
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4.6 Free Energy

The total free energy of the Cayley tree is

F = - f c r i n Z , (4.6.1)

where Z is given by (4.3.1) and (4.3.2). Differentiating these equations
with respect to H = hkT gives

- | = 2M-- (4.6.2)
an i

where the summation is over all sites i and

is the local magnetization at site i. Each M, is a function of H, and hence
h, for given temperature T. To show this we shall sometimes write it as
Mt{h).

If H is large and positive the summation in (4.3.1) is dominated by the
state with all spins up, so in this limit

F/kT=-KNe-hN, (4.6.3)

Ne being the number of edges and N the number of sites. Also, in this limit
(a.) = 1 for i = 1,. . . , N.

We can now integrate (4.6.2) with respect to H, using (4.6.3) to obtain
the integration constant. This gives

F/kT = -KNe -hN+^T [M,(h') -l]dh'. (4.6.4)
i h

Alternatively, if qt is the number of sites adjacent to site i, then 2 qt =
i

2Ne, and (4.6.4) can be written

where

f/kT = -IKqi - h + f" [M,(h') - 1] d/T . (4.6.5)
Jh

Each fi can be thought of as the free energy of site i. For an homogeneous
lattice the ft are all equal to the usual free energy /, and on differentiating
(4.6.5) one regains the usual relation (1.7.14).
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As we remarked above, the difficulty with the Cayley tree is that it is
not homogeneous, there being a significant number of boundary or near-
boundary sites that have properties different from the interior. However,
all sites deep inside the graph have the same local magnetization M, and
hence the same local free energy/, given by (4.6.5). This free energy is
therefore the free energy of the Ising model on the Bethe lattice. It is given
by setting <?, = q,Mt = M in (4.6.5), and using the equations (4.5.1), (4.4.1)
for x and M as functions of h.

Noting that x is a monotonic differentiate function of h for h > 0, one
can change the integration variable in (4.6.5) from h' to x' = x(h'). This
gives [dropping the suffixes i and using z = exp(-2AT)]

flkT = -\Kq - h - I" [M(x') - 1] ffl dx' (4.6.6)

provided h > 0 (or K < Kc).
Substituting the expression (4.5.1) for exp(2/i) into (4-4.1), and using

(4.5.3), the integrand in (4.6.6) can be written, after a little re-arrangement,
as

This can be easily integrated to give, eliminating h by using (4.5.1),

flkT=-\Kq-\q\n(\ - z2)

+ i\n[z2 +l-z(x + x-1)] + i(q - 2) ln(* + x~l - Iz). (4.6.8)

Negating h has the effect of inverting x, which leaves (4.6.8) unchanged.
Since/must be an even function of h, it follows that (4.6.8) is true for all
real h. Together with the equation (4.5.1) for x, it gives the free energy
per site of the Ising model on the Bethe lattice.

4.7 Low-Temperature Zero-Field Results

A problem arises with any ferromagnetic Ising model if H = 0 and
T< Tc. In this case the spins do not know whether to be mostly up, or
mostly down. If just the boundary spins are fixed to be up, every spin will
have a greater probability of being up than down. In a sense the 'ther-
modynamic limit' does not exist, since the bulk properties depend on the
boundary conditions.

This is particularly evident in the present model: if H = 0 then it is
obvious from (4.3.13)-(4.3.15) that xn = 1, for all n. If T< Tc this means
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that all the points Pn = (xn, yn) are the point B in Fig. 4.2(b). However,
this is an unstable fixed point of (4.3.13): if x0 is not one, but just less than
one, then the sequence {Pn} will converge not to B, but to the stable limit
point A.

There are at least two ways round this difficulty: one is to take H = 0
and fix all boundary spins up; the other to take H > 0, let n—* °°, and then
let H—>0+. In either case the sequence {Pn} will converge to A and the
limiting value of x is, from (4.4.2) and (4.3.14), the smallest positive
solution of the equation

If T<TC, this value of x is less than one. From (4.4.1) and (4.6.8) the
spontaneous magnetization M and free energy / are then given by

" 2 ) 2 f (4 7 3)
J • ( }

It is interesting to compare these results with those of the two-dimensional
Ising model. This will be done in Section 11.8.

4.8 Critical Behaviour

Set x = exp(-2s), then (4.5.1) becomes

h = -(q- 1> + i ln[sinh(/i: + s)/sinh(*: - s)], (4.8.1)

which makes it clear that h is an odd function of s. Taylor expanding, we
obtain

h = [cothK-q + l]s + l>cothKcosech2K V + (4.8.2)

The critical value of Kis given by (4.5.4), i.e. by coth Kc = q - 1. Setting
as usual

t = (T-Tc)/Tc, (4.8.3)

and using K = J/kT, it follows that for t small

coth K - q + 1 = q(q - 2)Ket + €(t2). (4.8.4)
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Using this result in (4.8.2), together with h = H/kT, gives (for t and s
small):

HlkTc = q(q - 2) {Kcts + i(q - l)s3

+ 6(t2s,ts\s5)}. (4.8.5)

From (4.4.1), the magnetization M is given by

M = tanh(/i + qs). (4.8.6)

From (4.8.5), h is much less than s, which is itself small, so M — qs, or
conversely

s = q~lM + 6(h , M3) . (4.8.7)

Substituting this result into (4.8.5) and neglecting terms of order t2M,
tM3 or M5, we obtain

HlkTc = M3hs{tlM2), (4.8.8)

where
*,(*) = 1(9 - 2)* Info/fa - 2)] + (q - 1) for - 2)/(3q2). (4.8.9)

Comparing (1.2.1) and (4.8.8), we see that the scaling hypothesis is
satisfied for this model, hs{x) being the scaling function. It is linear, and
critical exponents /? and 5 have the values

j8 = l, 6 = 3 . (4.8.10)

Thus all the exponents /3, d, a, a1, y, / must have the same values as
those of the mean-field model (Section 3.3), i.e. the 'classical' values.

All the above results are very similar to those of the mean-field model
of Chapter 3. (In fact they are the same in the limit q—*™, qK finite.)
However, the Bethe-lattice model is really much more respectable than
the mean-field one: its interactions are independent of the size of the
system, and each spin interacts only with its nearest neighbours.

4.9 Anisotropic Model

The key equations (4.3.14), (4.4.2), (4.4.1), (4.6.8) of the above working
can be summarized (using the first two to eliminate z from the last) as

z = exp(-2/0 = (JC - fix'-yo. - iuq), (4.9.1)

M = (1 - ivcq)l(\ + (uc"), (4.9.2)
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-flkT = h + $qK+ ln(l + /u")

+ \q ln[(l - (i2x^-2)l{\ - fiW)]. (4.9.3)

The edges of the Bethe lattice can be grouped into classes 1 , . . . , q, so
that each site lies on just one edge of each class. Then the interaction
coefficient K can be given a different value for different classes of edges.
If Kr is its value for class r (where r=l,...,q), then this anisotropic
model can also be solved by the above methods.

The equations (4.9.1)-(4.9.3) generalize to

0, r = l,...,q, (4.9.4a)

ft = e x p ( - 2 / t ) = t/(Xl . . . x q ) , (4.9.4b)

M = (1 - 0/(1 + 0 (4.9.5)

1 -, _ 2. -2

-flkT =h + i(Ki + ... +Kq) + ln(l + f) + * 2 In -; j ~ - (4.9.6)
r~ 1 1 — f

These define M, f as functions of K\, . . . , Kq,h; the parameters
X\, . . . , xq, t being defined by (4.9.4). The critical point occurs when
h = 0 and xu ... , xq, t axe infinitesimally different from one. From (4.9.4)
this implies that

exp(-2Ki) + ... + exp(-2Kq) =q-2. (4.9.7)

[This result is derived in (11.8.37)-(11.8.42).]
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THE SPHERICAL MODEL

5.1 Formulation of the Model

In 1952, Berlin and Kac solved another model of ferromagnetism, the
spherical model. This is similar to the Ising model of Section 1.8. One
considers a lattice ££ in space (e.g. the simple cubic lattice), containing N
sites. To each site / of i£ one assigns a spin 05 which interacts with its
neighbours and with an external field. However, instead of taking only the
values +1 or - 1 , each Oj can now take all real values, subject only to the
constraint that

N

Ilaj = N. (5.1.1)

For an homogeneous system this constraint ensures that the average of the
square of any spin is one, as in the usual Ising model.

The partition function is again given by (1.8.2), except that the 0-
summation is replaced by an integration subject to the constraint (5.1.1),
so

ZN= I . . . I dai. . . do)v exp K 2 opi

\h% ojl d\N- 2 ff/1 • (5.1.2)

The first summation in (5.1.2) is over all edges (/, /) of £C; the other two
are over all sites ;. As usual, K = J/kT and h = HlkT.

Berlin and Kac regarded this as an approximation to the usual Ising
model. They argued that in the Ising model the a-summation can be viewed

60
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as a sum over all corners of an TV-dimensional hyper-cube in a-space. In
the spherical model this is replaced by an integration over the surface of
a hyper-sphere passing through all such corners.

While this is mathematically plausible, it is still true that the constraint
(5.1.1) is unphysical in that it implies an equal coupling, or interaction,
between all spins, no matter how far apart on it they may be.

Fortunately Stanley (1968) has shown that the spherical model is a special
limiting case of another model (the «-vector model) which has only
nearest-neighbour interactions. This equivalence has since been proved
rigorously by Kac and Thompson (1971) and Pearce and Thompson (1977).
It effectively removes the above objection and establishes the spherical
model as a physically acceptable model of critical behaviour.

Many papers have been written on the spherical model (see Joyce (1972)
and references therein) covering many aspects of it. This is because it is
one of the few (if not the only) model of ferromagnetism that can be solved
exactly in a field, and exhibits non-classical critical behaviour.

In this chapter we shall not attempt to consider all facets of the model,
but shall outline the derivation of the equation of state and discuss the
critical behaviour of the thermodynamic functions.

5.2 Free Energy

To evaluate (5.1.2), first note that it is unchanged if an extra factor

explaN - a S oj\ (5.2.1)

is introduced into the integrand, since the delta function ensures that this
is unity. Now use the identity

6(x) = {2JZYX I exp(isx) ds (5.2.2)
J — 00

to obtain

J'oo Too /*oo r ^ ^ ^

. . . dffi... daN\ ds exp\K 2, op,
— 00 J — 00 J — 00 L _ V » ' )

+ h X °i'+ (« + «)W- (o + «) 2 oj\. (5.2.3)

The argument of the exponential in (5.2.3) is the sum of quadratic and
linear forms in a\, •.., ON- It is useful to introduce a matrix notation to
handle these.
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Let <r be the JV-dimensional vector with elements O\,. . . , aN. Let V be
the N by N symmetic matrix such that

crT\cr = 2 2 OiVj
i i

j-K^ajol. (5.2.4)
i (/,')

Finally, let h be the JV-dimensional vector with every element equal to h.
Then (5.2.3) can be written more neatly as

ZN = (In)'1 ^ ••• \ dor f ds exp[- aT\a + hTa + (a + is)N].
J-<C J-00 J-CC (5.2.5)

Choose the arbitrary constant a sufficiently large to ensure that all the
eigenvalues of V have positive real part. Then (and only then) the order
of the cr and s integrations can be interchanged. The a integration can be
performed by first changing variables from a to

t = <r-iV-1h (5.2.6)

and then rotating axes in (tu . . . , tN) space to make V diagonal. This gives

ZN = fcr*w-i f" ds [det V]"iexp[(a + is)N
J-» (5.2.7)

The matrix V depends on s and the structure of the lattice on which the
spins are placed. Let us take X to be the rf-dimensional hyper-cubic lattice,
contained in a box with each side of length L lattice spacings. Then

N = Ld. (5.2.8)

Impose periodic boundary conditions. Then V is cyclic and from (5.2.4)
its eigenvalues can be found to be

k((ou . . . , o)d) = a + is - K(cos u>i + . . . + cos cod), (5.2.9)

where each OJ, can take the values 0, 2nlL, 4n/L,.. . , 2n(L - \)IL.
The determinant of V is the product of its eigenvalues, so

In det V = 2 . . . 2 In A(ft>i,. . . , (od). (5.2.10)

In the thermodynamic limit L is large and the summations in (5.2.10)
become integrations. Using (5.2.8) and (5.2.9), it follows that

= 7V[ln/i: + g(z)], (5.2.11)
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where

z = (a + is- Kd)IK, (5.2.12)

g(z) = (2nyd \2*... pdo) ! . . . dt»dln[z
Jo Jo

+ d — cos o>i - . . . -cos G)d]. (5.2.13)

Also, since V is cyclic, h is the eigenvector of V corresponding to its
minimum eigenvalue a + is - Kd = Kz. Thus

h ^ h = ( K z r V h = Nh2IKz. (5.2.14)

Using (5.2.11) and (5.2.14), and changing the integration variables from
s to z, the equation (5.2.7) can now be written as

Zs = (K/2m) {nlK)w P dz exp[N(p(z)], (5.2.15)
Jc - l'oo

where

4>{z) = Kz + Kd - hg(z) + h2/4Kz , (5.2.16)

and c = (a - Kd)IK. From (5.2.9) it is apparent that all the eigenvalues
of V have positive real part only if a > Kd, so c must be positive. The
function $(z) is analytic for Re(z) > 0, so the RHS of (5.2.15) is the same
for all positive values of c.

In the limit of N large, the integral in (5.2.15) can be evaluated by the
method of steepest descent (Courant and Hilbert, 1953). First consider
the function #(z) for z real and positive. Provided K > 0 and h # 0, the
function tends to plus infinity as z tends to either zero or infinity. Thus in
between <p(z) must have a minimum at some positive value zo of z. Further,
it is easy to see from (5.2.16) and (5.2.13) that 4>"(z) > 0, so there is only
one such minimum.

Take the arbitrary constant c to be z0. Then along the path of integration
in (5.2.15), <p(z) has a maximum at z = z0. In the limit of iV large this
maximum will give the dominant contribution to the integral, so

-flkT = lim AT1 In ZN
N-*<»

(5.2.17)

Here / is as usual the free energy per site. The parameter z0 is of course
defined by the condition that 0'(zo) be zero, i.e., using (5.2.16),

(5.2.18)
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There is one and only one positive solution for z0, so (5.2.16)-(5.2.18)
define / as a function of K and h, provided K > 0 and h =£ 0.

5.3 Equation of State and Internal Energy

The parameter z0 can be simply related to the magnetization. To do this,
hold K fixed and differentiate (5.2.17) with respect to h, using (5.2.16).
Remembering that z0 itself depends on h, this gives

'. (5.3.1)
dh \kT) 2Kz0

However, z0 is defined so that (J>'(ZQ) is zero. Using (1.7.14) and (1.8.3),
the equation (5.3.1) therefore simplifies to

M = h/2Kz0 = H/2Jz0, (5.3.2)

M being the magnetization per site.
We can now eliminate z0 between (5.2.18) and (5.3.2). Using the defi-

nitions (1.8.3) of AT and h, we obtain

2/(1 - M2) = kTg'(HI2JM). (5.3.3)

This is the exact equation of state (i.e. the relation between M, H and
T) of the spherical model.

From (1.7.7), the internal energy per site is

u = 'T2~{flT), (5.3.4)

where the differentiation is performed holding / and H fixed. Using (1.8.3),
(5.2.16) and (5.2.17), it follows that

U = ikT- J(z0 + d)- H2/AJz0 + kT2<p'{zQ) (dzg/dT). (5.3.5)

Again we note that (j)'(zo) is zero. Using (5.3.2) to eliminate z0, we
obtain

u = \kT-Jd- \H{M + M~l). (5.3.6)

This is an exact relation between the internal energy and magnetization.
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5.4 The Function g'(z)

The equation of state (5.3.3) involves the function g'(z). This can be
obtained by differentiating (5.2.13), but the result is a rather unwieldy
multi-dimensional integral. It is useful to simplify it as follows.

Differentiate (5.2.13) and use the formula

= f
Jo
f exp(-Xt)dt (5.4.1)

to write the result as

J -2x cin r=<>

. . . d ( u i . . . d(od\ 6t
o Jo Jox exp{ - t[z + d - cos Oi - . . . - cos (od\ . (5.4.2)

Provided Re(z) > 0, the integrals converge and may be re-ordered. The
w\, . . . , cod integrations can then be performed by using the formula

J0(it) = (2JT)~1 exp(r cos CD) dm , (5.4.3)
Jo

Jo(x) being the usual Bessel function (Courant and Hilbert, 1953, p. 474).
This gives

g'(z) = f exp[-f(z + d)} [JQ(it)]ddt. (5.4.4)
Jo

This expression for g'(z) is convenient when considering the dependence
of the thermodynamic functions on the dimensionality d of the lattice it.
In fact, d need no longer be restricted to integer values, but can be allowed
to take any positive value.

This concept of continuously variable dimensionality is quite common
in modern statistical mechanics (e.g. Wilson and Fisher, 1972; Fisher,
1974). It can be quite useful in discussing the dependence of critical
exponents on d, as we shall see in Section 5.6.

To discuss the behaviour of g'(z) we need to consider the convergence
of the infinite integral in (5.4.4). To do this we can use the large t relation

70(i0 = (2^)" ie'[l + C(r1)]. (5.4.5)

From this we see that the integral (5.4.4) converges if Re(z) > 0, so g'(z)
is analytic in the right half-plane. In particular, for real positive z it is
analytic and decreases monotonically to zero as z —* °°.

We shall find that the critical properties depend on the behaviour of
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g'{z) for small positive z. If z is zero we see from (5.4.5) that the integral
in (5.4.4) diverges if d > 2, but converges if d *£ 2. Thus

g'(0) = °° if 0 < d « 2 ,

<°° if d>2. (5.4.6)

For d > 2 we shall need the dominant small z behaviour of g'(0) - g'(2)-
To obtain this, first differentiate g'(z) and then apply the same reasoning
as above. This gives

g"(0) = a. if 0 < d =£ 4 ,

<<x> if d>4. (5.4.7)

If d < 4, the dominant small z behaviour of g"(z) is obtained by simply
neglecting the terms of relative order r1 in (5.4.5) and substituting into
(5.4.4) to give

g"{z) =* - (2n)-id r t1-*e~'z dt

- - (2*;)-wr(2 - id) zid~2. (5.4.8a)

For d = 4a slightly more subtle calculation gives

g"(z) ~-(2JI)-2Inz. (5.4.8b)

Define a (positive) coefficient Ad by

Ad = (2n)-*d(id - I)"1 T(2 - id), 2<d<4,

= -g"(0), d>A. (5.4.9)

Then from (5.4.7) and (5.4.8) it follows for z small that

g'(0)-g'(z)^Adz
id-\ 2<d<4,

~Adz, d>4. (5A.10)

5.5 Existence of a Critical Point for d > 2

Suppose T, and hence K, is fixed. From (5.3.2) and (1.8.3) the function
M(H) can be obtained from z<j as a function of h. The behaviour of these
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functions can be understood by plotting both sides of (5.2.18) as functions
of Zo (or rather z) for non-negative z. Typical graphs are sketched in Fig.
5.1.

Let P be the intersection of the two curves in the graph. Then its z-
coordinate is the solution ZQ of (5.2.18). Provided h + 0, ZQ is non-zero and
varies smoothly with h: in fact z0 is an even analytic function of h. Hence
M is an odd analytic function of H, provided Hi=0.

Figure 5.1. The z0 in eq. (5.2.18) is here replaced by z, and typical sketches given
of the LHS and RHS as functions of z. The intersection P corresponds to the

solution z = zo of the equation.

Now suppose that h1 is decreased to zero. The graph of the LHS of
(5.2.18) becomes the step-function OKA in Fig. 5.1. Thus P moves to the
left, its limiting position being the intersection of OKA with the graph of
\g'(z). There are two cases to consider, depending on whether the limit
of P lies on the horizontal line KA (as in Fig. 5.1(a)), or the vertical line
OK (Fig. 5.1(b)).

Define Kc, Tc by

= tg'(O). (5.5.1)

Then the first case arises if T> Tc; the second if T< Tc.

T>TC

Suppose that T>TC, i.e. K<Kc = ig'(0), as in Fig. 5.1(a). As /i2-»0,
P-*A, so from (5.2.18) z0 tends to a non-zero value w given by

ig'(w) = K. (5.5.2)
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For sufficiently small h the term h2/4Kzl in (5.2.18) can be treated as a
perturbation and the equation solved iteratively to give z0 as a non-zero
even analytic function of h. From (5.3.2) and (1.8.3), M is therefore an
odd analytic function of H at H = 0, and its graph must be similar to that
of Fig. l.l(c). There is no spontaneous magnetization and no phase tran-
sition across h = 0.

If d =£ 2, g'(0) and Kc are infinite, so K is always less than Kc. Thus the
spherical model has no transition for dm 2.

T<TC

Now suppose that d>2, so that Kc is finite, and that K> Kc, i.e. T<
Tc. Then the graphs of (5.2.18) take the form sketched in Fig. 5.1(b). As
h2 tends to zero, P tends to the point (0, Kc) and ZQ tends to zero.

More strongly, the RHS of (5.2.18) tends to Kc, so

lim|/z|/zo = [4K(K-Kc)]
h. (5.5.3)

From (5.3.2) and (1.8.3) it follows that

lim M = sgn (H) Mo, (5.5.4)

where Mo is given by

Mo = (1-777;)*. (5.5.5)

Thus in this case M{H) has a jump-discontinuity across H = 0, as in Fig.
l.l(a). There is a non-zero spontaneous magnetization Mo, given by the
remarkably simple exact formula (5.5.5).

Thus for d > 2 the spherical model exhibits the typical ferromagnetic
behaviour outlined in Section 1.1. There is a Curie point (i.e. a critical
point) at H = 0, T = Tc, where Tc is given by (5.5.1).

5.6 Zero-Field Properties: Exponents a, /3, y, y'

Internal Energy and a

Let H—> 0 in (5.3.6). If T< Tc then M tends to the non-zero value Mo, so

Jd if T<TC. (5.6.1a)
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If T > Tc, then M tends to zero and from (5.3.2) HIM tends to 2Jw, where
w is given by (5.5.2). Thus

u = u+ = ikT-Jd-Jw. (5.6.1b)

Clearly the low-temperature function u{T) defined by (5.6.1a) is analytic
at Tc, so the definition (1.7.9) fails and we must use (1.7.10) to define
a. Let Ms, the singular part of the internal energy be

u,(T) = u+(T) - u-(T). (5.6.2)

As in (1.1.3), set

t = (T-Tc)/Tc. (5.6.3)

Then for t small (1.7.10) implies that

us(T)~tl-«. (5.6.4)

This defines a.
Now use the results (5.6.1) in (5.6.2) (taking T>TC). This gives

us(T) = -Jw. (5.6.5)

From (5.4.10), (5.5.1) and (5.5.2), w vanishes as f->0, its asymptotic
behaviour being given by

w~t2l(d-2) H2<d<4,

~f/ln(r') ifd = 4, (5.6.6)

~t ifd>4.

Thus for d + 4 the relation (5.6.4) is satisfied, with

a=~(4- d)/(d-2) H2<d<4,

= 0 ifd>4. (5.6.7)

Spontaneous Magnetization and /?

The spontaneous magnetization has been calculated in (5.5.5). Comparing
this exact result with (1.1.4) it is obvious that

0 = 1. (5.6.8)
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Susceptibility and y, y'

The susceptibility % is defined by (1.1.2). Differentiating (5.3.3) with
respect to H and using (5.3.2), it follows that

X'1 = 2Jz0 - 8JKM2/g"(z0). (5.6.9)

Let H tend to zero. If T > Tc, then M tends to zero and z0 to w, giving

(5.6.10)

From (5.6.6) it follows that % becomes infinite as T-* Tc from above.
Provided d + 4, its asymptotic behaviour has the power-law form (1.1.6),
with

y=2/(d-2) if2<d<4,

= 1 i f d > 4 .

On the other hand, if H—> 0 for some (fixed) T<TC, then zo—» 0. From
(5.4.7), g"(0) is infinite if d « 4, so from (5.6.9)

X-*°o asH-»0 . (5.6.12)

This result is qualitatively different from that of the classical mean-field
and Bethe lattice models. When d « 4 the zero-field susceptibility is infinite
for all temperatures less than Tc. The usual definition (1.1.7) of the
exponent / has no meaning.

If d > 4, then g"(0) is finite and (5.6.9) gives

X~l =-8JKM2
0/g'(0). (5.6.13)

For t small x is therefore effectively proportional to Mo2, i.e. using (5.5.5),
to (—t)'1. Thus it does have the power-law behaviour (1.1.7), with

/ = !, d>A. (5.6.14)

5.7 Critical Equation of State

Using (5.5.1) and (5.6.3), the exact equation of state can be written as

g'(0) - g'(H/2JM) = 2J(M2 + t)lkT. (5.7.1)

When H and t are small, so are both sides of (5.7.1). The Ton the RHS
can be replaced by Tc and the LHS approximated by (5.4.10). Solving the
resulting equation for H gives
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H = 2JM[2KC{M2 + f)A4rff (d~2) , 2 < d < 4 ,

- (4/XcA44) M(M2 + ()/ln[(M2 + 0 " 1 ] , d = 4 , (5.7.2)

) M(M2 + 0 , d > 4 .

The quantities /, .Kc, Ad are constants, so this critical equation of state
is of the form (1.2.1), with /? = \ (in agreement with (5.6.8)) and

2), 2<d<4, ( 5 7 3 )

= 3, d>4.

Using (5.6.11) and neglecting multiplicative constants, the scaling func-
tion hs(x) is given by

hs(x) = (l+xy, (5.7.4)

provided d =t 4.
The scaling hypothesis is therefore satisfied, so the scaling relations

(1.2.12) and (1.2.13) should be also. Indeed they are, as is evident from
(5.7.3) and the results of the previous section, subject to the proviso that
/ does not exist for d =£ 4.

If d < 4 most of the exponents vary with d, but for d > 4 they all take
the classical constant values. This is perhaps the most interesting result of
the spherical model, for it is generally believed that the same is true of the
usual nearest-neighbour Ising model, but with different values of the
exponents for d < 4 (Fisher, 1974, first two lines of p. 607).



DUALITY AND STAR - TRIANGLE
TRANSFORMATIONS OF PLANAR ISING

MODELS

6.1 General Comments on Two-Dimensional Models

In this and the remaining chapters of this book I shall consider the few
Ising-type models that have been solved exactly in two dimensions. As I
remarked in Section 1.6, it is unfortunate that they are only two dimen-
sional, and even more so that they have only been solved in the absence
of external fields. Even so, they do contain the essential prerequisite for
a 'physical' model of a magnet or a fluid, namely short-range non-zero
interactions, and they do have critical points. They can therefore be used
to obtain insight into the behaviour (particularly the critical behaviour) of
real systems.

In particular, the two-dimensional exactly solvable models provide
extremely valuable tests of general theories and assumptions, such as the
scaling and universality hypotheses. For instance, the first evidence of
universality was provided by the solution of the square lattice Ising model
by Onsager in 1944. Onsager allowed the interactions to have different
strengths / and /' in the horizontal and vertical directions, but his solution
showed that for T near Tc the specific heat diverges as l n | T - Tc\, inde-
pendently of the ratio J'U. The evidence for universality accumulated in
the next twenty-five years. It took another exact solution, that of the
eight-vertex model (Baxter, 1972b), to show that there are exceptions to
universality.

72
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6.2 Duality Relation for the Square Lattice Ising Model

Three years before Onsager solved the square lattice model, Kramers and
Wannier (1941) located its critical temperature. Their argument can be
simplified to the following.
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Fig. 6.1. The square lattice it (solid circles and lines), and its dual lattice !£D (open
circles and broken lines).

Consider an Ising model on the square lattice X shown in Fig. 6.1. At
each site there is a spin a,, with two possible values: +1 or — 1. Two
nearest-neighbour spins CT, and at contribute a term -Joty to the Hamil-
tonian if they are horizontal neighbours, -J'oiOj if they are vertical neigh-
bours, where / and /' are some fixed energies. If there is no external
magnetic field, then the Hamiltonian is simply the sum of such terms, one
for each nearest-neighbour pair of sites (i.e. an edge) of the lattice i£.
From (1.4.1), for a lattice of N sites the analogue of equation (1.8.2) for
the partition function is

= ZJ exp K
° L

2 2 J
(6.2.1)

where the first sum inside the brackets is over all horizontal edges (i, j),
the second is over all vertical edges (2, k), the outer sum is over all values
of all the spins, and

K = JlkBT, L=J'lkBT, (6,2.2)

kB being Boltzmann's constant and T the temperature.
To locate the critical temperature, one notes that ZN can be represented

graphically in two different ways, but with a similar form:
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'Low-Temperature' Graphical Representation

For a given set of values of the spins (a spin 'configuration'), let r be the
number of unlike nearest-neighbour vertical pairs, and 5 the number of
horizontal ones. Let M be the total number of vertical edges of ££, and
suppose !£ has as many columns as rows, so that M is also the number of
horizontal edges. Then there are M — r like vertical pairs, and M - s like
horizontal pairs, and the summand in (6.2.1) has the value

exp[K(M -2s) + L(M - 2r)]. (6.2.3)

In particular, it depends only on the numbers of unlike nearest-neighbour
pairs.

A useful concept in two-dimensional lattice models is that of the dual
lattice: from any planar lattice !£ one can form another lattice by placing
points at the centres of the faces of £6 and connecting points in faces that
are 'adjacent' (i.e. have an edge in common). These points and their
connections are the sites and edges of the dual lattice ££D.

The dual !£D of the square lattice !£ in Fig. 6.1 is also shown therein and
is also a square lattice. It differs from i£ in being shifted a half-lattice
spacing in both directions.

Instead of regarding the soins as being on the sites of X, we can just as
well regard them as being on the faces of !£D. Given a spin configuration,
we can then represent unlike nearest-neighbours pairs by lines on XD, as
follows: If two adjacent spins are different, draw a line on the edge of !£D

between them; if they are the same, do nothing. Do this for all nearest-
neighbour spin pairs.

This generates a set of r horizontal lines and 5 vertical lines on i£D. There
must be an even number of lines into each site, since there must be an
even number of successive spin changes between the four surrounding
faces. The lines can therefore be joined up to form polygons, as in Fig.
6.2.

Conversely, these polygons divide the plane into up-spin domains and
down-spin domains, as is evident in Fig. 6.2. For any such set of polygons
there are just two corresponding spin configurations, one being obtained
from the other by negating all spins.

Using (6.2.3), it follows that the expression (6.2.1) for ZN can equiv-
alently be written as

ZN = 2 exp[M(*: + L)] 2 exp(-2Lr - 2Ks), (6.2.4)

where the summation is over all polygon configurations on iE-o, i.e. over
all sets of lines with an even number of lines into each site. The r and 5
are the numbers of horizontal and vertical lines, respectively.
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The expression (6.2.4) is useful when developing low-temperature series
expansions, since then K and L are large and the dominant term comes
from the case r = 5 = 0, i.e. no lines at all. For this reason it is convenient
to call it a 'low-temperature' representation, but note that it is exact for
all temperatures.
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Fig. 6.2. A configuration of spins on the faces of a square lattice, showing the
polygons that separate + and - spins.

'High-Temperature' Graphical Representation

Another form for ZN can be obtained by noting that, since a,a; can only
take the values of +1 or - 1 :

exp[KO(Oj] = cosh K + sinh K ofy. (6.2.5)

Using this identity, and its analogue with K replaced by L, the definition
(6.2.1) can be written

ZN = (cosh K cosh L)M 2 \[ (1 + voty) Y[(l+ wOiOk), (6.2.6)
° (>'./) (i,<t)

where
v = tanh A', w = tanh L , (6.2.7)

the first product is over all the M horizontal edges of X; the second is over
all the M vertical edges.

Now expand the combined product in the summand of (6.2.6). Since
there are 2M factors (one for each edge), each with two terms, there are
22M terms in this expansion. Each such term can be represented graphically
as follows:
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Draw a line on the edge (i, j) if from the corresponding factor one
selects the term votOj, or woty. Draw no line if one takes the term 1. Do
this for all edges of ££.

This gives a one-to-one correspondence between terms in the expansion
and line configurations on the edges of i£. Each term in the expansion is
of the form

v'vfaVafaf..., (6.2.8)

where r(s) is the total number of horizontal (vertical) lines in the corre-
sponding line configuration, and nt is the number of lines with site i as an
end-point.

Now sum (6.2.8) over oj, < % , . . . , oN. Since ot = ± 1 , the result will
vanish unless n\, n2,. . . , nN are all even, when it will be vrws2N.

Classifying such terms by their corresponding line configurations, (6.2.6)
can therefore be written as

ZN = 2N(coshKcoshL)M^vrws, (6.2.9)
p

where the sum is over all line configurations on i£ having an even number
of lines into each site, i.e. over polygon configurations on X.

Duality

Let ksT^) be the free energy per site, i.e. from (1.7.6),

- V = lim N~l\nZN. (6.2.10)

From (6.2.1), ip is a function of K and L, so we can write it as rp(K, L).
The summations in (6.2.4) and (6.2.9) are similar, but not quite identical

as the first is a sum over polygon configurations on !£D, while the second
is over polygon configurations on !£. For finite square lattices !£D and !£
differ at their boundaries.

However, in the thermodynamic limit this should have no effect on the
free energy. Also, in this limit MIN = 1, so (6.2.4), (6.2.9) and (6.2.10)
give

- y{K, L) = K + L + <D (Q-2L, e~2K), (6.2.11)

= ln[2 cosh K cosh L] + <&(u, w), (6.2.12)

where

*(» , w) = lim AT1 in (2 v'vA. (6.2.13)
/ V - K » K P J
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Replacing K, L in (6.2.12) by K*, L*, where

tanh K* = e~2L , tanh L* = e'2K, (6.2.14a)

and comparing with (6.2.11), it becomes obvious that the function <I> can
be eliminated, leaving

y(K* , L*) = K + L + \KK,L) - ln[2coshK* coshL*]. (6.2.14b)

If K, L are large, then K*, L* are small. Thus (6.2.14) relates the free
energy at a low temperature to that at a high temperature, and is known
as a duality relation. It can be written in the more symmetric form

sinh 2K* sinh 2L = 1, sinh 2L* sinh 2K = 1,

, L*) = xliK ,L)+i ln(sinh2K sinh2L). (6.2.15)

which makes it clear that it is a reciprocal relation.
To locate the critical point, consider first the isotropic case when / =

/' , so K = L and K* = L*. At a critical point the free energy is non-analytic,
so %p will be a non-analytic function of T, and hence of K. Suppose this
happens at some value Kc of K, then from (6.2.15) it will also be true that
%l> is non-analytic when K* = Kc. Normally this will correspond to a different
value of K, so there will be two critical points. If we assume that there is
only one critical point, then it must occur when K* = K, i.e. Kc is given
by

sinh 2KC = 1 , Kc = 0.44068679.... (6.2.16)

The argument is similar for the anisotropic case: the mapping (K,
L)—> (K*, L*) takes the region I in Fig. 6.3 into the region II, and vice-
versa. It leaves all points on the curve AB unchanged. Thus if there is a
line of critical points inside I, there must be another such line inside II.

Fig. 6.3. Square lattice duality: the mapping (6.2.15) interchanges regions I and
II, and leaves unaltered all points on the graph AB of sinh 2K sinh 2L = 1.
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If there is only one line of critical points, it must be the boundary line AB,
the equation of which is

sinh2A:sinh2L = l. (6.2.17)

In the next chapter it will be shown that this is indeed the criticality
condition for the square lattice Ising model.

6.3 Honeycomb-Triangular Duality

One can construct Ising models on any lattice, in particular on the honey-
comb and triangular lattices shown in Fig. 6.4.

Fig. 6.4. The honeycomb lattice (solid lines) and associated triangular lattices
(dotted lines) formed by: (a) duality; (b) the star-triangle transformation.

Consider first the honeycomb lattice, with N sites. The edges can be
grouped into three classes: those parallel to the edges marked L\ in Fig.
6.5; those parallel to edges marked L2; and those parallel to edges marked
L3. Let the energy of two adjacent spins a, & be - kBTLra&, if the edge
between them is of the Lr class. Then in zero magnetic field the analogue
of equation (1.8.2) for the partition function is

Z%{L} = 2 exp + L2 + L3 2 okat . (6.3.1)

Here L denotes the set of three 'interaction coefficients' L\, L2, L3, and
the three summations within the exponential are over all edges of the
classes L\, L2, L3, respectively. For instance, the last summation is over
all vertical edges (k , I) of the lattice.

Similarly, for the triangular lattice with N sites the partition function is

= 2 exp (6.3.2)
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where the first summation inside the exponential is over all edges (y , k)
parallel to that marked K\ in Fig. 6.5, the second is over edges (k , i)
parallel to that marked K2, and the third is over edges (i, j) parallel to
that marked K^.

Fig. 6.5. A star ijkl on the honeycomb lattice and its associated (dotted) triangle.
The interaction coefficients for the various edges are shown.

One can readily use the technique of Section 6.2 to obtain a duality
relation between these two partition functions. First apply the 'low-tem-
perature' procedure of Section 6.2 to the honeycomb Ising model. As is
shown in Fig. 6.4(a), the dual of a honeycomb lattice of 2N sites is a
triangular lattice of N sites. It follows that the analogue of (6.2.4) is

Z&{L} = exp[JV(Li + L2 + L3)] 5) exp[-2L1r1 - 2L2r2 - 2L3r3], (6.3.3)

where the P-summation is over all polygon configurations on the triangular
lattice, Tj being the number of lines on edges of type /.

(A factor 2 corresponding to the leading term in (6.2.4) has been ignored,
and the number of edges of each class has been taken to be N, which
ignores boundary effects. These approximations have no effect on the free
energy in the thermodynamic limit.)

Also, apply the 'high-temperature' procedure of Section 6.2 to the
triangular lattice. This gives

= (2 cosh Kx cosh K2 cosh K3)
N 2 »i'»?B? , (6.3.4)

where
y - 1,2, 3 , (6.3.5)

and in the thermodynamic limit the P-summation has the same meaning
as in (6.3.3).
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Comparing (6.3.3) and (6.3.4), it follows that if

tanh/C; = exp(-2L,), / = 1,2,3 , (6.3.6)
then

ZUL) = (2slS2s3)
m ZJAK}, (6.3.7)

where
Sj = i exp(2L) seen2 K,

= sinh 2Lj = 1/sinh 2Kj. (6.3.8)

If K\, K2, Ks are large and positive, then L t, L2, L3 are small; and
vice-versa. Thus the duality relation (6.3.7) maps a low-temperature
(high-temperature) model on the triangular lattice to a high-temperature
(low-temperature) one on the honeycomb lattice.

This is not sufficient to locate the critical temperature: to do this we
need some more information so as to be able to map a low-temperature
model to a high-temperature one on the same lattice. This information will
be supplied in the following two sections.

6.4 Star - Triangle Relation

In addition to the duality relation (6.3.7), there exists another relation,
known as the 'star - triangle' relation, between the partition functions of
the triangular and honeycomb Ising models. Onsager (1944) referred in
passing to it in the introduction to his paper on the solution of the square
lattice Ising model. Wannier (1945) wrote it down, and it has subsequently
been re-presented by many authors (e.g. Houtappel, 1950).

To derive it, first note that the honeycomb lattice is 'bi-partite', i.e. its
sites can be divided into two classes A and B such that all neighbours of
an A site are B sites, and vice-versa. This is indicated in Fig. 6.4, where
the A sites are indicated by solid circles and the B sites by open ones.

The summand in (6.3.2) can therefore be written as

^^o,), (6.4.1)

where
W(o,\Oj, Oj, ok) = exp[a,(LiOi + L2Oj + Li,ok)\, (6.4.2)

the product in (6.4.1) is over all B sites /, and i, j, k are the ^4-site
neighbours of /, arranged as in Fig. 6.5.
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The important point about (6.4.1) is that each fi-spin at occurs in one
and only one factor. Using the form (6.4.1) of the summand, it follows
that the summations in (6.3.2) over the 5-spins can be performed at once,
giving

Z%{Q = 2 I! W(CT, , Oj, ak), (6.4.3)
OA (IJ.K)

where

w(Oi, Oj, ok) = 2 W(oi | ot, Oj, ok)
ai

= 2 cosh(L!o; + L2Oj + L3ok), (6.4.4)

and the summation in (6.4.3) is over the remaining A -spins.
Since w(a, , Oj , ok) is unaltered by negating all of ah Oj, ok, and since

Oj, Oj, ok only take the values +1 or — 1, there must exist parameters R,
KX,K2, K3 such that

W(OJ , Oj ,ok) = R exp(KiOjOk + K2okOj + K3OjOj), (6.4.5)

for all values of CT,, OJ, ok. Substituting this expression for w into (6.4.3)
then gives

Z%{L) = Rm 2 IT e*p(KiOjOk + K2okot + KiO/Oj). (6.4.6)
OA (i.jik)

The summation is over %N spins on the A -sites of the honeycomb lattice.
As is indicated in Fig. 6.4(b) these form a triangular lattice. The product
in (6.4.6) is over all down-pointing triangles (i,j ,k) of this triangular
lattice.

The sum in (6.4.6) is therefore precisely the partition function of the
Ising model on a triangular lattice of N/2 spins. Replacing N by 2N, and
comparing with (6.3.1), it is obvious that

= RN ZUK}. (6.4.7)

This relation between the honeycomb and triangular lattice partition
functions is known as the star - triangle relation, since it is obtained by
summing over the centre spin of a star (Fig. 6.5) to obtain a triangle.

Relations Between Interaction Coefficients

Given L\, L2, L3, the parameters R, K\, K2, K3 are defined by the four
equations obtained by equating (6.4.4) and (6.4.5) for all values of oh

Oj, ok. These are
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2 cosh(Li + L2 + L3) =R exp(iC1 + K2 + K3) (6.4.8a)

2 cosh(-Lx + L2 + L3) = R e x p ^ - A"2 - K3) (6.4.8b)

2 cosh(L! - L2 + L3) = R exp(-Ki + K2- K3) (6.4.8c)

2 cosh(L! + L2 - L3) = J? exp(-AT1 - K2 + K3). (6.4.8d)

Multiplying the first two of these equations, and dividing by the second
two, gives

cc\lc2c3 = exp(4#i), (6.4.9)

where, for all permutations i, j, fc of 1, 2, 3,

c = cosh(Li + L2 + L3), ci = cosh(-Li + Lj + Lk). (6.4.10)

Using standard hyperbolic function identities, it follows from (6.4.9)
that

exp(4A"0 - 1 = sinh 2L2 sinh 2L3/c2C3, (6.4.11)

and hence that

• , „, , . , ~T sinh2Li sinh2L2 sinh2L3 ., . . . .
sinh 2KX sinh 2Ly = —, ^T . (6.4.12)

2(ccxc2c3y

Clearly the original set of star - triangle relations (6.4.8) is invariant
under permutation of the suffixes 1, 2, 3, so two other equations can be
obtained from (6.4.12) by such permutations. However, the RHS is a
symmetric function of L\, L2, L3, so remains unchanged. Defining AT1 to
be its value, it follows that

sinh 2Kj sinh 2Ly = it"1, j = 1,2,3. (6.4.13)

This is a remarkable and very important property of the star - triangle
relations: the products sinh 2A} sinh 2Ly, for j = 1,2,3, all have the same
value.

Multiplying the four equations (6.4.8), using (6.4.12) to eliminate ccxc2c3,
and then using (6.4.13), one obtains

R2 = 2k sinh 2LX sinh 2L2 sinh 2L3

= 2/(k2 sinh 2KX sinh 2K2 sinh 2K3). (6.4.14)

These last three equations define Ku K2, K3, k and R as functions of Lu

L2, L3. Alternatively, one can obtain equations for L1; k, etc. as functions
of Ki, K2, K3. For instance, eliminating R, L2 and L3 between the equations
(6.4.8) gives, after a little algebra,
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sinh 2Ki cosh 2K2 cosh 2K3 + cosh 2Ki sinh 2K2 sinh 2K^

= sinh 2/s:! cosh 2LX. (6.4.15)

Eliminating Li between this identity and (6.4.13) gives

4'

where v\, v2, V3 are given by (6.3.5).

Operator Form

In two-dimensional lattice problems it is often useful to consider a row of
spins O\,..., oN, and operators that build up the lattice by adding sites
and/or edges. These operators are 2N by 2N matrices, with rows labelled
by ( o i , . . . , OJV), and columns by (o{ , . . . , o#). Two important simple sets
of operators are si,... , sN, and cu... , cN, where

, a{)d(o2,a2)... d(oN, a'N)

...d(oN,ok), (6.4.17)

and <r denotes ( o j , . . . , ojv), a' denotes ( a i , . . . , ojv).
Thus Si is a diagonal matrix with entries oj, c, is the operator that reverses

the spin in position i. Writing (x, v) for the commutator xy-yx of two
operators x, y, and / for the identity operator, it is readily seen that

sj = cf = I, StC,1 + ctSi = 0 , (6.4.18)

(st, Sj) = (si, Cj) = (c,, cj) = 0 for i ¥7 .

In the Ising model, the two basic sets of operators are

P , ( K ) , . . . , PN-i(K) , QX{L),..., QN(L),

where
a{)... d(oN, a'N)

x d(oi+l, a / + 1 ) . . . 6{aN, a®. (6.4.19)

The effect of the operator P^K) is to introduce an edge, with interaction
coefficient K, between sites i and i + 1. The effect of <2,(L) is to introduce
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a new site in position i, linked to the old site by an edge with interaction
coefficient L. If we regard O\,. . . ON as being a horizontal row of spins;
then Pi(K) adds a horizontal edge, <2,(L) a vertical one.

Using (6.4.17), the definitions (6.4.19) can be written more compactly
as

Pi(K) =

Q{L) = exp(L) / + exp(-L) c,.

Since cf =/, it follows that

exp(Lc() = (cosh L)I + (sinh L)CJ

for all complex numbers L. Thus <2,(L) can be written as

Q,{L) = (2 sinh2L)J exp(L*c,) ,

where L* is related to L by

tanh L* = exp(-2L).

(This is the same as the relation (6.2.14a) which occurs in the duality
transformation.)

It is useful to interlace the operators Ph Qt in the order Qu Pu Q2,
Pi, • • • , QN and to define a corresponding set of operators
U\, U2, • • • , U2N-1, dependent on two interaction coefficients K and L, by

(6.4.

(6.4.

.20)

.21)

(6.4.22)

(6.4.23)

Ut(K, L) = Pj(K) = expiKsjSj+0 if 1 = 2/ ,

= (2 sinh 2L)-kQj(L) = exp(L*c,) if i = 2/ - 1. (6.4.24)

These are all the operators that are needed to construct a square-lattice
Ising model with horizontal interaction coefficient K and vertical coefficient
L.

Let K\, K2, K3, L\, L2, L3 be related by the star-triangle relations
(6.4.8)-(6.4.15). Then, using (6.4.19) to directly expand the matrix prod-
ucts, and using (6.4.13) and (6.4.14), the star - triangle relation (6.4.4-5)
is found to imply that

£/,+1(Kx, Lx) Ut{L2, K2) Uni(K3,L3)

= Ui(K3, L3) Ui+1(L2, K2) f/,(^i, L 0 (6.4.25)

for / = 1,. . . , 2N - 2 . It is also obvious that

U,(K, L) Uj{K', L') = Uj(K' ,L') Ut(K, L) (6.4.26)

for all complex numbers K, L, K', L', provided \i — j\ ^ 2.
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Like the P, and Qh the Ui(K, L) are operators that add edges to the
lattice. If i is even, the LHS of (6.4.25) has the effect of adding an (L\,
L2 , L3) star, the RHS of adding a (Ki, K2 , K3) triangle; and vice versa
if i is odd. Thus (6.4.25) is a simple operator form of the star - triangle
relation.

If we write U,{Kt, Li), U(L2, K2), Ut(K3, L3) simply as U,,Ul,UJ,
respectively, then (6.4.25) is simply

Ul+1UiUl+1 = WU',+1U,, (6.4.27)

which makes its structure rather more obvious. Also, (6.4.26) implies that

U,U} = U;Ui if Ii - j I 3= 2. (6.4.28)

Significance of the Star - Triangle Relation

The star - triangle relation turns out to have very significant consequences.
Consider two square-lattice Ising models as in Section 6.2, with different
values of K and L, but the same value of sinh 2K sinh 1L. Onsager (1971)
noted that the star - triangle relation implies that their diagonal-to-diagonal
transfer matrices commute, providing cyclic boundary conditions are
imposed.

A proper derivation of this is given in Section 7.3, but a partial demon-
stration follows readily from (6.4.25). Consider the operator

V(K, L) = UtiK, L) U2(K, L) . . . Un(K, L) , (6.4.29)

where n- 2N - 1. This corresponds to adding a vertical edge in column
N, then a horizontal one between columns N — 1 and iV, then a vertical
one in column N — l, and so on, going downwards as this proceeds.
Altogether this adds a 'staircase' to the usual square lattice. Apart from
boundary conditions (and a trivial normalization factor), V(K, L) is there-
fore the diagonal-to-diagonal transfer matrix of the square lattice.

Let us again take K\, K2, K3, L\, L2, L3 to satisfy the star - triangle rela-
tions (6.4.8M6-4.15). Write V{KX, Lx), V{L2 , K2) simply as V, V. Then

V=U1U2...Un, (6.4.30a)

V' = U[U2...U'n. (6.4.30b)

By repeated use only of (6.4.27) and (6.4.28), it is easily verified that

W {U'n-
lUkUn) = (UiiriUi'1) V'V. (6.4.31)

The bracketted terms are 'boundary terms' involving only operators
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acting on the end spins. It is therefore perhaps not surprising that these
terms disappear when the cyclic boundary conditions are treated properly
(as is done in Section 7.3), leaving

W' = V'V. (6.4.32)

Thus V{K\ ,L\) and V(L2, K2) commute providing K3, L3 can be chosen
to satisfy (6.4.8)-(6.4.15). This is so if sinh2ATi sinh 2LX = sinh 2L2

sinh 2K.2-
More generally, if we have any lattice model whose transfer matrix V

can be written in the form (6.4.30a), and if we can also construct operators
U[,...,U'n = [ / / , . . . ,U: satisfying (6.4.27) and (6.4.28), then the
pseudo-commutation rule (6.4.31) is satisfied by V and V. In Chapters 9
and 10 it is shown that this can be done for the six- and eight-vertex models.
The corresponding commutation relation is a vital first step in the solution
of the eight-vertex model.

To obtain exact commutation relations it is necessary to use an explicit
representation of the operators so as to handle the cyclic boundary con-
ditions. Also, to cast the transfer matrix into a form like (6.4.30a), it would
be necessary to introduce an irritating cyclic shift in the spin-labelling from
row to row. For these reasons the commutation relations of the Ising
six- and eight-vertex models will be obtained directly, instead of by invoking
(6.4.30)-(6.4.31). Even so, in each case the commutation relations are a
direct consequence of the appropriate 'star - triangle' relation, and this will
be emphasized.

Further, in Section 11.7 it is shown that for the Ising model the transfer
matrix formalism can be dispensed with altogether: the free energy is
obtained solely from the star-triangle relation and its corollaries!

6.5 Triangular - Triangular Duality

If L\, Li, L3 in (6.4.8) are small, then so are K\, K2, K3. The star - triangle
relation (6.4.7) therefore maps a high-temperature model on the triangular
lattice to a high-temperature one on the honeycomb lattice.

Now apply the duality transformation (6.3.6)-(6.3.8). This maps the
high-temperature honeycomb model to a low-temperature triangular one.

Taken together in this way, the star - triangle and duality transformations
therefore give the following self-duality relation for the triangular Ising
model:

ft = k~m ZttK*), (6.5.1)



6.5 TRIANGULAR-TRIANGULAR DUALITY 87

where

sinh 2Kf = k sinh 2K,•., / = 1 ,2 ,3 , (6.5.2)

and k is given in terms of K\, K2, K3 by (6.4.16) and (6.3.5). Alternatively,
in terms of K*, K*, K*, it is given by

k-i = (1 - vf) (1 - vf) (1 ~ vf)
4[(1 + v*v*v*) (y* + c|y*) (f? + v*v*) (v* + \

where

vf = tanhKf, j= 1 , 2 , 3 . (6.5.4)

Clearly this mapping is reciprocal: i.e. it maps a point K = (K\, K2, K3)
to the point K* =(Kf, Ki, K$), and the point K* back again to K. From
(6.5.2) there is a surface of self-dual points in (Ki ,K2,K3) space, corre-
sponding to k = 1. We can therefore argue as in Section 6.2: if there is
only one critical surface in (Ki, K2, K3) space, then it must be the self-dual
surface, in which case the condition for criticality must be

* = 1. (6.5.5)

This is in fact true, as is shown in Chapter 11. For the isotropic triangular
model, with K\ = K2 = K3 = K, it implies that the critical point K = KQ is
given by

sinh 2KC = 3"*, Kc = 0.27465307 (6.5.6)

From (6.3.6), the isotropic honeycomb model therefore has its critical
point at L\ = L2 = L3 = Lc, where

sinh 2LC = 3*, Lc = 0.6584789 (6.5.7)
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SQUARE-LATTICE ISING MODEL

7.1 Historical Introduction

The free energy of the two-dimensional Ising model in zero field was first
obtained by Onsager in 1944. He diagonalized the transfer matrix by
looking for irreducible representations of a related matrix algebra. His
student, Bruria Kaufman, simplified this derivation in 1949 by showing that
the transfer matrix belongs to the group of spinor operators.

Since then many alternative derivations have been given. The transfer
matrix method has been used by Schultz et al., Lieb (1964), Thompson
(1965), Baxter (1972b) and Stephen and Mittag (1972).

A completely different technique was discovered by Kac and Ward
(1952), who used combinatorial arguments to write the partition function
as a determinant which could be easily evaluated. This method was refined
by Potts and Ward (1955).

Hurst and Green (1960), and Kasteleyn (1963) also used combinatorial
arguments, but this time to write the partition function as a Pfaffian.
Another combinatorial solution was obtained by Vdovichenko (1965), and
is given by Landau and Lifshitz (1968).

Quite recently, Hilhorst et al (1978), and Baxter and Enting (1978), have
shown that the planar Ising models can be solved quite directly by using
the star - triangle relation of Section 6.4 as a recurrence relation.

It is quite beyond the scope of this book to discuss all these approaches
in detail. The one given in this chapter may be called the 'commuting
transfer matrices' method. It has the advantage that it can be generalized
to solve the eight-vertex model, as is shown in Chapter 9.

The basic idea is to regard the diagonal-to-diagonal transfer matrix as
a function of the two interaction coefficients K and L. It is easily established
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that two such matrices commute if they have the same value of k = (sinh 2K
sinhZL)"1, and for any such matrix another one can be found which is
effectively its inverse. These properties are basically sufficient to obtain
the eigenvalues of the transfer matrix. From these, the free energy, inter-
facial tension and correlation length are derived.

The result for the spontaneous magnetization Mo is also given (in Section
7.10), but is not derived in this chapter as its calculation is rather technical:
five years elapsed between Onsager's derivation of the free energy / and
his announcement at a conference in Florence of the result for Mo (Onsager,
1949 and 1971). The first published derivation was given by Yang in 1952,
while Montroll et al. obtained it by the simpler Pfaffian method in 1963.
A derivation based on corner transfer matrices is given in Section 13.7 for
the more general eight-vertex model.

In Sections 7.7-7.12 the cases k < 1, k = 1 and k > 1 are distinguished.
As is shown in Section 7.12, these correspond to the low-temperature
(T<TC), critical temperature (T=TC) and high-temperature (T>TC)
cases, respectively.

7.2 The Transfer Matrices V, W

Consider the square lattice zero-field Ising model, as defined in Section
6.2, but draw the lattice diagonally as in Fig. 7.1. The partition function
is still given by (6.2.1), but now the first summation inside the brackets is
over all edges parallel to those marked K in Fig. 7.1, and the second
summation is over all edges parallel to those marked L.

Group the sites into horizontal rows: for instance, the sites denoted by
solid circles in Fig. 7.1 form a row. As is indicated in Fig. 7.1, these rows
can be classified into two types A and B (open circles and solid circles).
A row of type A is above one of type B, and vice-versa.

Let m be the number of such rows in the lattice. Label them so that row
r is below row r + 1, and impose cyclic boundary conditions so that row
m is below row 1. This means that m must be even.

Let n be the number of sites in each row and label them from left to
right. Again impose cyclic boundary conditions, this time to ensure that
site n is to the left of site 1, as indicated in Fig. 7.1. (Taken together, these
cyclic boundary conditions are equivalent to drawing the lattice on a torus:
they are known as 'toroidal'.)

Let (f)r denote all the spins in row r, so <pr has 2" possible values. The
summand in (6.2.1) can be thought of as a function of fa,.. . , <j)m. Since
each spin interacts only with spins in adjacent rows, this function factorizes
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and (6.2.1) can be written as

ZN = 2 2 • • • 2 Vfc.fc Wte,,fc Vfc,^ W^ .. . Wfc,,*,. (7.2.1)
01 02 0ra

Here V^,^+I contains all the Boltzmann weight factors in the summand
that involve only spins in adjacent rows; and / + 1, the lower row / being
of type A. The same is true for W{<ph 4>j+i), except that the lower row is
of type B.

Fig. 7.1. Three successive rows of the square-lattice (drawn diagonally).

Consider two typical successive rows. Let </> = {o\,..., an} be the spins
in the lower row, and #' = {o[,..., o'n} the spins in the upper row. Then
from (6.2.1) and Fig. 7.1, it is clear that

n

W^ = exp [2 (Korf + Lorf+x)^ ,

where an+i = O\ and &„+! = &y.
These observations parallel those made in Chapter 2 for the one-dimen-

sional Ising model. Again V((p,(p') can be regarded as the element
<f>, </>' of a matrix V, and similarly for W. Then (7.2.1) can be written as

ZN = TraceVWVW... W

= Trace (VW)""2. (7.2.3)

The main difference from the one-dimensional case is that <j> and cp' have
2" values, so V and W are 2" by 2" matrices, rather than 2 by 2. It is also
no longer true that VW is symmetric: even so, the working of (2.1.11) to
(2.1.15) can be generalized to show that (7.2.3) implies

ZJV = Af + Af + . .. + A?», (7.2.4)

where A?, Al,... are the eigenvalues of VW.
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We are interested primarily in the thermodynamic limit, when m and n
are large. To obtain this it is permissible to first let m—* °°, keeping n
fixed. From (7.2.4) it then immediately follows that

ZJV~(Amax)'», (7.2.5)

where Amax is the numerically largest eigenvalue of VW.
The matrices V and W are known as transfer matrices. The problem now

is to calculate the maximum eigenvalue of VW.

7.3 Two Significant Properties of V and W

Commutation

From (7.2.2) it is obvious that the matrices V and W are functions of the
interaction coefficients K and L. It is convenient here to exhibit this
explicitly and to write V and W as V(K, L) and W(K, L).

In this section, I shall establish two properties of these matrix functions,
and in subsequent sections will show that these properties enable AmM to
be evaluated. Although indirect, this presentation has the advantage of
showing that it is basically only local properties of the lattice model that
are being used.

In (7.2.3) one is interested in the matrix product V(K, L) W(K, L).
Let us generalize this and consider the product.

V(K,L)W(K',L'), (7.3.1)

where for the moment K,L, K',L' can be any complex numbers. This
product matrix has a lattice model meaning: it is the transfer matrix for
going from the lower row of open circles in Fig. 7.1 to the upper one,
provided the interaction coefficients K, L of edges above the solid circles
are replaced by K',L', respectively.

Each element of the product matrix is therefore the product of the
Boltzmann weights of the complete edges shown in Fig. 7.1, summed over
all the spins a",..., a"n on the intermediate solid circles. Let <f> =
{o i , . . . , an} be the spins on the lower row of open circles, and <f>' =
[a{,..., a'n} the spins on the upper row. Then the element <f>, tj>' of the
matrix product (7.3.1) is

n

2 2) II exp [a] (Kai+l + La} + K'a) + L'a'j+l)]. (7.3.2)
CTl On 7 - 1
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The exponential in (7.3.2) is simply the Boltzmann weight of the four
edges in Fig. 7.1 that have solid circle j as an end-point. Since a" enters
only this term, the summation over a" is readily performed. Doing this for
a",. . . , al, (7.3.2) becomes

J o j + l ; a ; , o ; + 1 ) , (7.3.3)

where, for a,b,c,d=± 1,

X(a, b;c,d)= 2 exp[/(La + Kb + K'c + L'd)]. (7.3.4)

Now ask the following question: suppose we interchange the interaction
coefficients K and K', and the coefficients L and L'\ does this change the
product matrix (7.3.1)? Explicitly: is the equation

V(K,L)W(K' ,L') =V(K' ,L')W(K,L) (7.3.5)

true?
This is a generalized commutation relation. If it is true, then it is shown

in the next section that the transfer matrices all commute, and this property
will be used to obtain the free energy. For the moment, however, let us
just ask whether (7.3.5) can be satisfied.

Clearly (7.3.3) is unchanged by replacing X(a , b; c , d) by

eMacX(a,b;c,d)e-Mbd, (7.3.6)

since the exponential factors from adjacent terms cancel. Thus (7.3.5) will
certainly be true if there exists a number M such that

eMacX(a,b;c,d) =X'(a , b;c ,d) eMbd, (7.3.7)

where X' is obtained from X by interchanging K with K', and L with L'.
This equation can be interpreted graphically as in Fig. 7.2(a). It is

equivalent to requiring that the Boltzmann weights of both figures therein,
summed over the centre spin, be the same for all values (± 1) of the exterior
spins a, b, c, d.

The condition (7.3.7) can be examined directly, but to link with the
remarks of Section 6.4, it is better to proceed as follows.

In both figures there is a (L , K', M) triangle. Define Ku K2, K3 by

Kt = L, K2 = K', K3 = M, (7.3.8a)

and convert these triangles to stars by using the star - triangle relation
(6.4.4), (6.4.5). Then Lu L2, L3 are defined by (6.4.8)-(6.4.15), and, to
within a common factor R, we see that the Boltzmann weights are those
of the figures in Fig. 7.2(b), each summed over the two internal spins.
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Clearly these weights are the same if

U = K, L2 = L'. (7.3.8b)

From (6.4.14), it follows that K, L, K', L' must satisfy

sinh 2*: sinh 2L = sinh 2K' sinh 2V . (7.3.9)

This condition can be obtained more directly by making the substitutions
(7.3.8) into (6.4.8) and eliminating R, L3 and M. Provided (7.3.9) is true,
we can choose R, L3 and M so that (6.4.8) is satisfied. The relations (7.3.7)
and (7.3.5) follow immediately.

M ( a )

(b)

Fig. 7.2. (a) The lattice segments whose weights (summed over the spin on the
solid circle) are the left- and right-hand sides of (7.3.7); (b) the same segments

after applying a triangle-to-star transformation.

We have therefore used the star - triangle relation to establish that
(7.3.9) is a sufficient condition for the exact commutation relation (7.3.5)
to be satisfied. It is also necessary.

Inversion

The other property that will be needed can be thought of as a relation for
the inverse of V, or W. It can be approached by asking the question: given
K, L; can K', L' be chosen to ensure that the product (7.3.1) is a diagonal,
or 'near-diagonal', matrix?

Since the elements of (7.3.1) are of the form (7.3.3), this property would
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be satisfied if X(a ,b;c,d) vanished when a # c (or b i= d). This require-
ment is too strong: it cannot in general be satisfied.

What can be satisfied is a weaker condition: namely that X(a ,b;c,d)
vanish if a + c and b = d. From (7.3.4) this is equivalent to the two
equations

cosh(L + K-K' + L') = 0 (7.3.10)

cosh (L-K-K' -L') = 0.

These equations have no real solutions, but they do have the complex
solution

K' = L + HJI, L' = -K. (7.3.11)

What is the effect of the requirement that X(a ,b;c,d) vanish if a # c
and b = d? From (7.3.3) it implies that for non-zero elements of VW, if
Oj and a I are unlike, then o;+1 and a/+1 must also be unlike. Since / =
1 , . . . , n, with cyclic boundary conditions, this implies that either all pairs
(05, a I) are like, or they are all unlike.

If they are like, then we are interested only in X{a ,b;c,d) for a = c
and b = d. From (7.3.4) and (7.3.11), all such values of X are

Xlike = 2i sinh 2L. (7.3.12a)

If they are unlike, then a =£ c and b ¥= d, and

= - 2 i ab sinh 2K. . (7.3.12b)

Substituting these expressions into (7.3.3), it follows that (7.3.3) is now
the same as the expression

(2i s inh 2L)n 8{ox, a[) 8{a2 ,a'2)... 8{an, a'n) (7.3.13)

+ ( -2 i s inh2/0" d{ax, -a[) 6{a2, -a'2)... <5(crn, -a'n)

Thus V(K, L) W(K', U) is the matrix with elements (7.3.13). Let / be
the identity matrix of dimension 2", and R the matrix with elements

, -o[) ...6{on, -a'n). (7.3.14)

Then we see that we have established the matrix identity

V(K,L)W(L+UJI:, -K)

= (2i sinh 2L)nI + (-2i sinh 2K)nR. (7.3.15)

Since

R2 = I, (7.3.16)
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the RHS of (7.3.15) is easily inverted, so (7.3.15) could be used to obtain
the inverse of the matrix V(K, L). For this reason I shall sometimes call
it the 'inversion identity'.

7.4 Symmetry Relations

In addition to the commutation and inversion properties established above,
we shall need some simple symmetry properties of the transfer matrices.

Interchanging K with L, and each oj with each a], in (7.2.2) is equivalent
to interchanging V and W. This means that

W(K,L) = VT(L,K), (7.4.1)
and

V(K, L) W(K, L) = [V(L , K) W(L , K)]T. (7.4.2)

Also, negating K and L in (7.2.2) is equivalent to negating
O\,. . . , an, or a[,. . . , a'n. This implies

V{-K,-L)=R V(K ,L)=V(K,L)R, (7.4.3)

and similarly for W.
Finally, let r be the number of unlike pairs of spins (oj-+i ,aj), and s the

number of unlike pairs {a,, cry). Then r + s is the number of changes of
sign in the sequence au a[, ai, a'2,... , a'„. This means that r + s must be
even and, from (7.2.2),

Vw = exp[(n - 2r) K + (« - 2s) L] (7.4.4)

We are interested in the thermodynamic limit, when n is large. It should
not matter how n becomes large, so we can restrict n to be even. This
slightly simplifies the following discussion, so from now on in this chapter
let us set

n = 2p , (7.4.5)
where p is an integer.

The equation (7.4.4) can now be written as

V^ = exp[±2r'K ± 2s'L], (7.4.6)

where r' and s' are non-negative integers in the range (0, p). They are
either both even or both odd, so that RHS is unchanged by negating both
of exp (2K) and exp (2L). This means that the matrix V(K, L) satisfies

V(K±lm,L±hm) = V(K,L), (7.4.7)
and similarly for W.
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7.5 Commutation Relations for Transfer Matrices

The relation (7.3.5) is true if the condition (7.3.9) is satisfied. It will now
be shown that this implies that V(K, L), W(K, L), V{K', L'), W(K', L')
all commute.

Define C to be the 2" by 2" matrix with elements

Sid , o'2) 8(o2 , a ' 3 ) . . . 8(on, a\). (7.5.1)

This operator C shifts the columns of the lattice to the left or the right: for
instance, applying the transformation A —> C~lAC to any matrix A has the
effect of replacing the spin labels 1,. . ., n by 2,. . . , n, 1. From (7.2.2) it
is obvious that this leaves V(K, L) and W(K, L) unchanged, so

V(K, L) = C"1 V(K, L) C

W(K,L)=C-1W(K,L)C. (7.5.2)

Also, from (7.2.2),

W(K, L) = V(K, L) C. (7.5.3)

Thus C, V(K, L), W(K, L) all commute with one another.
Now substitute (7.5.3) into (7.3.5). We obtain at once

V(K, L) V(K' ,L')= V(K', L') V(K, L) (7.5.4a)

provided (7.3.9) is satisfied, i.e.

sinh 2K sinh 2L = sinh 2K' sinh 2V . (7.5.4b)

Thus V{K, L), V(K', L'), and hence W(K, L), W(K' ,L'), do all com-
mute, as was asserted.

Using (7.5.3), the matrix W can be eliminated from the identity (7.3.15)
to give

V(K,L)V(L+iiJt,-K)C

= (2isinh2L)"/ + (-2i sinh2AT)n^. (7.5.5)

Finally, from (7.3.14) the transformation A—>R~lAR is equivalent to
negating all spins ou ..., on, a[,.. . , a'n. This leaves (7.2.2) unchanged,
so

V(K,L)=R-iV(K,L)R. (7.5.6)

Thus V(K, L) also commutes with R. So does W(K, L).
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7.6 Functional Relation for the Eigenvalues

Let
k = (sinh 2K sinh 2L)"1. (7.6.1)

Suppose k is a given fixed real number, regard K and L as complex variables
subject to the constraint (7.6.1). Then an infinite set of transfer matrices
V(K, L) can be generated by so varying K and L.

From (7.5.4), all such matrices commute. From (7.5.2) and (7.5.6) they
also commute with C and R, and hence with W(K ,L). It follows that all
these matrices, for all values of K and L satisfying (7.6.1), have a common
set of eigenvectors.

Let x be one such eigenvector. It cannot depend on K or L, so long as
(7.6.1) is satisfied. It can (and does) depend on k, so can be written as
x(k).

Let v(K, L), c, r be the corresponding eigenvalues of V(K, L), C, R.
Then, for all K, L satisfying (7.6.1),

V(K, L) x(k) = v(K, L) x(k)

Cx(k)=cx(k) (7.6.2)

Since C = R2 = /, the eigenvalues c, r are unimodular constants,
satisfying

c" = i2 = 1. (7.6.3)

Note that if K, L satisfy (7.6.1) so do the K', U defined by (7.3.11).
Now pre-multiply x{k) by both sides of (7.5.5). It follows at once that

v(K,L)v(L+iin, -K)c

= (2i sinh 2L)n + (-2i sinh 2K)n r. (7.6.4)

The squares of the Ays in Section 7.2 are the eigenvalues of
V(K, L) W(K, L). From (7.5.3) and (7.6.2), x(k) is also an eigenvector
of this matrix. Let A(K, L) be the corresponding A,. Then

A2(K, L) = v\K ,L)c. (7.6.5)

Thus A(K, L) can be defined to be

A(K,L) = v(K,L)ci. (7.6.6)
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Since c, and hence c*, are constants, the relation (7.5.4) can therefore be
written in the c-independent form

A(K,L)A(L+im,-K)

= (2isinh2L)" + (-2isinh2^)V. (7.6.7)

7.7 Eigenvalues A for T = Tc

The equation (7.6.7) is a functional relation for the function A(K, L). This
relation is very useful: together with some simple analytic properties of
A(K, L), it determines A(K, L) completely. There are of course many
solutions, corresponding to the different eigenvalues.

To see this, it is helpful to first consider the case k = 1. As was remarked
in the previous chapter, and will later be shown in this chapter, this is the
case when the temperature T has its critical value Tc.

Parametrization of K, L

When k=l, rather than working with K and L, it is convenient to use a
variable u denned by

sinh 2.K = tan u , (7.7.1)

sinh 2L = cot u.

The condition (7.6.1) is then automatically satisfied. If K and L are real
and positive, then u lies in the interval (0, \JZ).

Clearly A(K, L) can be thought of now as a function of u, so let us
write it as A(M). Then (7.6.7) becomes

A(a) A(u + IJC) = (2/ cot«)" + (-2/ tanu)"r. (7.7.2)

The usefulness of working with the variable u lies in the fact that not
only is (7.6.1) satisfied, but also exp(±2X) and exp(±2L) are 'simple'
functions of u. In fact

exp(2K) = (1 + sin M)/COS U ,

exp(-2JC) = (1 — sin M)/COS U , (7.7.3)

exp(2L) = (1 + cos «)/sin u,

exp(-2L) = (1 — cos u)/sin w.
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To be more precise, these functions (regarding u as a complex variable)
have the following properties:

(a) They are single-valued.
(b) They are meromorphic, i.e. their only singularities are poles (in fact

simple poles).
(c) They are periodic, of period In.

The Form of the Function A(u)

Substituting the forms (7.7.3) of exp(±2K) and exp(±2L) into (7.4.6), it
is obvious that every matrix element V^p is of the form

V^ # = t(u)/(sin u cos u)p , (7.7.4)

where t(u) is a polynomial in sin u and cos u, of combined degree 2p. Thus
for any particular element, t{u) can be written as

t(u) = e-2l>u(c0 + a eiu + .. . + c2n e
4l>"). (7.7.5)

Now consider the first vector equation in (7.6.2). This is really 2" scalar
equations, any one of which can be regarded as expressing the eigenvalue
v(K, L) as a linear combination of the elements of the matrix V(K, L).
The coefficients are ratios of the elements of x{k). The crucial point to
remember is that (for the commutativity reasons discussed in Section 7.6)
these ratios depend only on k. They are independent of u.

Thus v(K, L) is a linear combination of functions of the form (7.7.4),
with constant coefficients. Clearly it also must be of this form. From (7.6.6),
so must A(K ,L), now called A(«), be of this form.

This form can be simplified by using the symmetry relations. Suppose
M is replaced by u + n. From (7.7.3) this is equivalent to replacing K and
L by -K ± hni and -L ± im. From (7.4.3) and (7.4.6), this is equivalent
to multiplying V by R. Writing v(K, L) as v(u), the first of the equations
(7.6.2) therefore becomes

V(K, L) R x(k) = v(u + it) x(k), (7.7.6)

again using the M-independence of x(k).
Using the first and the last of the equations (7.6.2), it follows at once

that

v(u + JI) = r v(u), (7.7.7)

and hence, from (7.6.6),

A(« + w) = rA(«). (7.7.8)
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Thus A(w) is of the form given by (7.7.4), and satisfies the periodicity
relation (7.7.8). The polynomial in (7.7.5) therefore only has non-zero
even coefficients if r = +1, odd ones if r = — 1. Factoring this polynomial,
the resulting expression for A(M) is

/
A(u) = p (sin u cos u)~p 11 sin (u - uj), (7.7.9a)

where p,U\,...,ui are constants (as yet unknown) and

l = 2p i f r = + l (7.7.9b)

= 2 p - l if r = - 1 .

Zeros of A(u)

Now substitute this expression for A(u) into the relation (7.7.2). This gives,
using (7.4.5)

p2 0 sin(« - Uj) cos(w - My) = 22p [cos4p u + r sin4/; u]. (7.7.10)

This must be an identity, true for all values of u. It is most easily
understood by writing it in terms of the variables

z = exp(2i«), z;-= exp(2i«). (7.7.11)

Then (7.7.10) becomes

p2(//4)' fl [(z2 - z2)/zy] = 2 - * z ' - * [(z + l ) 4 p + Kz - l)4p] • (7.7.12)

From (7.7.9b), both sides are polynomials of degree / in z1, so the
constants p, z\,. . . ,zi can indeed be chosen to ensure that (7.7.12) is
satisfied identically. Clearly zj,...,zj are the / distinct zeros of the RHS,
which are readily found to be

zj = -tan2(0,72), (7.7.13)

where, for ; = 1 , . . . , / ,

fy = n{j - i)/2p if r = 1

= jtj/2p if r = - l . (7.7.14)

These 0y all lie within the interval (0 , n). Define <fa,..., <f>i by

/ = ! , . . . , / . (7.7.15)
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Then, from (7.7.11) and (7.7.13),

a, = T \n - icpj, / = 1 , . . . , / . (7.7.16)

There are other solutions, but they correspond to incrementing uy by an
integer multiple of n. From (7.7.9a), this leaves A(w) unchanged (to within
an irrelevant sign), so the only truly distinct solutions are given by (7.7.16).

Since the sign in (7.7.16) can be chosen independently for each value
of /, we appear to have 2' possible solutions. However, not quite all of
these are allowed.

Suppose M-> ± i °°. Then from (7.7.3), exp(2K) and exp(-2L)-» ± i.
However, from (7.4.7) the elements of the transfer matrices are unchanged
by negating exp(2K) and exp(2L). Thus

A(/oo) = A(-/oo). (7.7.17)

From (7.7.9), this condition is automatically satisfied if r = - 1 . If r =
+1 it implies that

(«! + . . . + u2p)/n = integer + \p , (7.7.18)

so only 2p - 1 of the signs in (7.7.16) can be chosen independently. For
both r = +1 and r = -1 there are therefore 22p ~x eigenvalues A, as
expected.

Substituting the values (7.7.16) of the uh (7.7.9a) becomes

A(w) = p (sin u cos u)'p IJ sin(« + ify + \YjJi), (7.7.19)

where yi,. . . , y/have values ±1, and if r = +1,

Yi + . . . . + y2p = 2p - 4 x integer . (7.7.20)

Clearly the constant p can now be evaluated (to within an irrelevant
sign) by substituting the expression (7.7.19) for A(u) into the identity
(7.7.2). I shall not proceed further with this calculation, since it is a limiting
case of that of the next section. The main point has been made: when
k = 1 the eigenvalues of VW are determined by the commutation relations
and the inversion identity (7.6.7), and can be calculated by ordinary
algebra.

7.8 Eigenvalues A for T < Tc

I have presented the solution for the case k = 1 in some detail because the
derivation can then be carried out solely in terms of elementary functions.
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There were three main steps:

(i) For the given value of k, find a parametrization of (7.6.1) so that
exp(±2K) and exp(±2L) are single-valued meromorphic functions
of a variable u.

(ii) Note that (7.4.6) implies that every element of V is also a single-
valued meromorphic function of u. From (7.6.2), so therefore is
any eigenvalue v(u), and hence A(«).

(iii) The zeros of A(M) must be contained in the zeros of the known
function on the RHS of (7.6.7). They can therefore be evaluated.
There will be many choices of the zeros, corresponding to different
eigenvalues. The normalization of A(M) can then be determined
(to within a sign) from (7.6.7).

Parametrization of K, L

Can this programme be used when Ti= Tc, i.e. & # 1? From (7.6.1), an
obvious first step is to introduce an intermediate variable x such that

K = x (7 8 X

sinh2L = 1

Solving these equations for exp(2/Q and exp(2L) gives

exp(2/q = x + (1 + x2y

exp(2L) = (kx)'1 [1 + (1 + k2x2f]. (7.8.2)

This is a parametrization of exp(2K) and exp(2L) satisfying (7.6.1), but
it is not single-valued and meromorphic, due to the presence of the square
roots of 1 + x2 and 1 + k2x2.

When k = 1 these can be eliminated by setting x = tan u, as in Section
7.7. Then 1 + x2 is a perfect square, and exp(2A"), exp(2L) become mero-
morphic functions of u.

For general values of k there is no parametrization using elementary
functions that simultaneously makes 1 + x2 and 1 + k2x2 perfect squares.
However, such a parametrization can be made by using elliptic functions.
In Chapter 15 the meromorphic functions sn u, en u, dn u are defined and
shown to satisfy the relations (15.4.4) and (15.4.5), i.e.

en2 u = 1 — sn2 u

dn2« = l - fc 2 sn 2 «. (7.8.3)
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Comparing (7.8.2) and (7.8.3), it is obvious that if we set

x = -isn(iu), (7.8.4)

then
exp(±2K) = en iu + i sn iu ,

exp(±2L) = UCl (dn iu ± l)/sn iu. (7.8.5)

In (15.1.6) the functions sn, en, dn are expressed in terms of the theta
functions H, Hu 6, 0 t . From (7.8.5) and (7.8.3) it follows that

exp(±2K) = [k'^Hxiiu) + m{iu)\l[k^ju)\,

exp(±2L) = i [k'^iu) ± @{iu)}l[k^H{iu)]. (7.8.6)

The theta functions are entire (i.e. analytic everywhere), so (7.8.6)
explicitly gives exp(±2£) and exp(±2L) as ratios of entire functions of u,
i.e. as meromorphic functions.

These elliptic functions occur also in solving the six-vertex and eight-
vertex models in the following chapters. Provided one has some knowledge
of elementary complex variable theory they are not at all difficult to use:
in fact they are delightfully easy. At this stage I suggest the reader looks
through Chapter 15, paying particular attention to the three theorems in
Sections 15.3. Once these are understood, all the various identities that
follow are easily obtained.

From (7.8.1) and (7.8.4), the relation between the interaction coefficient
K and the parameter u can be written

sn iu = sin 2iK. (7.8.7)

From (15.5.7) and (15.5.8), setting a= ifi, it follows that

so if K and L axe real and positive, then u is real, and 0 < u < I'.
If k = 1, the integral (7.8.8) can be evaluated, giving the first of the

equations (7.7.3). In fact, (7.8.6) reduces to (7.7.3) when k = l, and most
of the equations of this section then become precisely those of Section 7.7.
In making such comparisons, note that if k = 1, then /= <», /' = In,
sn iu = i tan u, H(iu) «= i sin u and 0(i«) « cos u.

In Chapter 15 the elliptic functions are denned only for

0 < * : < l , (7.8.9)

so for definiteness it will be supposed in this section that this is so, i.e. that
T < Tc. In the next section this restriction will be removed.
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The Form of the Function A(u)

It is now quite straightforward to generalize the programme of Section 7.7,
as outlined at the beginning of this section. Step (i) has been performed
in equation (7.8.6). From this and (7.4.6) it is evident that every element
of V is of the form

where
h(u) = H{u) 0(w) (7.8.11)

and the . . . in (7.8.10) denotes an entire function of u.
From (7.6.2) and (7.6.6), each eigenvalue A is a linear combination of

elements of V, with coefficients that depend on k but not on u. Writing
A as A(M), it follows from (7.8.10) that

A ( M ) = I / ^ j r (7-8-12)

where again . . . stands for an entire function.
Now consider the effect of incrementing u by 21', and -2H, where /, /'

are the half-period magnitudes of the elliptic functions. (This unconven-
tional notation, instead of K, K', is used to avoid confusion with the
interaction coefficients.) From (15.2.5), incrementing u by 21' in (7.8.5)
is equivalent to replacing K, L by —K ±\m, - L ±\m. As was shown in
Section 7.7, this replaces A by rA where r (= ±1) is the corresponding
eigenvalue of the spin-reversal matrix R.

Thus
A(u + 2/') = rA(u). (7.8.13)

Also from (15.2.5), incrementing u by —HI in (7.8.5) is equivalent to
replacing K, L by K ± im, L ± \m. Since r' + s' in (7.4.6) is even, this
leaves the matrix elements of V unchanged, so

A(« - 2il) = A(w). (7.8.14)

Now we can use the vital theorem 15c of Section 15.3. From (7.8.13)
and (7.8.14), A(«) is doubly periodic, while from (7.8.12) it has 2p poles
per period rectangle. It follows that

2p

A(M) = p e*" [h(iu)]-P n H(iu - iu,), (7.8.15)

where u\,. . . , u^ are the zeros of A(M) within a period rectangle, p and
A are constants, and A must be chosen to ensure (7.8.13) and (7.8.14).
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This expression (7.8.15) is the required generalization of (7.7.9). Step
(ii) is completed.

Zeros of A(a)

The next step is to determine the zeros u\,. . . , u2p of A(w) from the
identity (7.6.7).

First replace u by u +/' in (7.8.5). Using (15.2.6) this is found to be
equivalent to replacing K, L by L + im, —K. Using also (7.8.1) and
(7.8.4), the identity (7.6.7) therefore becomes

A(M)A(H + / ' ) = ( T
Z V T + ( - 2 sn/«)">•. (7.8.16)

\/c Sn lit/

This is the generalization of (7.7.2). Using (7.4.5), (7.8.11), (7.8.15)
and (15.1.6), it becomes

2p

f? exp[A(2« + /')] 11 H(iu - iu,) H(iu - iut + W)

= (4/k)p[04p(iu) + rH*p(iu)], (7.8.17)

which is the generalization of (7.7.10).
The zeros of the RHS of (7.8.17) occur when

(k sn2 iu)2p + r = 0. (7.8.18)

The expression on the LHS of (7.8.18) is a doubly periodic function of iu,
with periods 21, 2iV. It has one pole, of order 4p, per period rectangle,
so from theorem 15b it has 4p zeros per period rectangle.

To locate these zeros, set

u = -hl'-i(j>. (7.8.19)

Then, using (15.4.12), (7.8.18) becomes

exp[4*>Am(0)] + r = 0. (7.8.20)

Define 6, as in (7.7.14). Then (7.8.20) will certainly be satisfied if 0 =
<j>j, where

6 > / - i ^ , j=l,...,2p. (7.8.21)

As is shown in Section 15.4, the function Am(0) is real and increases
monotonically from -\n to \K as </> increases from -/ to /. Since
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0<6j^n, (7.8.21) therefore has a unique real solution, with - / <
<j>i s£ /. Solutions with different values of; are distinct.

From (15.2.6), if u is a solution of (7.8.18), then so is « + / ' . Thus
(7.8.18) has 4p solutions

u = j = 1 , . . . , 2p. (7.8.22)

To moduli 2V, 2il these are distinct, so we have found the 4p zeros of the
RHS of (7.8.17). Their locations in the iu-plane are shown in Fig. 7.3.

! i'

[ X • X • X

- I . O

I X • X • X

- I '

X • X • X •

I .

X • x • x i

Fig. 7.3. The locations in the complex iw-plane of the 4/7 zeros of the RHS of
(7.8.17), namely iu =(pj + ii/'. (Here p is 3.) The crosses are the zeros for r =
+ 1; the circles are the zeros for r = - 1 . The broken line is the perimeter of the

period rectangle.

TheLHSof (7.8.17) has 4p zeros, in pairs uy and «; — /'. Thus the general
solution of (7.8.17) is

Uj = -i Yjl' - i<t>j, (7.8.23)

where

Yj=±l, ; = l , . . . , 2 p . (7.8.24)

This is the generalization of (7.7.16). (The value ; = 2p when r — -1 is
excluded in Section 7.7, because when k-*l, I and (^ then tend to
infinity.)

As in Section 7.7, not all solutions of (7.8.23) are allowed. The reason
for this is actually easier to see now than it was then: theorem 15c imposes
the restriction (15.3.7) on the locations of the zeros of a doubly periodic
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function. Applied to equations (7.8.12)-(7.8.15), this restriction becomes

ui + ...+ulp = (p + 2V) I' + i[i(l - r) + 21] I, (7.8.25)

where / and /' are integers.
If r = +1, the 0yS occur in pairs (0 , - (j>). If r = - 1 , they all do so except

for (/>p = 0 and 02,, = /. Using (7.8.23), the imaginary part of (7.8.25) is
therefore satisfied, while the real part gives, for r = ±1,

Yi + • • • + Y2p = 2p - 4 x integer , (7.8.26)

as in (7.7.20). Thus r and all but one y; can be chosen independently, giving
22P = 2" eigenvalues. This is the expected number, since V and W are 2"
by 2" matrices.

Substituting these results for u\,. .. , u-^ into (7.8.15), A can be chosen
to ensure (7.8.13) and (7.8.14), giving

A(u) = p[/i(J«)]-" II e-*y'"/4/H{iu -fy+U Yjl') • (7.8.27)

This result can be slightly simplified by squaring both sides and using the
relation (15.2.4) between H{u + W) and @(«), giving

where p' is another constant.
Using (15.1.6), this can in turn be written as

A2(M) = D FI jfc* sn (JM - ft + 1 i y, / ' ) , (7.8.29)

where D is independent of yi, • • • > y?p> being given by

From (15.2.4) and (15,2.3), D is a doubly periodic function of iu, with
poles of order 2p at iu = 0 and / ' , and 4p simple zeros, at iu = ty ± HI',
j = 1 , . . . , 2p . From (7.8.18)-(7.8.22), one such function is

(frsn2 iuf + r
( 7 8 3 1 )

The ratio of D to the expression (7.8.31) is therefore an entire doubly
periodic function of iu. From theorem 15a, it is therefore a constant.
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To within a normalization constant, therefore, the term D in (7.8.29)
can be replaced by the expression (7.8.31). The normalization constant
can now easily be obtained from (7.8.16), giving

A2(M) = T ( —I + r(2 sn iu)
\\ksniuj

x n fc1 sn (iu -<t>j + h i Yjl'), (7.8.32)

where
r = + l i f r = + l ,

= -i if r = - 1 . (7.8.33)

7.9 General Expressions for the Eigenvalues

Having used elliptic functions, and in particular their factorisation theorem
15c, to evaluate the eigenvalues A, we can now eliminate them. From
(7.8.21), (15.4.12), (15.4.4) and (15.4.5),

(7.9.1)

cn(0, -HI') dn((fr - | i /') = -ik* expii8,)c,, (7.9.2)
where

Cj = k~l (1 + k2- 2k cos 20,)4. (7.9.3)

Using the addition formula (15.4.21), it follows that

_ en iu dn iu - i k Cj sn iu

Also, from (7.8.5),

exp(-idj) - k exp(i6j) sn2 (iu)'

A = —isniu

cosh 2K = en iu

sinh 2L = i/(k sn J'M)

cosh 2L = i dn iu/(Jfc sn iu), (7.9.5)

while from (15.2.6)

**sn(iu -<j>j-iH') = [^sn(iu -<pj + hi/')]-1 (7.9.6)
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Using these relations, (7.8.32) can be written (dropping the explicit depend-
ence of A on u) as

A2 = T(-4)"[(sinh 2LfP + r (sinh 2K)2?] U (W)", (7.9.7)

where

cosh 2K cosh 2L + c}

;0y) sinh 2tf + exp(-/0 /) sinh 2L - { ' ' '

Analytic Continuation to T ^ Tc

This result has only been obtained for k < 1, since only then can the elliptic
function definitions of Chapter 15 be used. However, for finite p each
eigenvalue must be an algebraic function of exp(2K) and exp(2L), so
(7.9.7) can be analytically continued to k 3= 1, i.e. to I? Tc.

In doing this, the only difficulty is the sign of each c,-. Provided
0 < dj<n there is no problem: (7.9.3) is positive for k < 1 and tends to
a strictly positive limit as k —* 1, so the analytic continuation of (7.9.3) is
the positive square root.

On the other hand, if r = -1 and / = 2p, then 6j = Jt and, for k<\,
(7.9.3) gives

ifr= - 1 . (7.9.9)

This tends to zero as k—* 1, and its analytic continuation is clearly negative
iovk>\.

Thus the formulae (7.9.7), (7.9.8) and (7.9.3) apply not only for k <
1, but also for k ^ 1, provided that the positive sign is chosen in (7.9.3)
except when r = - 1 , / = 2p and k^l.

Counting of the Eigenvalues

One disadvantage of this method, as with any method that does not depend
on an explicit representation of the transfer matrix, is that it only proves
that any eigenvalue of VW must be of the form (7.9.7), with an appropriate
choice of yi,. . . , y2p- It does not tell us how many eigenvalues there are
for a particular choice of ft,. . . , Yip, if indeed there are any.

There are two ways round this problem: one can consider a low- or
high-temperature limit, when at least some of the eigenvalues (notably the
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largest) can easily be uniquely identified, or one can compare with a direct
calculation using spinor operators (Kaufman, 1949). One does in fact find
that for each choice of r and yu • • • > Y2p satisfying (7.8.26), there is one
and only one eigenvalue given by (7.9.7).

Maximum Eigenvalue and the Free Energy

In the thermodynamic limit the partition function Z is given by (7.2.5).
Since the lattice has m rows of 2p sites, the total number A' of sites is Imp.
From (1.7.6) and (7.2.5), the free energy/per site is therefore given by

-f/kBT=(2Py1lnAmax, (7.9.10)

where kB is Boltzmann's constant and Amax is the eigenvalue of greatest
modulus.

From (7.6.1), (7.9.3) and (7.9.8), for K and L real,
cosh2^cosh2L + c/

m cosh 2£cosh 2L - c,' K'-y-ii)

while for K and L positive,

0 « cy *£ cosh 2K cosh 2L. (7.9.12)

It follows that |ju,| 2s 1, so the RHS of (7.9.7) is maximised by choosing
Yi = . . . = YP = + 1, which is allowed by (7.8.26). The product of the
denominators of fi\,. . . , nip in (7.9.7), as given by (7.9.8), can then be
calculated using (7.7.14). It exactly cancels with the leading factors in
(7.9.7), except Ap, giving

2p

ALx = H 2(cosh 2K cosh 2L + cj). (7.9.13)

This is true for either r = + l o r r = - l . However, from the Perron-
Frobenius theorem (Gantmacher, 1959, p. 53) the maximum eigenvalue
of a matrix with all positive entries corresponds to an eigenvector with all
positive entries. From (7.6.2), this can only happen if r = +1.

Define

F(6) = In {2 [cosh 2K cosh 2L + k~l (1 + k1 - 2k cos 20)*]}. (7.9.14)

Then from (7.7.14), (7.9.3) and (7.9.13), setting r = +1, it follows that

[ O ) p ] (7.9.15)
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This is a sum over iF(dj), where 6U . . . , d^ are uniformly distributed
over the interval (0, n). In the limit of p large it therefore becomes the
usual definition of the integral of iF(0), divided by the sub-interval length
nl2p. Thus (7.9.10) becomes

-f/kBT = (2JT)-1 JF(6) dd. (7.9.16)

This is the principal result of this chapter: the free energy of the square
lattice Ising model in the thermodynamic limit.

7.10 Next-Largest Eigenvalues: Interfacial Tension, Correlation Length
and Magnetization for T <TC

In this section it will usually be supposed that 0 < k < 1.

Asymptotic Degeneracy and Interfacial Tension

What is the next-largest eigenvalue of the transfer matrix? Clearly one
candidate is Ai, the eigenvalue obtained by setting r = - l , y 1 = . . .
= YTp = +1. From (7.9.13), (7.9.14), (7.9.3) and (7.7.14), this is given by

2p

In Ai = \ 2 F(7ijl2p) i f jk<l . (7.10.1)

The two sums in (7.9.15) and (7.10.1) differ only by terms that are
exponentially small when/? is large. To see this, Fourier analyse F(0):

oo

F(6)= 2 amcos2md. (7.10.2)
m = 0

Now substitute this expression for F(d) into (7.9.15) and (7.10.1) and
interchange the j and m summations. The / summation is then easily
performed, giving

In Amax = p p ^

In Ai = p(a0 + a2p + a^ + a^ + . . . ) . (7.10.3)

This transformation is a special case of the Poisson summation formula
(Courant and Hilbert, 1953, Vol. 1, p. 76). It is ideally suited to evaluating
Amax and Ai for large p, since the am usually tend exponentially to zero
with increasing \m\.
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To see this, set

z = exp(2i0) (7.10.4)

and consider F(d), given by (7.9.14), as a function of z. It has branch
points at z = 0, k, k~l and «, and is analytic in the annulus k < \z\ <

r1.
The Fourier expansion (7.10.2) can be written

oo

F(6) = i ^ am(zm + z~m), (7.10.5)
m = 0

which is plainly a Laurent series. Since F i s analytic on \z\ = 1, this series
converges. More strongly, since F is analytic in the annulus k < \z\ <
AT1, and singular at z = k, k~l, the series (7.10.5) must converge for k <
z\ <k~l and diverge when z = k or AT1. From the ratio test for series

convergence, it follows at once that

am~km a s m - » ° ° . (7.10.6)

Since Ai < Amax, it now follows from (7.10.3) that when p is large

A!/Amax = 1 - €(k2P). (7.10.7)

For k < 1, the two largest eigenvalues Amax and At are therefore asymp-
totically degenerate, in that their ratio differs from unity by terms that
vanish exponentially with the width of the lattice.

The rate of this exponential decay is a measure of the interfacial tension
s, as can be seen by the following argument (Fisher, 1969).

Consider the quantity

Z'N = Trace (VW)ml2R , (7.10.8)

where V, W are the row-to-row transfer matrices and R is the spin reversal
operator denned by (7.3.14). As in (7.2.3), this is the partition function
of a lattice of m rows, but with the anti-cyclic condition that the spins in
the top row are the reverse of those in the bottom row.

In an ordered ferromagnetic state the spins are either all mostly up, or
all mostly down, within a region. Suppose that near the bottom of the
lattice they are mostly up. Then from the anti-cyclic boundary condition,
near the top of the lattice they must be mostly down, as in Fig. 7.4.

Somewhere in between, there must be a line running across the width
of the lattice separating the domains of mostly up and mostly down spins.
There are n sites per row, so this line will give an extra contribution ns to
the free energy, where s is the interfacial tension per unit length. Thus

-kBTlnZ'N = Nf+ns, (7.10.9)
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where / is the usual free energy per site of the lattice, given by (1.7.6).
Thus

Z'NIZN = exp(-ns/kBT). (7.10.10a)

This is not quite right: it is the correct contribution to the partition
function of a separation line but there are many such lines, as can be seen
by considering the zero-temperature limit. In this, all spins above the
separation line must be down and spins below it must be up, and the line
must be of length 2n lattice spaces, which is the minimum possible length.

_ / + • • + . _ - -
•'•+ + + \ - , • • • • + •••

+ - + +'•--•+ +

Fig. 7.4. The two domains induced at low temperatures by requiring that the spins
in the top row be the reverse of those in the bottom row. Below the separation line
(shown dotted), there is a 'sea' of up-spins containing 'islands' of down spins.

Above the separation line the reverse is true.

All such arrangements minimize the energy under the given boundary
conditions,, so are equally likely. Given the face in which the left-hand
end, of the line lies, there are (2n)!/(n!)2 such lines: this is the number of
wa|ks of equal length that one may take in a rectangular-grid city to get
from Oth Street and fifh Avenue to nth Street and nth Avenue. The RHS
Qf (7.10.10a) should therefore be multiplied by this factor, but since for
H large it is effectively an exponential, it can be absorbed into the definition
qf 5.

On the other hand, since there are m rows, there are \m faces in which
the left-hand end of the separation line may lie. Thus the RHS of (7.10.10a)
should also be multiplied by this factor. This cannot be absorbed into s,
and clearly persists for non-zero temperatures, so (7.10.10a) should be
replaced by

Z'N/ZN = imexp(-ns/kBT). (7.10.10b)

From (7.2.3) and (7.10.8), it follows that

im expi-ns/ksT) = ^ ^ f f f • (7-10.11)
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Since R commutes with V and W, this result can in turn be written as

\m exp(-ns/kBT) = 2 rffl /2 Af , (7.10.12)

where the Ay
? are the eigenvalues of VW, and the r, the corresponding

eigenvalues of R.
When m is large only the two largest eigenvalues Amax and Ai contribute

to the sums in (7.10.12). The corresponding eigenvalues of R are +1 and
— 1, so

Am — Am

\m exp(-ns/kBT) = ™ , AL • (7-10.13)
Amax + Ai

Set
e=l -A 1 /A B U B , (7.10.14)

then (7.10.13) becomes

\ m exp(-ns/kBT) = { ' ^ Z ^ • (7-10.15)

From (7.10.7), evanishes exponentially with n. The definition (7.10.9)
of s is sensible only if m and n are large and of the same order, in which
case e is effectively small in (7.10.15), so

imexp(-ns/kBT) =\me. (7.10.16)

From this and (7.10.14), it follows that

Ai /A^ = 1 - 0 {exp(-ns/kBT)}. (7.10.17)

This is a general result, applicable to any two-dimensional ferromagnetic
system with T< Tc. Comparing it with (7.10.7), we see that for the Ising
model

exp(-s/kBT) = k. (7.10.18)

Thus the interfacial tension s is large and positive at low temperatures
(k ^ 1), decreases with increasing temperature (increasing k), and vanishes
at the critical temperature (k = 1).

Correlation Length

After Amax and Ai, what is the next-largest eigenvalue of (7W)'? From
(7.9.7) and (7.8.26), this is obtained by negating the two yys corresponding
to the smallest |juy|s. For r = +1, from (7.9.11), (7.9.3) and (7.7.14), the
next-largest eigenvalues A2 therefore corresponds to

yi = y2p = - i , Yi= ... = Y2P-i=+i, (7.10.19)



7.10 NEXT-LARGEST EIGENVALUES 115

and
A2/Amax=±(W2Pr1. (7.10.20)

Since 02p = j r - 0 i , it follows from (7.9.8) that \i2p=—\i*, so from
(7.9.11),

A2 ^ cosh IK cosh 2L - cl

Amax cosh 2K cosh 2L + c i ' < . - • . >

choosing for convenience the lower sign in (7.10.20).
In the limit of p large, Q\ tends to zero and c\ to |1 - k\lk, so

x = . 4 , (7.10.22)
where

cosh 2K cosh 2L + |1 - k\lk ' K'™^)

A similar argument applies for r= - 1 . If A2 is now taken to be the
next-largest eigenvalue for r = - 1 , then when p is large we again obtain
the result (7.10.22), to within an irrelevant sign.

Thus all eigenvalues A, other then Amax and Ai satisfy the inequality (for
p^c°)

|Ay|=£AAmax, (7.10.24)

where 0 < A < 1 provided k ± 1. This result justifies the simplification of
(7.10.12) to (7.10.13).

Provided all the eigenvalues Ay are real, the ratio A2/Amax is related to
the correlation length f. To see this, let P and Q be two sites on the lattice,
and aP, OQ the corresponding spins. Then from (1.4.4) and (1.8.1) the
expectation value of the product OpOQ is

(<JpOQ) = ZN1 2 OpOQ exp K 2 ofy + lE otak , (7.10.25)
a |_ ('./') 0'*) J

where the outer sum is over all values of all spins, and the inner sums have
the same meanings as in (6.2.1).
Using the same argument that led to (7.2.1), (7.10.25) can be written

(opoQ) = Zjf12 2 • • • 2 / OPOQ V ^ f c
*• «* *» (7.10.26)

Let (j> be a set of « spins { o i , . . . , an} and let s\ be the 2" by 2" diagonal
matrix with entries

(* iW = 0 if <t>'±<p (7.10.27)
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Then if P, Q are the first sites in rows x and y respectively, where x and
y are odd, (7.10.26) can be written as

(oPoQ) = ZN1 Trace VW. . . VWsx VW. . .

x VWsiVW.. . VW, (7.10.28)

where Si occurs before the *th and _yth matrices V. Thus

(oPoQ) = ZN1 Trace (VW)"1"1^! {VW)^~x)

y+1). (7.10.29)

The argument now closely parallels that of Section 2.2 for the one-
dimensional Ising model. Let U be the matrix of eigenvectors of VW, and
D the corresponding diagonal matrix with diagonal elements Djj = A,,
j =1,2,3,.... Then for all integers x,

(VW)xl2 = UDXU~1. (7.10.30)

Using this result, (7.10.29) can be written

(aPoQ) = Z~N
l S 2 % A/"* h;A.rx-y , (7.10.31)
« i

where
tv = {ir1

SlV)v. (7.10.32)

Now let m—* °°. The i summation in (7.10.31) is then dominated by the
value for which A, = Amax- Call this value 0. Using (7.2.5) it follows that

(0pOQ) = 2 to, (Aj/Amaxy-Xtjo. (7.10.33)

From (7.3.14) and (7.10.27) it is apparent that

SiR = -Rsl7 (7.10.34)

so whereas the transfer matrix VW commutes with R, the spin operator
si anti-commutes with it.

Since R2 = /, there is a representation in which

<7-1035>

Using the commutation and anti-commutation properties mentioned above,
it follows that V, W and U are all block-diagonal, i.e. of the form
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while si, and hence U~x Si U, is of the form

ol

It follows at once that

tij = 0 unless r, = -rh (7.10.36)

where r, and r; are the eigenvalues of R corresponding to A, and Ay,
respectively.

Since Ao = Amax corresponds to ro = + 1, this implies that the f0/ and tp
in (7.10.33) vanish unless r,-=—1. The summation can therefore be
restricted to such values of /, giving

(oPoQ) = foi'io(Ai/AmaxF~* + te'2o(A2/Amax)>"* + . . . . (7.10.37)

In the limit n -*• «, Ai = Amax- Provided A2, A3, . . . are all real, it follows
that for y - x large

(OPOQ) = tmtw + €[(A2/Amaxy-X]. (7.10.38)

The correlation function gPQ is denned in (1.7.21), which can normally
be written in the form

- lim (opOQ), (7.10.39)

i.e. gpQ is the difference between (oPoQ) and its limiting value for P, Q far
apart.

With this definition, (7.10.38) implies that for y — x large

gP Q~(A 2 /Am a x )>^. (7.10.40)

Since y - x is the distance between sites P and Q, the definition (1.7.24)
of the correlation length § gives

r1 = ln(Amax/A2). (7.10.41)

This is a quite general result, but it is not immediately applicable to the
present problem. To see this, note that Q is vertically above P, so gPQ is
the vertical correlation function on the diagonal square lattice. If K and
L are interchanged, this must become the same as the horizontal correlation
function. However, if P and Q lie in the same row, at positions 1 and ;',
then repeating the argument of (7.10.26)-(7.10.33) gives

(OPOQ) = (U'1 slSj !/)«,. (7.10.42)
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Here U is the matrix of eigenvectors of VW, which we have seen depend
on K and L only via k. Thus gPQ and £ must also depend only on k, whereas
from (7.10.22, 23) this is not true of Amax/A2.

The reason for this apparent contradiction is that the transfer matrix
VW is not in general symmetric, so its eigenvalues are not all real. The
eigenvalue A2 is merely the largest of a band of complex eigenvalues, with
different arguments. In the limit of n large this band becomes continuous
and the; = 2 contribution to (7.10.33) can be cancelled by the contributions
of eigenvalues arbitrarily close in modulus to A2, but with different argu-
ments. Johnson et al. (1972a, 1973) have explicitly found such a phenom-
enon for the eight-vertex model discussed in Chapter 10.

Fortunately in this case it is easy to retrieve the situation, since § can
depend only on k. For a given value of k, consider the isotropic case
K = L. From (7.4.2), the transfer matrix is then symmetric, so its eigen-
values are real and the formula (7.10.41) is valid. Using (7.6.1) and
(7.10.22, 23), it follows that, for 0 < k < 1,

r1 = - lnfc. (7.10.43)

Comparing this result with (7.10.18), we see that the interfacial tension
s and the correlation length § satisfy the simple exact relation

s$=kBT. (7.10.44)

Spontaneous Magnetization

From (1.7.22), the magnetization M is given by

M = (oP). (7.10.45)

Care has to be taken in evaluating this average for T <TC and H = 0.
For the finite zero-field system of this chapter, (o>) must be zero, since for
every state in which o> = +1, there is an equally likely state (obtained by
reversing all spins) in which oP = — 1.

What should be done is clear from Fig. 1.1: when H = 0 the magnetization
can take any value between Mo and -Mo, where the spontaneous mag-
netization Mo is defined by

Mo= lim (op); (7.10.46)

i.e. (oP) is to be evaluated for H> 0 in the thermodynamic limit, then H
allowed to tend to zero.

Now for H>0 it is certainly true that the correlation gPQ defined by
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(1.7.21) tends to zero as the P and Q become far apart. Since the system
is translation invariant, (o>) = (erg), so it follows that

(oP)2= lim (oPoQ). (7.10.47)
y -x—* °°

This can be taken as a definition of (o>) for H> 0. Letting H-*0, it
then provides a definition of Mo, so from (7.10.38), (7.10.46) and (7.10.47),

M0 = (tmtw)i. (7.10.48)

The calculation of this quantity is quite technical and I refer the reader
to the excellent book by McCoy and Wu (1973). One property, however,
can readily be deduced from the above: the eigenvectors of VW, and hence
the matrix U, depend on K and L only via k. From (7.10.32) therefore,
so do the Uj. Equation (7.10.48) therefore gives

Mo = function of k only . (7.10.49)

In fact, it was found by Onsager in 1949, and a proof published by Yang
in 1952, that

M0 = (l-A:2)1/8 = A:'1/4. (7.10.50)

In view of the difficulty of the calculation, this is an amazingly simple
result. It is curious that no simple way has been found to derive it. A
derivation, using corner transfer matrices and applicable to the more
general eight-vertex model, is given in Section 13.7.

7.11 Next-Largest Eigenvalue and Correlation Length for T > Tc

As in the previous section, let Aj be the maximum eigenvalue for
r = — 1, but now suppose that k > 1.

From (7.9.9), c2p is now negative. The formula (7.10.1) would still be
true if F{n) were defined by (7.9.14) with the square root negated, but it
is more sensible to keep the square root positive for all 6, in which case
the term / = 2p in (7.10.1) must be corrected to give

lnAi = ilni4 + jEF(ji / /2p), (7.11.1)
y = i

using the definition (7.10.23) of A.
The argument of equations (7.10.2)-(7.10.6) can again be used to show

that for large p the summations in (7.9.15) and (7.11.1) differ by expo-
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nentially small terms. The only difference is that now the annulus of
analyticity of F(d) is k'1 <\z\ < k, so am ~ k~m.

Subtracting (7.9.15) from (7.11.1), it follows that tor p large

A1/Amax = A i . (7.11.2)

Since A < 1, Ai is therefore no longer asymptotically degenerate with
Amax, and from (7.10.13) there is no interfacial tension.

It is still true that all other eigenvalues satisfy (7.10.24), so they are less
than Ai. If the eigenvalues of VW are all real, then the formula (7.10.33)
gives, for y - x large,

(aPaQ)~Ai(y-x). (7.11.3)

As in the previous section, this result can only be true for K = L, since
(oP OQ) is a function only of k. From (1.7.21) and (1.7.24) the correlation
length § is therefore given by

§=2/lnA: (7.11.4)

for all K, L such that k > 1.
This is small at high temperatures (k large), increases with decreasing

temperature (decreasing k), and becomes infinite at the critical temperature
(k = 1). Note that the high-temperature formula (7.11.4) differs from the
low-temperature one (7.10.43) in a factor of - 2 . There is no spontaneous
magnetization.

7.12 Critical Behaviour

From (7.6.1) and (6.2.2),

k = [sinh(27/A:Br) sinh(2J'/kBT)] -1, (7.12.1)

where / and /' are the interaction energies of the Ising model in the two
directions. Normally, / and./' are regarded as fixed, and the temperature
T as a variable.

As T increases monotonically from 0 to °°, so does k. Thus k is itself
a measure of the temperature.

Free Energy and the Exponent a

The free energy/is given by (7.9.14) and (7.9.16). For positive k and real
6, F{6) is an analytic function not only of 6, but also of cosh 2K cosh 2L
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and k, except only when 6 = 0 and k = 1. Thus/is an analytic function of
K and L, except possibly when k = 1.

Since the square root in (7.9.14) vanishes when 6 = 0 and k = 1, the
dominant singular behaviour of/is given by expanding F(6) in powers of
this square root and retaining only the first two terms, i.e. setting

F(6) = ln(2 cosh 2ATcosh 2L)

+ /r1sech2£sech2L(l + k2 - 2&cos20)4. (7.12.2)

Substituting this into (7.9.16), the contribution of the first term to / is
analytic even at k = 1, so the dominant singular part fs of / is given only
by the second term. Using the relation cos 20 = 2 cos20 - 1 and changing
the integration variable from 6 to \n - 6, it is found that

jtk cosh 2K cosh 2
where

Jki = 2*V(1 + k) (7.12.4)

and E(k) is the complete elliptic integral of the second kind of modulus
k:

Jrji/2

(l-fc2sin20)'d0. (7.12.5)
o

Near k = 1 this integral satisfies the approximate formula (Gradshteyn
and Ryzhik, 1965, Paragraph 8.114.3)

E(k) ~ 1 + i (1 - k2) ln[16/(l - k2)], (7.12.6)

so from (7.12.3), again neglecting analytic contributions to / ,

2 A h 2 ^ h 2 L 1 -k
(7.12.7)

Clearly, / i s in fact singular at k = 1.
A critical temperature can be denned either as a value of T for which

/ i s a singular function, or one at which the spontaneous magnetization or
interfacial tension vanishes, or one at which the correlation length f
becomes infinite. By any of these criteria, it is now evident that the square
lattice Ising model has one and only one critical temperature Tc, given by
k = l,i.e.

smh(2J/kBTc) smh(2J'/kBTc) = 1. (7.12.8)

Near T = Tc, k - 1 is proportional to T - Tc. Thus the definition (1.1.3)
can be replaced by

t = k - \ , (7.12.9)
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(7.12.10)

(7.12.11)

Comparing this with the definitions (1.7.7)—(1.7.9) of u, C and the critical
exponents a and a", we see that in this limiting sense

a=a' = Q. (7.12.12)

Other Exponents

From (7.10.18), (7.10.50), (7.10.43) and (7.11.4), near T=TC the inter-
facial tension s, the spontaneous magnetization Mo, and the correlation
length § behave as

s~-t, M0~(-t)w asf->0", (7.12.13)

Comparing these results with (1.7.34), (1.1.4) and (1.7.25), we see that
the corresponding exponents (i, /3, v, v' exist and are given by

p=l, 0 = h, v=v' = l. (7.12.14)

The scaling relations (1.2.15) and (1.2.16) are therefore satisfied.
Since the two-dimensional Ising model has only been solved in zero field

(H = 0), a complete test of scaling is not possible. Even so, there is a
wealth of numerical results (e.g. Sykes et al., 1973b; Domb, 1974; Baxter
and Enting, 1979) and of mathematical theorems applicable to the model
in a field. For instance, Abraham (1973) has rigorously proved that

y=7 /4 , (7.12.15)

in agreement with (1.2.14). There is no reason to suppose that the scaling
hypothesis is not satisfied. In particular the exponent 6 defined by (1.1.5)
is presumably given by

6 = 1 5 . (7.12.16)

7.13 Parametrized Star - Triangle Relation

In the above working I have delayed introducing elliptic functions for as
long as possible: until Section 7.8. There they were needed in order to
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express exp(2K), exp(2L) as meromorphic functions of some variable u,
while satisfying (7.6.1) for k independent of u.

This equation (7.6.1) is the 'commutation condition': two transfer mat-
rices with the same value of k, but different values of u, commute. This
was established in the first part of Section 7.3, using the star - triangle
relation (6.4.4), (6.4.5). In fact (7.6.1) is merely a re-interpretation of
(6.4.13).

Thus it would have been perfectly natural to have introduced elliptic
functions as early as Section 6.4, so as to obtain a parametrization of
(6.4.13), and indeed of the full star - triangle relations (6.4.8).

Onsager (1944, pp. 135 and 144) noted that this was an obvious thing
to do: in Section 6.4 the Ku K2, K^ Lu L2, L3 satisfy relations similar to
those of hyperbolic trigonometry (Coxeter, 1947). It is well known that
these can be simplified by using elliptic functions (Greenhill, 1892, Para-
graph 129): Onsager calls this a 'uniformizing substitution'. The resulting
identities are very simple and have analogues in other models: let us
therefore not leave the Ising model without noting them.

For / = 1, 2, 3, let Kh Lt in Section 6.4 be given by (7.8.5), with K, L,
u replaced by Kj, Lj, M;. Then (6.4.13) is automatically satisfied.

Substituting these expressions for K\,. . . , L3 into (6.4.14) and (6.4.15)
gives

R2 = -2i/(k2 sn iux sniu2 sn/« 3) , (7.13.1)

—i sn iu\ en iu2 en ZM3 - en iu\ sn iu2 sn m3 = k~l dniu\. (7.13.2)

From (15.2.5), the functions sn u, en u, dn u are all strictly periodic, of
periods 4/ and AW. Comparing (7.13.2) with the formula (15.4.22), it
follows that one set of solutions of (7.13.2) is

Mi = (An + 1) /' - u2 - «3 + AimI, (7.13.3a)

for all integers m, n.
From (15.2.5), (7.13.2) is unchanged by negating u2 and M3, or by

negating u2 and incrementing w3 by 21' + HI, or by interchanging u2 and
M3. From (7.13.3a), (7.13.2) is therefore also satisfied by

Mi = (An + 1) /' + M2 + M3 + AimI,

= (An - 1) /' + u2 - M3 + (Am - 2) il, (7.13.3b)

= ( 4 n - l ) / ' + M 3 - u 2 + ( 4 / n - 2 ) i / .

The difference between the RHS and LHS of (7.13.2) is a periodic
function of iu\, with periods AI,AW. Within each period rectangle it has
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four poles, at iui = ±H', ±U' + 21. From the theorem 15b it therefore has
just four zeros per such period rectangle. These are all accounted for by
(7.13.3), so this is the complete set of solutions of (7.13.2).

In addition to (6.4.15), there are two other relations obtained by per-
muting the suffixes 1, 2, 3, i.e. permuting uu u2, u3 in (7.13.2). The solution
(7.13.3a) is unchanged by this, but those in (7.13.3b) are not. The correct
solution is therefore (7.13.3a).

From (7.8.5), incrementing u\ by 41' or Ail leaves K^,L\ unchanged.
Without loss of generality one can therefore take the solution of (7.13.2)
to be

Mi + M2+M3 = / ' . (7.13.4)

The relations (6.4.8) are now satisfied.

Operator Form

Now let us look at the operator form (6.4.25) of the star - triangle relation.
The operators [/, are functions of K, L, and, from (6.4.13), every operator
has the same value k~l of sinh K sinh L. Regarding k as constant, they are
therefore functions of the single variable u in (7.8.5).

The middle operator has arguments L2, K2, rather than K2, L2. From
(15.2.6) and (15.2.5), interchanging K and L is equivalent to replacing u
by /' - u. Thus u2 should be replaced by /' - u2, which from (7.13.4) is
«i + M3. Writing [/, as a function of H, rather than K and L, the equation
(6.4.25) therefore takes the simple form

,(«I + M3) Ui+i(u3) (7.13.5)

This is an operator identity, true for / = 1 , . . . , 2N - 2 and all complex
numbers uu M3. In particular, it is true when Ui,«3 take their 'physical'
values 0 < Mi < / ' , 0 < M3 < / ' , corresponding to K\, Lx, K3, L3 being real.

7.14 The Dimer Problem

Before moving on to the next chapter, it is appropriate to mention the
planar dimer problem. This is because its solution by Kasteleyn (1961) and
by Temperley and Fisher (1961) was the next major advance in exact
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statistical mechanics after Onsager's solution of the Ising model; and
because the zero-field Ising model partition function can itself be expressed
as a dimer problem.

A 'dimer' is an object that occupies two adjacent lattice sites, e.g. a
dumb-bell shaped molecule. The 'dimer problem' is to determine the
number of ways of covering a given lattice with dimers, so that all sites are
occupied and no two dimers overlap. If there are N sites, then N must be
even and there must be N/2 dimers.

A simple illustration is to ask the number of ways of covering a chess-
board with dominoes, each domino filling two squares. Fisher (1961) used
his result to work this number out: it is 12988816.

For any lattice, the number of dimer coverings is clearly

Z = (m\2my1Jlb(pl,p2)b(p3,p4)b(ps,p6)...b(pN^,pN), (7.14.1)

where m = \N, the sum is over all permutations P ={p\,. . . ,PN\ of the
integers 1,. . . , N, and

b(i ,j) = 1 if sites / and/ are adjacent, (7.14.2)

= 0 otherwise.

This expression counts the number of ways of grouping the N sites in m
nearest-neighbour pairs, which is the same thing as covering them with
dimers. The factor 1/m! allows for the fact that no distinction is made
between pairs, and the factor 2~m is because no distinction is made between
a pair (i ,j) and a pair ( / , i).

Unfortunately there is in general no easy way to calculate the sum in
(7.14.1).

However, what one can make progress with is the expression

Pf{A) = {m\2m)-^epa{pup2)a{p3,pA)...a{pN.l,pN), (7.14.3)

where
a{i,j) = -a(j,i), (7.14.4)

and ep is the signature of the permutation P, being +1 for even permutations
and -1 for odd ones.

If A is the N by N matrix with elements a(i ,j) (i.e. a,y), then (7.14.3)
is known as the 'Pfaffian' of A (Muir, 1882). It is simply the square root
of the determinant of A:

Pf(A) = (detA)i, (7.14.5)

and determinants are comparitively simple to calculate, mainly because the
determinant of a product of matrices is the product of the determinants.
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Kasteleyn (1961) and Temperley and Fisher (1961), therefore asked the
question: can (7.14.1) be put into the form (7.14.3) by a judicious choice
of the signs of the a(i,/)? In general the answer is no, but for any planar
lattice (i.e. ones with no crossing edges) it turns out to be yes. Further,
for a regular lattice the resulting matrix A is effectively cyclic, so its
determinant can be calculated.

Following this solution of the planar dimer problem, Kasteleyn (1963)
showed that the square-lattice zero-field Ising model partition function can
be expressed as a dimer problem on a decorated lattice, and was therefore
able to re-derive Onsager's solution. As was mentioned in Section 7.1, this
Pfaffian method has proved very useful for calculating Ising model proper-
ties (Montroll et al., 1963; McCoy and Wu, 1973; Thompson, 1972).
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ICE-TYPE MODELS

8.1 Introduction

Following the solution of the Ising model and the dimer problem, the next
class of statistical mechanical models to prove tractable was that of the
'ice-type' models, which was solved by Lieb (1967a, b, c) for three arche-
typal cases, then more generally by Sutherland (1967).

There exist in nature a number of crystals with hydrogen bonding. The
most familiar example is ice, where the oxygen atoms form a lattice of
coordination number four, and between each adjacent pair of atoms is an
hydrogen ion. Each ion is located near one or other end of the bond in
which it lies. Slater (1941) proposed (on the basis of local electric neutrality)
that the ions should satisfy the ice rule:

Of the four ions surrounding each atom, two are close to it, and two are
removed from it, on their respective bonds.

This means that the partition function is given by (1.4.1), i.e.

z = 2 exp(-msr), (8.1.1)

where the sum is now over all arrangements of the hydrogen ions that are
allowed by the ice rule, and % is the energy of the arrangement.

For ice itself, % is the same for all allowed arrangements. With a suitable
choice of the zero of the energy scale, % can therefore be taken to be zero.
Z then becomes simply the number of allowed arrangements, and the
residual entropy is

S = kBlnZ. (8.1.2)

This is non-zero, since there are many arrangements allowed by the ice
rule. One of them is shown in Fig. 8.1(a) for the square lattice.

127
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(a) (b) (c)

Fig. 8.1. An arrangement of hydrogen ions on a 3 by 3 square lattice (with cyclic
boundary conditions), satisfying the ice rule: (a) the positions of the hydrogen ions
on the bonds, (b) the corresponding electric dipoles, (c) the corresponding line

representation.

Of course real ice, and other crystals, are three-dimensional, but unfor-
tunately the only exact solutions we have for three-dimensional ice-type
models are for very special 'frozen' states (Nagle, 1969b).

In this chapter only ice-type models on the square lattice will be con-
sidered. They exhibit similar behaviour to three-dimensional reality, and
have the enormous advantage of being solvable! (In particular, square ice
is really quite a good approximation to real ice, since the residual entropy
is only weakly sensitive to the structure of the lattice.)

The hydrogen-ion bonds between atoms form electric dipoles, so can
conveniently be represented by arrows placed on the bonds pointing toward
the end occupied by the ion, as in Fig. 8.1(b). The ice rule is then equivalent
to stating that at each site (or vertex) of the lattice there are two arrows
in, and two arrows out. There are just six such ways of arranging the
arrows, as shown in Fig. 8.2. (For this reason the ice-type models are
sometimes known as 'six-vertex' models, as opposed to the 'eight-vertex'
model of Chapter 10.)

In general, each of these six local arrangements will have a distinct
energy: let us call them eu ...,%, using the ordering of Fig. 8.2. Then the
partition function is given by (8.1.1), where

(8.1.3)n2e2 n6s6

and tij is the number of vertices in the lattice of type j.

Fig. 8.2. The six arrow configurations allowed at a vertex, and the corresponding
line configurations.
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We now have a very general model that includes three important models
as special cases.

Ice

As was remarked above, the ice model is obtained by taking all energies
to be zero, i.e.

£l = £ 2 = . . . = £ 6 = 0 . (8.1.4)

KDP

Potassium dihydrogen phosphate, KH2PO4 (referred to hereafter as KDP),
forms a hydrogen-bonded crystal of coordination number four, and orders
ferroelectrically at low temperatures (i.e. all dipoles tend to point in the
same general direction). Slater (1941) argued that it could be represented
by an ice-type model with an appropriate choice of £i,. . . , e6. For the
square lattice such a choice is

£l = £2=0,£3=£4=£5=£6> 0. (8.1.5)

The ground state is then either the one with all arrows pointing up and to
the right, or all pointing down and to the left. Either state is typical of
an ordered ferroelectric.

F Model

Rys (1963) suggested that a model of anti-ferroelectrics could be obtained
by choosing

£1 = £2 = £3 = £ 4 > 0, £5 = £ 6 = 0. (8.1.6)

The ground state is then one in which only vertex arrangements 5 and 6
occur. There are only two ways of doing this. One is shown in Fig. 8.3,

<

1

1

I

1

<

4

—fr-

Fig. 8.3. One of the two ground-state energy configurations of the anti-ferroelectric
ice-type model. Only vertex configurations 5 and 6 occur.
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and the other is obtained by reversing all arrows. Note that arrows alternate
in direction, as would be expected in an ordered antiferroelectric (Nagle,
1969a).

Restrictions

In this chapter the following restrictions will be imposed on ei,. . . , e^:

£i = e2, E3=E4, e5 = £6. (8.1.7)

These ensure that the model is unchanged by reversing all dipole arrows,
which one would expect to be the situation for a model in zero external
electric field. Thus this is a 'zero-field' model which includes the ice, KDP
and F models as special cases.

In fact the third condition c3 = £6 is no restriction at all. From Fig. 8.2
it is obvious that vertex arrangement 5 is a 'sink' of horizontal arrows,
whereas 6 is a 'source'. If cylindrical or toroidal boundary conditions are
imposed, then there must be as many sinks as sources, so n5 = n6. From
(8.1.3) it follows that £5 and e6 only enter the partition function in the
combination £5 + £5, so there is no loss of generality in choosing £5 = e6.

The other two conditions {e\ =£2and£3 = £4) are more ones of con-
venience than necessity, since the working of Sections 8.2-8.7 can easily
be generalized to the unrestricted case (so long as each of the six energies,
e.g. £1, is the same for all sites of the square lattice). The effect of relaxing
them (i.e. introducing electric fields) will be discussed in Section 8.12.

8.2 The Transfer Matrix

Yet another way of representing the hydrogen-ion dipoles is to draw a line
on an edge if the corresponding arrow points down or to the left, otherwise
to leave the edge empty. A typical arrangement of lines is shown in Fig.
8.1(c), and the six allowed line arrangements at a vertex are shown in Fig.
8.2.

Suppose the lattice has M rows and N columns, and impose cyclic (i.e.
toroidal) boundary conditions. Consider a row of JV vertical edges (between
two adjacent rows of sites). There are M such rows: label them r = 1, 2,
. . . , M sequentially upwards. Let q?r denote the 'state' of row r. i.e. the
arrangement of lines on the N vertical edges. Since each edge may or may
not be occupied by a line, cpr has 2N possible values. Then as usual we can



8.2 THE TRANSFER MATRIX 131

write the partition function as

Z = 2 5 ) . . . 2 V((pi, (p2) V{(p2, <p3). . . V(<pM_i, <pM) V(q>M, cpi)
<P2

= Trace VM, (8.2.1)

where V is the 2N by 2N transfer matrix, with elements

V(cp, cp') = 2exp [ - (miBi + m2E2+ • • • + m6e6)/kBT]. (8.2.2)

In (8.2.2), cp is the arrangement of lines on one row of vertical edges, and
cp' is the arrangement on the row above, as in Fig. 8.4. The summation is
over all allowed arrangements of lines on the intervening horizontal edges.

Y, y2

I I cp

i i cp i r

Fig. 8.4. The two typical arrangements of lines in adjacent rows (for n = 2). The
y\,. . . ,yn must interlace xi,. . . ,xn.

These arrangements must satisfy the ice rule at each vertex: if there is no
such arrangement, then V(cp, <p') is zero. There are at most two such
arrangements. The m\,. . ., m6 are the numbers of intervening vertices of
types 1,. . ., 6.

Let A be an eigenvalue of V, and g the corresponding eigenvector. Then

Ag = Vg. (8.2.3)

As in Sections 2.1 and 7.2, when M is large it follows from (8.2.3) that

Z ~ A£?ax, (8.2.4)

where Amax is the largest of the 2N eigenvalues of V.

8.3 Line-Conservation

In Fig. 8.2 and 8.1(c) the four lines in vertex arrangement 2 are divided
into two pairs. This makes it clear that the lines link together to form
continuous non-crossing paths through the lattice. If one starts by following
a path upwards, or to the right, then one will always be travelling in one
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or other of these two directions, never down or to the left. The cyclic
boundary conditions ensure that a path never ends.

Suppose there are n such paths from the bottom of the lattice to the top.
Each path will go through a row of vertical edges once and only once. It
follows that:

if there are n lines on the bottom row of vertical edges, then there are n
lines on every row.

In particular, there must be n lines on the second row, which means that
V(q>, q>') is zero unless q> and <p' contain the same number of lines.

The matrix V therefore breaks up into N + 1 diagonal blocks, one
between the state with no lines, another between states with one line, and
so on up to the state with N lines. Thus n, the number of lines per row,
is a 'quantum number' of the matrix V. We can restrict our attention to
states with a given value of n.

The obvious way to identify such a state is to specify the positions
xi,. . . ,xn of the lines, ordered so that

I^x1<x2<. . . <xn^N. (8.3.1)

Let X={x\,.. . ,xn} be such a specification, and let g(X) be the corre-
sponding element of the eigenvector g. Then (8.2.3) can be written

(8.3.2)

where V(X, Y) is the element of V between states X and Y, and is still
given by (8.2.2). Using (8.1.7), it is convenient to set

(a, = exp(-E/kBT), / = 1,. . . , 6 , (8.3.3a)

a = a>i = co2, b = 0)3=0)4, c=o)5=o)6. (8.3.3b)

(Thus o>i,. . . , co6 are the Boltzmann weights of vertex arrange-
ments 1,. . . , 6.) Then (8.2.2) becomes

V{X,Y) = 2ami+m2fem3+m4cms+m6, (8.3.4)

where X, Y replace <j>, <j>'; again the summation is over the allowed arrange-
ments of lines on the intervening row of horizontal edges; and
n%\,. . . , m6 are the numbers of intervening vertices of types 1,. . . , 6. Two
typical cases are shown in Fig. 8.4 (with n = 2).

The problem now is to solve the eigenvalue equation (8.3.1) for a given
value of n. It is very helpful to begin by considering the simple cases
n = 0,1 and 2.
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The Case n = 0

If n = 0, then there are no vertical lines in the two successive rows. There
are two possible arrangements of lines on the intervening horizontal row
of edges: either all the edges are empty, or they all contain a line. In the
first instance, all vertices are of type 1; in the second they are all of type
4. Thus the n = 0 block of V is a one-by-one matrix, with value

A = aN+bN. (8.3.5)

The Case n = 1

If n = 1, we can write g(X) as g(x), where x is the position of the vertical
line in the row. This x can take the values 1,. . . , N, so this block of V is
an N by N matrix, with elements V(x , y).

If x is less than y, then all horizontal edges between x and y must contain
a line, all others must be empty (as in the first half of Fig. 8.4a). If it is
greater than y, the reverse is true. If x = y, then either all horizontal edges
are empty, or all are full. Counting m\,. . . , m^ for the various cases, the
equation (8.3.2) becomes

x-1

bN-1 '2+ abN-1g(x)+ 2fia
x-y-1bN+>-x-1c2g(y). (8.3.6)

We look for a solution of the form

g(x) = zx, (8.3.7)

where z is a complex number. Substituting this form for g(x) into (8.3.6),
and summing some elementary geometric series, the equation becomes

Azx = aNL(z) zx - ax~l bN~xc2zN+1/(a - bz)

+ bNM(z) zx + ax~l bN~xc2zl{a - bz), (8.3.8)

where

L(z) = [ab + (c2 - b2)z]/(a2 - abz), ( 8 . 3 . 9 )

M(z) - [a2 - c2 - abz]l{ab - b2z).

The second and fourth terms on the RHS of (8.3.8) are 'boundary terms',
coming from they = N and y = 1 summation limits in (8.3.6), respectively.
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They differ only by a factor (—zA), so their sum can be made to cancel by
choosing

zN = \. (8.3.10)

The remaining first and third terms on the RHS are 'wanted terms', in
that they have the same form as the LHS (constant x zx). Thus (8.3.8) is
now satisfied if

K = aNL(z) + bNM(z). (8.3.11)

There are N solutions of (8.3.10) for the complex number z. With
(8.3.7), these give the N expected eigenvectors of this block of the matrix
V. The corresponding eigenvalues are given by (8.3.11).

The equations (8.3.7) and (8.3.10) could have been predicted on trans-
lation invariance grounds, but it turns out to be a mistake in this problem
to introduce this consideration too early: for n > 1 it obscures the structure
ofg(X).

The Case n = 2

When n = 2, g(X) becomes g{xx , x2), where xx and x2 are the positions
of the two lines. The summation in (8.3.1) is over all allowed line-positions
yi and y2 in the upper row of vertical edges, given that there are lines in
positions x\ and x2 in the lower row.

The two archetypal cases are shown in Fig. 8.4. There are special cases
when Vi or y2 equals X\ or x2, but the ice rule ensures that yi and y2 must
always satisfy either

*i *£ yi s= x2 =£ y2 or yi =£ *! ss y2 =s x2 •

Thus y\ and y2 must interlace x\ and x2.
Counting m.\, . . . , m6, allowing for the special cases, (8.3.2) becomes

Ag(xi ,x2) = 2J Z^ axi 1 E(xi,

xca"-Kg(yl,y2)+ 2

x E(Xl ,y2) D(y2, x2) c bN-^g{yx,y2), (8.3.12)
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where
D(y ,x) = ale iix =y ,

= cax->"1 ifx>y, (8.3.13)

E(x , y) = blc if y = x ,

= cby~x~x ify > x .

The * in the summations means that any terms with yx = y2 are to be
excluded. In each case there is only one such term: y\ =x2 = y2 in the first
sum, yi =xi = y2 in the second.

The first step in solving (8.3.12) is an obvious generalisation of (8.3.7):
try

g(xux2)=Aazftz¥, (8.3.14)

where Ai2, z\, z2 are complex numbers.
The summations in (8.3.12) are now straightforward, if rather tedious,

to perform. The easiest way is to first ignore the *, then subtract off the
contribution of the terms spuriously included. The first double summation
in (8.3.12) then gives

^a^-^zf +MibX2'x'zf)

} , (8.3.15a)
and the second gives

x ( L 2 aX2~xl z\x + M2 bX2-Xl zx
2

2) bN~X2

- aX2'Xl bN+x'-"2 (Z1Z2)11}. (8.3.15b)

Here Ly = L(z,) , M, = M{ZJ), and

Pi - p(Zj) = c2
Zj/(a

2 - abzj). (8.3.16)

Expanding the products in (8.3.15a), or (8.3.15b), gives a total of five
terms. These can be grouped into three classes.

Wanted terms

These are terms that have the same form as g{xx ,x2) itself, i.e. they are
proportional to zf1 zf. There is one each in (8.3.15a) and (8.3.15b), and
their sum is

Al2(a
NLlL2 + bNMlM2)z

xlzx
2

2. (8.3.17)
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Using (8.3.14), they cancel with the LHS of (8.3.12) if

A = aNLlL2 + bNM1M2. (8.3.18)

Unwanted internal terms

These have the form {z\Z2)
X1, or (ziZ2)

x\ and include the final correction
terms in (8.3.15a and b). Their sum in (8.3.15a) is

Aua
N+Xi'X2 bX2~Xi {MXL2 - 1) (ziz2)*2 , (8.3.19a)

and in (8.3.15b) it is

An a
X2~Xl bN+x'-X2 (MiL2 - 1) ( z ^ ) * 1 . (8.3.19b)

Using (8.3.9), one can verify that

MXL2 - 1 = -c2sl2/[(a - bzi) (a - bz2)], (8.3.20)

where if

A = (a2 + b2 - c2)/2ab , (8.3.21)

then

*iz = 1 - 2 A z2 + zlZ2. (8.3.22)

Boundary terms

These come from either the y2 = N or the y\ = 1 summation limits in
(8.3.12), and are characterized in (8.3.15) by the fact that they contain a
factor P2 or pi. Define

Rj(x , x') = Ljax'-Xzf + M,b*'-Xzf. (8.3.23)

Then the sum of the boundary terms in (8.3.15a) is

-AuffW-^Rifa , x2) ^ , (8.3.24a)

and in (8.3.15b) it is

Aua
x^bN-xm2{xx, x2) Pl. (8.3.24b)

Elimination of unwanted terms

To satisfy (8.3.12), the unwanted terms (8.3.19) and (8.3.24) must be
eliminated. How can this be done? A fairly obvious idea is to generalize
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the ansatz (8.3.14) and to try a linear superposition of such terms, i.e.

g(xi,x2) = ?LA®zi]rz%r. (8.3.25)

Put another way, we try summing over various choices of Z\ and z2, with
appropriate coefficients Au.

The wanted terms will certainly cancel if they do so for each value of
r, i.e. if (8.3.18) is satisfied for every choice of z\ and z2. Since A is
independent of r, the RHS of (8.3.18) must therefore be the same for all
choices of Z\ and z2.

Also, it may be possible to cancel the unwanted internal terms (8.3.19)
if for every choice of zx and z2 there is another choice z[ and z'2 with the
same value of Z\z2. Together with the previous remark, this means that
z\ and z2 must satisfy

z[z'2 = zx z2

= aNL{zx) L(z2) + bNM(zi) M(z2). (8.3.26)

Eliminating z2 and using (8.3.9), this gives a quadratic equation for
z[. There are therefore just two solutions for z[ and z2, and it is obvious
that they are:

z [ = z u z'2 = z 2 a n d z \ = z 2 , z'2 = z x , ( 8 . 3 . 2 7 )

since interchanging z[ and z2 leaves (8.3.26) unchanged.
(For more complicated problems, notably staggered ice-type models with

different weights on the two sub-lattices, there are additional solutions for
z{ and z'2. Regarding (8.3.14) as a 'plane wave' trial function, these z[ and
z2 can be regarded as 'scattered waves', the two equations (8.3.26) playing
the role of total momentum and total energy conservation. For n = 2, such
problems can be solved by using these scattered waves, but unfortunately
the working does not then generalize in any apparently useful way to
n>2.)

From (8.3.27), it follows that in addition to the choice (z\, z2), we should
also include the choice (z2 , Zi). Thus there are just two terms in (8.3.25),
and the resulting ansatz for g{xx, x2) can be written

g(Xl,x2) = Auzi1 z? + A21z?z?. (8.3.28)

Summing (8.3.19) over these two choices (the second choice is obtained
by interchanging the suffixes 1 and 2, except in JCI and x2), it is obvious that
the unwanted terms cancel if

(MtL2 - 1)A12 + (M2U ~ l)A2i = 0. (8.3.29)
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Using (8.3.20), this condition simplifies to

s12A12 + s2iA2i = 0. (8.3.30)

Finally, summing the boundary terms (8.3.24a) and (8.3.24b) together
over the two choices, we obtain

^bN-*{p2Rl{xux2) (An - zUn)

+ PlR2(x1,x2) (Au - z?A2l)}. (8.3.31)

Clearly this will vanish for all X\ and x2 iff

? (8.3.32)

Solving (8.3.30) for Ai2/A2i, (8.3.32) then gives two equations for z\ and
z2. These can in principle be solved (there are many solutions, correspond-
ing to the different eigenvectors of V). To within a normalization constant,
the elements of the eigenvector g are then given by (8.3.28), and the
eigenvalue A by (8.3.18).

8.4 Eigenvalues for Arbitrary n

The solution of the eigenvalue problem for arbitrary n is a straightforward
generalization of that for n = 2. The appropriate generalizations will be
briefly indicated in this section. A fuller description (for the ice model) is
given by Lieb (1967a).

The eigenvalue equation (8.3.12) becomes

Ag(Xl,...,Xn)= i . . . i i v - 1

E u D a P n P n • • • E n n c a N - y " g ( y l , . . . , y n )

+ 2 2 . . . 2 * by^DnEnD22E23...
>l = l>>2=J:i yn-Xn-l

DnncbN-x"g(y!,..., y n ) , (8.4.1)

where 1 ^X\ <x2 < . . . <xn ^ N, the * means that no two of y\,. . .,yn

can be equal, and Z),y = D(yt , Xj), £,y = E(xi , yj).
One first tries taking

g(x1,...,xn)=A1...nz
x
1

l...zx
n", (8.4.2)

where Ai,,,n is a constant coefficient.
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The first n-fold summation on the RHS of (8.4.1) then gives

A1,,,n{ax'Ri(x1,x2). • .Rn-i(xn-i,xn)

x (Lna
N~x"zXn - pnb

N~x"Zn) - correction terms}, (8.4.3a)

and the second gives

^i...»{(ft«11 + M1b«z?)R2(xl,x2). . . RJ,xn-Uxn)b
N-x"

- correction terms}. (8.4.3b)

Here the 'correction terms' arise from explicitly subtracting off spurious
contributions from yx = y 2 , y2 = yi, • • •, or yn-X = y n .

From (8.3.23), each Rj(x, x') is a sum of two terms. Expanding the
products of the n - 1 Rs therefore gives 2""1 terms. In each of (8.4.3a)
and (8.4.3b), only one of these is 'wanted' (i.e. has the same form as
f{x\,..., xn). Equating these wanted terms on both sides of (8.4.1) gives

A = aNLl...Ln + bNM1...Mn. (8.4.4)

Apart from the 'boundary terms' containing a factor pn or p\, all other
terms contain at least one factor of the form

(Zjzi+1yi+i or (z}zj+1y. (8.4.5)

They can be made to cancel by adding terms in (8.4.2) with z; and z;+1

interchanged. Doing this for all /, and all initial choices of z\,. . ., zn

thereby generated, one is led to replacing (8.4.2) by

, . . .,xn) = 2 ^ , P s z ; | . . . zx"n, (8.4.6)

where the sum is over all n\ permutations P = {pi,. . ., pn} of the integers
1 , . . . ,« .

This trial form for the eigenfunction is the same as that used by Bethe
(1931) for diagonalizing the quantum-mechanical Hamiltonian of the
one-dimensional Heisenberg model. For that reason it is known as the
Bethe ansatz.

Evaluating the internal unwanted terms containing the factors (8.4.5)
(these include contributions from the 'correction terms'), one finds they
cancel provided the following generalization of (8.3.30) is satisfied, for all
permutations P and ; = l , . . . , / i — 1:

sPhPi+f//*Pi'--->Pi> ~*~ s P i + \ > P j A p \ , . . . , p j + i , p j , . . . , p n
 = 0 . (8.4.7)

This leaves only the boundary terms, containing a factor p, for some
value of/. Replacing z\,...,zn in (8.4.3a) by z2,. . ., zn, zu it becomes
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obvious that the boundary terms therein will cancel with those in (8.4.3b)
if

-z?A2...ni + A 1 . . . n = 0. (8.4.8)

Making all possible permutations of Z\,. . ., zn, all boundary terms will
therefore cancel if

zP1 — Apu...tPJAP2t.^p^pl , (8.4.9)

for all permutations P.
These conditions (8.4.4), (8.4.7) and (8.4.9) do in fact ensure that the

eigenvalue equation (8.4.1) is satisfied (see Lieb, 1967a, for a full treatment
of the sufficiency of these conditions for the ice model). It is not immediately
obvious that they can all be satisfied, since there are many more equations
than unknowns. However, it is easy to verify that (8.4.7) has the solution
(to within a normalization factor):

A* /^^xJEJ^W" (8A1°)
where eP is the signature (+1 for even permutations, -1 for odd ones)
of the permutation P. Substituting this into (8.4.9) then gives, for all P,

n

The RHS of this equation is symmetric in p2, • . • , pn, so there are only n
such distinct equations, namely

n

zf = {-)"-'J\sulshl (8.4.12)
*i

for/= 1, . . . , n.
Thus we have n equations for z\, . . . , zn. These can in principle be

solved, and the coefficients AP calculated from (8.4.10). The eigenfunction
g is then given by (8.4.6), the eigenvalue A by (8.4.4).

8.5 Maximum Eigenvalue; Location of zi, • • • , zn

Unfortunately the equations (8.4.12) have not in general been solved for
finite n and N. (This contrasts with the Ising model, where all eigenvalues
can be explicitly obtained for finite N.) It turns out that they can be solved
for the maximum eigenvalue in the thermodynamic limit (N large), but
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reasonable care is necessary to ensure it is the maximum eigenvalue that
is obtained.

A remarkable feature of the equations (8.4.2), (8.4.10), (8.4.12) and
(8.3.22) is that they are not merely of the same form as Bethe's ansatz for
the Heisenberg model: they are exactly the same! Thus the eigenvectors
of this model are those of our transfer matrix V. This meant that Lieb
(1967a, b, c) was able to use the known properties of the Heisenberg
model, in particular the work of Yang and Yang (1966) to identify and
evaluate the maximum eigenvalue in the limit N—><x>. This work is quite
rigorous, and the interested reader is referred to it. Here I shall merely
give some plausible arguments to locate the solution of (8.4.12) corre-
sponding to the maximum eigenvalue, and to evaluate it for N large.

The Case n = 2

Again it is instructive to consider the case n = 2, when (8.4.12) becomes
(8.3.32). Multiplying the two equations (8.3.32) together gives

(z1z2)
N = l, (8.5.1)

which implies that

Ziz2 = t, (8.5.2)

where T is an Mh root of unity.
This relation is a simple consequence of the translation invariance of V,

since from (8.3.28) it implies that

g(Xl + 1, x2 + 1) = rg{xx, x2). (8.5.3)

From the Perron - Frobenius theorem (Frobenius, 1908), the eigenvector
corresponding to the maximum eigenvalue must have all its entries non-
negative. From (8.5.3), this can only be so if r = 1, so we must choose the
solution

Z!22 = l (8.5.4)

of (8.5.1) (i.e. g(xi , x2) is itself translation invariant, as we would expect).
Also, from (8.3.28) and (8.3.32),

g(Xl, x2) = A2l(z
N+x> zf + zf zf), (8.5.5)

so, using (8.5.4) and setting

r = i N - l , (8.5.6)
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we have

g(Xl, x2) oc cos k(Xl -x2 + W) • (8.5.7)

Now, x\ - x2 + IN can take all integer (or half integer) values from
—r to r. To ensure that all values of g{x\, x2) be non-negative, it is therefore
sufficient that k should either be real and lie in the interval \—nl2r , Jt/2r],
or that k should be pure imaginary.

Further, negating k merely interchanges z\ and z2, leaving the eigenvector
g unchanged. Thus we can just as well limit our search to real values of
k in the interval [0 , n/2r], or positive pure imaginary values.

Now use (8.3.22), (8.3.30) and (8.3.32) to write zf as a rational function
of Z\ and z2, and use (8.5.4) to eliminate z2. The resulting equation for Z\
is

A(zf-1 + z1) = z f + l , (8.5.8)

or using (8.5.6),

A = cos(r+ l)fc/cos rk. (8.5.9)

Plotting the RHS of (8.5.9) as a function of k for k real, and for k pure
imaginary, it is easily seen that:

if A < 1, (8.5.9) has one real solution in the interval (0 , xl2r), and no
pure imaginary solution;
if A > 1, (8.5.9) has no real solution in (0 , nllr), but has a single
positive imaginary solution.

In both cases it is evident from (8.5.7) that all values of g{xi ,x2) are
strictly positive so, from the Perron - Frobenius theorem, we have located
the solution corresponding to the maximum eigenvalue of V in the n = 2
sub-block.

When /i = 1, it is obvious from (8.3.7) and (8.3.10) that the eigenvector
with all positive entries is given by z = 1.

Admittedly these n = 2 and n = 1 results provide very slender evidence,
but they do in fact point in the right direction: when A < 1 (and n =s %N)
the solution of (8.4.12) that maximizes A is such that zu . . . , zn are distinct,
lie on the unit circle, are distributed symmetrically about unity, and are
packed as closely as possible. The equation (8.4.12) does admit solutions
with two or more of Z\,. . . , zn equal, but these must be discarded since
from (8.4.6) and (8.4.10) all elements of g then vanish identically.

The n = 2 and n = 1 results also suggest that for A > 1 the z\,...,zn

are all positive real, but we shall not need this hypothesis.
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8.6 The Case A > 1

The case A > 1 is trivial. Let An be the maximum eigenvalue for a given
value of n. Then from the above results it can be verified that, for N
sufficiently large,

A 0 >A! and A 0 >A 2 . (8.6.1)

In fact, it can be shown that (Lieb, 1967c)

A 0 ^ A n , n = 0,...,N. (8.6.2)

Thus the maximum eigenvalue is simply Ao, i.e. from (8.3.5),

Amax = aN+bN. (8.6.3)

From (1.7.6), (8.2.4) and (8.3.3), remembering that the lattice has MN
sites, the free energy is therefore given for N large by

/=min(e 1 ,e 3 ) . (8.6.4)

The system is 'frozen' in the sense that if one vertical arrow is fixed to be
up, then the probability of any other arrow being up is unity, no matter
how far it is from the first. (Providing of course that the proper thermo-
dynamic limit is taken; both arrows must be deep within an infinite lattice.)
This is complete ferroelectric order.

Such frozen solutions exist for three dimensional ice-type models (Nagle,
1969b): one of the very few exact results in three dimensional statistical
mechanics.

8.7 Thermodynamic Limit for A < 1

If zi,. . . , zn lie on the unit circle, then the equations (8.4.12) involve
complex numbers. They can be reduced to a set of real equations as follows.

Define the 'wave numbers' k\,..., kn, and the function &{p , q) by

s,/sy>, = exp[-*0(/cy, A:,)]. (8.7.1)

From (8.3.22) it follows that

e-«(p.9) = - — Z A e +

1 2Aiq +
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and hence that

Q(p,q) = 2 tan'HA sin i(p -q)/[cosi(p + q) - Acos | (p - q)]}, (8.7.3)

so &(p , q) is a real function.
The product in (8.4.12) is unchanged by including the term / = /, so

(8.4.12) can now be written „

expOMy) = ( - ) " " 1 FI exp[*0(fcy, ki)). (8.7.4)

Both sides of this equation are unimodular, i.e. of the form exp(id), so it
is natural to take logarithms and divide by i, giving (for ; = 1 , . . . , « )

n

Nkj = 2xlj - S ®(kj, k,), (8.7.5)

where each /, is an integer if n is odd, and half an odd integer if n is even.
The equation (8.7.5) is consistent with the hypothesis that k\,. . . , kn

are real, since so then are both sides of (8.7.5).
We want k\,. . . , kn to be distinct, symmetrically distributed about the

origin, and packed as closely as possible. This suggests choosing

I , = j - i ( n + l ) , j = l , . . . , n . (8.7.6)

Yang and Yang (1966) proved that (8.7.5) then has a unique real solution
for ku . . . , kn.

The ratio nIN is the proportion of up arrows in each row of the lattice,
so it is the probability of finding a vertical arrow to be up. When N is large
we expect this probability to tend to its appropriate thermodynamic limit.
This means that we are interested in solving (8.7.5) in the limit of N and
n large, nIN remaining fixed.

In this limit k\, . . . , kn become densely packed in some fixed interval
(—Q,Q), so they effectively form a continuous distribution. Let the
number of kjS lying between k and k + dk be Np(k) dk. Then in the limit
of N large, p(k) is the distribution function. Since the total number of kjS
is n, p{k) must satisfy

f p{k)dk = nlN. (8.7.7)
J-Q

For a given value k of kh /, + 1 (n + 1) is the number of kts with / <j.
Thus (8.7.5) becomes

M: = -jz(n+l) + 2xN \ p(k') dk' - N \° @(k , k') p(k') dk'.
J-Q J-Q

(8.7.8)
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Differentiating with respect to k, dividing by N and rearranging, this gives

] ^ }p{k')dk'. (8.7.9)
[Q

This is a linear integral equation for p(k). For a given ratio nIN, Q is
determined by (8.7.7).

The eigenvalue A is given by (8.4.4). In the limit of N large both terms
on the RHS grow exponentially, the larger completely dominating the
smaller. From (1.7.6), (8.2.4) and (8.3.3), the free energy/is therefore
given by

/= minfej - kBT 2 [In L(z,)]/N, e3 - kBT^ [In M(z,)]/N] . (8.7.10)

In the limit of N, n large, these sums become integrals, giving

/ = min j £1 —kBT [° [In L(e*)] p(k) dk ,
J-Q

Q£3 - kBT \Q [lnM(e'*)] p(k) dk) . (8.7.11)
J-Q >

Since p(k) is an even function, these integrals are real.

8.8 Free Energy for -1 < A < 1

The problem now is to solve the linear integral equation (8.7.9). For the
case A = -1 Hulthen (1938) noted that by making an appropriate change
of the variable k, the equation can be transformed to one with a difference
kernel. Walker (1959) generalized this to A < - 1 , and Yang and Yang
(1966) to A < 1. There are more complicated models that can be solved
by the Bethe ansatz method (Lieb and Wu, 1968; Baxter, 1969, 1970b, c,
1973a; Baxter and Wu, 1974; Kelland, 1974a). In every case such a trans-
formation to a difference kernel exists. (See also the remarks following
(8.13.77) and (10.4.31), remembering that trigonometric functions are
special cases of elliptic functions.)

For -1 < A < 1 the appropriate transformation is to replace k by a,
where if

A = -cos ju, 0 < J U < J T , (8.8.1)

then
exp(i)t) = [exp(j» - exp(ar)]/[exp(i> + a) - 1]. (8.8.2)
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Differentiating logarithmically gives

dk _ sin \i
dor cosh a — cos \i'

(8.8.3)

so k is a real monotonic increasing function of a, odd, going from ju - n
to n — fi as a increases from — oo to °°.

In (8.7.2), let p = k(a) and q = k{(i). Then the equation simplifies to

, *)] = e X P ! r ^ e X P i f i (8.8.4)
exp(/J - or) - exp(2zu) '

so @(p , <jr) is a function only of a- /3 (and the constant jit).
Let (2^r)-1 R(a) be the transformed distribution function, defined by

R(a) da = 2jtp(k) dk. (8.8.5)

Making the substitutions (8.8.2), (8.8.4) and (8.8.5) in (8.7.8), differen-
tiating with respect to or and using (8.8.3), the integral equation becomes

*(*) = _ * ! £ ±\Ql ^ m*fi, (8.8.6)
cosh a - cos ft In J_Gl cosh(ar - j8) - cos 2n ^' r v y

where (-<2i , Q\) is the interval on the or line corresponding to (-Q , Q)
on the A: line. The side condition (8.7.7) becomes simply

{2n)~l \ ' R(a)da=n/N. (8.8.7)
J-e,

The free energy is given by (8.7.11) and (8.3.9). On making the sub-
stitutions (8.8.2) and (8.8.5) it becomes natural to define another constant,
w, by

alb = [exp(iju) - exp(iw)]/[exp(i(i + iw) - 1], -ft < w < fi. (8.8.8)

From (8.3.21) and (8.8.1) it then follows that

a: b: c = sin k(n - w): sin j(n + w): sin fi, (8.8.9)

and from (8.8.2) that
ik = expjiw + iy) - expja - in)

exp(ar) - exp(z'w)

= exP(iWin),xP(a+in)
exp(a) - exp(iw)
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Using (8.8.5), the formula (8.7.11) for the free energy now becomes

f=min{ei-(kBT/2jt) { ' [\n L(eik)]R(a) da,
J-Qi

£3 - (kBT/2n) I ' [InM(eik)]R(a) da}. (8.8.11)
J-Qi

Solution by Fourier Integrals

Since (8.8.6) is a linear integral equation with a difference kernel, it can
be solved by Fourier integrals if <2i = ».

Suppose this is so. Let

)~l ^
J-00

R(x) = (2n)~l ^ R(a) exp(ixa) da. (8.8.12)

Multiplying both sides of (8.8.6) by exp(ixa) and integrating over a, we
obtain

= sinh(̂ M)* _ s i n h ^ 2 ^ _
sinh ;cc sinh nx

It immediately follows that

~R{x) = i sech /«:. (8.8.14)

From (8.8.12), the LHS of (8.8.7) is simply £(0), which from (8.8.14)
i s i Thus if 0i = oo, then

n = W. (8.8.15)

We want to choose n so as to maximize A, or equivalently to minimize
the expression (8.8.11) for/. It makes very good sense to assume that
(8.8.15) is the correct value of n, since it corresponds to the symmetric
situation when there are as many down arrows as up ones in each row of
the lattice. Further justification of this argument is given by Lieb (1967).

We could also have predicted that 2i = °° by arguing that if the first
term dominates in (8.4.4), then A is maximized by choosing n as large as
possible so that h\,. . . , Ln all have modulus greater than unity. (If the
second term, then Mi,. . . , Mn.) Thus if there is a real value of k for which
L [exp(ik)], or M [exp(ifc)], is unimodular, then this should correspond
to k = ±Q. For -1 < A < 1 there are two such values, and from (8.8.10)
they obviously correspond to a= ±°°, i.e. 2i = °°> Q = n ~ !*•

Thus we are in the fortunate position that we can calculate R(a) ana-
lytically when, and usually only when, n = iN, and this is precisely the
desired value to obtain Amax. Nature can be kind!
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If w = 0, then a = b, ex = e3 and \L\ = \M\, so the two terms in (8.8.11)
are equal. If w < 0, then the first term is the smaller; if w > 0, the second
term.

Consider first the case w < 0. Since R(a) is even, the function
In L[exp(ik)] in (8.8.11) can be replaced by its even part, which is also its
real part. The Fourier transform of this is

exp(kor)ln|L(e'*)|dar
)

_ sinh (/x + w)x sinh {n - [i)x
x sinh nx

(8.8.16)

The Fourier transform of R(a) is given by (8.8.12) and (8.8.14). Using
these results, (8.8.11) becomes, for w < 0,

+ . i r ) x r i n h ^" M ) X dc . (8.8.17)
x sinh ;EC cosh pix

Using (8.8.3), (8.8.9) and the formula

sinh (fi + w)x = sinh (fi - w)x 4- 2 cosh/u sinhvv :̂, (8.8.18)

this result can be written as

/ = g3 - kBT

However, this is precisely the result obtained for w > 0. Thus both
(8.8.17) and (8.8.19) are valid throughout the interval -fi < w < fj,. There
is no singularity at w = 0.

In general these integral expressions for the free energy cannot be
analytically evaluated. An exception is when fi is a rational fraction of
n. For instance, for the ice model (8.1.4), a = b = c = 1, w = 0 and ju =
2;r/3. The integral in (8.8.17) can then be evaluated by summing over
residues in the upper half-plane, giving

\°° S i n h ^ -. ^ S i n h ^ ~ ^ dc • (8.8.19)
J-oo 2JC sinh x« cosh ^c

ZI/MN _ ~vn/ _ tit- T\ — (AIX\^ ta c ')^^

which is Lieb's (1967a) result for the residual entropy of square ice.

8.9 Free Energy for A < -1

If A < - 1 , the parameters fi, a denned by (8.8.2) are purely imaginary,
so can be replaced by - ik, -ia, where A and the new a are real. Then
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(8.8.1) and (8.8.2) become

A = -coshA, A > 0 , (8.9.1)

e* = (eA - t-ia)l(cl-ia - 1). (8.9.2)

As a increases from - n to n, k also increases from - n to n.
The integral equation (8.8.6) now becomes

*<»> = cosh X-cosa-^L cosh 2A - co,(a - ffl ^ * > (8"9"3)

and the side condition (8.8.7) remains unchanged.
Whereas (8.8.6) was solvable by Fourier integrals if Qi = °°> the cor-

responding equation (8.9.3) is solvable by Fourier series if Q\ = n. Set,
for all integers m,

Rm = (2JI)'1 I" R(a) exp(ima) da. (8.9.4)

J-JI

Multiplying (8.9.3) by exp(imar) and integrating, we obtain

Rm = exp(-A|m|) - exp(-2A|m|)«m, (8.9.5)
so

(8.9.6)

From (8.9.4), the LHS of (8.9.7) is simply ^ 0 , so again we have
n = iN. This is the value of n for which we expect A to obtain its maximum
value.

The free energy is still given by (8.8.10) and (8.8.11), but now w (like
H and the old a) is pure imaginary, so we replace it by —iv, where
- A < v < A. Then (8.8.9) and (8.8.10) become

a:b:c = sinhi(A - v) : sinh|(A + v): sinh A, (8.9.7)

A)-exp(-A-/f l r)
exp(-iar) - exp(y)

. (8.9.8)v ' exp(-jar) -exp(y)

If v < 0, then the first term in (8.8.11) is the lesser, and In L[exp(i&)]
can easily be Taylor expanded in powers of exp(ia). Doing this, then using
(8.9.6), gives

k i e X p ( - w A ) s i " h f A + t ; ) } . (8.9.9)
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This expression can be re-arranged as

f=e3-kBT\HX-v)+ i expC-m^sinhMA-,)!
I m=i mcoshmA J

but this is precisely the result obtained when v > 0. Thus both (8.9.9) and
(8.9.10) are valid throughout the interval -A < v < A.

Equations for Finite n

Instead of taking the limit N, n -* °° and then making the change of
variables in (8.9.1), we could equally well have made the change of variables
first. The intermediate equations will be needed in the next two chapters,
so it is convenient to give them here.

Let aj be the value of or when k = kj. Then from (8.7.1) and (8.9.1)

Zj = exp(ikj) = sinh £(A + ia;)/sinh £(A - iat), (8.9.11)

for; = 1 , . . . , « . Using this, (8.7.1) and (8.7.2), the original finite-n equa-
tions (8.4.12), (8.4.4) can be written

sinh |(A + iaMN _ A sinh[^(or, - a,) - A']
] K\smh[ii(a,- a,) + A'] ' ^ " " }

_ vrr s i n h t(v + iaj + W) | ftN A sinh j(v + iaj - 2A')
l i sinh i(v + iaj) / il=i sinh i(v + iaj) f=\ sinh i(v + iaj)

(8.9.13)

where

A'= A - « r . (8.9.14)

As n—»°o, «i,. . . , a,, tend to a continuous distribution on the line
interval {~n, JZ). The number of cr;s in the interval (a, a+ da) is then
(2^r)~1 NR(a) da. In this limit the equations (8.9.12) for ac\,. . . , an reduce
to the integral equation (8.9.3) for R(a).

8.10 Classification of Phases

We have seen that the free energy takes a different analytic form depending
on whether A > 1 , 1 > A > - 1 , or - 1 > A . In terms of the Boltzmann
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weights a, b, c, it follows from (8.3.21) that there are four cases to consider,
the four regimes being shown in Fig. 8.5.

I. Ferroelectric Phase: a> b + c

In this case A > 1 and, from (8.3.2) and (8.3.3), et < e3, e5. Thus the lowest
energy state is one in which all vertices are of type 1, or all of type 2.
Either all arrows point up or to the right, or all point down or to the left.

b/c ,

1

11 y

IV

/

III

1

/
/

I

o/c

Fig. 8.5. The phase diagram of the zero field ice-type model, in terms of the
Boltzmann weights a,b,c. The dotted circular quadrant corresponds to the free-

fermion case, when A = 0 and the model can be solved by Pfaffians.

Thus at very low temperatures the system is ferroelectrically ordered (all
parallel arrows point the same way), and the free energy/is equal to S\.

However, from Section 8.6, this is the value of/throughout the regime
I. This means that excited states give a negligible contribution to the
partition function and throughout the regime I the system is frozen in one
or other of the two ground states. As explained in Section 8.6, there is
complete ferroelectric order.

II. Ferroelectric Phase: b>a + c

This is the same as case I, except that now it is vertex types 3 and 4 that
are dominant. There is complete ferroelectric order: effectively all arrows
either point up and to the left, or they all point down and to the right.

III. Disordered Phase: a, b, c < h(a + b + c)

This is the case when -1 < A < 1. It includes the infinite temperature case
a=b = c = 1, so one might expect the system to be disordered. This is



152 8 ICE-TYPE MODELS

true in the sense that all correlations decay to zero with increasing distance
r.

However, if a2 +b2 = c2 (when the weights must lie in this regime III),
then from (8.3.21,22) it follows that A = 0 and s,y = s,,-. The equations
(8.4.12) then simplify dramatically, AP is proportional to £>, and the
eigenfunction (8.4.6) is simply a determinant.

In this case the problem can be solved by the Pfaffian method mentioned
at the end of the last chapter (Fan and Wu, 1970; Wu and Lin, 1975) and
the correlations calculated. It is found (Baxter, 1970a) that they decay as
an inverse power law in r, rather than an exponential. From (1.7.24), the
correlation length § is therefore infinite, so the system is not disordered
in the usual sense.

As will be shown in Chapter 10, the ice-type model is a special case of
the eight-vertex model, which can also be solved. In this regime III, the
ice-type model corresponds to the eight-vertex model being at a critical
temperature. There are infinitely many eigenvalues of the transfer matrix
which are degenerate with the maximum one. There is no spontaneous
order or interfacial tension, but the correlation length is infinite.

The ice-type model therefore has a very unusual property: it is critical
for all a, b, c in the regime HI.

IV. Anti-Ferroelectric Phase c> a + b

In this case A < -1 and £5 <E\, £3. The lowest energy state is either that
shown in Fig. 8.3, or the one obtained from it by reversing all arrows. In
either case the arrows alternate in direction.

At sufficiently low temperatures we therefore expect the system to be
in an ordered state with this anti-ferroelectric ordering. Since the free
energy is analytic throughout the regime IV, we expect this to be the
anti-ferroelectric ordered regime. This is confirmed by the following results
for A < - 1 , i.e. for c> a + b.

Interfacial Tension

For A < - 1 , Q\ = Q = JI, so the maximum eigenvalue corresponds to
z\,...,zn being distributed round the whole of the unit circle. A more
careful analysis (Baxter, 1973b) reveals that for N even there are actually
two such solutions in the n = \N sub-space. The numerically larger of the
two eigenvalues (Ao) corresponds to an eigenvector which is symmetric
with respect to reversing all arrows; the smaller (Ai) is negative, and
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corresponds to an anti-symmetric eigenvector. The Z\,. . . , zn of one sol-
ution interlace the z\,. . . , zn of the other, and for N large

A^Ao = -1 + €{exp(-Ns/kBT)}, (8.10.1)
where if

x = exp(-A), (8.10.2)
then

exp(-5/A:Br) = 2*1_1

(This result is derived in Section 10.10 for the more general eight-vertex
model.)

Thus Ao and Ai are asymptotically degenerate. From an argument parallel
to that of Section 7.10, s is the interfacial tension between the two ordered
anti-ferroelectric phases.

Spontaneous Staggered Polarization

Regard the ground state arrow arrangement shown in Fig. 8.3 as a 'standard'
configuration. For any arrow configuration, assign a parameter T; to each
i according to the rule:

T, = +1 if the arrow on edge i points in the same
direction as the arrow in edge iin Fig. 8.3,

T, = -1 if the arrow points in the opposite direction.

Then (T,) is the mean 'polarization' of the electric dipole on edge i,
normalized to lie between -1 and 1. It is defined with respect to the
alternating arrow pattern of Fig. 8.3, so is a 'staggered' polarization.

We have exactly the same problem defining it that we had for the Ising
model spontaneous magnetization in Section 7.10. If we define it as in
(1.4.4), then it must be zero, since for every state with an up (or right)
arrow on edge i, there is another state (obtained by reversing all arrows)
with the same energy and a down (or left) arrow on edge i.

However, by using only symmetries which leave the standard configur-
ation of Fig. 8.3 unchanged (arrow reversal plus translation, and mirror
reversal plus rotation plus arrow reversal) one can show that (r,) must have
the same value for all edges i, horizontal or vertical. If PQ is this common
value, then by analogy with (7.10.47) we can define it by

P2
0 = lim(T,ry), (8.10.4)

where the limit is that in which edges i and / are infinitely far apart. This
Po is the spontaneous staggered polarization. (Just as Mo is the limit of M
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when H-* 0+, so is Po the limit of (r() obtained by applying a staggered
electric field to the ice-type model, then turning it off.)

We now use an argument similar to that of (7.10.25)-(7.10.37). Consider
a particular column C of the lattice. Let %\ =+ 1 if the vertical arrow in
row i of this column points up, -1 if it points down. Let s be the 2N by 2N

diagonal matrix with entries +1 (-1) for row-states with an up (down)
arrow in column C. Then, for j > 1,

<tlTJ) = toMM/Ao)''' + ter^Aa/Ao)'-' + . . . , (8.10.5)

where if U is the matrix of eigenvectors of the transfer matrix V, then fa
is the element (0,1) of U~lsU, i.e.

tol = (U-1sU)M, (8.10.6)

and similarly for tw, fa, etc. The summation in (8.10.5) is over all eigen-
values Ai, A2,. . . that correspond to eigenvectors which are anti-symmetric
with respect to reversing all arrows. Thus Ao (=Amax) is not included, but
A! is.

First take the limit N-* °° in (8.10.5). From (8.10.1), Ai/Ao-» - 1 . All
the other eigenvalues remain strictly less than Ao in modulus. Thus if we
now let j - i become large, we obtain

<i^>~<bifio(-iy-'. (8-10.7)

The r'i are defined relative to a regular configuration (all arrows up),
while the r, are defined relative to the staggered configuration of Fig. 8.3.
It follows that ifiTfj = ( - iy+>TiTj, so from (8.10.4) and (8.10.7)

P2o = toitw. (8.10.8)

The matrix elements fa and tw have been calculated (Baxter, 1973c: the
calculation is quite intricate and complicated). The result is

( 8 1 0 - 9 )

Correlation Length

After Ao and Ai, the next-largest eigenvalue A2 is the maximum eigenvalue
in the n = \N—\ (or n = J iV+l ) subspace, for N even. Again
zu. . . , zn are distributed round the unit circle, but there is a hole in the
distribution at z = - 1 . Such incomplete distributions can be handled (Yang
and Yang, 1968; Gaudin, 1971; Takahshi and Suzuki, 1972; Johnson and
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McCoy, 1972). Specializing the more general eight-vertex result of Johnson
et al. (1972a, 1973), we obtain that for N infinite

2 ^T^m^v)
m = i m cosh ml

This expression is valid only for - A < u < 0 , since for w 3= 0 the
summation diverges. However, expanding the summand in powers of
exp(-2A) and summing term-by-term gives

where z = exp(u). This product formula is convergent and valid throughout
the allowed interval -A < v < A.

The correlation length § can now be obtained by reasoning similar to
that of Section 7.10. The formula (7.10.41) only necessarily holds if the
transfer matrix V is symmetric, which is true only if a = b and v = 0.
Indeed, Johnson, Krinsky and McCoy argued that f must be the same as
the decay length of the correlation between two vertical arrows in the same
row (instead of the same column). Like (oPoQ) in (7.10.42), this correlation
depends on the Boltzmann weights a, b, c only via the eigenvector matrix
U. From (8.4.6), (8.4.10), (8.4.12) and (8.3.22), these eigenvectors depend
only on A. From (8.9.1) and (8.9.7), this means that U is a function of
A, but not of v. (This point will be taken up in the next chapter.) Thus
§must also be independent of v, in contradiction to (7.10.41) and (8.10.11).

As with the Ising model, this argument demolishes one derivation, but
provides another. The equations (7.10.41) and (8.10.11) are valid for
v - 0, when V is symmetric and its eigenvalues are real. Since £ is inde-
pendent of v, the resulting expression for § must be valid throughout the
allowed range -A < v < A. It is

( 8 i a i 2 )

Johnson et al, (1973) verified this explicitly by properly summing (8.10.5)
over all relevant eigenvalues. Comparing this result with (8.10.3), we see
that the interfacial tension 5 and the correlation length § satisfy the exact
relation

s%=kBT. (8.10.13)

This is the same as the corresponding Ising model relation (7.10.44).
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8.11 Critical Singularities

Consider a given set of values of the interaction energies eu . . . , e6,
satisfying (8.1.7). For a temperature T, the Boltzmann weights a, b, c are
given by (8.3.3). they correspond to a point in the {ale, blc) plane of Fig.
8.5.

As T increases from 0 to °°, this point traces out a path in the plane,
always ending at the point (1 ,1) in regime III. Depending on the values
of Ei, £3, £5, this path may or may not cross from one regime into another.

If the lowest two of el7 £3, £5 are equal, then the path always lies inside
regime III. The free energy is analytic for all temperatures T.

If one of £1, £3, £5 is less than both the others, then at sufficiently low
temperatures the path will be in regime I, II or IV. As T increases it will
cross into regime III, at a 'transition temperature' Tc. There can only be
one such transition temperature.

The free energy has a singularity at T= Tc, so in this sense this is a
critical point. It is, however, a very unusual critical point since, as was
remarked in the previous section, the correlation length is infinite through-
out regime III.

There are three cases to consider.

Ferroelectric: £1 < £3, £5

In this case, at sufficiently low temperatures, the weights a, b, c lie in
regime I of Fig. 8.5. The model then has complete ferroelectric order. A
typical example is the KDP model discussed in Section 8.1.

The transition temperature Tc is given by the condition

a = b + c (8.11.1)

For T> Tc,f is given by (8.8.9) and (8.8.17); for T< Tc,f is simply equal
to £1.

As r->7?, it follows from (8.3.21), (8.8.1) and (8.8.8) that /x-» n,
w-» -it. Thus it is useful to define 6, e by

H = K-d, w=-M+e. (8.11.2)
Then (8.8.9) becomes

a : b : c = sin i(d + e): sin £(e - <5): sin <5 . (8.11.3)

As 7 ^ 7 ^ , S and £ tend through positive values to zero, their ratio
remaining non-zero and finite. The temperature difference T — Tc is pro-
portional to

t = {b + c-a)la, (8.11.4)
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provided t is small. We can therefore use this as our definition of the
deviation of T from Tc, instead of (1.1.3). From (8.11.3), t is related to
6 and e by

t = 2 sin |6 (cos id - cos k)/sin i(<5 + e), (8.11.5)

and for 6 and e small this gives

t-id(e-d). (8.11.6)

Thus both 6 and e vanish as f* when f—» 0+.
Now make the substitutions (8.11.2) into (8.8.17) and let t become small.

We obtain, using (8.11.6),

/= £i - kBTc6(e - 6) T .*** + 0(f*) = £l - ikBTct
j- oo sinn Ljtx ?cj -i -I n\

(o.li./)

This is the result for t > 0. For t < 0, / is simply £i. Clearly/is continuous
at t = 0, its first derivative (the internal energy) has a step-discontinuity,
and its second derivative (the specific heat) diverges as r1 for t > 0. Using
the definition (1.7.10) of the critical exponent a, it follows (because of the
step-discontinuity) that

a=l, (8.11.8)

corresponding to a first-order transition.
For T <TC the system is completely ordered, so the spontaneous polar-

ization PQ is
P0 = l- (8.11.9)

Just as we defined in (1.1.4) a critical exponent /? for a magnetization
Mo, so can we define an exponent $> for an electrical polarization Po. In
this case it follows that

ft = 0. (8.11.10)

Above Tc the correlation length is always infinite, whereas below Tc it
is zero and the interfacial tension is infinite. The exponents v, v' and \i
cannot therefore be sensibly defined. Despite this pathological behaviour,
the model is interesting in that it is one of the very few that can be solved
in the presence of a symmetry-breaking field (in this case a direct electric
field). This calculation will be outlined in the next section and the critical
equation of state obtained.

Ferroelectric: e3 < eu es

Exactly the same results hold for this case as for the previous case, provided
£1 is interchanged with £3, a with b, and regime I with regime II. Indeed,
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this corresponds merely to mirror-reversing the lattice, or rotating it through
90°.

Anti-Ferroelectric: es < £i, £3

At sufficiently low temperatures the weights lie in regime IV of Fig. 8.5.
The transition from regime IV to regime III occurs at a critical temperature
Tc given by

c = a + b (8.11.11)

For T>TC, f is given by (8.8.9) and (8.8.17); for T< Tc it is given by
(8.9.7) and (8.9.9).

This case is quite different from the previous two, because the ordered
state is one of partial anti-ferroelectric order, rather than complete fer-
roelectric order.

The 'singular part' /sing of the free energy can be defined by (1.7.10a).
Comparing (8.8.1) with (8.9.1), and (8.8.9) with (8.9.7), we see that the
analytic continuations from T> Tc to T < Tc of n and w are —ik and -iv,
respectively. In both cases win is real and -l<wlfi<l. Near Tc,
A — -1 and n is small.

We therefore want to continue analytically the integral in (8.8.17) from
small real positive values of n and n + w to small negative imaginary values.
To do this, we first use the evenness of the integrand to write (8.8.17) as

/ = £l - kBT9 (" Slnh <f + y e X p [ (" - ")X] ck , (8.11.12)
J- „ 2x sinh nx cosh IAX

where 9* denotes the principal-value integral. If n, w have negative ima-
ginary parts, this integral can be closed round the upper half of the complex
jc-plane. Summing over residues then gives, setting n = -/A and w = —iv:

f = £ 1 - kBT\hx+v) + i exp(~mA) sinhw;(A+v)

12 m=i mcoshwA

y {) p [ ( W] cosh[(m - l)nvlk]\
£ (m - i) sinh[(m - i)^/A] J"

(for the F-model, when v = 0, this result is given in eqn. A13 of Glasser
etal. (1972).)

Clearly the real part (for A, v real) of this expression is the same as
(8.9.9). Thus/Sing is the imaginary part of (8.11.13). Near Tc, A is small,
so

/sing = -4ikBTc exp(-JT2/A) cosh(;ru/2A). (8.11.14)
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Analogously to (8.11.4), let us define the deviation of T from Tc to be

t = {a + b-c)lc. (8.11.15)

Then, from (8.9.7), vlk remains finite and non-zero as t—*0, while for A
and v small

f = - i ( A 2 - u 2 ) . (8.11.16)

Thus near Tc both A and v are proportional to {-if.
It follows that the free energy has an unusual singularity at T = Tc,

namely
/sing x exp [-constant^-tf]. (8.11.17)

This is a very weak singularity. It and all its derivatives tend to zero as
t—* 0~. In fact, all temperature derivatives of the free energy exist and are
the same on both sides of the transition (Glasser et al., 1972; Lieb and
Wu, 1972, pp. 392-407). The transition is of infinite order.

Clearly (8.11.17) is not of the usually postulated form (1.7.10b), so the
exponent a does not properly exist. If one insists on giving it a value, the
only sensible choice is

a r = - ° ° . (8.11.18)

For T<TC, the correlation length §, the interfacial tension s, and the
spontaneous staggered polarization Po are given by (8.10.3), (8.10.9) and
(8.10.12). Their critical behaviour is most easily obtained by noting that
these infinite product expressions are precisely those that relate elliptic
moduli and integrals to their corresponding nome. In fact, from
(15.1.1)-(15.1.4):

exp(-l/§) = exp(-s/kBT) = kh, (8.11.19)

Po = ik'Iln,

where k, k', I are the modulus, conjugate modulus and elliptic integral
corresponding to the nome

q = x2 = exp(-2A). (8.11.20)

Near Tc, A becomes small so x and k approach one. Then /' —*i:t, so
from (15.1.3)

2 2 (8.11.21)

Also, replacing k and q in (15.1.4) by their conjugates k' and q', where
q' = exp(—nl/l'), we obtain

k' = Aq'h = 4 exp(-;r74A), (8.11.22)

In k = -8q' = -8 exp(-^2/2A) . (8.11.23)
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Using these formulae in (8.11.19), it follows that near Tc

, Po = (2JT/A) exp(-^2/4A). (8.11.24)

Thus If1, 5 and Po all tend rapidly to zero as A—> 0, i.e. as T-* Tc. They
each have an essential singularity similar to that of/Sing, i.e. of the form
(8.11.17). They do not vanish as simple power laws. The definitions (1.7.9),
(1.7.34) and (1.1.4) of their critical exponents v, n and fle therefore fail.

On the other hand, from (8.11.14) and (8.11.24) it is apparent that the
proportionality relations

r1 K *<*(-')*fS^/U (8.11.25)

are satisfied. If these quantities did vanish as power laws, then (8.11.25)
would imply the exponent relations

v = p = h + 2pe=i(2-a). (8.11.26)

In this sense we can therefore say that these exponent relations are satisfied.
In particular, the scaling relations (1.2.15) and (1.2.16) hold true.

Unfortunately, applying a direct electric field does not break the degener-
acy of the anti-ferroelectric ground states. To do this it is necessary to
apply a staggered electric field, alternating in direction on successive edges.
The model has not been solved in the presence of such a field, so we are
unable to apply any further tests of the scaling hypothesis in this case.

8.12 Ferroelectric Model in a Field

In the absence of fields the partition function Z is given by (8.1.1) and
(8.1.3), and the vertex energies e\, . . . , e6 satisfy the arrow-reversal sym-
metry relations (8.1.7).

The arrow-reversal symmetry can be broken by applying vertical and
horizontal fields E and E', respectively. These give each vertical up-pointing
(down-pointing) arrow an extra energy -E (+E), and horizontal right-
pointing (left-pointing) arrows an energy —E' (+£ ' ) .

If desired, these energies can be incorporated into the vertex energies
by sharing out the energy of each arrow between its end-point vertices. If
£i,. . . , 6s are the original zero-field vertex energies, satisfying (8.1.7),
then from Fig. 8.2(a) the six resulting vertex energies are

et-E-E', e2 + E+E', s3+E-E', e4-E + E', e5, e6.
(8.12.1)
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As was remarked in Section 8.1, there is no loss of generality in choosing
£5 = e6, so any six energies can be fitted to (8.12.1), using (8.1.7). This is
therefore the general six-vertex model.

This can be solved (Yang, 1967; Lieb and Wu, 1972): the working of
Sections 8.2-8.7 can be appropriately generalized, leading to a linear
integral equation of the form (8.7.9). In general this equation can no longer
be solved analytically, but its properties can be studied and it can of course
be solved numerically.

The generalization is particularly simple if E' = 0, i.e. only the vertical
electric field E is applied, so from now on let us consider this case. Rather
than incorporating the vertical field into the vertex energies, let us keep
£ ] , . . . , £fc as the vertex energies, still satisfying (8.1.7). Then (8.1.3) must
be replaced by

. . . + n6e6 - E(N, - 2Nd), (8.12.2)

where N, is the total number of vertical edges and Nd the number of
down-pointing arrows. (Thus N, - 2Nd is the number of up arrows minus
the number of down ones.)

The vital point to remember is that of Section 8.3: there are exactly n
down arrows in each row. Since there are M rows of N columns, it follows
that

Nt-2Nd = M(N-2n). (8.12.3)

Replacing (8.1.3) by (8.12.2), and noting that the transfer matrix V
breaks up into N + 1 diagonal blocks, each with its own value of n, the
equation (8.2.1) therefore becomes

N

Z = 2 exp[EM(N - 2n)/kBT] Trace V?, (8.12.4)
n = 0

where Vn is the nth diagonal block of the original transfer matrix V. If
An is the maximum eigenvalue in this block, then when M is large

N

Z ~ 2 A2* exp[EM(N - 2n)/kBT]. (8.12.5)
n = 0

Further, for M large the summation in (8.12.5) will be dominated by the
value of n which maximizes the summand. From (1.7.6) the free energy
per site is therefore

f = fn-E(l-2n/N), (8.12.6)
where

fn = -N-1kBT\nAn (8.12.7)

and n must be chosen to minimize the RHS of (8.12.6).
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Since V is the original zero-field transfer matrix, for a given value of n
this /„ is precisely the/given by (8.7.7), (8.7.9) and (8.7.11). The only
difference between the previous working and that of this section is that
originally we chose n to minimize /„ itself (the appropriate value being
n = i/V). Now we must minimize (8.12.6).

More explicitly, for each value of n we must solve (8.7.7) and (8.7.9)
for Q and p{k), using the definition (8.7.3) of 0. Then we must calculate
/„ from (8.7.11), and finally choose n to minimize (8.12.6).

The polarization P is the expectation value of (Nt - 2 Nd)/Nt, and since
the summation in (8.12.5) is dominated by the appropriate value of n, this
is simply given by

P = l-2nlN. (8.12.8)

As E varies, so may n; but since n is chosen so that (8.12.6) is stationary
with respect to variations in n (for given E), it follows at once that

-^-=l-2nlN=P. (8.12.9)

This equation is the expected analogue for electrical systems of (1.7.14).

Critical Equation of State

Let us suppose that £i is less than £3 and £5. Then in zero field there is a
transition at a temperature Tc given by (8.11.1). Close to this temperature,
the above programme can be carried out to first order in the temperature
variable* of (8.11.4).

The easiest way to do this is to go back to the equations (8.4.12), (8.3.22)
for Zi,...,zn. Defining k\,. . . ,kn by (8.7.1) these equations give

1 - 2A e* + e'<*'+*'> (8-12.10)

fory = l , . . . , « .
Define t, 6 as in Section 8.11. Then from (8.8.1) and (8.11.2),

A = cos S, (8.12.11)

andf, <5-» 0 as T-+ Tc.
In Section 8.8 it was shown that if n = IN, then Q = n — /u = 8. Thus

k\,...,kn are distributed over the interval (—d ,8). For n < \ N we expect
them to be distributed over some smaller interval centred on the origin.
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If 8 is small, it follows that k\,...,kn are of order 8. Expanding both
sides of (8.12.10) to order 8, and taking logarithms, it follows that

n

Nkj = 2 2 (<52 - kfki)l(k, - k,). (8.12.12)

Now let n,N tend to infinity, keeping n/N fixed. As in Section 8.7,
k\,...,kn effectively form a continuous distribution over some interval
(-Q , Q)- Again let Np(k) dk be the number of kjS between k and k + dk.
Then (8.12.12) becomes the integral equation

k = 2^jQ^y^p(k')dk', (8.12.13)

where -Q < k < Q and 2P means that the principal-value integral must be
used. Again Q is related to n/N by the condition (8.7.7). Using the definition
(8.12.8) of the polarization P, this condition is

p{k) dk = i(l - P) . (8.12.14)
- G

Writing kk' in (8.12.13) as k2-k{k-k'), and using (8.12.14), the
integral equation becomes

» -far,*, (81215)

This is a singular integral equation with a Cauchy kernel (Muskhelishvili,
1953), and can be solved exactly. (One brute-force way is to transform
from k, k' to a, a1, where k= Q tanh a, and then use Fourier integrals.)
The solution is, for Q ^ 8,

-T2T- (8.12.16)

Substituting this into (8.12.14) and using the formula

we find that Q is given by

6 = (5(1-P2) j . (8.12.18)

Since 0 ^ n ^ N, P lies in the interval (—1,1); so Q is always less than
d and the above solution is valid for all allowed values of n/N.

For a given value of n, the free energy /„ is given by (8.7.11). Since
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£1 < £3, the first term is the smaller, so we must expand L [exp(/A:)] about
6 = 0 and k = 0.

Using (8.3.9) and (8.11.4), noting that k ~ 6 and t~ <52, we obtain

In L (e*) = 2t + ik + (l - -\ k2 + O(<53). (8.12.19)

Substituting tms expression into (8.7.11), and using (8.12.16) and (8.12.18),
then gives

/„ = £ ! - kBT\t(l -P) + (l-^\ <52(1 - PflA + O(<53) 1. (8.12.20)

However, from (8.11.3) and (8.11.6), in the limit of 6 small,

(l--)d2=-2t, (8.12.21)

so, neglecting terms small compared with t, (8.12.20) simplifies to

fn = e1-UBTct(l-P
2). (8.12.22)

Now we choose n to minimize (8.12.6), remembering that n must lie
between 0 and N, and is related to P by (8.12.8). This gives

= EI{kBTct) if \E\<kBTct,

= sign(£) otherwise .

(8.12.23a)

(8.12.23b)

The resulting division of the (t, E) plane is shown in Fig. 8.6. In Region
A the system is disordered, with polarization P given by (8.12.23a). In
regions B, C it is completely ordered, with P = +1, - 1 , respectively.

Fig. 8.6. Phase diagram of the ferroelectric model near its critical point t = E =
0. The boundaries of the disordered phase A are the lines E = ±ksTc t.
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Scaling Hypothesis

Equation (8.12.23) is the critical equation of state, valid for all negative
t, and for small positive t. In view of its quite complicated derivation, it
is amazingly simple.

Remembering that P is the electrical analogue of M, and E of H, we can
compare (8.12.23) with the form (1.2.1) predicted by the scaling hypothesis,
namely

E/kBTe = P\P\s-1hJ(t\P\-l'P). (8.12.24)

A little thought shows that if hs(x) is of the general form shown in Fig.
1.4, and if

lim x"1 hs(x) = 1 , 6 = 1 + /T 1 , (8.12.25)

then (8.12.24) reduces to (8.12.23) in the limit /3^>0+. Thus the scaling
hypothesis is satisfied in this limiting sense, and the critical exponents are

a = l , f t = 0 , y e = l , 6 e = o o , (8.12.26)

using the suffix e to denote 'electrical' exponents. These results of course
agree with our previous observations (8.11.8) and (8.11.10).

Apart from the restriction in (8.12.25), hs{x) is undetermined. This is
a pity, since of the two-dimensional Ising, ice-type and eight-vertex models,
only this ferroelectric model has been solved in a symmetry-breaking field.
It would be extremely interesting to obtain an exact two-dimensional scaling
function.

8.13 Three-Colourings of the Square Lattice

The ice model is a special case of the 'six-vertex' or 'ice-type' model in
which £i,. . . , e6 are all zero, as in (8.1.4). Lenard (Lieb, 1967a) has
pointed out that the model is equivalent to counting the number of ways
of colouring the faces of the square lattice with three colours, so that no
two adjacent faces are coloured alike.

To see this, consider some such colouring of the lattice, and label the
colours 1, 2, 3. Place arrows on the edges of the lattice according to the
rule:

if an observer in one face, with colour a, looks across an edge to a
neighbouring face which has colour o+ 1 (mod 3), then place an arrow
in the intervening edge pointing to the observer's left; if the neighbouring
face has colour a—\ (mod 3), point the arrow to the right.
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Now imagine the observer walking once round a site. Let /be the number
of increases in colour (left-pointing arrows) that he sees, and D the number
of decreases (right-pointing arrows). Since he returns to the original colour,
it must be true that / - D - 0 (mod 3). Since there are four faces round
each site, it is also true that I + D = 4. The only non-negative solution of
these equations is / = D = 2, so there are two arrows into the site, and two
out. The ice rule (Section 8.1) is therefore satisfied at this and every site
of the lattice.

To every three-colouring of the lattice there therefore corresponds an
arrow covering of the edges that satisfies the ice rule. Conversely, to every
such arrow covering there correspond three allowed colourings of the
lattice (one square can be coloured arbitrarily; the colours of the rest are
then uniquely determined). Thus the number of ways of colouring the
lattice is 3Zice, where Zice is the ice-model partition function. It is also equal
to

2 G ( M , ^ 2 , ^ 3 ) , (8-13.1)

where G(Ni, Nz , A^) is the number of allowed ways of colouring the faces
so that Ni have colour 1, A^ have colour 2, and N3 have colour 3. If there
are N, faces altogether, then plainly

Ni + N2 + N3 = N,. (8.13.2)

The summation in (8.13.1) is over all non-negative integers N\, N2, N3
satisfying (8.13.2).

An obvious generalization of the colouring problem is to calculate the
G(N\, N2, N3) individually, instead of just their sum. Equivalently, we can
attempt to calculate the generating function

ZG = 2 z^z^zf G(ATi, N2, N3), (8.13.3)

for arbitrary values of Z\, z2, z3.
A more obviously statistical-mechanical way of looking at this problem

is to regard the colours 1, 2, 3 as three species of particles. Each face of
the lattice contains just one particle, adjacent particles must be of different
species. Then Zc in (8.13.3) is the grand-partition function of this
close-packed lattice gas; z\, z2, z-$ are the three activities.

It turns out that this problem can be solved (Baxter, 1970c, 1972a).
More precisely, one can calculate the limiting 'partition function per site'

K= lim ZlN<, (8.13.4)
Nr->°°

where as usual the limit Af,—» °° means the thermodynamic limit in which
both the height and the width of the lattice become large.
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The method is again that of the Bethe ansatz. Here I shall give the
required modifications of Sections 8.2 to 8.8.

Another problem that can be solved is that of four-colouring the sites
of the triangular lattice (Baxter, 1970b). As I point out in Sections 12.1
and 12.2, both these colouring problems (with unit activities) are special
cases of the Potts model.

Transfer Matrix

Let M be the number of rows of the lattice, and N the number of columns.
Impose cyclic (i.e. toroidal) boundary conditions. Then

N, = MN. (8.13.5)

Consider a row of the lattice. Let oi,. . . , oN be the colours of the N
faces, as in Fig. 8.7. Place arrows on the intervening vertical edges according
to the above rule. Then there is an up arrow in position / if oj+1 =Oj + 1,
a down arrow if Oj-\ = o,•- 1.

l °N T

Fig. 8.7. A row of faces of the square lattice, coloured <j\,. . . , aN. Arrows are
placed on the intervening edges according to the rule given in Section 8.13. The
particular configuration shown corresponds to Oi = CTI + 1, a?, =oi — 1, • • • , O\ =

CT/v-1.

Let there be n down arrrows in the row, in positions xi,x2, • • • ,xn,
where 1 =sxi < x2 < . .. <xn «s N. Then the colours o\,. . . , oN are
uniquely determined by specifying O\ and xi,. . . ,xn. Let us refer to O\
simply as a. Then the product of the activities for this row is

'-'(&/£) = ZajZO2 . . . ZaN

n

= (zlZ2z3)
m IT ftt,- +j + a), (8.13.6)

where
m. (8.13.7)

Here X denotes the set {x\,. . . , xn} and we use the modulo 3 conventions

) = £(a). (8.13.8)
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We also note that for the colouring to be consistent with the cyclic boundary
condition aN+i = Oi, N and n must be such that

N-2n = 0, modulo 3 . (8.13.9)

We now need both a and X to specify the state of a row. Let 0 denote
both a and X. Then again we have (8.2.1), where Z = ZG and V is the
transfer matrix. The elements of V can now be taken to be

V((j,, 0') = Da{X) if <f>, $' consistent,

= 0 otherwise . (8.13.10)

Here <j> - {a, X) is the colouring on one row of faces, and 0' = {& , Y} is
the colouring on the row above. Thus Da(X) is the activity product for the
lower row.

X denotes the positions of the down arrows in the lower row, Y the
positions of those in the upper row. We still have the ice rule (two arrows
into each site, and two out), so it is still true that all rows of the lattice
have the same number of down arrows, and we can regard this number
(n) as fixed. Further if X ={xi,... ,xn} and Y ={yx,... ,yn} then
yi,. . . ,yn must interlace X\,...,xn. Altogether, it follows that <f> and
(p' are consistent if either:

& = o+ 2and 1« *i =£ yi ss * 2 « • • • =s )%,=£#; (8.13.10a)
or

& = a+ land 1 « yi =£ *i =£ y2^ . . . ^xn^N. (8.13.10b)

We still have (8.2.3) and (8.2.4), where g is an eigenvector of the transfer
matrix V. Let gJJC) be the element of g corresponding to the row-state
<t> = {o, X). Then the eigenvalue equation (8.3.2) becomes

+ 2lgo+i(Y)\. (8.13.11)
R }

Here L denotes a summation overyi , . . . ,yn subject to the restrictions
(8.13.10a); R denotes a summation subject to (8.13.10b). We adopt the
modulo 3 convention

go+s(X) = gJ,X) . (8.13.12)

Bethe Ansatz

As in Section 8.3, we can successively consider the cases « = 0, 1, 2 , . . .
This leads us to modify (8.4.6), and instead to try the Bethe-type ansatz

n

go(X) = 2 A'F II <t>pkxj + j + o). (8.13.13)
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Here P ={pi,. . . ,pn) is a permutation of the integers {1 , . . . ,n}, the
sum is over all n! such permutations, the coefficients^ and the functions
<f>j(x) are at our disposal.

We can ensure that the condition (8.13.12) is satisfied by requiring that
there exist wave numbers ku...,kn such that

<t>i(x + 3) = 4>,{x) exp(3ikj) (8.13.14)
and

ki + ...+kn = 0. (8.13.15)

Thus (j>j(x) can be regarded as a plane wave modulo 3. The condition
(8.13.15) implies that we are seeking a translational invariant eigenvector
of the transfer matrix: this must include the eigenvector corresponding to
the maximum eigenvalue Amax.

When Z\ =z2 = Z3 = 1 we regain the ice model and expect the functions
<pj(x) to be pure plane waves. To maintain the analogy with Section 8.4,
we must use not the coefficients A'P, but the related set

AP = A'P exp[i(kpi + 2kpi + ... + nkPn)]. (8.13.16)

When zi =z2 = z3, these should reduce to the coefficients AP of the ice
model.

Substituting the form (8.13.13) of gJ(X) into the eigenvalue equation
(8.13.11), we find as in Section 8.4 that there are 'wanted terms', 'internal
unwanted terms' and 'boundary terms'. The wanted terms give (for n even)

A = 2(z1z2z3)
m

Yl...yn, (8.13.17)

where

4Wl$$}«+1> (8-1318>
for / = 1 , . . . , n and all integers x.

The equations (8.13.14) and (8.13.18) form a cubic eigenvalue equation
for y in terms of kj, the solution of which can be written as y; = y(kj), where

y{k) = i exp(3ik/2)/g(k) (8.13.19)

and the function g = g(k) (not to be confused with the eigenvector g) is
defined by

g3 - 3Bg + 2 sin(3/:/2) = 0. (8.13.20)

The constant B is given by

B = [£(1) + £(2) + £(3)]/3

Z3Zl + Z^V^ZlZzZsH . (8.13.21)
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We still get the equations (8.4.7) from the vanishing of the internal
unwanted terms. In fact at first sight we appear to get three such equations,
each with its own function spq. However, closer examination shows that all
three are in fact the same. (If they were not, then the Bethe ansatz would
fail.) It turns out that

s,, = g(kj) exp[i(*/ + &,)] + g(k,) exrf-i(*, + i*,)]. (8.13.22)

The coefficients AP are therefore again given by (8.4.10). Further, (8.4.8)
and (8.4.9), with z, therein replaced by exp(i£,-), are still the conditions for
the boundary terms to vanish. Thus again we obtain (8.4.12). i.e.

n

exp(iNkj) = II [sn/Sji] (8.13.23)
*i

for; = 1, . . . , n.
These equations (8.13.23), together with (8.13.20) and (8.13.22), deter-

mine k\,. . . , kn; Yi, • • • , Yn are then given by (8.13.19). Note that these
equations involve the activities z\, z2, z3 only via the single dimensionless
parameter B. Why this should be so is not clear.

When z\ = z2 = z3, then 5 = 1 and (8.13.20) has the solution g(k) =
2 sin(A:/2). Substituting this into the above equations, the ice model results
of Section 8.4 are regained.

Of course (8.13.23) has many solutions for ku...,kn, corresponding
to the various eigenvalues of V. We are interested in the solution corre-
sponding to the maximum eigenvalue. From (8.2.4), with Z = ZG, and
from (8.13.4) and (8.13.5), we then have

K= lim A Z ; (8.13.24)

JV-»=o

or, using (8.13.19) and (8.13.15), and writing g; for g(kj),

K = (zlZ2z3)
m lim [(-r2

gl... gn]-llN. (8.13.25)

The Limit N -* «>

I expect the analysis of Section 8.7 to apply also to the three-colouring
problem: in the limit of n and N large, ku.. . , kn form a continuous
distribution over some interval (-Q , Q), with distribution function p(k)
satisfying

2jtp(k) = l+ ~^"'"'p(k')dk', (8.13.26)
J-Q ok
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re
p{k)dk = nlN, (8.13.27)

- G1
the function &(k, k') being denned by (8.7.1). From (8.13.22) it follows
that

exp[-i@(p ,q)]
gjq) exp[t(p + \q)} + g{p) exp[-i(q + jp)]
g(p) cxp[i(q + ip)] + g(q) cxp[-i(p + iq)] ' ^^ *}

The gi, • • • ,gn occur in pairs of opposite sign, so from (8.13.25)

In K = iln(zlz2z3) - f ln\g(k)\ p(k) dk. (8.13.29)
J-e

Transformation to an Integral Equation with a Difference Kernel

An important step in the solution of the ice-type models is the transfor-
mation (8.8.2) from the variable k to a new variable a. Using this trans-
formation to go from the variables p, q to new variables a, /3, we found in
(8.8.4) that exp[-i 0(p , q)] becomes a function only of a - fi. The integral
equation (8.13.26) then has a difference kernel: for the required value of
Q it can be solved by Fourier transformation.

Can this procedure be repeated for the present case, i.e. does there exist
a function k{a) such that if

p = k(a),q=k(P), (8.13.30)

then
e(p , q) = function only of a - /3 ? (8.13.31)

If so, then
^mtq)^3e(pq1 0

da dp dp dq

From (8.13.20) and (8.13.28) we can verify that

e(p,q)=P-q[l-g2(p)/B]+<0(q2). (8.13.33)

Taking the limit #-»0 in (8.13.32), and choosing a = 0 to be a zero of
k(a), it follows that

k'(a) = k'(0) [1 - B-tfik)]. (8.13.34)

Substituting this result back into (8.13.32), we obtain

[B ~ ?<P)] ^ | ^ + [B ~ g\q)] '-^ = 0. (8.13.35)
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Using (8.13.28) and (8.13.20), we can verify directly that this needed
identity is indeed satisfied, for all complex numbers p and q. This in turn
means that (8.13.31) is correct; there is indeed a transformation that
reduces (8.13.26) to an integral equation with a difference kernel!

The function on the RHS of (8.13.31) is readily evaluated by setting
/3 = 0. Then q = 0, so from (8.13.33) and (8.13.30) we obtain

®(p,q)=k(a-p). (8.13.36)

Change variables in (8.13.26) from k, k' to a, /3, where k = k(a) and
k' = k(f$). Define R{a) as in (8.8.5). Then we obtain the integral equation

dj3, (8.13.37)

where Q = k(Q{). (The function k(a) is monotonic increasing and odd.)
The side condition (8.13.27) and the equation (8.13.29) for K become

{In)'1 I ' R(a)da=n/N, (8.13.38)

lmc= Jln(ziZ2Z3) - {2n)~x f ' ln\g(a)\R(a) da (8.13.39)
J-Qi

(regarding g now as a function of a, rather than k.)

The Functions g(a), k(a)

The functions g(a), k(oc) are defined by (8.13.20) and (8.13.34). We want
to solve (8.13.37) for R{a), and then evaluate K from (8.13.39).

Eliminating k between (8.13.20) and (8.13.34), we obtain the relation

^ = [2B/k'(0)] {4 - g\3B - gYY' (8.13.40)

between a and g.
This equation can be integrated using elliptic integrals (Gradshteyn and

Ryzhik, 1965, Paragraph 3.147.2). Let u, v, w be the three values of x
which satisfy the cubic equation

x(3B - xf = 4 , (8.13.41)

and let km, x be the constants

km = [(a - v)wl(u - *>]*, (8.13.42)

T= [uw/(u - w^B/k'iO). (8.13.43)
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From (8.13.21), B^l.lt follows that u, v, w are real and positive. Let
us choose them so that

u>v^w. (8.13.44)

Then km is real, satisfying

0 < * M « l . (8.13.45)

Now introduce a new variable s, related to g by

g2 = «ivj2/(H-iv + H'j2). (8.13.46)

Substituting this expression for g into (8.13.40), the differential equation
becomes

^= T[(1 - s2) (1 - kW)Yk. (8.13.47)

Integrating, remembering that k = g = s = 0 when a = 0, we obtain

oc= r£ [(1 - r2) (1 - kl^&t. (8.13.48)

This gives a as a function of s (it is actually an elliptic integral). We are
interested in s as a function of a. From (15.5.6) we see that

s = sn(r-la, km), (8.13.49)

where sn(u , k) is the elliptic sn function of argument u and modulus k,
defined by (15.1.1)-(15.1.6).

From now on let us regard the elliptic modulus km (not to be confused
with the wave numbers k\,...,kn above) as understood. Also, we are
free to choose the scale of a in any convenient way: let us do so so that

T = 1 . (8.13.50)

Then &'(0) is denned by (8.13.43), and s is simply sn a.
As is shown in Section 15.2, the function sn or is meromorphic (i.e. its

only singularities are poles). Since u, v, w are constants, it follows from
(8.13.46) that g2 is also a meromorphic function of a.

Let »/ be one of the poles of g^ar). Then from (8.13.46),

sn2 ri=-(u-w)/w. (8.13.51)

As in Chapter 15, let / and /' be the complete elliptic integrals of the
first kind of moduli km, k'm =(1 - ^ , ) J , respectively. From now on let q
be the 'nome', defined by (15.1.1)-(15.1.4), i.e.

q = exp(-«/7/) . (8.13.52)
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As a moves along the imaginary axis in the complex plane, from 0 to
H', sna is also pure imaginary, and goes from 0 to +i°°. The RHS of
(8.13.51) is negative, so we can choose r\ to lie in the interval (0, U') of
the imaginary axis.

Using (15.4.4), (15.4.5), (8.13.42) and (8.13.51), we have that

en rj = {ulwf, dn r\ = (ulvf, (8.13.53)

1 - k2
m sn4 r] = u(v + w - u)l{vw). (8.13.54)

Taking square roots of (8.13.41), we obtain a cubic equation for xK By
considering the sum of the roots of this equation (taking proper account
of their sign), we obtain the homogeneous relation

ui = vi + wi. (8.13.55)

Squaring, this implies that

v + w-u = -2(vw)i. (8.13.56)

Multiplying both sides by ul{vw) and using (8.13.53) and (8.13.54), we
obtain

l -* i sn 4 ?7= ~2cnr/ dn r/. (8.13.57)

Using (15.4.21) with u = -v = rj, it follows that

sn2rj = -snr], (8.13.58)

i.e., using (15.2.5),

sn 2/7 = sn(2//' - rj) . (8.13.59)

This equation has just one solution in the interval (0 , H'), namely

T7 = 2i/73 (8.13.60)

Thus t] is this simple fraction of il'.
Using (8.13.51), remembering that we now regard g as a function of

a, we can write (8.13.46) as

g V ) = u sn2a/(sn2a - sn2rj). (8.13.61)

We can express the constant u in terms of t). From (8.13.41), the product
of the three roots is 4, so uvw = 4. Using (8.13.53), it follows that

cn?7dn?7 = £«3/2. (8.13.62)

Using (15.1.6) and (15.4.30), this can be written as

\um = Hx{ri) 6,(7?) e2(0)/[//!(0) 0i(O) e^fj)], (8.13.63)
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where H(u), Hi(u), ©(w), ©i(w) are the elliptic theta functions denned in
(15.1.5).

From (15.2.3b) (with u therein replaced by - J J ) ,

H{2ri) = q-™ H{r)) ; (8.13.64)

and from (15.4.17) (with u, v replaced by r\, —r\),

2H{r]) efa) Hriv,) ©,(r?) = H{2rf) 0(0) H1(0) 6 i (0) . (8.13.65)

Eliminating H{2r})IH(t]) and Hi(r)) ©i(/?) between these last three equa-
tions, we obtain

i)). (8.13.66)

Using this in (8.13.61), together with (15.1.6) and (15.4.19), we find that

gV) = q-2l9H2(a)/[H(a-r])H(a+ r,)]. (8.13.67)

Now consider the function k(a). From (8.13.34) and (8.13.43), using
T = l ,

k'(a) = [uw/(u - w)]J [B - g\a)}. (8.13.68)

The RHS of this equation is a meromorphic function of a; like g2(a), it
has simple poles when the denominator in (8.13.61) vanishes, i.e. when

a = ± rj + 2ml + 2inF , (8.13.69)

for all integers m, n. The residue at such a pole can be obtained in the
usual way by differentiating the denominator. Using (15.5.1a) and (15.5.5),
this gives

= - [uw/(u - w)]hi sn */(2cn a dn a), (8.13.70)

Substituting the values (8.13.69) of a, using the periodicity relations
(15.2.5), together with (8.13.51) and (8.13.62), we find that

Res[k'(a)] = +i, (8.13.71)

the upper (lower) sign being used if the upper (lower) one is used in
(8.13.69).

A function of a that has precisely these poles and residues is

(8.13.72)
lH(a+ri) H(a-r

The difference between this and k'(a) is therefore a meromorphic function
with no poles, i.e. an entire function. Further, it is doubly periodic, with
periods 2/ and HI', so it must be bounded. By Liouville's theorem it is
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therefore a constant. (This is an example of the use of theorem 15a in
Section 15.3.) Integrating (8.13.68) and using k(0) = 0, we therefore obtain

k(a) = Ca+i \n[H(r) + a)/H(t] - a)], (8.13.73a)

where C is some constant.
Since ^(a) is periodic, with periods 27 and 2H', so from (8.13.20) is

sin2(3)t/2). Using (15.2.3), this fixes C to be

C = - 2n/(3/). (8.13.73b)

This completes the derivation of the functions g{a) and k(a). We shall
need the Fourier expansion of k(a), and the Fourier integrals

ri
exp(imJia/I)ln[g2(a)]da, (8.13.74)

i
\
J-i

where m is an integer. From (8.13.61), (8.13.73), (8.13.60) and the product
expansion (15.1.5) of the elliptic theta function H{u), it is straightforward
to establish that

Go = - 4x77(97),

Gm = (r2"1 - l)/[m(l +rm + r2m)], m # 0 , (8.13.75)
and that

v i"1 sin(mjza/I)£ > (813J6)
*<*>= 3 / + 2 £

Here a is real and
r = qm = exp(-2x7737). (8.13.77)

Elliptic functions occur very frequently in the exactly solved two-dimen-
sional models in statistical mechanics. This model is interesting in that they
are needed to transform (8.13.26) to an integral equation with a difference
kernel. They also occur in this way in the original method of solving the
three-spin model (Baxter and Wu, 1973, 1974). As I remark at the end of
Section 10.4,1 suspect that the 'difference kernel' transformation is closely
related to the elliptic function parametrization of the generalized
star - triangle relation.

Solution of the Integral Equation

We can solve the integral equation (8.13.37) by Fourier series, provided
2Qi is a period of the elliptic functions, i.e. if

Qi = I. (8.13.78)
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Substituting the form (8.13.76) for k(a), and setting
00

R(a) = {nil) \RQ + 2 2 Rm cos(m;rar//)] , (8.13.79)

I m = l J

it is easy to find that

Rm = rml{\+r2m). (8.13.80)
From (8.13.38), it follows that

n = iN, (8.13.81)

so there are as many up arrows as down ones. As in Section 8.8, we expect
this case to give the maximum eigenvalue of the transfer matrix V.

From (8.13.78) and (8.13.76), k(a) increases monotonically from —n/3
to Jt/3 as a increases from -<2i to <2i- Thus Q = Jt/3 in (8.13.26): the
wave-numbers ki,...,kn fill the interval (—n/3, Jt/3). This is the same
interval as for the original ice model, though of course the distribution is
in general different.

Substituting into (8.13.39) the Fourier series (8.13.79) for R(a), we
obtain

oo

In K = i ln(ziZ2Z3) -i 2 GmRm (8.13.82)
m--cc

(taking R-m = Rm). Using (8.13.75) and (8.13.80), it follows that

In K = i In(2i22z3) - s In r

This gives KI(Z\Z2ZI)1® as a function of r. We can regard r as defined by
(8.13.77) and (8.13.66). Using (15.1.5), these give

' - ' - i i , ( , - £ - ) ( i - , » - ) • (8-13-84)

To summarize: given z1; z2, z3, define B by (8.13.21) and let u be the
largest root of (8.13.41). Define r (0<r< 1) by (8.13.84). Then K, the
partition-function-per-site of the weighted three-colouring problem, is
given by (8.13.83). Note that Kl{z\ZiZz)m depends on z\, z2, 23 only via B.

This form of the result is convenient when B is large, which is when one
of z\, Z2, 23 is large, or small, compared with the others. Then r is small
and the infinite series and product are rapidly convergent.
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Critical Behaviour

Considered as a function of the positive real variables z\, z2, z3, the
partition-function-per-site K is analytic except when Z\ = z2 = z3. In this
case B = 1, u = 2 and r = 1.

It follows that r is just less than one if z\, z2, z3 are nearly equal. The
expressions (8.13.83), (8.13.84) are no longer convenient, since the series
and product converge only slowly. It is then useful to apply the Poisson
summation formula of Section 15.8 to (8.13.83), and the conjugate modulus
formula (15.7.2b) to (8.13.84). This converts the equations to the form:

* : - ( 4 / 3 ) (Z1Z2Z3) 11 ^ _ ^^ _ ^ , (8.13.85)

Here s = exp(-3x//2/'), but we can regard it as denned by (8.13.86). It
is small when B is close to one. In particular, whenzx =z2 = z3 = 1, then
B = 1, M = 2, 5 = 0 and we regain the ice-model result (8.8.20), namely
*:=(4/3)3/2(Lieb, 1976a).

We can also examine the way in which the ice-model limit is approached.
Let z\, z2, Zi differ from unity by terms of order e. Then B exceeds unity
by terms of order e2. By scaling e appropriately, we can choose

B = l + £2, (8.13.87)

where |e| <i 1. From (8.13.41) it follows that

M* = 2{1 + Je2 + 0(e4)}, (8.13.88)

so from (8.13.86)

j ~ | e / 3 | 3 / 2 , (8.13.89)

and from (8.13.85)

K = (4/3)3/2 (zlz2z3)
m {1 + 41 f/313/2 + ©(e2)}. (8.13.90)

Thus K has a 'singular part' proportional to e3'2. In this sense we can say
that the three-colouring problem has a critical point at Z\ = z2 = z3. Denning
the critical exponent a analogously to (1.7.10), we have

<x=\. (8.13.91)
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It is possible to explicitly eliminate the variable r between (8.13.83) and
(8.13.84) (Baxter, 1970c), giving

Auvw
K={zlZ2Z3f- rj-Tjj j- rg-rj. (8.13.92)

[(« - wyuy - [{v - wyvy

This makes it clear that Kl{z\Z2Z3)m is an algebraic function of B.



ALTERNATIVE WAY OF SOLVING THE ICE-
TYPE MODELS

9.1 Introduction

In Chapter 8 the ice-type models have been solved by using a Bethe ansatz
for the eigenvectors of the transfer matrix. This method depends heavily
on the fact that the number of 'lines', or down arrows, is conserved from
row to row. It is not clear how to generalize the method to models without
such conservation.

The purpose of this chapter is to examine the results of Chapter 8, and
to show how they suggest an alternative route by which they can be derived.
This alternative route can be called the 'commuting transfer matrices'
method: it will be used in Chapter 10 to solve the eight-vertex model.

9.2 Commuting Transfer Matrices

Let Vbe the row-to-row transfer matrix of an ice-type model. From (8.3.3)
and (8.3.4), it is a function of the Boltzmann weights a, b, c.

Let g be an eigenvector of V, as in (8.2.3). Then the elements of g are
given by (8.4.6), (8.4.10) and (8.3.22), where Zi,. . . ,zn are solutions of
the equations (8.4.12).

However, these equations for g involve a, b, c only via the combination

A = (a2 + b2 - eyiab . (9.2.1)

Thus if we consider two transfer matrices, with different values of a, b, c
but the same value of A, then they have common eigenvectors.

If all eigenvectors are given by the Bethe ansatz and span the 2N dimen-
180
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sional vector space (which is the case), and if P is the matrix of eigenvectors,
then it follows that

V = PVdP~l, (9.2.2)

where V<t is diagonal, V and Vd are functions of a, b, c, but P is a function
only of A.

In Chapter 8 we were led to the parametrization (8.9.7) (or (8.8.9)),
namely

a,b,c = psinh\{X - v), psinh\{K + v), psinhA , (9.2.3)

where p is a normalization factor.
Regard p, A and v as variables, not necessarily real. Then (9.2.3) defines

a, b, c. The matrices V, Vj and P are now functions of p, A and v.
However, from (8.9.1)

A = -cosh A. (9.2.4)

Thus P is a function only of A: it is independent of v and p.
We can regard A and p as fixed constants, and v as a (complex) variable,

and exhibit the dependence of V on v by writing it as V(v). Then (9.2.2)
implies that

V(v) V(u) = V(u) V(v), (9.2.5)

for all complex numbers u, v; i.e. the transfer matrices V(u) and V(v)
commute.

9.3 Equations for the Eigenvalues

Now consider the equations (8.4.4) and (8.4.12), which exactly define the
eigenvalues A of V for finite n and N. By analogy with (8.7.1) and (8.9.1)
(replacing aj by ivj), let us transform from zu . . . , zn to

Zj = (e* - e"0/(eA+l)' - 1). (9.3.1)

Then from (8.3.22), (8.3.9) and (9.2.3),
_ sinh A sinh |(2A + vt - vk)

Sjk ~ sinh i(A - W/) sinh i(A - » t ) ' l " " ;

sinhi(u - v, + 2A)
L(z,) = . , ,, r— ,

' sinh i(v - i>;)
s i n h K . ^ ^ A )

v ; smhi(v - Vj)
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For given values of p and v\,. . . ,vn let us define functions (j){v), q{v)
by

cj)(v) = pN sinhN(v/2) (9.3.4)
n

q(v) = LI sinh i(v - vi). (9.3.5)

Then (8.4.4) can be written

\={(j>{X- v)q{v + 2k') + <j>{X+ v)q(v~2X')]lq(v), (9.3.6)

where

A' = A - O T . (9.3.7)

From (8.4.12), (9.3.1) and (9.3.2) the vu. . . , vn are given by the n
equations

9.4 Matrix Function Relation that Defines the Eigenvalues

In the Bethe ansatz method, a considerable amount of work is needed to
establish the equations (8.4.12), i.e. (9.3.8). We can now observe that they
are a simple corollary of the commutation relations and (9.3.6).

To do this, we use a similar argument to that of Section 7.7 for the
Ising model. From (9.2.2), if A is the eigenvalue of V corresponding to
column r of P, then

A=(p-1VP)n. (9.4.1)

Regard p and A as fixed, v as a variable. The the RHS of (9.4.1) is a sum
over elements of V, with coefficients from P that are independent of v.
From (8.3.4) and (9.2.3), each element of V is an entire function of v.
Thus

A = A(t>), (9.4.2)

is also an entire function.
Now look at (9.3.6). The RHS is the ratio of two entire functions, and

the denominator q(v) vanishes when v =vi,. . . ,vn . Since the ratio must
be entire, the numerator must also vanish at these values. The equations
(9.3.8) follow immediately.
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Thus (9.3.6), considered as a relation between the functions A(v) and
q(v), defines A(v).

Every allowed solution of (9.3.8) defines v\,...,vn, and hence an
eigenvalue A(i>) and a function q{v). This is true for each value of n.
Altogether there must be 2A'such eigenvalues A(v) and associated functions
q(v).

Let us label these Ar(v), qr(v), r = 1,. . . , 2N . The matrix Vd in (9.2.2)
is a diagonal matrix with entries Ai,. . . , A2N. Similarly, let Qd be the
diagonal matrix with entries qu..., q2f. Then the full set of equations
(9.3.6) (one for each eigenvalue) can be written as the single matrix
equation

Vd(v) Qj(v) = <p(k-v) Qd{v + 2k') + tf>(A + v) Qd(v - 2k'). (9.4.3)

(The factors (j)(k — v), (f>(k + v) are the same for each eigenvalue, so are
simple scalar coefficients).

Now define the non-diagonal matrix function

Q(v) = P Qa(v) P'1. (9.4.4)

and again exhibit the dependence of the transfer matrix on v by writing
it as V(v). Pre-multiplying (9.4.3) by P, post-multiplying by P"1, using
(9.2.2), (9.4.4) and the fact that P is independent of v, (9.4.3) becomes

V(v) Q(v) = 0(A - v) Q(v + 2k') + (j)(k + v) Q(v - 2k'), (9.4.5)

which is a relation between the matrix functions V{v), Q(v).
Since Vd(v), Qd(v) are diagonal for all v, Q(v) commutes with V(u) and

Q(u) for all complex numbers u and v.
It was shown in Section 8.3 that V(v) breaks up into N + 1 diagonal

blocks, one for each value of n. It therefore certainly breaks up into two
blocks, one with n even and the other with n odd. This is simply a
consequence of the commutation relation

V(v) S = S V(v), (9.4.6)

where 5 is the diagonal operator that has entries +1 (-1) for row-states
with an even (odd) number of down arrows.

The matrix P can therefore also be chosen to commute with 5.
From (9.3.5), since n< N, all the diagonal elements of Qd(v) are of the

form
2 / 2 ) , (9.4.7)

where for n even (odd) the sum is over all even (odd) values of r in the
interval —N<r<N. The coefficients dr are independent of v; some may
be zero.
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From (9.4.4), each element of Q(v) is a sum of expressions of the form
(9.4.7), either all with n even, or all with n odd. Thus each element of
Q(v) is itself of the form (9.4.7).

9.5 Summary of the Relevant Matrix Properties

To summarize: we have used the results of the Bethe ansatz calculation
of Chapter 8 to establish the following properties:

(i) Given a transfer matrix V for a particular set of values of a, b, c;
there are infinitely many other transfer matrices (with different a,
b, c but the same A) that commute with V.

(ii) If a, b, c are defined in terms of p, A, v by (9.2.3), and if p, X are
regarded as constants and v as a complex variable, then matrices
V{u), V(v) commute for all values of u, v.

(iii) All elements of V(v) are entire functions of v.
(iv) There exists a matrix function Q(v) such that the matrix relation

(9.4.5) is satisfied for all complex numbers v.
(v) The determinant of Q(v) is not identically zero, and matrices Q(u),

Q(v), V(v) commute for all values of u, v.
(vi) The matrices Q(v), V(v) commute with the diagonal operator 5 that

has entries +1 (-1) for row-states with an even (odd) number of
down arrows. They therefore break up into two diagonal blocks.
Within each block all elements of Q(v) are of the form (9.4.7),
where —N <r<N and r takes even (odd) values.

Sufficiency

These properties (i)-(vi) are in fact sufficient to define the eigenvalues of
V(v). All we have to do is to reason backwards to (9.3.6) and (9.3.8) as
follows.

From the commutation properties (ii) and (v), there exists a matrix P
(independent of v) such that

p-lV(v)P = Vd(v), P~lQ(v)P = Qd(v), (9.5.1)

where Va(v) and Qd{v) are diagonal. From (iv), (9.4.5) is satisfied and can
therefore be put into the diagonal form (9.4.3). Let A(v) be a particular
eigenvalue of V(v), and q(v) the corresponding eigenvalue of Q(v). Then
the corresponding entry in (9.4.3) is the function relation (9.3.6).



9.5 SUMMARY OF THE RELEVANT MATRIX PROPERTIES 185

From (9.5.1), A(v) and q[v) are sums over elements of V(v), Q(v),
respectively, weighted by coefficients (from P'1 and P) that are independent
of v. From (iii) it follows that A(v) is entire. From (vi) it follows that q(v)
is entire and of the form (9.4.7), where r takes either all even or all odd
values.

If q(v) were indentically zero for all v, then so would be the determinant
of Q(v). Provided this does not occur, it must be possible to write q{v)
in the form (9.3.5) (where 0 =£ n « N), together with a non-zero factor that
cancels out of (9.3.6). As shown at the beginning of Section 9.4, the
relation (9.3.6) now implies the equations (9.3.8). These define v\,. . .,
vn. From (9.3.5), q(v) is now known, so (9.3.6) gives A(v).

These equations are exact for finite n and N. Of course it still remains
to solve (9.3.8), and in general this can only be done analytically in the
limit n, N-* <*>, using methods such as those of Sections 8.6-8.9. Even so,
the equations (9.3.8) are an enormous simplification of the original eigen-
value problem: they could for instance be solved rapidly on a computer
even for moderately large values of n and N. In this sense they are a
'solution' of the eigenvalue problem.

Note that n does not occur in the properties (i)-(vi). Thus one may hope
to generalize them to models where there is no line conservation. This will
be done in Chapter 10.

9.6 Direct Derivation of the Matrix Properties: Commutation

Can the properties (i)—(vi) be established without using the Bethe ansatz,
hence giving an alternative way of diagonalizing V{v)l They can, as will
be shown in this and the next two sections.

Consider a horizontal row of the lattice and the adjacent vertical edges.
With each edge i associate a 'spin' ,u, such that (i,• = + 1 if the corresponding
arrow points up or to the right, and fi,: = -1 if the arrow points down or
to the left.

Let oc\,. . ., aN be the spins on the lower row of vertical edges:
Pi,. . ., /?„ the spins on the upper row; and fi\,. . ., fi^ the spins on the
horizontal edges; as indicated in Fig. 9.1. Denoting the set {a\,. . ., o)v}
by a; and {jSi,. . ., /3N} by /8; it is obvious that a (/3) specifies the spins in
the lower (upper) row. Thus the transfer matrix V has elements Vap, and
these are given by

VaP = 2 2 w(|Ui, ail/?!, fi2) w(fi2, a2\p2, to)
"> m (9.6.1)

w(fiN, (XN\PN , Mi)-
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Here w{fx, a\/3 ,pi') is the Boltzmann weight of the vertex configuration
specified by the spins fi, a, /J, fi'. From Fig. 8.2 and (8.3.3) it follows that

w ( + , + \ + , + ) = w ( - , - | - , - ) = « ,

and w{fi, a\fl , fx') is zero for all other values of fi, a, fl,

(9.6.2)

MH+1

Fig. 9.1. A row of the square lattice, showing the 'spins' associated with the various
edges. The cyclic boundary condition is that /J,N+I = fit-

Let V be another transfer matrix, denned by (9.6.1) and (9.6.2), but
with a, b, c replaced by a', b', c'. Denote the corresponding vertex weight
function w by w'. Then from (9.6.1)

H\ fN VI , 7 = 1

where
S(n , v\ , a\Y ,n'

(9.6.3)

(9.6.4)

This S is simply the Boltzmann weight of a pair of sites, one above the
other, as indicated in Fig. 9.2, summed over the possible arrow configur-
ations on the intervening edge.

Let S(a,fi) be the four-by-four matrix with rows labelled by (fx, v),
columns labelled by (//, v'), and elements S(n , v\fi', v'\a,fl). Then(9.6.3)
can be written more compactly as

Similarly,
(VV')aP = Tr S(ax, A) S(a2 , & ) . . . . S(aN, 0N). (9.6.5)

(V'V)aP = Tr S'{ax, ft) S'(a2, ft). . . . S'(aN, 0N), (9.6.6)
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where S' is defined in the same way as S, but with w, w' interchanged in
(9.6.4).

To establish property (i), we want to find a V that commutes with V,
i.e. the right hand sides of (9.6.5) and (9.6.6) are the same. Clearly this
will be so if there exists a four-by-four non-singular matrix M such that

S(a,/3) =MS'(a,fi)M~l, (9.6.7)

for a= ±1 and 0 = ±1.

u

Fig. 9.2. The lattice segment whose weight (summed over the internal edge spin
y) is the %<, v\fi' , v'\a,/3) of eq. (9.6.4).

Star - Triangle Relation

The matrix M has rows labelled by (fi , v); columns by (fi', v'). If we write
the elements as w"(v, fi\v', fi'), post-multiply (9.6.7) by M and write the
matrix products explicitly, using (9.6.4), we obtain

2
y./A •>

, (9-6.8)

for a, /3, (i, v, fi', v' = ±1.
We can regard w"(v, JJ,\V', fi') as a 'Boltzmann weight function' for a

vertex with surrounding edge spins v, pi, v', /J,'. Then (9.6.8) can be given
the simple graphical interpretation indicated in Fig. 9.3: the combined
weight of the left-hand trilateral (summed over spins on internal edges)
must be the same as that of the right-hand trilateral. This must be true for
all values of the six exterior spins.

One figure can be obtained from the other by shifting a line across the
intersection of the other two. In both figures the lines (fi, v'), (a, fl)
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intersect at the vertex with weight function w. Similarly (a,/3), (v, n')
intersect with function w';{v,fi'),{(i,v') with w".

This picture of the equation (9.6.8) can be very illuminating, as will be
shown in Chapter 11.

The equation (9.6.8) can also be written in terms of operators: let £/,- be
the matrix with elements

. . . . S(aN, (9.6.9)

Thus Ui acts on the spins in position i and i + 1, leaving the rest unchanged.
It can be interpreted as a vertex operator.

Fig. 9.3. The lattice segments whose weights (summed over the internal edge spins
y , / / , i/') are the left- and right-hand sides of eq. (9.6.8). This relation is the

'star - triangle' relation of the vertex models.

Similar, define Ui and U[ by (9.6.9), with w replaced by w, w", respec-
tively. Then (9.6.8) implies that

c/1+1c//f/;'+1 = ^'[/;+1t/,, (9.6.10)

and it is obvious from (9.6.9.) that

UjUi, (9.6.11)
if \i-j\^ 2.

This equation (9.6.10) is the same as (6.4.27). Thus the present operators
Ut satisfy the same star - triangle property as the corresponding Ising model
operators of Section 6.4. Since (9.6.10) is a direct corollary of (9.6.8), I
shall therefore call (9.6.8) the 'star - triangle' relation for the ice-type
models. (Strictly speaking, a more accurate name would be 'trilateral-to-
trilateral'.)
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From (9.6.11), the £/,• operators also satisfy (6.4.28). Further, if N is
replaced by N + 1 in (9.6.9), then the element

( P i , • • • , P N - I , 1*N , &N\PI ,••••, P N ,

of UN is the weight of the extreme-right vertex in Fig. 9.1. Thus UN can
be thought of as the operator which adds this vertex, going from edge spins
PN, /iN+1 to spins JUJV, aN.

Similarly, the product U\. . . UN adds the row of vertices in Fig. 9.1,
going from Pi, . . . . , pN, /J-N+I to ju1; a\,. . . . , aN. Apart from boundary
conditions and a shift of spin indices, it is therefore the transfer matrix and
the partial commutation argument of (6.4.30)-(6.4.31) applies. In all these
respects the I/,- operators of this chapter therefore correspond to those of
Section 6.4.

To summarize: the transfer matrix V commutes with another transfer
matrix V if w" can be chosen to satisfy (9.6.8). This is analogous to the
star - triangle relation of the Ising model.

Solution of the Star - Triangle Relation

Given w, we want to find w', w" so that (9.6.8) is satisfied. One trivial
solution is w' <* w, w"(v, fi\v' , / /) =<5(i>, v') 6(jU, fi') ; but this is not
interesting since it implies only that V commutes with a scalar multiple of
itself. We want solutions in which w' is not simply proportional to w.

From Fig. 9.3 it is obvious that w" plays a very similar role to w and w'.
Thus it is natural to take w" also to be given by (9.6.2), but with a, b, c
replaced by a", b", c".

If a, b, c are given, then a',b',c' and a", b", c" are at our disposal. Since
(9.6.8) is homogeneous in w' and w", this leaves us four disposable
parameters.

On the other hand, a, p, fi, v, JJ,', V' in (9.6.8) can each independently
take the values ±1, so (9.6.8) represents 64 scalar equations. At first sight
the task of satisfying all of them seems hopeless!

Fortunately there are many simplifications. From (9.6.2),
w(fx , a\P, v) = 0 unless \i + a = P + v, and similarly for w', w". It follows
that both sides of (9.6.8) are zero unless v+[i+ a= fi+ v' + \i'. This
leaves only 20 non-trivial equations.

Negating all spins leaves w, w\ w" and (9.6.8) unchanged, so these 20
occur in 10 identical pairs.

Further, interchanging the pairs, (a, /?), (/x , v'), (//, y), (jit", i/') merely
interchanges the two sides of (9.6.8). This implies that 4 of the remaining
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10 equations are satisfied identically, while the rest occur in three equivalent
pairs. Thus (9.6.8) finally reduces to just three equations, namely

ac'a" = bc'b" + ca'c" ,

ab'c" = ba'c" + cc'b", (9.6.12)

Eliminating a", b", c" leaves the single equation

(a2 + b2- c2)/(ab) = (a'2 + b'2 - c'2)/(a'b'). (9.6.13)

Defining A as in (8.3.21) and (9.2.1), it follows that w" can be chosen
to satisfy the star - triangle relation (9.6.8) provided that

A = A' . (9.6.14)

Thus if V and V have different values of a, b, c, but the same value of
A; then they commute. We have therefore directly established the com-
mutation property observed in Section 9.2. This completes step (i) of
Section 9.5.

9.7 Parametrization in Terms of Entire Functions

To establish the properties (ii) and (iii) of Section 9.5, we need to para-
metrize a, b, c in terms of three other variables, say p, A and v, so that a,
b, c are entire functions of v, but A is independent of v.

An obvious parametrization is to regard a, A as 'constants' and to
introduce a variable x = bla. Then from (9.21),

a = a, b = ax, c = a{\ + x2 - 2Ax)*. (9.7.1)

However, c is not an entire function of x: it is the square root of a quadratic
polynomial in x.

There is a simple way of parametrizing a function F = [{x - X\){x -
x2)f , namely to define

t2 = (x - Xl)/(x - x2), (9.7.2)
i.e. to set

x = (*i - t2x2)l{\ - t2). (9.7.3)

Then the sign of t can be chosen so that

F={xl-x2)tl{\-t2), (9.7.4)

so both x and F are rational functions of t.



9.7 PARAMETRIZATION IN TERMS OF ENTIRE FUNCTIONS 191

In our case x\ and X2 are the zeros of 1 + x2 — 2A*. Thus

A = i(*i + * r 1 ) , x2 = xil, (9.7.5)

and (9.7.1) becomes

a = a, b = a(xl-t
2xT1)/(l-t2), (9 ? 6)

c = a(Xl - xil)tl{\ - t2).

We can 're-normalize' to remove the denominators by setting
a = p' Xi(l - f-). Then

fl = p'x1(l-f2), b = p'{x\-t2), ( 9 7 ? )

c = p'(x\-\)t.

With this parametrization, a, b, c are entire functions of p\ x\ and t, but
A depends only on X\. Varying t changes a:b:c, but leaves A unaltered.

This completes the derivation of (ii) and (iii), and we could continue to
use this parametrization, regarding p\ xx as constants and t as a variable.
However, to regain contact with the results of the Bethe ansatz (and to
make the subsequent generalization to the eight-vertex model more
straightforward) it is useful to finally transform from p', X\, t to p, A, v by
setting

*i = -exp(-A), t = exp[i(v - k)], p' = kpt'W . (9.7.8)

We then regain (9.2.1), (9.2.3) and the properties (ii) and (iii) of Section
9.5.

Parametrized Star - Triangle Operator Relation

So far we have used only the corollary (9.6.14) of the star - triangle relations
(9.6.12). Since (9.6.12) is unchanged by interchanging the twice-primed
and unprimed weights a, b, c; another obvious corollary is A" = A'. Thus
(a' ,b' ,c') and {a", b" , c") can also be parametrized in the form (9.2.3),
all sets having the same value of A.

They have different values of v; let us call them v' and v", respectively
[and similarly for p, but these normalization factors cancel trivially out of
(9.6.12)]. Substituting the resulting expressions (9.2.3) for a,. . . . , c" into
(9.6.12), all three equations are satisfied if

s inhJ(A+ v-v' + v") = 0. (9.7.9)
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Incrementing v' by Am leaves a', b', c' unchanged, so without loss of
generality we can take the solution of (9.7.9) to be

v' = k+v+vf'. (9.7.10)

For some purposes it is convenient to use

« = i(A + ») , (9.7.11)

as a variable, instead of v. Then (9.2.3) becomes

a ,b ,c = /Osinh(A - u) ,psinhu , psinhA , (9.7.12)

and if u' =1(A + o'), u" = i(A + v"), then (9.7.10) becomes

u' = u + u". (9.7.13)

The vertex operators [/, defined by (9.6.9) and (9.6.2) are functions of
a, b, c. From (9.7.12) they therefore depend on p, A, u. Regarding p, A
as constants, we can regard £/, as a function of u and write it as !/,-(«).
Then the U[ and U[ in (9.6.10) are £/,<«') and £/,(u"), respectively. Using
(9.7.13), the star - triangle operator relation (9.6.10) becomes

Ul+i(u) U{u + u") Ui+1(u") = Utiu") Ui+i(u + u") Ui(u). (9.7.14)

This is an identity, true for i =1 , . . . . , N - 2 , and for all complex
numbers u and u". In particular, it is true for 0 <ulk < 1,0 < u"/k < 1 : for
A < 1 these are the 'physical' values of u, u"; corresponding to positive
Boltzmann weights a, b, c, a", b", c".

Comparing (9.7.14) with (7.13.5), we again see a very close analogy
between the 'star - triangle' relations of the ice-type and Ising models.

9.8 The Matrix Q(v)

Column Vectors y

The next step is to obtain property (iv), i.e. to construct the matrix Q(v)
that satisfies (9.4.5).

Let y be a particular column of Q(v). Then (9.4.5) implies that

V(v)y=y'+y", (9.8.1)

where y' and y" are proportional to y, with v replaced by v + 2A' and
v - 2A', respectively.

Let us try to construct y,y',y" directly, and let v(an , . . . . , aN) be the
element (an , . . . . , a^) of the vector y. Then the product V{v) y simplifies



9.8 THE MATRIX Q 193

if y(a\,...., ajv) has the product form

, ,aN) = gi(al)g2(a2) gN(aN), (9.8.2)

i.e. y is a direct product of the two-dimensional vectors g i , . . . . ,gN. In
fact, from (9.6.1), the element (ac\,...., o)v) of V(v) y is

[V(v)y]a = Tr d ( a i ) G 2 ( * 2 ) . . . . GN(aN), (9.8.3a)

where G,(+) and G,-(—) are two-by-two matrices with (n , [i') elements

]„,, = 2 wOi, ar||8, M ') g< (ft) • (9.8.3b)
p

Explicitly, using (9.6.2),

Gi+) = (agii+) ° )
W ( - ) 6ft(+)/

(9'8-4)

~'v ' V o «g, .(- .
We want the RHS of (9.8.3a) to decompose into the sum of two terms,

each like (9.8.2). This will be so if there exist two-by-two matrices
PU....,PN such that

Gi{a) = PiHi{a)PT}u (9.8.5)

where each H&a) is upper-right triangular, and PN+I = Pi-
To see this, substitute the form (9.8.5) of each Gt(a) into (9.8.3a). The

P,s cancel, so the effect is to replace each Gt(a) by Hi(a). If //,(<*) has the
form ,. . ,„. .

then (9.8.3a) gives

[V(v)y]a = g [ ( a i ) . . . . g'N(aN) + g ' { ( a i ) . . . . g%(aN). ( 9 . 8 . 7 )

Pair Propagation Through a Vertex

Can (9.8.5) and (9.8.6) be satisfied, i.e. can we choose the P* so that the
the bottom-left element of Pi1Gi( a) P, + 1 vanishes for both ar= +1 and
a= -1? If Pi; is the first column of P,, this is equivalent to requiring that

Gia)pl+i*=gi(a)pi, (9.8.8)

for a= ±1. Here G,(+) and G;(-) are two-by-two matrices; the p, are
two-dimensional vectors; g/(+) and g/(—) are scalars.
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Let the elements of pt bep,(+) andp,(-). Using (9.8.3b), the condition
(9.8.8) can be written explicitly as

, <x\P , i*')g, (9.8.9)

for a, ji= ±1.
This equation can be interpreted graphically as in Fig. 9.4. Let fi, a,

f5, fi' be the edge spins round a vertex, as shown. With the upper and
right-hand edges associate weights g,-(/3), pi+i(fi'). Sum over all values of
/J, n', weighted by the vertex weight w. This gives a function of fi and a.

.' Pl+1

a

Fig. 9.4. Pair-propagation through a vertex: graphical representation of
eq. (9.8.9).

The condition (9.8.9) implies that this function factors into a weight
g!(a) for the lower edge, Pi(ji) for the left-hand one.

Thus we can think of (9.8.9) as saying that the vertical and horizontal
functions (or vectors) gh pi+\ 'propagate' through the vertex to become
gl,Pi- Indeed, using (9.6.9), (9.8.9) can be written in fairly obvious
operator notation as

Ui{gi®pi+l)=pi®gi. (9.8.10)

Since (i,a= ±1,(9.8.9) represents four scalar equations. Explicitly they
are

(9.8.11)

These equations are homogeneous and linear in g,(+), gi(~), gl(+),
gi(-), so these variables can be eliminated (by taking the determinant of
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coefficients), leaving

a 2 + ^ - c 2 = ^ + ^ , (9.8.12)
ab r, ri + i

where
ri=Pi(-)/Pi(+) fori = l,...,N. (9.8.13)

This is a quadratic recurrence relation between r, and r,-+1. There are
two interesting things about it: firstly, it involves a, b, c only via the A
defined by (9.2.1); secondly, from (9.2.4) it explicitly factors into the
simple form

rm = -r,exp(±A). (9.8.14)

Column Vectors y(v) and the Matrix QR(v)

The relation (9.8.14) must hold for i = 1,. . . , N; but the choice of sign
can be made independently for each i. Thus the most general solution for
ru. . . ,rN+1 is

r,- = ( - ) ' r exp[A(ai + . . . + 0 , -0] , (9.8.15)

where r is arbitrary and each ot has value ± 1. The cyclic boundary condition
Ov+i = ri is satisfied if

ffi+...+ OAT=0 , (9.8.16)

which implies that N must be even.
(If |A| <1, then A is pure imaginary. If A equals 2mm/n, where m and

n are integers, then it is sufficient that ox + . . . + oN be a multiple of n.
Such cases are often of particular interest, e.g. the pure ice model has
A = 2ni/3).

We can choose all p,-(+), g,-(+) to be unity, so pt( -) = rt. Solving (9.8.11),
using (9.8.15) and (9.2.3), then gives

g,<+) = 1, gi (-) = n exp[h(X + v)a] , (9.8.17)

= a, g'i(-) = -an exp[K3A + o)at].

The equation (9.8.8) is now satisfied, where /?, is the first column of P,.
It follows that the matrix //;(#) defined by (9.8.5) must be of the form
(9.8.6), whatever the choice of the second column of P, (so long as no P,
is singular). The elementsg"{a) can be obtained by taking the determinant
of both sides of (9.8.5) and using (9.8.4) and (9.8.6). This gives
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Substituting this expression into the last term in (9.8.7), the P-deter-
minants cancel out, so we can ignore them in (9.8.18) (or we could require
them to be unity). From (9.8.17) it then follows that

g?(+) = t>, tf(-) = -bnexplHv - k)o] . (9.8.19)

For a given i, let us define a two-dimensional vector function ht(v) of
v by

] ) , (9.8.20)
r,exp[i(A+ f)cr,]/

where we take r in (9.8.15), and hence all n,. . . , rN, to be independent
of v. Let gi be the two-dimensional vector

and similarly for gl, g".
Then the equations (9.8.17), (9.8.19) can be written very neatly as

gi = h,(v), g'i=ahi(v+2k'), g1 = bhi(v-2k'), (9.8.22)

where A' = k + in, as in (9.3.7). If we also define a 2^-dimensional vector
function y{v) of v by

y(v) = hi(v) ® h2{v) ® • • • ® M ^ ) , (9.8.23)

then, using (9.8.2), the equation (9.8.7) can be written

V{v) y(v) = aNy(v + 2k') + bNy(v - 2k'). (9.8.24)

From (9.2.3) and (9.3.4), aN = 4>{k - v) and bN = <p(k + v). There are
many choices of the y{v), corresponding to different choices of r,
O\,. . . , OAT in (9.8.15), subject only to the restriction (9.8.16). Let QR(V)
be a 2^ by 2N matrix whose columns are linear combinations (with coef-
ficients that are independent of v) of such vectors y(v). Then it follows
immediately from (9.8.24) that

V(v) Qdv) = cp(k - v) QR(v + 2k') + <j)(k + v) QR(v - 2k'), (9.8.25)

which is basically the equation (9.4.5) required by property (iv) of Section
9.5.

Row Vectors yT{—v) and Matrix QL(V)

We still have to satisfy (v) and (vi). From (9.6.1) and (9.6.2) (by inter-
changing a( and #, and negating all /*,-) it can be seen that interchanging
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a with b is equivalent to transposing the transfer matrix V. Thus, from
(9.2.3),

V(-v) = VT(v). (9.8.26)
If we define

QL{V) = Ql{-v), (9.8.27)

then transposing (9.8.25) and negating v gives

QL(v) V(v) = <p(X-v) QL{p + 2A') + <p(X + v) QL(v - 2A'), (9.8.28)

so QL(V) plays a similar role to QR(V), except that it pre-multiplies the
transfer matrix, instead of post-multiplying.

The vector y{v) is defined by (9.8.23), (9.8.20) and (9.8.15), so depends
on r and o\,. . . , oN, as well as v. This can be exhibited by writing it as
y(v\r, o). Consider the scalar product

yT(-u\r',&)y(v\r,a), (9.8.29)

of two such vectors. This is readily evaluated as

N

jLl {1 + rr' exp[A(CTi + . . . + CT,-_I + a[ + . . . + o j - i )

+ W+v)oi + i(k-u)o't]}. (9.8.30)

In particular, this expression depends on O\,. . . , aN, u and v so let us
call it J(u , v\<h , • • • , ON), and consider the ratio

J ( u , v \ . . . , o j + i , O j , . . . ) / J ( u , v \ . . . , o h O j + u - • • ) , ( 9 . 8 . 3 1 )

the numerator differing from the denominator only in the interchange of
Oj and Gj-+i. Since all but the i = j and i = j+ 1 terms in (9.8.30) are
symmetric in oj, Oj+i, this ratio simplifies, leaving only these terms in the
numerator and denominator. A simple direct calculation (using the fact
that Oj, Oj+i, oj, Oj+i only take the values ±1) then reveals that the ratio
(9.8.31) is a symmetric function of u and v.

However, it is obvious from (9.8.30) that J(u , v\o\,. . . , oN) is sym-
metric in u and v if o;=Oi for i =1,. . .,N . Since all values of
Oi,. . . , ON allowed by (9.8.16) are permutations of this particular set of
values, and since all such permutations can be obtained by successive
interchanges of pairs (05-, oj-+i), it follows that (9.8.30) is always a symmetric
function of u and v. Thus

yT(-u\r' ,&)y{v\r,o)=yT{-v\r',&)y{u\r,o). (9.8.32)
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Now consider the matrix product Qiiu) QR(V). Since any column of
QR{V) is a linear combination of vectors y(v\r , a), and any row of QL(U)
is a linear combination of vectors yT{—u\r' , &), it follows immediately
from (9.8.32) that

QL(U) QR{V) = QL(v) QR{u), (9.8.33)

for all complex numbers u, v.

QR(V) a Non-Singular Matrix

Consider now the set of vectors y{v\r, o) formed by letting r take all
possible complex number values, and a={a t , . . . , aN} taking all the
(|5v) values allowed by (9.8.16). I want to assert that there are values of
v for which these vectors span all 2A'-dimensional space, so that QR(V) and
QL(~V) can then be chosen non-singular. Unfortunately I know of no
simple way to completely prove this, but it is almost certainly correct and
the following argument supports the assertion.

From (9.8.23), (9.8.20) and (9.8.15), the element {<xx,. . . , aN) of
y(v\r, o) contains a factor

tHN-<xi-....-«N) ; (9.8.34)

the other terms being independent of r. Thus
N

y(v\r,o)=*Zrnyn(v\o), (9.8.35)
H = 0

where each yn(v\a) has non-zero elements only when ocx+. . . + <XN =
N —2n , i.e. when there are n down arrow spins.

Let Yn be the (^)-dimensional space of vectors whose elements are zero
unless oc\ +. . . + oc^ = N - In . Then it would be sufficient to show (for
n = 0 ,. . . , N) that Vn is spanned by the vectorsyn{v\ o) obtained by letting
a take all possible values.

Since there are (|^) such values of a permitted by (9.8.16), there are at
least as many vectors yn(v\ o) as the dimensionality of Yn. The most delicate
case is n = £JV, when there are just enough vectors.

Each element (ai,. .. , aN) of yn(v\a) contains a factor

N

exphv E cr,(l - at)] , (9.8.36)
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all other terms being independent of v and non-zero. From (9.8.16), this
factor simplifies to

N

expl-ivZoKx]. (9.8.37)

If n — iN and v is large and negative, then there is a single dominant
element of yn{v\o) given by a\,. . . , aN =O\,. . . , aN : this maximizes
(9.8.37) and is consistent with (9.8.16). Thus there are (J') column vectors,
each with its dominant element in a different row. These vectors clearly
form a basis of °Vn.

The assertion is therefore certainly true for n = \N. Since this subspace
contains the maximum eigenvalue of V, this eigenvalue can certainly be
obtained by the present methods. More generally, for n + $N, there are
more vectorsyn{v\a) than necessary and there is no reason to suppose they
do not (for general values of v) span Yn.

Q(v) and its Commutation Relations

From now on let us therefore suppose that the determinant of QR(V), and
hence QL{V), does not vanish identically (it may of course vanish for a
finite number of complex values of v). Let VQ be a value for which it is
non-zero and define

Q(v) = QR(V) QR\V0) . (9.8.38)

Taking u = v0 in (9.8.33), it follows that

Q(v) = QiXvo) Qdp). (9.8.39)

Post-multiplying (9.8.25) by QR\V0), and pre-multiplying (9.8.28) by
Ql\vo), therefore gives

V(v) Q(v) = Q(v) V(v)

= 4>{X - v) Q(v + 2A') + 4>{X + v) Q{v -2k'). (9.8.40)

Also, from (9.8.39) and (9.8.38),

Q(u) Q(v) = QiXvo) QL(U) QR{V) Qi\v0) • (9.8.41)

From (9.8.33), this is unaltered by interchanging u with v, so

Q(u) Q(v) = Q(v) Q(u). (9.8.42)

Thus this matrix function Q(v) satisfies (9.4.5) and all the properties
(iv) and (v) of Section 9.5.
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Commutation Relations Involving S

Finally, the diagonal operator 5 in (vi) is

From (9.8.20) and (9.8.23) it follows that

Sy(v) = y(v + 2m), (9.8.44)

and, since all columns of QR(V) are linear combinations of vectors y(v),

SQR(v) = QR(v+2m). (9.8.45)

Transposing, negating v, using (9.8.27) and the fact that
QR(v + Ani) = QR(v), gives

Gz.(») S = QL(U + 2«i) • (9.8.46)

Post-multiplying (9.8.45) by QR\V0), pre-multiplying (9.8.46) by
Ql\v0), and using (9.8.38) and (9.8.39), it follows that

S Q(v) = Q(v) S = Q(v+ 2m). (9.8.47a)

Also, since w(fi, a\P,fi') is unchanged by multiplication by fxafin', it
follows from (9.6.1) that

SV{v) = V{v)S. (9.8.47b)

From (9.8.20) and (9.8.23), as v^> ±°° any element of y(v), and hence
Q(v), grows at most as fast as exp(iNv). The properties (vi) of Section 9.5
now follow immediately from (9.8.47).

As was shown in Section 9.5, the properties (i)-(vi) imply the equations
(9.3.6), (9.3.8) for the eigenvalues A of V(v). Thus we have derived these
equations without using the Bethe ansatz. There are two key steps in the
working: the star triangle relation (9.6.8) and the vertex propagation
relation (9.8.9). It is worth noting that both of these are local properties,
the first of a triangle of three vertices, the second of a single vertex.

9.9 Values of p, A, v

All the equations of this chapter are algebraic identities, so they are true
for all values of a, b, c and p, A, v, real or complex. It is not necessary to
locate their values in the complex plane until one starts the analysis of the
solution of (9.3.8), letting N—><*> and choosing the solution corresponding
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to the maximum eigenvalue A. (This analysis was performed in Sections
8.5-8.9.)

If the vertex interaction energies ex,. . . , % are real [and satisfy (8.1.7)],
then the Boltzmann weights a, b, c given by (8.3.3) are real and positive.
When locating p, A, v there are four cases to consider, being the four
phases shown in Fig. 8.5. The p, A, v can be chosen so that:

(I) A > 1, a > b + c:
p = —p', A = in + A', v = —in - v',
where p', A', v' are real and p' > 0, v' > A' > 0 .

(II) A > 1, b > a + c:
p = —p', A = in + A', v = in + v',
where p', A', v' are real and p' > 0, v' > A' > 0 .

(III) -1 < A < 1, a + b>c>\a- b\:
p = -ip', A = iy,, v = iw,
where p', fi, w are real and p' > 0, n > fi > \w\ .
(These are the n, w of Section 8.8.)

(IV) A < - 1 , c> a + b:
p, A, v are real, p > 0, A > |i>| .
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SQUARE LATTICE EIGHT-VERTEX MODEL

10.1 Introduction

Lieb's (1967a, b, c) solution of the ice-type, or six-vertex, models was the
most significant new exact result since the work of Berlin and Kac (1952)
on the spherical model, and the pioneering work of Onsager (1944) on the
Ising model.

Even so, as models of critical phenomena the ice-type models have some
unsatisfactory pathological behaviour: the ferroelectric ordered state is
'frozen' (i.e. the ordering is complete even at non-zero temperatures), and
the anti-ferroelectric critical properties do not diverge or vanish as simple
powers of T- Tc (see Section 8.11).

The first of these unusual properties is certainly connected with the
ice-rule: starting from a configuration with all arrows pointing up or to the
right, the simplest deformation that can be made is to draw a line right
through the lattice (going generally in the SW-NE direction) and reverse
all arrows on this line. For an infinite lattice with ferroelectric ordering,
this costs an infinite amount of energy, so gives an infinitesimal contribution
to the partition function.

Sutherland (1970), and Fan and Wu (1970), therefore suggested gener-
alizing the ice-type models as follows:

On every edge of the square lattice place an arrow;
Allow only configurations such that there are an even number of

arrows into (and out of) each site;
There are eight possible arrangements of arrows at a site, or 'vertex',

as shown in Fig. 10.1 (hence the name of the model). To arrangement
; assign an energy Ej{j = 1 , . . . , 8). Then the partition function is

202
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Z = 2 exp[-(«i£i + . . . + nses)/kBT] , (10.1.1)

where the sum is over all allowed configurations C of arrows on the
lattice, rij is the number of vertex arrangements of type / in configuration
C, kB is Boltzmann's constant, T is the temperature.

The first six vertex arrow arrangements in Fig. 10.1 are those permitted
by the ice rule (Fig. 8.2). The last two (all arrows in, or all out) are new.
Starting from the lattice state with all arrows pointing up or to the right,
one can now make local deformations (e.g. reverse all arrows round a
square) that cost only a finite energy, so one no longer expects the ferro
electric state to be completely ordered, and may hope that the model will
be in other respects also less pathological.

t t f t t t t
1 2 3 4 5 6 7 8

Fig. 10.1. The eight arrow configurations allowed at a vertex.

It is clear from (10.1.1) that Z is a function of the eight Boltzmann
weights

a>j = exp(-e/kBT),j = 1 , . . . , 8 . (10.1.2)

From Fig. 10.1, vertex 7 is a sink of arrows, 8 is a source. If toroidal
boundary conditions are imposed on the lattice, it follows that

n1 = ni. (10.1.3)

Similarly, reversing all vertical arrows gives vertex 5 to be a sink, 6 a
source, so

ns = n6. (10.1.4)

Thus £5, . . . , £g in (10.1.1) occur only in the combinations £5 + £6,
£7 + £8, so without loss of generality we can choose

£5 = £6, £7 = £8- (10.1.5a)

A particularly interesting situation is when we also have

£i = £2, £3 = £ 4 - ( 1 0 . 1 . 5 b )

The model is then unchanged by reversing all arrows. Regarding the arrows
as electric dipoles, this means that no external electric fields are applied,
so this specialized model is known as the 'zero-field' eight-vertex model.
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The solution of the zero-field eight-vertex model will be given in this
chapter. The full model has not been solved. In this respect the six- and
eight-vertex models differ: the former can be solved even in electric fields
(Section 8.12).

10.2 Symmetries

Consider the zero-field model and set

a = co\ = QL>2, b — CO3 = W 4 ,

c = co5 = (u6, d = co7 = co8 •

Then from (10.1.1) and (10.1.2)

— V t/jWi+rt2 t»W3+n4 ^ttS+ZIfi ^JtlT+ns
— jLill U L it j

so clearly Z is a function Z(a , fc; c , d) of a, ft, c, d.

(10.2.1)

(10.2.2)

Fig. 10.2. The four arrow spins n, a, /3, v on the edges at a vertex. The vertex
configuration (fx , a, /3, v) has weight w(fi, a\/3, v) given by (10.2.3).

Fan and Wu (1970) showed that this function has several symmetries.
Let [i, a, v, fi be the 'arrow-spins' associated with the four edges round a
vertex, as in Fig. 10.2. They have value +1 ( -1 ) if the corresponding
arrow points up or to the right (down or to the left). Then the Boltzmann
weight of the vertex in Fig. 10.2 is w(pi, a\f5, v), where

(10.2.3)
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and w(fx, a\/3, v) is zero for all other values of n, a, /3, v. (This is the
generalization of (9.6.2).) This definition can be written more neatly as

w(fi, a\/3, v) = J{a'(l + aPfiv) + b'(ap + (xv) + c'(av+ /3/i)

+ d'(fiv+ afi)}, (10.2.4)

for all pi, a, /?, v, where

a' = h(a + b + c + d), b' = i(a + b-c-d), (10.2.5)

Suppose the lattice has M rows (labelled i = 1 ,. . . , M) and N columns
(j =1,. . . ,N). Then with this definition of w,

Z = 2 wnwn • . . wMN, (10.2.6)

a, ft

where

Wij = w(fiij, av\ai+1J , Hi,j + i ) , (10.2.7)

and the summation in (10.2.6) can be extended over all values (±1) of the
e d g e a r r o w s p i n s au ,. . . , aMN, (iu,..., HMN-

Using the expression (10.2.4) for the function w, (10.2.7) becomes

wij = Mp + • • • + wf , (10.2.8)

where w\p corresponds to the A:th additive term on the RHS of (10.2.4),
and is a simple product of a weight and arrow spins, e.g. w\p =

Substituting the form (10.2.8) of w,y into (10.2.6), the summand can be
expanded into 8MN terms of the form

#...*>, (10.2.9)

where each jfc,y is an integer between 1 and 8. Each such term (10.2.9) can
be represented by an arrow graph G on the original lattice: at each site
(i,j) draw the fc,yth vertex arrow configuration of Fig. 10.1. There are then
two arrows on every edge, one from each of the end-sites.
Consider a particular edge, say the vertical one between sites (/ - 1 ,/)

and (i,j), with arrow spin a*,. Only two factors in (10.2.9) can contain
ay, namely those for sites (/ - 1,/) and (i ,j). Comparing (10.2.4) and Fig.
10.1, we find that ty is absent from (present in) either factor if the
corresponding arrow in G is up (down).

But (10.2.9) must be summed over an ,. . . , (IMN, in particular over
ocjj. If (10.2.9) contains an odd power of aih it will give zero contribution
to the sum, so can be ignored. This leaves only terms with an even power



206 10 SQUARE LATTICE EIGHT-VERTEX MODEL

of <Xif. this power can be either zero (a;, absent from both factors), or two
(ay present in each factor). In either case the corresponding two arrows
in G point the same way.

This applies to all edges, both vertical and horizontal, so a term (10.2.9)
contributes to (10.2.6) only if all edges in G contain a pair of parallel
arrows. Replace each such pair by a single arrow pointing in the common
direction. Summing (10.2.9) over a, n now merely gives a factor 4MN, which
cancels the factors 1/4 in each w\p. Thus (10.2.6) and (10.2.9) give

_ •y ,m,+m2 , ,m3 + m4 ;m5+m6 ,,m7+m8 (10 2 10^

where m* is the number of vertices in G of type k (k = 1 ,. . . , 8), and the
sum is over all arrow coverings G such that each vertex is one of the eight
shown in Fig. 10.1.

But (10.2.10) is precisely (10.2.2), with a, fo,c, dreplaced by a', £', c', d'.
Thus

Z { a , b ; c , d ) = Z ( a ' , b ' ; c ' , d ' ) . (10.2.11)

The method used in deriving this result is basically that of the 'weak-
graph expansion' (Nagle, 1968; Nagle and Temperley, 1968; Wegner,
1973). Like the Ising model duality relation (Section 6.2), (10.2.11) relates
a high-temperature model (a ,b ,c ,d almost equal) to a low-temperature
one (a%> b ,c, d). Indeed, it will be shown in the next section that the
Ising model is a special case of the eight-vertex model: the duality relation
(6.2.14) can in fact be deduced from (10.2.11).

Some other simple symmetries (which relate high-temperature models
to high-temperature ones, and low to low) are readily deduced from
(10.1.1)-(10.2.2). Reversing all horizontal a/rows, it is obvious from Fig.
10.1 that

Z(a,b;c,d)=Z(b,a;d,c), (10.2.12)

while rotating through 90° gives

Z(a,b;c,d)=Z(b,a;c,d). (10.2.13)

Suppose M, N are even. Then the lattice can be divided into two sub-
lattices A and B such that every site in A has neighbours only in B, and
vice-versa. Reverse all arrows on horizontal (vertical) edges that have an
A site on the left (top) end. The new model is still a zero-field eight vertex
model, but with a, b, c, d replaced by c, d, a, b; so

Z(a,b;c,d)=Z(c,d;a,b). (10.2.14)

From (10.1.3) and (10.1.4), (10.2.2) contains only even powers of c and
d. From (10.2.14), Z must also be an even function of a and b. Thus
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Z(a,b;c,d) = Z(±a , ±b ;±c, ±d), (10.2.15)

where each sign can be chosen independently.
All these symmetry relations (10.2.11)—(10.2.15) can be summarized by

introducing

wx = i(a + b), w2 = i(a-b), (10.2.16)

wz = i ( c + d), w4 = i(c - d),

and regarding Z as a function Z\w\,. . . , vv4] of w'i ,. . . , H>4, instead of
a,b,c,d. The symmetries then become

Z[Wi, w2, w3, w4] =Z[±Wi, ±wh ±wk, ±w,], (10.2.17)

for any choices of the signs, and any permutations (i,j,k,l) of
( 1 , 2 , 3 , 4 ) . Thus Z is unaltered by negating or interchanging any of
W i , . . . VV4.

10.3 Formulation as an Ising Model with Two- and Four-Spin
Interactions

When thinking of the eight-vertex model as a generalization of the six-
vertex, it is natural to describe it in terms of arrows on lattice edges, and
view it as a model of a ferroelectric, the arrows being electric dipoles.

However, the eight-vertex model can also be formulated in terms of
spins, and viewed as a generalization of the Ising model of a magnet (Wu,
1971; Kadanoff and Wegner, 1971).

To see this, associate spins cfy with the faces of the square lattice, as in
Fig. 10.3. Each spin can either have value +1 , or - 1 . Allow interactions
between nearest and next-nearest neighbour spins. Then the most general
translation-invariant Hamiltonian satisfying (1.7.4) is

M N

2 2 {oijij + i hiji + hj jj ii + lj
i = l y = l

+ J'OijOi + u + i + f'OijOij + iO; + i,yOi + i,y + i } . (10.3.1)

Thus this model contains a four-spin interaction between the spins round
a site. The partition function is given by (1.7.5) with H = 0: denote it by
Z/.

Now define, for all i,j,
ocij=aijou+l (10.3.2)
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Then (10.3.1) can be written
M N

{/„ OCij +

j + J'ab+ijPij +

and, for all / and j ,
(10.3.3)

(10.3.4)

To any ospin configuration there corresponds an a, ju-spin configuration
satisfying (10.3.4). Conversely, to any a, ju-spin configuration satisfying
(10.3.4), there correspond two a-spin configurations satisfying (10.3.2).

o . o

i :

0 : O

o : o

0 . 0 ; 0

0 \ 0 : 0

0 : O : 0

Fig. 10.3. The eight-vertex model square lattice, shown by dotted lines; and the
sites of the dual lattice, shown as open circles.

(To see this converse, fix one face spin, say O\\ arbitrarily. Then (10.3.2)
defines the neighbouring face spins, and so on; (10.3.4) ensures that the
definitions are consistent. Thus there are just two solutions of (10.3.2),
depending on the choice of the first spin.)

It follows that

Z7 = 2
a,[a

(10.3.5)

where the sum is over all values (±1) of an , • • • , PMN satisfying (10.3.4).
However, since w{n, a\/5, v) in (10.2.3) vanishes unless [iaflv=l,

(10.2.6) is unchanged by imposing the condition (10.3.4). Thus the sums
in (10.2.6) and (10.3.5) are the same, provided that (for [iaflv= 1)

(10.3.6)

, a\p, v) = exp{[iJv(a + p) + iJh(n + v)

+ Jan + J'fr + J"ap]lkBT},
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(sharing out the /„«;; energies between sites (i,j) and ( i - 1 , ; ) , and
similarly for JhfMj- Hence

Z, = 2ZSV, (10.3.7)

where Zw is the partition function of the eight-vertex model defined above,
with ocij, iMj being the edge arrow spins, and with (using Fig. 10.1, (10.3.6)

Fig. 10.4. The Ising spins of Fig. 10.3. The solid and broken lines link pairs of spins
that interact via the diagonal terms (with coefficients J and / ' ) in eq. (10.3.1).

Note the automatic division into two sub-lattices: solid and open circles.

and (10.1.2))

= -Jh-Jv-J-J'-JH,

= -jh + jv + j + r + r,

Jv-J-J'-J",

jv + j + r - r , (10.3.8)

T t Tt i Tit

£7 = £8 = —J + J + J .

Thus this general Ising-type model is equivalent to the general eight-
vertex model, and vice-versa. In particular, the zero-field eight-vertex
model (o>i = o>z, coi = (tf*) corresponds to the Ising-type model with //, =
/„ = 0, i.e. with only diagonal and four-spin interactions. In this case, from
(10.1.2) and (10.2.1),

a = exp[(/ + /' + J")/kBT], b = exp[(-/ - /' + J")/kBT] ( 1 0 3 9)

c = exp[(-/ + /' - J")/kBT], d = exp[(/ - /' - J")/kBT].

More particularly, if /' = 0 then only the diagonal interactions remain
and a,b,c,d satisfy the condition

ab = cd. (10.3.10)

As is evident from Fig. 10.4, the Ising-type model then factors into two
independent nearest-neighbour square Ising models, one on the sub-lattice
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of solid circles, the other on the sub-lattice of open circles. These two
models are identical: both have interaction strength / in one direction, /'
in the other. If f$v is the free energy per site of this eight-vertex model,
then in the thermodynamic limit it follows that

/8V=/ising, (10.3.11)

where /iSing is the free energy per site of the usual square-lattice nearest-
neighbour Ising model.

The zero-field eight-vertex model therefore contains as special cases both
the zero-field ice-type model of Chapters 8 and 9, and the Ising model of
Chapter 7. In general it can be regarded as two identical Ising models, one
on each sub-lattice of faces, coupled via a four-spin interaction round each
site.

10.4 Star - Triangle Relation

Here I shall show how the zero-field eight-vertex model can be solved by
generalizing the method of Sections 9.6-9.8: this is the way it was originally
done (Baxter, 1971a, 1972b).

The Bethe ansatz method of Sections 8.3 and 8.4 can in fact also be
appropriately generalized (Baxter, 1973a), but is very cumbersome: it does
have the merit of providing formulae for the eigenvectors of the transfer
matrix, as well as the eigenvalues, but no use has yet been made of these.

To obtain the results in a form analogous to those of Section 9.6-9.8,
it is necessary to use elliptic functions. I shall introduce them at an early
stage, though Kumar (1974) has shown that they can be deferred at least
until Section 10.7.

Again we try to satisfy the 'star - triangle' relation (9.6.8), only now
H>GU, a\fi, v) is given by (10.2.3) rather than (9.6.2). The three equations
(9.6.12) are thereby replaced by the six equations

ac'a" + da'd" = bc'b" + ca'c"

ab'c" + dd'b" = ba'c" + cc'b"

cb'a" + bd'd" = ca'b" + bc'c" (10.4.1)

ad'b" + db'c" = bd'a" + cb'd"

aa'd" + dc'a" = bb'd" + cd'a"

da'd' + ac'd" = db'b" + ad'c".
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These equations are homogeneous and linear in a", b", c", d". The
determinant of coefficients of the first, third, fourth and sixth equations
is

(cda'b' - abc'd')[{a2 - b2)(c'2 - d'2) + (c2 - d2){a'2- b'2)]. (10.4.2)

For a", b", c", d" not to be all zero, this determinant must vanish.
The aim here is to construct a class of transfer matrices (with weights

a', b', c', d') that all commute with the original matrix V (with weights a,
b, c, d). If V itself is to be a member of this class (this seems desirable,
but it may not be essential), then we want (10.4.2) to vanish when a', b',
c', d' equal a, b, c, d. In this case the first factor vanishes, but the second
does not.

In general, therefore, we require the first factor in (10.4.2) to vanish,

The first, third, fourth and sixth equations in (10.4.1) can now be solved
for a":b":c":d". Using (10.4.3), they give (to within a common factor)

a" = a(cc' - dd')(b2c'2 - c2a'2)lc

b" = b(dc' - cd')(a2c'2 - d2a'2)ld

c" = c(bb' -aa')(a2c'2- d2a'2)la

d" = d{ab' - ba')(b2c'2 - c2a'2)/b . (10.4.4)

Substituting these into either the second or fifth equation in (10.4.1),
using (10.4.3), gives

a2 + b2-c2-d2 a'2 + b'2 - c'2 - d'2

ab = 7b' • ( 1 ° A 5 )

Define

A = (a2 + b2 - c2 - d2)/2(ab + cd)

T={ab- cd)l{ab + cd), (10.4.6)

Similarly, define A', V by (10.4.6) with a, b, c, d replaced by a', b', c',
d'. Then (10.4.3) and (10.4.5) are equivalent to

A = A', r = r. (10.4.7)
It follows that any two transfer matrices commute provided they have

the same values of A and T. Apart from a trivial normalization factor, this
leaves one degree of freedom in choosing a, b, c, d, so a non-trivial class
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of transfer matrices can be constructed, each member commuting with
every other.

Parametrization in Terms of Entire Functions

The next step is to generalize Section 9.7, i.e. to parametrize a, b, c, d in
terms of four other variables, say p, k, A and v, so that a, b, c, d are entire
functions of v, but A, F are independent of v (and of the normalization
factor p).

First eliminate d between the two equations (10.4.6). This gives

2A(1 + y) ab = a2 + b2 - c2 - a2b2y2
C-2, (10.4.8)

where
y = (1 - r)/(l + F) = cdlab . (10.4.9)

Eq. (10.4.8) is a symmetric biquadratic relation between ale and blc. If
blc is given, then it is a quadratic equation for ale, with discriminant

A2(l + y)\blc)2 - [(blc)2 - 1] [1 - y\blc)2}. (10.4.10)

This is a quadratic form in (blc)2, and can be written as

(1 - y2b2lc2)(l - k2y2b2lc2), (10.4.11)

where k, y depend only on A, y, being given by

k2y4 = y2

(1 + k2)y2 = 1 + y2 - A2(l + yf. (10.4.12)

We want to parametrize blc as a function of some variable u (say), so
that the square root of (10.4.11) is meromorphic. As is shown in Section
15.4, this can be done by taking

blc = y-1 sn iu , (10.4.13)

where sn u is the Jacobian elliptic sn function of argument u and modulus
k, and the factor i in the argument is introduced for later convenience.
The square root of (10.4.11) is then en iu dn iu, so the solution of (10.4.8)
is

a _ y[A(l + y) sn iu + y en iu dn iu]
c y2 - y2 sn2 iu

This is a meromorphic function of u. It can be simplified by denning A
by

ksna=-y/y. (10.4.15)
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Then (10.4.12) and (10.4.9) give

y = sniX, y = - k sn2 iX , (10.4.16)

A = - en iX dn iA/(l - k sn2 /A). (10.4.17)

Using the elliptic function addition formula (15.4.21), (10.4.14) gives

ale = sn /(A - «) / sn iX , (10.4.18)

so from (10.4.9) and (10.4.16),

dlc=-k sn iu sn i(X - u). (10.4.19)

The function sn u is a generalization of the trigonometric sine function:
from (15.1.4)—(15.1.6) it reduces to sin u when k = 0. Just as it was con-
venient to use the hyperbolic sine function sinh u in Chapter 9, so it is
convenient here to use the function snh u, defined by

snh u = —i sn iu = i sn(-iu). (10.4.20)

It is a meromorphic function of u, real if u is real (and 0 < k < 1).
Using this, from (10.4.13, 16, 18, 19) we have

a.b :c:d = snh(A - u): snh u : QQ 4 21)

snh A: k snh A snh u snh(A - fi).

From (15.1.6) and (10.4.20),

snh u = -ik^Hiiuy&iiu), (10.4.22)

where the theta functions H(u), @(u) are entire. Define v by

u = i(X + v). (10.4.23)

Using (10.4.22) in (10.4.21), the 0 function denominators can be multiplied
out, giving

a = -ip 0(iA) H[ii(X - v)] @[U(X + v)],

b = -ip 0(iA) 0[hi(X - v)] H[ii(X + v)],
(10.4.24)

c = -ipH(iX) 0[ii(A - v)] @[\i(X + v)],

d = ip H{iX) H[hi(X -v)] H[ti(X + v)],

where p is some normalization factor. If p, A, v are real, then so are a, b,
c,d.
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This completes the generalization of steps (i), (ii), (iii) of Section 9.5:
a, b, c, d are defined in terms of p, k, A, v by (10.4.24); from (10.4.17),
F and A depend only on k and A.

Keep p, k and A fixed; regard the transfer matrix V, given by (9.6.1) and
(10.2.3), as a function V(v) of v. Then

V(v) V(v') = V(v') V(v), (10.4.25)

for all complex numbers v,v'. From (10.4.24), a, b, c, d are entire functions
of v: so therefore are all elements of V(v).

If A, u are held fixed and k allowed to tend to zero, then snh u —> sinh u.
From (10.4.21), d—*Q (relative to a, b, c), so we regain the six-vertex
model of Chapters 8 and 9 (A, A, u and v having the same meaning as
therein). In particular, (10.4.21) becomes (9.7.12), and (10.4.17) gives
(9.2.4).

Relation between u, u', u"

The equations (10.4.1) are unaltered by interchanging the unprimed and
double-primed variables. Thus (10.4.7) further implies that

A = A' = A", r = F' = r" . (10.4.26)

The weights a', b', c', d' [and a" , b", c", d"] can therefore also be put
into the form (10.4.22), with the same values of k and A. The values of
p, u and v will be different: let us call them p', u' and v' [p", u" and v"].

The first of the equations (10.4.1) can be written

c'(aa" - bb") = a'(cc" - dd"). (10.4.27)

Substituting the expressions (10.4.19) and using the identity (15.4.23), this
becomes

sn i{k - u - u") = sn /(A - u ) . (10.4.28a)

Proceeding similarly [but using (15.4.24)], the fourth of the equations
(10.4.1) also gives (10.4.27). The second and fifth give

sn i(u' -u) = sn(zu"), (10.4.28b)

while the third and sixth give

sn i{u' - u") = sn(iM). (10.4.28c)

The general solution of these equations (10.4.28) is

u' = u + u" + Amil + 2nl', (10.4.29)
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where /, /' are the complete elliptic integrals defined in Chapter 15, and
m, n are any integers. However, incrementing u' by 4il or 21' does not
affect (10.4.19), so without loss of generality we can choose

u' = u + u". (10.4.30)

This is exactly the same as the six-vertex relation (9.7.13), so the
eight-vertex operators Ut defined by (9.6.9), (10.2.3) and (10.4.22) also
satisfy the star - triangle operator relation (9.7.14). i.e.

Ul+i(u) Ut(u + u") Ui+1(u") = {/,("") Ul+1(u + u") Ut(u). (10.4.31)

Note that u" is just the difference of u' and u. I suspect that this is closely
related to the 'transformation to a difference kernel' that occurs in the
Bethe ansatz, as in equations (8.8.2)-(8.8.4) and (8.13.30)-(8.13.38).
The elliptic function parametrization has been introduced here simply on
the grounds of mathematical convenience, but suppose we had originally
required that a, b, c, d be functions of some variable u (and a', b', c', d'
the same functions of u': and a", b", c", d" of u") so that A and T be
constants and that u" be a function only of u' — u. We would then have
been led inexorably from the star - triangle relations (10.4.1) to the elliptic
function parametrization (10.4.21), just as in Section 8.13 we were led
from (8.13.31) to (8.13.67) and (8.13.73).

10.5 The Matrix Q(v)

Pair Propagation through a Vertex

Now we seek to generalize Section 9.8. The first ten equations generalize
trivially (we still want Ht(a) to be upper-right triangular). The 'pair propa-
gation' conditions (9.8.11) become (replacing the integer i by/)

(10.5.1)

They are still homogeneous and linear in g/(+), g;(-),g/(+), gj(~)-
Equating to zero the determinant of coefficients, and using (10.4.6) and
(10.4.9), we obtain

2A(l + y) //•,- +1 = rj + rj+, - y(l + rjrj+1) , (10.5.2)

where r;- is again given by (9.8.13).
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This is a symmetric biquadratic relation between r, and ri+i. It involves
a, b, c, d only via the 'constants' A and T. Further, it is exactly the same
as (10.4.8) with a, b, c replaced by rj+u rh yk, respectively.

We can therefore apply the solution (10.4.21) of (10.4.8) to the relation
(10.5.2). Replacing u by t, this gives (for a particular value of/)

y'^j+i = snh(A - t) /snh A , (10.5.3)

y~hj = snh t /snh A ,

i.e., using (10.4.16) and (10.4.20),

rj = kh snh t, ri+i = -kk snh(f - A). (10.5.4)

From (15.2.5) and (10.4.20), r, is unchanged by replacing t by 2*7- f,
while r,-+i becomes —fc* snh(? + A). Thus if

ry = A:*snhr, (10.5.5)

then two solutions of (10.5.2) are

* A ) . (10.5.6)

Since (10.5.2) is a quadratic equation for r,+1, these are all the solutions.
Now consider these equations sequentially for/ = 1 , . . . , N, determining

t for each value. The choice of sign in (10.5.6) can be made independently
for each /, so the most general solution for r i , . . ., rN+i is

(10.5.7)

where

(10.5.8)

s is an arbitrary constant and each o) has value ± 1, (These O\,. . ., oN

have no connection with the Ising spins of Section 10.3). The cyclic
boundary condition rN+i = r\ is satisfied if Af is even and

o i + . . . + o jv=0 . (10.5.9)

(As in the six-vertex models, this condition can be relaxed for the special
values (4/m/ + 2rl')ln of A, where m, r, n are integers: it is then sufficient
that (Ti + . . . + o/v be an integer multiple of n. Such cases are often of
particular interest: the Ising model (K" = 0) has A = 1/'.)

Clearly this solution for n , . . . , rN is similar to that of the six-vertex
model in (9.8.15). If we set r = kies and let A:—» 0 while keeping r fixed,
then (10.5.7) reduces to (9.8.15).
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Eliminating gj{ +) between the first and third of the equations (10.5.1),
we obtain

Using (10.4.21), (10.5.7), (10.5.8) and the identity (15.4.23), this becomes

^ — ' - = (- ykk snh(sj + op). (10.5.11)

Taking the ratios of the first and second equations (10.5.1) now gives
[again using (15.4.23)]

ilizl = (_ y+ifc* s n h [ 5 . + a>(M + A)] . (10.5.12)
£/( + )

We are still free to choose Pj( + ), g,(+) arbitrarily. An important
property in Chapter 9 was that the elements of Q(v) were entire functions
of v (or u). In Section 9.8 this came about because each g/( + ) and
gj( - ) was entire. From (10.5.11) and (10.4.22), this can be ensured in this
more general situation by choosing

+oJu)], (10.5.13a)

for then

& ( - ) = (- )>+1iH[i(si + oju)]. (10.5.13b)

Similarly, from (10.5.7) and (10.4.22), we can choose pj{ + ) so that

p,{ + ) = G(iSj), p>(-) = (- V+UHfr,). (10.5.14)

Using (10.4.24), (10.4.23) and (15.4.25), the first of the equations
(10.5.1) now gives

g/( + ) = ph(k- u) e[iSj+iOj(u + A)], (10.5.15a)

so from (10.5.12),

g/( - ) = ph{k - u){ - )'iH[iSj + iOj(u + A)], (10.5.15b)

where the function h{u) is defined by

h{u) = - i 0(0) H(iu) ®{iu). (10.5.16)

The matrices Gy( ± ) now contain non-zero entries dgj(+ ) instead of the
zeros in (9.8.4). Using (10.4.24), (10.5.13) and (15.4.25 or 26), their
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determinants are

det Gj{ + ) = p2h{u) h(k - u) 0[w, + io,{u + A)] G[w, + io,(u - A)]

det Gj( - ) = - p2h{u) h{k - u) H[iSj + iOj{u + A)] H[iSj + iafu - A)].

(10.5.17)

As in Chapter 9, we can calculateg"{a) in (9.8.6) by taking determinants
in (9.8.5). The determinants of P, and Pi+l can again be ignored, since
their contribution to g"(a) cancels out of (9.8.7) (or we can require that
det Pi = 1). Using (10.5.15) and (10.5.17), we are left with

g'!{-) = p h{u) (- yiHlisj + iOj{u - A)]. (10.5.18)

Column Vectors y{v)

The 2A'-dimensional vector y has elements given by (9.8.2). Thus it is a
direct product of the two-dimensional vectors g\,. . ., gN:

y=gi®gi®---®gN, (10.5.19)
where

(10.5.20)

i.e., using (10.4.23) and (10.5.13),

Comparing (9.8.1) and (9.8.7), the vector y' (y") is also defined by
(10.5.19), but with each g, replaced by gj (gj). From (10.5.15) and (15.2.5),
g'i can be obtained from gj by multiplying by ph{k — u) and incrementing
u by A', where

A'= A-2*7. (10.5.22)

Regard y, defined by (10.5.19) and (10.5.21), as a function y(v) of v (k,
A, s being kept constant). From (10.4.23), incrementing u by A' is equivalent
to incrementing v by 2A', so

/ = {ph[i(k - v)]}Ny(v + 2A'). (10.5.23a)

Similarly, using (10.5.18),

/ = {ph[i{X + v)]}Ny(v - 2k'). (10.5.23b)



10.5 THE MATRIX Q 219

It is obviously convenient to define a function

<p{v)^[ph{vl2)]N; (10.5.24)

the equation (9.8.1) can now be written

V(v)y(v) = <p{k-v)y{v + 2X') + <p(k + v)y{v-2k'), (10.5.25)

so we have generalized (9.8.24) to the eight-vertex model. Again there are
many choices of y(v), corresponding to different choices of s,
ox,. . ., oN'm (10.5.8), subject to (10.5.9). Let QR(v) be a 2N by 2N matrix
whose columns are linear combinations (with coefficients that are inde-
pendent of v) of such vectors y{v). Then, from (10.5.25),

V(v) QR(V) = <£(A - D) QR(V + 2k') + 0(A + v) QR(v - 2A'). (10.5.26)

Row Vectors yT(-v) and Matrix QL(v)

Equations (9.8.26)-(9.8.29) generalize to the eight-vertex model, the only
explicit modification necessary being to change r in (9.8.29) to s. Let sj be
defined by (10.5.8), with s, ox,. . ., o;-i replaced by s', a[,. . . , a\-x.
Using (10.5.19), (10.5.21) and the identity (15.4.27), we find that

N

yT(-u\s', o')y{v\s, a) = \[TF[SJ-S) + JA(a,-- a)) + l(way+ ua))\
; = 1

x G[sj + sj + ik(oj+ o'j) + hivaj- ua'j)], (10.5.27)

where

F(u) = - H[hi(I' + u)] H[hi(I' - «)] , (10.5.28)

G(u) = Hi[hi(l' + u)]

We can now use the same inductive argument as that following (9.8.31)
to show that the RHS of (10.5.27) is a symmetric function of u and v. (We
need only (10.5.27) and (10.5.8): the definitions (10.5.28) are irrelevant.
It is necessary to split (10.5.27) into two factors, one containing only F
functions, the other containing only G functions. The inductive argument
applies to each, but one appeals initially to the case Oj = oj for the F-factor,
<jj=- &j for the G-factor.)

The relation (9.8.33) therefore also generalizes to the eight-vertex model,
i.e.

Qdu) QR(V) = QL{v) Qd,u), (10.5.29)
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where

QL{V) = QTR{-V). (10.5.30)

QR(V) a Non-Singular Matrix

Each vector y(v) is given by (10.5.19), (10.5.21), (10.5.8) and (10.5.9).
There are many such vectors, since s can be any complex number, and
Oi,. . . ,oN any set of integers ±1 satisfying (10.5.9). We want the set of
all such vectors to span all 2N-dimensional space (except possibly for special
values of v).

As in Chapter 9,1 am not able to give a full proof of this, but it is almost
certainly so (it is for N = 2 and 4).

It would not be generally true only if all determinants of all possible
matrices QR(V) vanished identically for all k, A, v. If this were so, they
would vanish for k = 0, which is the six-vertex model: in this case we know
that the eigenvalues of the transfer matrix are correctly given by assuming
QR(V) to be non-singular, and we have strong direct evidence that it is.

Let us therefore assume that QR(V) is non-singular for some value VQ.
Defining Q(v) by (9.8.38), i.e.

Q{v) = QR(v) Q-R\v0), (10.5.31)

the relations (9.8.39)-(9.8.42) follow, in particular

V(v) Q(v) = Q(v) V(v)

= <f>{X - v) Q{v + 2k') + (t>(k + v) Q(v - 2A'), (10.5.32)

Q(u) Q(v) = Q{v) Q{u), (10.5.33)

for all complex numbers v, u.

Commutation Relations Involving S and R

From (15.2.3a) and (15.2.4), the theta functions ©(«), H(u) satisfy

0(u + 21) = G(M), H{U + 21) = -H(u). (10.5.34)

The effect of incrementing v by 4il in (10.5.21) is therefore to negate the
function H.

Define the diagonal operator 5 by (9.8.43): it has entries +1 (-1) for
row-states with an even (odd) number of down arrows. From (10.5.19)
and (10.5.21), pre-multiplying y by 5 is equivalent to negating every H,
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SO

Sy(v) = y(v + 4il). (10.5.35)

This is the generalization to the eight-vertex model of (9.8.44). The equa-
tions (9.8.45) - (9.8.47) can at once be similarly generalized (merely replace
K by 27). In particular, they give

S Q(v) = Q{v) S = Q(v + 4*7), (10.5.36a)

SV(u) = V(v)S. (10.5.36b)

From (15.2.3b) and (15.2.4), the theta functions H(u), 0(u) satisfy the
relations

H(u + W) = iq-t exp(-Umi/l) 0(w) , (10.5.37)

0(M + //') = iq~* exp(-\imill) H{u).

Define a 2N by 2N matrix R by

/0 1\ /0 1\ /0 1\
R = { ® I ® . . . ® . (10.5.38)

VI 0/ VI 0/ VI 0/

(Multiplication by R has the effect of reversing all arrows.) Then from
(10.5.19) and (10.5.21) it follows that

N

y(v + 21') = q~m expliji 2 [sfa, + h(X + v)]/l) RSy(v). (10.5.39)
I y=i J

From (10.5.8) and (10.5.9),

N

ZJ SiOj = A ZJ O\O,
7 = 1 l s i< /«N

= M{(a, + . . . + oN)2-o\- . . . -a%}= - i M , (10.5.40)

so

y(w + 2/') = q-m exp(Nxvl4I) RSy(v). (10.5.41)

This relation is independent of 5 and O\, . . . , oN, so is satisfied by all
columns of QR(V). Using also (10.5.30), it can readily be verified that

QR(v + 21') = q~m exp(Nnv/4I) RS QR(v), (10.5.42)

Qdp + 21') = q~m exp(Nnv/4I) QL(v) RS ,

so, from (9.8.38) and (9.8.39),

RS Q(v) = Q(v) RS = qm exp(-Nm>/4I) Q(v + 21'). (10.5.43a)
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From (10.2.4), w(fj,, ac\fi, v) is unchanged by negating fx, a-, /3, v. From
(9.6.1) and (10.5.38) it follows that

RV(v) = V(v)R. (10.5.43b)

The matrices Q(v), Q(u), V(v), V{u), R, S therefore commute, for all
complex numbers u and v.

From (9.6.1), (10.2.3) and (10.4.24), all elements of V(v) are entire
functions of v. From (10.5.19) and (10.5.21), so are all elements of Q(v).

This completes the generalization to the eight-vertex model of the six-
vertex model properties (i)-(vi) given in Section 9.5. The derivation has
closely followed that given in Sections 9.6-9.8 for the six-vertex case.

10.6 Equations for the Eigenvalues of V(v)

The vital results of the previous two sections are (10.4.25), (10.5.24),
(10.5.32), (10.5.33), (10.5.36) and (10.5.43), together with the fact that
all elements of V(v) and Q(v) are entire functions of v.

We now generalize the 'sufficiency' argument of Section 9.5. Since all
matrices commute, there exists a matrix P (independent of v) such that
Vd(v), Qd(v) in (9.5.1) are diagonal matrices. Equation (10.5.23) gives
(9.4.3). Let A(v) be a particular eigenvalue of V(u), and q(v) the corre-
sponding eigenvalue of Q(v). (This function q(v) is not to be confused
with the nome q of the elliptic functions.) Then the corresponding entry
in the matrix equation (9.4.3) is the scalar equation (9.3.6), i.e.

A(v) q(v) = 0(A - v) q(v + 2A') + <p{k + v) q{v - 2k'), (10.6.1)

but now <p(v) is defined by (10.5.24), A' by (10.5.22).
Since all elements of V(v), Q(v) are entire, so are A(v), q(v). Let

r{= ±1) be the eigenvalue of R corresponding to A(u), q(v); and
s(= ±1) the eigenvalue of 5. Then from (10.5.36a) and (10.5.43a),

q(v + 4il) = s q(v) , (10.6.2)

q(v + 21') = rs q'm exp(Njtv/4I) q(v).

Integrating q'(v)/q(v) round a period rectangle of width 21' and height
47, then using Cauchy's integral formula (15.3.4), it is readily found that
q(v) has kN zeros per period rectangle. Set

n = N/2, (10.6.3)

and let vi,. . . , vn be these zeros.
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Consider the function

(10.6.4)

where h(u) is defined by (10.5.16). From (10.6.2), (15.2.3) and (15.2.4),

f(v + 4il) = (~ysf(v), ( 1 0 6 5 )

f(v + 21') = ( - ) " / • s cxp[n(Vl + . . . + v n ) l 2 I \ f { v ) .

From (10.6.4),/(u) is entire and non-zero. From (10.6.5), f(v)/f(v) is
therefore entire and doubly-periodic. From theorem 15a, it is therefore a
constant, so f(v) is of the form

f(v) = constant x exp(ry). (10.6.6)

Substituting this into (10.6.5) gives

T=jt(s-l + 2n + 4p')/8I, (10.6.7a)

. ..+vn = \{s-\+2n)V + i(rs-l+2n)I + 2pT + Aipl, (10.6.7b)

where p, p' are integers.
Combining (10.6.4) and (10.6.6), to within a multiplicative factor that

cancels out of all our subsequent calculations:

q(v) = exp(TO) Uhf^Y^j . (10.6.8)

This is the eight-vertex generalization of (9.3.5). The function h(u) has
a simple zero at u = 0, so setting v = Vj in (10.6.1) causes the LHS to
vanish, leaving

or, using (10.5.24) and (10.6.8),

)
" P (

for ; = 1 , . . . , n.
These are the eight-vertex generalizations of (8.4.12). They determine

vi,. . . , vn; q(v) is then given by (10.6.8) and A(v) by (10.6.1). There are
many solutions of (10.6.10), corresponding to the different eigenvalues.
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If v\,. . . , vn are distinct, then (10.6.10) ensures that the ratio of the
RHS of (10.6.1) to q(v) is an entire function, so that A(u) is entire, as
required. However, if any two of vi,. . . , vn are equal, then (10.6.10) is
not a sufficient condition for A(i>) to be entire: it must be supplemented
by further equations obtained by differentiating (10.6.1) with respect to
v and then setting v equal to the common Vj value.

For this reason, solutions of (10.6.10) are in general spurious if any two
of V\,. . . , vn are equal. (Note that in Chapter 8 we also rejected such
solutions, though in that case it was because they gave the eigenvector to
be zero.)

10.7 Maximum Eigenvalue: Location of v},..., vn

Principal Regime

Consider the case when

0<A:< l , 0 < A < / ' , |y|<A, p > 0 , (10.7.1a)

so, from (10.4.23),
0 < M < A . (10.7.1b)

From (10.4.21), the weights a, b, c, d all have the same sign; and from
(10.4.24) they are all positive, so the restrictions (10.7.1a) are physically
allowable.

From (10.4.17) and (15.4.4)

1 - A2 = (1 - kf sn2 iA/(l - k sn2 *'A)2, (10.7.2)

so, since sn2 ik is negative real,
A < - 1 . (10.7.3)

From (10.4.6) this implies that

(a + b)2 < (c - d)2. (10.7.4)

The ratio die is given by (10.4.21) to be k snh u snh(A - w); this has a
maximum when u = JA, and from (15.4.24) this maximum must be less
than one, so d<c. Taking positive square roots of (10.7.4) and noting
that each RHS in (10.4.24) is positive, it follows that

c>a + b + d, a>0, b>0, d>0. (10.7.5)

The restrictions (10.7.1) therefore imply (10.7.5); conversely, if a, b, c,
d satisfy (10.7.5), then there are unique real values of k, A, v, p, u satisfying
(10.4.21), (10.4.24) and (10.7.1).
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The inequality (10.7.5) specifies a domain, or regime, in (a ,b ,c ,d)
space. This is the generalization to the eight-vertex model of the six-vertex
anti-ferroelectric regime (regime IV in Fig. 8.5). The dominant Boltzmann
weight is c, and the ground-state energy configurations of arrows on the
lattice are either that shown in Fig. 8.3, or the configuration obtained from
it by reversing all arrows. By extending the six-vertex notation to the
eight-vertex, we are led automatically to regard (10.7.5) as the archetypal
regime.

This has its disadvantages: if we regard the eight-vertex model as a
generalization of the Ising model, as in Section 10.3, then it is natural to
focus attention on the ferromagnetic regime, when / and /' are large. The
dominant Boltzmann weight is then a, rather than c. Fortunately this can
be converted to the case (10.7.5) by using the symmetry relation (10.2.14).

In fact, it will be shown in Section 10.11 that any set of values of a, b,
c, d can be mapped into (10.7.5) (or its boundaries: since most properties
are continuous these present no problem) by using the symmetry relations
(10.2.11)-(10.2.17). They can equally well be all mapped into other
regimes, notably a > b + c + d, but from now on I shall single out the
regime (10.7.5) (with a , b , c , d all positive) and call it the principal regime.

Low-Temperature Limit

The equations (10.6.10) are quite complicated and for finite n have not in
general been solved. I find it helpful to first look at the following simple
limiting case: it gives some useful insights into the large-n behaviour.

Suppose e5 < E\, £3, £7 and T is small. Then from (10.1.2) and
(10.2.1)

Oa,b,d, (10.7.6)

so the weights are certainly in the principal regime. It follows that k<l;
while / ' , A, v are large, their ratios being of order unity. From (15.1.4) the
nome q is small, so from (15.1.5)

B(iu) =* 1, H(iu) ~ iqi exp(jtu/2I), (10.7.7)

provided 0 < Re(«//') < 1. Equation (10.4.24) therefore gives

c - ptfx-1, (10.7.8)

where

q = cxp(-JiI'H), x = exp(-jrA/2/). (10.7.9)
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Suppose vi,. . ., vn are all of order unity (or less). Then in this limit
(10.6.10) becomes, using (10.6.3),

zf + (-)"exp(-4rA')(z1. . . zny
l = 0, (10.7.10)

where

Zj = exp(-jtv/2I), (10.7.11)

and j = 1 , . . . , n.
Equation (10.7.10) is a polynomial equation for z; of degree n, so has

n distinct roots. We want v\,. . . , vn to be distinct, so z\,. . ., zn must be
the n roots of (10.7.10). It follows that

n

z" + (-l)"exp(-4TA')(z1. . . zny
l = Y[(z - z , ) , (10.7.12)

y = i

for all complex numbers z. Setting z = 0 and taking square roots gives

zi...zn = ±exp(-2rA') , (10.7.13)

while (10.6.7b) and (10.7.11) give

zx...zn = rs{-)n exp(-2r/') . (10.7.14)

From (10.6.7a), r is real; A' is given by (10.5.22), where A # / ' . Since
r = ±1 and s = ±1, it follows that

T = 0 , s = (-)", zl...zn = r. (10.7.15)

The asymptotic formulae (10.7.7) fail if Re(u) becomes zero or negative:
in this case we must use

e(iu) = 1, H(iu) ~ X qi sinh(jtu/2I), (10.7.16)

for |Re(«//')| < 1. Then (10.6.8) and (10.5.16) give
n

q(v) = n 2?1 sinhKu - Vj)/4I], (10.7.17)
7 = 1

for|Re(y//')| < 2. Setting

z = exp(-jru/2/), (10.7.18)

this can be written

n

q(v) = (-)"qMz-"\zx. . . zn)-*II(z -*i) • (10-7.19)

Using (10.7.12) and (10.7.13), this can in turn be written
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q(v) = qMz-nl2{Zl. .. znyH{-z)n + (*L • • z^1} • (10.7.20)

Now determine the asymptotic form of (10.6.1) in the low-temperature
limit. If |Re(y)| <t min(A , 21' - 2X), we obtain [using (10.5.24), (10.6.8),
(10.5.22), (10.5.16) and (10.7.7)]

A(v) q(v) = pNqmx-NqMz-M (Zl. . . zn)
i(R1 + R2), (10.7.21)

where

Ri = (-z)n, R2 = (z1...zny
1. (10.7.22)

The first term on the RHS of (10.6.1) gives the /?i term in (10.7.21), the
second gives the R2 term. However, from (10.7.20), q(v) also contains a
factor i?i + R2, so this cancels out of (10.7.21), leaving

A(v) =pNqmx-Nzi. . . zn, (10.7.23)

so, from (10.7.8) and (10.7.15),

A(v) = rcN, (10.7.24)

in the low-temperature limit.
This is indeed the correct maximum transfer matrix eigenvalue in this

limit. In fact there are two such eigenvalues, corresponding to r = ±1. For
r = +1 (-1) the corresponding eigenvector is symmetric (anti-symmetric)
with respect to reversing all arrows, and the eigenvalue is positive (nega-
tive). The two eigenvalues are asymptotically degenerate in that their
numerical difference vanishes exponentially as N becomes large. We have
therefore located v\,. . . , vn for these eigenvalues, in this low temperature
limit. From (10.7.15), (10.7.10) and (10.7.11), their values are

Vj = 2il[2j -n-h(r + l)]ln, j = l,...,n. (10 .7 .25)

In Section 8.8 and 8.9 we remarked that the free energy is analytic at
w (or v) = 0, even though the working for w positive differs from the
working for w negative. It is easy to see how this comes about in the above
equations: for v positive, R\ is exponentially smaller than R2 in the limit
n-+ <*>, so the first term on the RHS of (10.6.1) dominates. If v is negative,
the situation is reversed. Thus when taking the thermodynamic limit in
(10.6.1), or similarly in (8.4.4), the cases v > 0 and v < 0 must be discussed
separately.

However, since the factor R\ + R2 is contained in q(v), it cancels out of
(10.7.21), i.e. of (10.6.1), so the end result is independent of whether it
is Ri or R2 that dominates. Of course we have as yet only considered the
low-temperature limit, but this argument generalizes to all temperatures.
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10.8 Calculation of the Free Energy

Let us return to non-zero temperatures, i.e. to /', A, v finite, and consider
how to solve (10.6.10) in the limit of n large.

These equations are the eight-vertex generalizations of (8.9.12), with
Vj = —iocj. In Section 8.9 we showed that we expected oc\,. . . , an to be
real and distributed over the interval {-n, n), i.e. over a semi-period of
the relevant function sinhia/2. In the eight-vertex case the function is
h(ia/2), and the corresponding interval is (-21, 21). In the low-temperature
limit we have just observed in (10.7.25) that the iv\,. . . , ivn are indeed
distributed over this interval.

One obvious way to solve (10.6.10) is therefore to assume that in the
limit n —* °° the v\,. . . , vn are densely distributed along the line interval
(-2U, 2il), and to proceed as in Sections 8.7-8.9, thereby obtaining from
(10.6.10) a linear integral equation for the distribution function of
v i , • • • , vn.

Here I shall use another method: it is a refinement of the method used
in Baxter (1972b) and has the advantage that it discriminates between the
two numerically largest eigenvalues, so can be used to obtain the interfacial
tension (Baxter, 1973b).

Assumed Properties

First note that (10.6.7) and (10.7.11) determine r and z\. . . zn to within
choices of the integers r,s,p,p'. Assuming that there are no discontinuous
changes within the principal regime, these integers must keep their limiting
low-density values. Hence (10.7.15) must be exactly correct throughout
the principal regime.

Set

This is the ratio of the first term on the RHS of (10.6.1) to the second. In
the low-temperature limit this is R1/R2, where R\ and R2 are given by
(10.7.22), so it is then true that

p(v) ~ r (-)" exp(-niw/2I). (10.8.2)

For Re(tf) > 0, this vanishes exponentially as n-*<*>; for Re(u) < 0 it grows
exponentially.

Also, from (10.7.23), A(u) is constant (for finite v) in the low-temper-
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ature limit. It therefore seems reasonable to assume (throughout the
principal regime) that:

(i) there exists a positive real number 6 such that ln[l + p(v)] is analytic
for 0 < Re(u) < 6; and ln[l + Vp(v)] is analytic for
0 > Re(u) > - <5,

(ii) v\,. . ., vn are pure imaginary,
(iii) A(v) is analytic and non-zero in a vertical strip containing the

imaginary axis.

Wiener - Hopf Factorization

I shall now show that (10.6.1) does admit solutions with these properties.
First use (i) to make a Wiener - Hopf factorization (Paley and Wiener,
1934; Noble, 1958) of 1 + p(v): define X+(v), X-(v) by

1 fa+2iI ln\l + p(v')]
lnX+(v)=—\ =—f ^—^—-dv',Re(v)>a, (10.8.3a)v ' 4iIJa-2n exp[a(v - v')/2I] - 1 v ' y '

, v , s 1 ^+2il MX + Pip')]
lnX-(v) = ~47/L, exp[^ -v>m -1 dv

where 0 < a< a1 < 6. Adding these equations and using the fact thatp(u)
is periodic of period Am, the RHS can be written as an integral round the
rectangle of - 2il, a' + HI, a + 2il, a — 2il. Cauchy's residue theorem
then gives

X+(v)X-(v)=l+p(v) (10.8.4)

This result can be used to define X+(v) for Re(y) =s a, and X-(v) for
Re(u) s= a!.

The equation (10.6.1) can now be written as

A(v) = <t>{k+v) q(v - 2V) X+(v) X-(v)/q(v). (10.8.5)

From (10.8.3), X+(v) is analytic and non-zero (ANZ) for Re(u) > 0,
while X-(v) is ANZ for Re(v) < 6. The other terms on the RHS of (10.8.5)
can be factored into products of similarly analytic functions. To do this,
note from (10.5.16) and (15.1.5) that

CO

h(u) = -h(-u) = yexp(jtu/2I) JJ {1 - ^mexp(-^//)}
m=0

x {1 - qmexp[-n(I' - u)/I]\, (10.8.6)
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where
00

Y = ^0(0) II (1 - 42m)2 • (10.8.7)

Substituting the expression (10.8.6) for h(u) into (10.5.24) and (10.6.8)
(with T = 0) gives

(j)(v) = fff exp(Njiv/4I)A(v) A(2I' - v), (10.8.8)

q(v) = yn exp[n(nv - V l - ...- vn)/41]F(v) G(v - 2 1 ' ) , (10.8.9a)

= (- y)n exp[n(v! + ... + vn- nv)/4I]F(v + 21') G(v), (10.8.9b)

where

- qm exp( - JTV/2I)]N, (10.8.10)

1 - qm exp{ - 7i(v - Vj)/2I}], (10.8.11a)

= II II t1 - I™ expWu - Vj)/21}]. (10.8.11b)n n
j = l m = 0

Note that A(v) is a known function; while V\,. . ., vn, and hence F(v)
and G(v) are unknown. The object of the following manipulations is to
obtain useful expressions for F(v) and G(v).

Substitute the results (10.8.10), (10.8.11) into (10.8.5), using (10.8.9b)
for q(v — 2k') and (10.8.9a) for the denominator q(v). This gives, using
(10.5.22), (10.7.9) and (10.7.15),

A(i>) = rpNfx-NL+{v)L-(v), (10.8.12)

where

L+(v) = A{k + v) F(v + 2V - 2A) X+(v)/F(v),
L-(v) = A(2I' -k-v)G(v- 2k) X-(v)/G(v - 2V). (10.8.13)

Let

6' = min(c5,2A,2/'-A); (10.8.14)

using (10.7.1a), (10.8.10), (10.8.11) and assumption (ii), it is readily
observed from (10.8.13) that L+(v) is ANZ for Re(v) > 0, while L-(v)
isANZforRe(i;) < 6'. However, this last property, together with (10.8.12)
and assumption (iii), implies that L+(v) is ANZ for Re(i>) 5= 0. Altogether
we finally have

LJv) is ANZ for Re(u) s= 0 ,K (10.8.15)
L-(v) is ANZ for Re(y) < 6'.
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Now repeat the working, but start by Wiener -Hopf factorizing
1 + [llp(v)\.

±1 r-a+u in + l/n(v)l
lnY+(v)=-±\ r ; Sn 1 dv'> (10-8.16)

taking the upper choice of signs if Re(u) > - a, the lower if Re(y) <
- a, and choosing 0 < a < d. Then

Y+(v)Y-(v) = l+[l/p(v)], (10.8.17)

y+(u) is ANZ for Re(» > - 6, Y-(v) is ANZ for Re(v) < 0. Equation
(10.6.1) becomes

A(v) = <KA - w) q(v + 2A') y+(o) YJv)lq{v). (10.8.18)

Using (10.8.8), (10.8.9a), (10.8.9b) for <p{X - v), q(v + 2A'), q(v), respec-
tively, this gives

flM+(v) M-(v), (10.8.19)

where

M+(v) = A(2I' -X+v)F(v + 2X) Y+(v)/F(v + 21'),
(10.8.20)

y - 27' + 2A) y _ ( ) / G ( )

Equations for F(v), G(v), p(v)

From (10.8.20), M+(y) is ANZ for Re(u) > - 6', while M_(y) is ANZ for
Re(y) < 0. Using (10.8.19) and property (iii), it follows that

M+(v) is ANZ for Re(y) > - 8' , (10.8.21)
M-{v) is ANZ for Re(u) « 0.

Comparing (10.8.12) and (10.8.19), it is evident that

L+(v)/M+(v) = M-(v)/L-(v) . (10.8.22)

The LHS of this equation is ANZ for Re(v) 3= 0, periodic of period Ail,
and —*\ as Re(i>)—* + «> (this last property follows from the definitions).
The RHS is ANZ for Re(y) « 0, periodic of period Ail, and -» constant
as Re(y)-» - ». Altogether therefore, both sides are entire (and non-
zero) and bounded. From Liouville's theorem they &rz therefore constant.
This constant must be one, so

M+(v) = L+(v), M-(v) = L_(y) . (10.8.23)
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Using (10.8.13) and (10.8.20), the first of these equations is

S+(v) = S+(v + 21' - 2k) X+(v)/Y+(v), (10.8.24)

where

S+(v) = F(v) F(v + 2X)/A(v + A). (10.8.25)

Regard X±(v), Y±(v) as known functions. Then equation (10.8.24) can be
regarded as a recursion relation for S+(v): solving it gives

I' - k)]/Y+[v + 2m(I' - A)], (10.8.26)

and (10.8.25) can now be solved for F(v), giving

(From their definitions, X+(v), Y+(v), A(v) all tend exponentially to 1 as
Re(y)—» +oo, so these infinite products converge.)

Similarly, the second of the equations (10.8.23) gives

S-(v) = S-(v - 21' + 2A) Y-(v)IXJiv), (10.8.28)

where

S-(v) = G(v) G(v - 2A)M(A - v). (10.8.29)

Since G(v), A{-v) tend exponentially to one as Re(u) -^ -<», so do
S-{v) and Y-{v)IX-{v). Thus

oo

S-{v) = n Y-iv - 2m(r - A)]/Jf_[i; - 2m(l - A)], (10.8.30)
m = 0

( 1 ° 8 3 1 )
G(V) i-U[(4m + 3)A - v] S.[v - (4m + 2)A] ' ( 1°- 8- 3 1 )

The definition (10.8.1) of p(v) can be expressed in terms of A(v), F(v),
G(v) by using (10.8.8) and (10.8.9). Use (10.8.9a) for q(v + 2A'), (10.8.9b)
for q(v - 2k'), and (10.7.16). This gives

pip) = r( - )" exp( - nnvl2l) A{X- v)A(2I' - A + v)

xF(v + 2X)G(v + 2X-2I')/[A(k+v)

x A(2I' -k-v)F{v + 21' - 2A) G(v - 2k)]. (10.8.32)
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Iterative Calculation of p(v)

These results are exact, even for finite n, provided the assumptions (i)-
(iii) are satisfied. A possible iterative method of solution, starting with
some initial guess at p(v) (satisfying assumption (i)) is: calculate X±{v),
Y±(v) from (10.8.3) and (10.8.16); calculate S+(v) from (10.8.26) and
(10.8.30); calculate F(v), G(v) from (10.8.27) and (10.8.31); calculate
p(v) from (10.8.32) and repeat.

Provided assumption (i) is satisfied, this procedure gives F(v) to be ANZ
for Re(u) > 0, and G(v) for Re(u) < 0. From (10.8.11), vi,. . ., vn can
therefore only be pure imaginary, so (ii) is satisfied. Also, from (10.8.12)
or (10.8.19), A(y) is analytic for -6' < Re(v) < 6', so (hi) is satisfied.

Now consider the case when n is large. Suppose, as is suggested by
(10.8.2), that p(v) vanishes exponentially with n for 0 < Re(u) < 6; and
grows exponentially for 0 > Re(u) > - 8. Then from (10.8.3) and
(10.8.16), X+(v), X-{v), Y+{v), Y-(v) are exponentially close to one,
provided that Re(u) >0, Re(v) < 6, Re(v) > - 6, Re(u) < 0, respect-
ively.

For Re(u) > 0, each function S+(v) in (10.8.27) is therefore exponentially
close to one; for Re(y) < 0 so is each function S-(v) in (10.8.31). From
(10.8.32) it follows that for |Re(»)| < min(2A , 2/' - 2A)

+ 3)A + v]

A[(4m + 1)A + v 4- 2I']A[4m + \)k-v] A[(4m + 3)A - v + 21']
A[(4m + 3)A + v + 2I']A[(4m + 3)A - v] A[(4m + 1)A - v + 21']

x {1 + (terms that vanish exponentially as n -*• oo)}. (10.8.33)

Now use the definition (10.8.10) of A(v); together with (10.7.9) this
implies that

A{v)IA(v + 21') = [1 - exp(- JIVI2I)]N. (10.8.34)

A quite remarkable feature of (10.8.33) is that A(v) only occurs in the
combination (10.8.34), so

W\ • , (10.8.35)

for |Re(w)| < min(2A, 21' - 2A), where x, z are defined by (10.7.9) and
(10.7.19), and the exponentially small corrections have been neglected.
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The nome q has therefore disappeared from this expression. On the
other hand, comparing (10.8.34) with (15.4.13), we see thatp(u) is related
to the elliptic functions of nome x2 or x. In fact, since am(u) is defined by
(15.4.13) with q replaced by q2,

p(v) = r ( - ) " exp[ —iN am(iv, k)], (10.8.36)

where k is the elliptic modulus corresponding to the nome

q = x, (10.8.37)

and

v/I=v/(2I). (10.8.38)

The function exp[—i am(iv , k)] has modulus less than one for 0 <
Re(u) < 2A, and greater than one for 0 > Re(u) > -2A. Also, it is a
meromorphic function of v. The assumption (i) is therefore satisfied by
(10.8.36) with 0 < <5 < min(2A, 21' - 2A); so therefore are (ii) and (iii).
Further, it is also true that this function p(v) vanishes exponentially as
n—* oo, provided 0 < Re(u) < 6; it grows exponentially if 0 > Re(i>) >
-6.

If we now substitute this expression for p(v) back into (10.8.3) and
(10.8.16) and continue the iterative procedure, we should obtain the
exponentially small corrections to (10.8.36), then the corrections to the
corrections, and so on. I have not done so, but expect that it should be
possible to prove, with full mathematical rigor, that this procedure con-
verges to a solution of (10.6.1) satisfying assumptions (i)-(iii), and with
(10.8.36) as the exact large-Af solution for p(v).

Note that v\,. . . , vn are the zeros of 1 + p(v), lying on the imaginary
axis. Like p(v) therefore, for large N the values of v\II,..., vnll depend
only on x: not on q (or z). I find this intriguing: I have no simple explanation
as to why it should be so.

The Functions p(v), A(v) in the Thermodynamic Limit

The large-M formulae (10.8.35) and (10.8.36) give p(v) only when
|Re(u) | < min(2A , 21' — 2A). To obtain p(v) for other values of v, note
that (10.8.27) gives F(v) for all v, but only when Re(u) > 0 do the functions
S+ give a factor which is exponentially close to unity for large n. Thus
(10.8.27) is 'useful' when Re(u) > 0, since to leading order in a large-n
expansion the unknown functions X+(v), Y+(v), S+(v) can then be replaced
by unity. Similarly, the expression (10.8.31) for G(v) is useful when
Re(y) < 0.
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Using the second periodicity relation in (10.6.2), the function q(v), for
general values of v, can be written as proportional to q(v*), where 0 <
Re(u*)<2/'. This function q(v*) can then be factorized by (10.8.9a),
giving an expression for q(v) involving F(v) only for Re(u) > 0, and G(v)
only for Re(v) < 0.

Fig. 10.5. Regions of applicability of the forms a, b, c of equation (10.8.39). Within
the broken line p(v) is exponentially small for large n.

Doing this in (10.8.1), using (10.8.27) and (10.8.31), we obtain (for n
large)

p(v) = p(0\v) for |Re(w) | < min(2A, 21' - 2A), (10.8.39a)

P(v) = 1 for 2A < Re(») < 2/' - 2A , (10.8.39b)

p(v) =p(a){v)p(0\v -21') for 2/' - 2 A < Re(v) <2A , (10.8.39c)

where p(0)(v) is the function on the RHS of (10.8.35) and (10.8.36).
Together with the periodicity relations [a consequence of (10.6.2),

(10.5.24) and (10.8.1)]

p(v + 4il) = p(v + 21') = p(v), (10.8.40)

these equations define p(v) for general values of v. The regions of appl-
icability of the three formulae (10.8.39) are shown in Fig. 10.5. Also shown
is a broken line marking the boundary of the region in which p(v) is
exponentially small when iV is large. From this it is apparent that in
assumption (i) of this section the maximum value of 6 is

= min(2A,/'). (10.8.41)

Now calculate L-{v) from (10.8.13), M+(v) from (10.8.20), and calculate
A(y) from (10.8.12), using (10.8.23) to replace L+ by M+. (This route
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gives an expression which is manifestly analytic and non-zero for -d' <
Re(u) < <5'.) Neglecting exponentially small corrections, the result is

A(v) = roNyNx-N f

A[2I' + (4m - 1) A + v] A[(4m + 3) A - v]A[2I' + (4m - 1) A - v]
X A[2I' + (4m + 1) A + v] A[(4m + 5) A - v] A[2I' + (4m + 1) A - v] '

(10.8.42)
provided |Re(u)| < d.

We have solved the functional equation (10.6.1) for the functions q(v),
A(v). This is equivalent to solving (10.6.1) for v\,...,vn: indeed
vi,. . . ,vn are the zeros of 1 + p(v), so can be obtained from (10.8.35).

These equations have many solutions, corresponding to the 2N different
eigenvalues A(i>) of the transfer matrix V(v). In fact we have obtained
just two such solutions, i.e. eigenvalues: one with r = +1 (arrow reversal
symmetry), the other with r= -1 (anti-symmetry). From (10.8.42) they
are equal in magnitude and opposite in sign (to within corrections that
vanish exponentially as n—» °°).

In the low temperature limit we have verified that these are the two
numerically largest eigenvalues. From the Perron-Frobenius theorem (Fro-
benius, 1908), a matrix with positive entries has a unique maximum eigen-
value. It follows that these are the two numerically largest eigenvalues
throughout the principal regime (10.7.1), within which the Boltzmann
weights a, b, c, d are positive and our analysis is valid.

The result (10.8.42) can of course be analytically continued throughout
the complex u-plane. Indeed, provided | Re(v) \ < 6, it has a direct meaning:
A(u) is the eigenvalue associated with the eigenvector which is maximal
in the principal regime (the eigenvector is independent of v). In particular,
this analytic continuation satisfies

A(y) A(2A - v) = (j)(k + v) 0(3A - v), (10.8.43)

a relation to which I shall return in Chapter 13.

Free Energy

Taking logarithms of both sides of (10.8.42), using (10.8.10), the RHS
becomes a double sum of terms like ln(l - q"xbz±l), where a and b are
integers. Taylor expanding each such logarithm in powers of qaxbz±1, the
summations can be performed term by term, giving
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'ln[rA(v)] = ln(py/x) -
m(l - qm) (1 + x2m)

(10.8.44)
Also, from (10.4.24), (10.8.7) and (15.1.5),

'•)s*fti -iri.fYi yJ2.fn^. ~2,m -,ff!/v/M _i v —ni\ / — m i _ —tn\
^ Zu — X ~ u X ~~ Q iX ~r X ) iZ ~r Z )

In c = ln(py/x) + Z .. _ ,m, .
(10.8.45)

As usual [equations (1.7.6) and (8.2.4)], the free energy / per site is
related to the maximum eigenvalue Amax by

-flkBT= lim N~llnAm3lX, (10.8.46)

iV being the number of columns of the lattice.
From the Perron-Frobenius theorem (Frobenius, 1908), the maximum

eigenvalue must have r = +1. Thus Amax is the A(v) given by (10.8.44),
with r = +1. Eliminating A{v) and py/x between these last three equations
leaves

«, . ™ X 1 X [X ~ CJ ) IX ~r X ~ Z ~~ Z )

-flkBT = In c + ^ * * _v ^ + ^ '-.
(10.8.47)

Alternatively, using (10.4.24), (10.8.7) and (15.4.27), one can establish
that

^ x
2m + qmx~2m - qml2 (xm + x'm - zm - z~m)

ln(c + d) = Hpy/x) - ^ ^ - ^ ,

(10.8.48)
and hence that

-flkBT = ln(c + d)

•x2m)

10.9 The Ising Case

It was shown in Section 10.3 that the eight-vertex model factors into two
identical and independent Ising models when /' = 0. The interaction coef-
ficients are termed K, L in Chapter 7; J/kBT, J'lksT in this chapter.
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Let ki, uj, qi, . . . be the variables k,u,q,... of Chapter 7. Then from
(7.6.1)

kT1 = sinh(2J/kBT) smh(2J'/kBT). (10.9.1)

Expanding the RHS as sums of exponentials and using (10.3.9), (10.3.10)
and (10.4.6) gives

kT1 = (a2 + b2-c2- (f)/4ab = A . (10.9.2)

The ferromagnetic ordered state of the Ising model (/ > 0 , /' > 0 ,
kj< 1) therefore lies in the regime A>1, a>b + c + doi the eight-
vertex model.

This regime can be mapped into the principal regime (10.7.5) by using
the symmetry relation (10.2.14), i.e. by interchanging a with c, and b with
d.

Do this, and then define p, k, A, v by (10.4.24), or (10.4.21). We obtain

snhA = ATi, (10.9.3)

jt» snh u = exp(-V/kBT), (10.9.4)

and, from (10.9.2) and (10.4.17), noting that A is negated by interchanging
a with c and b with d:

. (10.9.5)

Using (15.4.32), it follows from (10.9.3) that

A = \V , (10.9.6)

so A is exactly in the middle of the interval (0 , / ' ) permitted by (10.7.1).
From (10.7.9),

q = x-. (10.9.7)

Also, from (15.4.32) and (10.9.5),

ki = 2Jfc*/(l + k). (10.9.8)

This relation between elliptic moduli is that of the Landen transformation
(Section 15.6). If qi is the nome corresponding to kh then from (15.6.2)
and (10.9.7),

q, = q* = x2. (10.9.9)

From (7.10.50), using (15.1.4), the Ising model spontaneous magnet-
ization can therefore be written as
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Also, using the transformation (15.6.4) in (10.9.4), comparing the result
with (7.8.5) gives

K/=(l + fc)u. (10.9.11)

With these equivalences, it can be verified directly that (10.8.47) does
indeed become the previous Ising model result (7.9.16) when /" = 0.

10.10 Other Thermodynamic Properties

Interfacial Tension

In the principal regime the eight-vertex model has long range anti-ferro-
electric order. The predominant pattern is either that of Fig. 8.3, or that
obtained therefrom by reversing all arrows.

The interfacial tension between domains of these two types can be
obtained in the same way as in Section 7.10. If Ao, Ai are the two
numerically largest eigenvalues, they are asymptotically degenerate in the
sense that

= - 1 + 0 [exp(- Ns/kBT)], (10.10.1)

where s is the interfacial tension.
These eigenvalues Ao, Ai are the two eigenvalues discussed in the

previous section, with r = + 1, - 1, respectively. We observed there that
for large N they were equal in magnitude and opposite in sign. To obtain
s we must keep some of the exponentially small corrections that we
neglected in the previous section.

First re-derive (10.8.42), keeping all the X±(v), Y±{v) contributions,
and using (10.8.3) and (10.8.16). Let A(0)(u) be the function on the RHS
of (10.8.42). Then it is found that, for |Re(u)| < or,

1 fa-Hil

ln[A(y)/A(0>(y)] = — ln[l + p(v')] D(v - v') dv'
oil Ja-m

1 f-a+2

Oil J-a-2

-a+2il

l + Vp(v')]D(v-v')dv', (10.10.2)
-a-2U

where if z, x are defined by (10.7.18) and (10.7.9),

°° y 2 m _ - l Y2m+27
. (10.10.3)

This function D(v) satisfies the relations

D(v) = -D(-v) = -D(v + 2X) ; (10.10.4)
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in fact

D(v-k) = dn(iv,k), (10.10.5)

where dn(u,k) is the elliptic function defined in (15.1.6), and k, v are
defined by (10.8.37) and (10.8.38): again we see the occurrence of elliptic
functions with nome x, rather than q.

Equation (10.10.2) is exact, even for finite n. The leading corrections
(for large n) to A(v) can be obtained by substituting into (10.10.2) the
large-n expressions (10.8.39) for p(v).

Provided a< min(2A, 2/' - 2A), these are the expressions given in
(10.8.35) and (10.8.36). The function p{v) then has saddle points at v =
2il± A, i.e. z = -x±l. Taking a = A in (10.10.2), integrating by steepest
descents therefore gives

\n[A(v)/A(0\v)] ~p(2U + A). (10.10.6)

Setting z = -x in (10.8.35):

p(2il + X) = r k?12, (10.10.7)

where

[This quantity ki is the elliptic modulus with nome x2. It is related to k by
*=2tf/(l+A:i).]

For r = +1, A(v) in (10.10.6) is Ao; for r = -1 it is A]. From (10.8.42),
A(0)(u) is the same for both cases except for a change in sign. Taking the
difference, using (10.10.7), therefore gives

Ai/Ao = -1 + O(Af2). (10.10.9)

The two maximum eigenvalues are therefore asymptotically degenerate:
they satisfy (10.10.1), the interfacial tension s being given by

exp(-s/Jfcfl7) = A:i. (10.10.10)

This argument fails if A > 2/73, since thenp(v') in (10.10.2) is not given
by (10.8.35) when a= A. Even so, (10.10.10) remains correct, as is shown
in Appendix D of Baxter (1973d).

When &-» 0, then q-> 0, / -* nil and snh «-*• sinh u. Using (10.4.23),
we see that the relation (10.4.21) becomes the same as (8.9.7), with d =
0. Thus the eight-vertex model reduces to the six-vertex model, the principal
regime (10.7.5) becomes the regime IV of Section 8.10, and A, v then have
the same meaning as in Section 8.10.
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The interfacial tension of the six-vertex model is therefore given by
(jp.10.10) and (10.10.8), in the limit q-+ 0. However, these equations are
independent of q, so they already give the result (8.10.3) quoted above.
The definition (10.7.9) of * reduces to (8.10.2).

Correlation Length

In addition to the largest two eigenvalues A(v) of the transfer matrix V(v),
in the limit of N large it is also possible to calculate the next-largest, and
so on. Indeed, a considerable amount of work has gone into doing such
calculations, mainly because they enter the related problem of the partition
function of the XYZ chain, which is discussed in Section 10.14 (Yang and
Yang, 1969; Gaudin, 1971; Johnson and McCoy, 1972; Takahashi and
Suzuki, 1972; Takahashi, 1973, 1974; Johnson and Bonner, 1980).

I shall not attempt to reproduce such calculations here. Let me merely
remark that for any eigenvalue it is expected (for N large) that the zeros
i>i , . . . , « „ of q(v) are grouped in strings in the complex plane. All zeros
in a string have the same imaginary part, the zeros are spaced uniformly
at intervals of 2A, and are symmetric about either the pure imaginary axis
or about the vertical line Re(i>) = /'. Thus a string of m zeros consists of
the complex numbers

iw + W + (2j-m-l)k, j = l,...,m, (10.10.11)

where / is an integer (either 0 or 1).
For the two largest eigenvalues (i.e. those discussed in Section 10.8)

each string has / = 0 and contains only one zero. After these, let A2 be the
next-largest eigenvalue. Johnson et al (1972a, 1972b, 1973) argued that this
would correspond to either one of the strings having 1=1, or to two of
them being replaced by a string of length two.

In fact there are 2N such eigenvalues, all corresponding to the diagonal
operator S having eigenvalue s = - ( -1 )" . In the limit TV —» °°, and provided
A =s U', the largest of them is given by (8.10.10), or equivalently (8.10.11),
i.e.

where A, v, x, z are defined by (10.4.24), (10.7.9) and (10.7.18). (Like the
results (10.10.8), (10.10.10) for the interfacial tension, this formula does
not involve q, so has the same form for both the eight-vertex and six-vertex
models.)
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The argument following (8.10.11) still applies, so the arrow correlation
length § is given by (8.10.12). Using (10.10.8), this can be written as

r I = 2ln(l//ci), (10.10.13)

provided as before that A s£ U'.
Eliminating kx between (10.10.10) and (10.10.13) therefore gives

s%=kBT, (10.10.14)

5 here being the interfacial tension. It can now be seen why this relation
is satisfied by both the Ising model [eq. (7.10.44)] and the six-vertex model
[eq. (8.10.13)]: both are special cases of the eight-vertex model, for which
the relation holds generally, provided that 0 =£ KIT =s \. (The Ising model
has XII' = i, the six-vertex model has XIV = 0.)

Yet more generally, the scaling hypothesis (Widom, 1965; Abraham,
1979) predicts that, for all systems near their critical point, s and % should
satisfy a relation of the form (10.10.14).

Johnson et al (1973, equations (6.17)) also obtained £ for W < A < /',
and found that (10.10.12) and (10.10.13) fail for A > 2/73. This is typical
of the calculation of the lower eigenvalues of the eight-vertex model transfer
matrix: the results differ for various sub-intervals of the line 0 < A < /'. In
part this is due to strings becoming longer than the period 21' of q(v) and
hence reappearing on the other side of a period rectangle. It greatly
complicates the study of the lower eigenvalues.

It also means that many of the formulae, while appearing not to involve
q (only x and z occur explicitly), do involve it in their domains of validity.
This is a pity: if it were true for any eigenvalue A; that A/Ao was a function
only of x and z [as in (10.10.9), (10.10.12) and equation 8 of Johnson et
al. (1972a)], then these ratios could be obtained (for N large) from the
explicit Ising model results.

It should be remarked that the results (10.10.10), (10.10.13) for the
interfacial tension and correlation length do not quite reduce to (7.10.18),
(7.10.43) in the pure Ising model case. In this case, from (10.9.8) and
(10.9.9), k[ is the elliptic modulus with nome x2, so ki = ki is the modulus
used in Chapter 7 and we see that there are discrepancies of factors of 2.
For the interfacial tension this is because of a change of length scale: the
n in (7.10.17) corresponds to N/2 in (10.10.9). For the correlation length
it is because in the principal regime (wherein the system is ordered) the
A2s discussed by Johnson et al (1972a, 1973) lie in a different diagonal
block of the transfer matrix from Ao (the corresponding eigenvalues of S
have opposite sign), so the matrix elements fa, feo in (7.10.33) are zero:
one has to go to the next-largest band of eigenvalues. The effect of this
is to square A2/A0, and hence to remove the i from (10.10.13). (For the
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disordered regimes the A2 of Johnson et al. lies in the same diagonal block
as Ao and (10.10.13) is correct as written, providing k, A, v are defined as
in Section 10.11. The result then is to be compared with the low-temperature
Ising result (7.11.4).)

Spontaneous Magnetization

We have seen that the eight-vertex model can be viewed either as a model
of ferroelectricity (with dipoles represented by arrows on lattice edges),
or of ferromagnetism (with Ising spins on lattice faces). One obtains a
different order parameter depending on which viewpoint is adopted.

Let us first use the magnetic Ising picture of Section 10.3. Let O\ be a
particular spin, and let

M0 = (o1), (10.10.15)

be the average value of this spin, calculated in the limit of an infinitesimally
weak applied magnetic field, as in (1.1.1).

Suppose that the system is ferromagnetic, so J and J' are positive, and
that / ' > -max(/ , / ' ) . Then for sufficiently low temperatures T, the Boltz-
mann weights, given by (10.3.9), will satisfy

a>b + c + d. (10.10.16)

This regime can be obtained from the principal regime (10.7.5) by
interchanging a with c, and b with d, using the symmetry argument of
(10.2.14). It is the ferromagnetically ordered regime of the eight vertex
model.

Define k, A, v,p, satisfying (10.7.1), by interchanging a with c, and b
with d, and then using (10.4.21)-(10.4.24). Define q, x, z by (10.7.9) and
(10.7.19), and a parameter y by

q=x2y. (10.10.17)

Then Mo can be regarded as a function of x, y and z.
Barber and Baxter (1973) expanded Mo as a series in x, with coefficients

that a priori are functions of y and z. (This is a partially summed low-
temperature series.) To order x4 they found that

Af0 = 1 + 0.x - 2x2 + 0.x3 + 2x4+ (10.10.18)

All coefficients calculated were in fact constants.
It is not difficult to see that Mo must be independent of z: as in (7.10.48)

and (7.10.32), Mo can be written solely in terms of a diagonal single-spin
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operator and the matrix P (U in Chapter 7) of eigenvectors of the transfer
matrix. These are independent of v, and hence z; so therefore is Mo.

It is not obvious that Mo should be independent of q. However, the
interfacial tension is, the correlation length is (provided A < 2/73), and so
are the first five terms in the jc-expansion of Mo- For these reasons, Barber
and Baxter (1973) conjectured that Mo is a function only of x.

However, for the pure Ising model, which from (10.9.7) is when q =
x\ Mo is known from (10.9.10) to be

(10.10.19)

so the conjecture implies that this formula is true for all q.
The conjecture has been verified: Mo can be obtained from the corner

transfer matrices, as will be shown in Chapter 13.
Remember that the k\ defined by (10.10.8) is, from (15.1.4a), the elliptic

modulus corresponding to the nome x2, From (15.1.4b) it follows that

M0 = k\w=(l-k2
l)

vs. (10.10.20)

Spontaneous Polarization

Return now to the original arrow formulation and let

Po = <*i>, (10.10.21)

where oc\ is the 'arrow spin' on some particular edge (vertical or horizontal),
having values ±1 depending on the arrow direction. From (10.3.2),

Po = <oioi>, (10.10.22)

where oi, Oi are the Ising spins of the faces on either side of the lattice
edge.

This Po is an 'order parameter' like Mo. From Fig. 10.1 and (10.1.5), the
zero-field eight-vertex model is unchanged by reversing all arrows. This
symmetry can be broken by adding a field-like contribution to the total
energy of

-E*2at, (10.10.23)
i

where E is the 'electric field' and the sum is over all vertical (or all
horizontal) arrows.

For a ferroelectric model, where a or b is the largest of the Boltzmann
weights a, b, c, d, this field breaks the degeneracy of the ground states.
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If one now calculates (10.10.21) in the limit of a large lattice, then lets
E-»0 through positive values, the resulting expression for Po will be
non-zero if a or b are sufficiently large.

For an anti-ferroelectric model, where c or d is the largest of the
Boltzmann weights [as in the principal regime (10.7.5)], (10.10.23) does
not break the degeneracy of the ground states (such as that in Fig. 8.3).
It is necessary to 'stagger' E, alternating its sign on successive edges. Then
the appropriate limiting value of Po is again non-zero for sufficiently large
c or d.

This calculation has not been carried out, any more than the Ising model
has been solved in a magnetic field. In fact Po itself has not been calculated,
but it must, like Mo, be a function only of x and q, independent of z. Baxter
and Kelland (1974) have conjectured that in the principal regime (10.7.5)

°° / i i _n i _ Jin

„ r r 1i + q l x
"o -

This agrees with the six-vertex (q = 0) result (8.10.9). In the Ising case
(q — x*) it gives, using (10.9.10), Po =Ml: this is correct, since oi and Oz
in (10.10.22) lie on distinct sub-lattices and so are independent for the Ising
case. The conjecture is also correct in the limit q = x2, A = /', when a =
b = 0, c = d and the system is completely ordered.

Baxter and Kelland also set q = x2y, as in (10.10.17), and calculated Po

to order x4 in an expansion in powers of x, with coefficients that are
functions of y. The result agreed with (10.10.24) so it seems very likely
that (10.10.24) is exactly correct throughout the principal regime.

Noting that the nomes q, x2 correspond to the moduli k, k\, respectively,
it follows from (15.1.7) that (10.10.24) can be written as

Pa = k[hl{k'I), (10.10.25)

where k!, k[ are the corresponding conjugate moduli, and /, Ix are the
complete elliptic integrals of the first kind.

10.11 Classification of Phases

Within the principal regime (10.7.5), the free energy is given by (10.8.47).
In this case we see from (10.2.16) that

w3>w4>w1>\w2\. (10.11.1)
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For general values of a, b, c, d, using the symmetry relation (10.2.17),
the free energy is given by the following procedure:

(i) Calculate wx , . . . , wA from (10.2.16).
(ii) Negate and re-arrange the W\ , . . . , w4 as necessary to satisfy

(10.11.1).
(iii) Calculate the mapped values of a, b, c, d from (10.2.16). These will

lie in the principal regime,
(iv) Calculate p, k, A, v from (10.4.16)-(10.4.24), q and x from (10.7.9),

z from (10.7.18).
(v) Calculate the free energy/from (10.8.47) or (10.8.49).

The resulting function f(a ,b,c,d)is analytic except only when one of
a, b, c, d is equal to the sum of the other three. Thus there are five regimes:

I. Ferroelectric: a > b + c + d, A > 1 ,
II. Ferroelectric: b > a + c + d, A > 1 ,

III. Disordered: a, b, c, d < i(a + b + c + d), -1 < A < 1 ,
IV. Anti-ferroelectric: c> a + b + d, A < - 1 , (principal regime) ,
V. Anti-ferroelectric: d > a + b + c, A < - 1 .

In regimes I, II, IV, V the system is ordered: any such regime can be
obtained from IV by using only the elementary symmetries (10.2.12)-
(10.2.14). The interfacial tension s, correlation length |, magnetization Mo
and polarization Po are given by (10.10.10), (10.10.13) (without the | ) ,
(10.10.19), (10.10.23), respectively; q, x, z being denned as in (iv) above.

Note that the system is always ordered if A, as given by (10.4.6), is
numerically greater than one. It is disordered if |A| < 1.

This classification into regimes becomes more obvious if we explicitly
solve (10.4.17) and (10.4.6) for the elliptic modulus k. Squaring the second
equation (10.4.17), using (15.4.4) and (15.4.5), and eliminating sn2/A
between this and (10.4.16), we obtain

A2 = (1 + k-'y) (1 + Ary)/(1 + y)2. (10.11.2)

Solving this for k + k'1 and using (10.4.6) gives

k0 + ko1 - 2 (10.11.3)

_ (a - b - c - d) {a - b + c + d) (a + b - c + d) (a 4 b + c - d)

Aabcd
(10.11.3)

Aa'h'c'd'
&o + fco1 + 2 = —— , (10.11.4)

abed
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where a!, b', c', d' are denned by (10.2.5), and the suffix 0 means that k
is to be evaluated directly from (10.11.3) or (10.11.4), the mapping pro-
cedure (i)-(iii) above being omitted. This means that ko is not necessarily
in the interval (0,1).

In the ordered regimes I, II, IV, V, the RHS of (10.11.3) is positive.
It is negative in the disordered regime III.

To map III into the principal regime it is necessary to use the duality
relation (10.2.11). Various cases arise, depending on whether b', c', d' are
positive or negative, but it is found that the free energy / is an analytic
function ofa,b,c,d throughout the regime III. This regime is disordered:
there is no spontaneous magnetization or polarization. The correlation
length is given precisely by (10.10.13).

Disorder Points

The system is disordered throughout the regime III, but it is particularly
so when c' or d' vanish, i.e. when [using (10.2.5)] the point (a ,b ,c ,d)
lies on either of the surfaces

a + c = b + d or a + d = b + c. (10.11.5)
The procedure (i)-(v) maps these cases to eight-vertex models in the
principal regime IV, with either a or b zero. Since k0 is then the same as
k, and O^k^l, it is then apparent from (10.11.3) that k = 0. More
precisely, as the mapped a (or b) tends to zero, then £-»0 and, from
(10.4.9)-(10.4.21), v and y are proportional to k~x, and A—» °° while
/' - A remains finite. From (10.7.9), q and x both tend to zero, x being
proportional to qK From (10.10.8) and (10.10.13), kt and § therefore tend
to zero. Thus the correlation length [as denned by (7.10.41), modified as
in the argument following (8.10.11)] becomes zero: the system is completely
disordered.

The free energy is given by (10.8.47), c therein being the mapped value
of c and all terms in the summation being zero, so

-f/kBT=lni(a + b + c + d). (10.11.6)
[This simple result can be understood in at least two ways: one is to note
that the mappings (10.2.11)-(10.2.15) can be used to map the model to
a six-vertex model in the frozen ferroelectric regime I or II of Section 8.10;
the other is to verify that Vx = [h(a + b + c + d)]Nx, where Vis the transfer
matrix and x is a vector with all elements unity—this calculation is par-
ticularly simple if V is replaced by the transfer matrix that builds the lattice
up diagonally.]

Such points of complete disorder occur also in the anti-ferromagnetic
triangular Ising model (Stephenson, 1970).
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10.12 Critical Singularities

The free energy is an analytic function of a, b, c, d, and the correlation
length § is finite, unless

a = b + c + d or b = a + c + d
(10.12.1)

or c = a + b + d or d = a + b + c ,

where a, b, c, d are all non-negative. These are the critical surfaces in
{a ,b ,c ,d) space.

If the energies £ t , . . . , £8 are held fixed, satisfying (10.1.5), and the
temperature Tvaried, then the point (a ,b ,c ,d) will trace out a path in
this space. If one of ei, e3, e5, e7 (say ei) is less than the others, then for
sufficiently small T this path lies inside one of the ordered regimes (regime
I). On the other hand, for large T(a = b = c = d=l) the path certainly
lies in the disordered regime III. Thus it must cross a critical surface (and
does so only once) at a critical point.

If two or more of eu £3, e5, £7 are equal and less than the others, then
the path always lies in the disordered regime III and there is no critical
temperature.

Consider a point (a ,b ,c ,d) close to one of the surfaces (10.2.1) and
let

_ (a-b-c-d)(a-b+c + d)(a+b-c+d)(a+b+c-d)
l~ Wabc4

(10.12.2)

Then this t is zero on a critical surface and in general will vanish linearly
with T— Tc, (T - Tc)lt being positive. We can therefore regard this t as
the 'deviation-from-critical-temperature' variable, and replace (1.1.3) by
(10.12.2).

The four critical surfaces in (10.12.1) can all be mapped onto the surface
c = a + b + d by the trivial mappings (10.2.12)-(10.2.14). These merely
re-arrange a, b, c, d and map order to order, disorder to disorder. There
is therefore no loss of generality in focussing attention on critical points
on the surface c = a + b + d, i.e. between regimes III and IV. I shall do
this for the rest of this section.

Alternative Expressions for the Thermodynamic Properties

Consider first the principal regime IV, where t is negative and k = k$. From
(10.11.3) and (10.12.2)
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k + k~l = 2-4t, (10.12.3)

so k approaches one as t -» 0_.
It follows that q—>l and the product definitions (15.1.5) of the theta

functions become weakly convergent. This can be avoided by using (15.7.2)
in (10.4.24), so as to express a, b, c, d in terms of theta functions of the
modulus k' conjugate to k.

We shall also want to compare the correct free energy in regime III with
its analytic continuation from regime IV. To do this it is convenient to
work with the W\,. . . , w4 in (10.2.16), rather than a, b, c, d. Substituting
the conjugated expressions (10.4.24) into (10.2.16), using (15.4.29) to
factor the RHS, and then using the product expansions (15.1.5), we finally
obtain

P

(1 +p2nz') (1 +p2nlz'n
(^ -r y A j \L -r y IA, }

iZJMlP2-u2, (10.12.4)

where

p = (q')2 = exp(-2*/// '),

H = nkll', w = nvll' , (10.12.5)

x' = exp(ifj.), z' = exp(iw),
and p' is some normalization factor (proportional to p) that we shall not
need explicitly.

These equations, together with the restrictions (10.7.1a), i.e.

<lt<n, § > 0 , (10.12.6)\W

define p'', n,w and/?. As t—* 0, p—> 0 and it is apparent that §, ju, V tend
to finite limits, these being their critical values. In particular, the critical
value of fi is given by

tan(|U/2) = (cdlabf. (10.12.7)

The free energy is given by (10.8.47) or, alternatively, (10.8.49). The
latter is more convenient for the present purposes, since it involves c + d
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(i.e. 2w3), rather than c: this makes it easier to compare regimes III and
IV.

We have just noted that fi and w tend to finite limits as t—*0 and
k^> 1. Since /' then tends to nil and / t o infinity, from (10.12.5), (10.7.9)
and (10.7.18) this means that q,x,z all tend to one (from below). The
sum in (10.8.49) therefore becomes an integral. Its behaviour near t = 0
can be studied by using the Poisson summation formula (15.8.1).

To do this, define

_ [cosM^ - 2/J,)U - cosh nu] [cosh \xu - cosh wu]
u sinh TCU cosh \xu

Then, noting that F(u) is an even function, that F(0) = 0, and using
(10.7.9), (10.7.19) and (10.12.5), the equation (10.8.49) becomes

-f/kBT=ln(c + d) + - Z F — . (10.12.9)

From (15.8.1), this can be written
CO

-f/kBT = ln(c + d) + \ G(0) + |c P ^ ) , (10.12.10)

where

G(A:) = I exp(iku) F(u) dw , (10.12.11)
J-cc

and we have used the fact that G(k), like F{u), must be an even function.
For positive k, the integral in (10.12.11) can be closed round the upper

half u-plane and evaluated as a sum of residues from the poles at u = in,
i(n - h)n//j,, for n = 1 , 2, 3 , . . . . Substituting the result into (10.12.10), the
sum over m can then be performed to give

-flkBT = ln(c + d) + h G(0)

-^ (cos 2n\i — cos nn cos n\x) (cos n\i — cos nw) p

( -1 )" cot[(» - I) a?/yi\ cos[(n -

The equations (10.10.10), (10.10.13), (10.10.20) for the interfacial ten-
sion s, the correlation length £, and the spontaneous magnetization Mo,
are
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slkBT = i ln(l/fci),

|=2/ln(l/fci), (10.12.13)

Mo = (1 - k\)m ,

where fci, defined by (10.10.8), is the elliptic modulus with nome x2.
To study the behaviour near x = l, we simply go to the conjugate

modulus and conjugate nome. The conjugate modulus is k[ =(1 - k\f ,
while from (15.1.3) (interchanging / and / ' ) , the conjugate nome is
exp^/lnOt2)]. From (10.7.9) and (10.12.5), the conjugate nome is
therefore

q[ = exp(-;t//A) =p" /2". (10.12.14)

Replacing k, q in (15.1.4a) by k[, q[, and squaring, we obtain

(10.12.15)

The spontaneous polarization is believed to be given exactly by
(10.10.25), i.e.

(10.12.16)

Again we want to work with conjugate nomes. Replacing k, / ' , q'm. (15.1.8)
by k', /, q' and using (10.12.5), we obtain

I — p

Similarly, using k[,Iuq[ and (10.12.14),

(10.12.17)

(10.12.18)

Behaviour near Criticality

Given a, b, c, d in regime IV, the equations (10.12.4) and (10.12.5) define
p, n and V. The free energy, interfacial tension, etc. are then given by
(10.12.12)-(10.12.18).

On the other side of the transition, in regime III, vvt,. . . , vv4 must first
be re-arranged as in the procedure (i)-(v) of the previous section. The
effect of this is to interchange w^ and n>4 before using (10.12.4) and
(10.12.5). The free energy is again given by (10.10.12) and the correlation
length § by (10.12.13); Mo and Po are then zero, s is meaningless.
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However, examining (10.12.4) it is apparent that p,n, V are analytic
functions of a, b, c, d even when p = 0, i.e. at the transition from regime
IV to III. Also, interchanging n>i and w4 therein is equivalent to simply
negating p, leaving \i and V unchanged.

It follows that/?, (i, Kcan be analytically continued from regime IV into
regime III, and that these analytic continuations differ from their correct
values only in that p is negated.

Also, from (10.12.3), (10.12.5) and (15.1.4a), when t is small

p = -t/16 + €(^), (10.12.19)

so p vanishes linearly with t.
Look at the expression (10.12.12) for the free energy. The first three

terms involve only vv3, \i, V and p2, all of which are analytic across the
boundary between regimes III and IV, being the same functions of a, b, c, d
on either side. Only the last term can therefore be in any sense singular,
and for p small the dominant contribution to it is

-fsins/kBT = -4 c o t ^ cos (y^ p""1. (10.12.20)

This/Sing is effectively the/s defined by (1.7.10a). Since fi, w tend to finite
limits as t—> 0 and pL is non-zero, the cot and cos terms in (10.12.20) are
effectively constants. From (10.12.19) and the above comments, the correct
value of p in either regime IV or regime III behaves for t small as

p = |f|/16. (10.12.21)

It follows that

/sing-kr", (10.12.22a)

the critical value of fi being given by (10.12.7).
Exceptional cases occur if n = nlm, where m is an integer. If m is even

the factor cot(^2/2iu) in (10.12.20) is infinite. This is due to the fact that
two poles of F(u) coincide. The residue of the resulting double pole should
be calculated properly when evaluating (10.12.11). The effect of this is to
introduce an extra factor ln|f|, so

/sing-M^lnM, (10.12.22b)

if jt/fi is an even integer.
If the critical value of nl\i is an odd integer, then the factor cot(^2/2^)

vanishes in (10.12.20). To obtain the leading singularity in this case
it is then necessary to consider the dependence of [i on the temperature
variable t.
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In the ordered regime IV it follows easily from (10.12.13)-(10.12.18)
and (10.12.21) that for t small (and negative)

s,§ ( t) , Mo ( t) , (10.12.23a)

Po ~ ( - f )^"^ 4 " ,

while in the disordered regime III (t positive)

r1-^'2". (10.12.23b)

(The formula (10.10.13) for the correlation length % is correct only for
A =s 2/73, i.e. /x =£ 2^/3; however, Johnson et al (1973) showed that it gives
the correct critical behaviour even for (i > 2JT/3.)

Critical Exponents and Scaling

As in Section 8.11, define a critical exponent /5e for Po, analogously to the
definition (1.1.4) of fi for Mo. To avoid confusion with the parameter fx
above, denote the interfacial tension exponent in (1.7.34) by ,us. Then from
(1.1.4), (1.7.9), (1.7.25), (1.7.34), (10.12.22) and (10.12.23), the critical
exponents a, a', /3, #>, v, v', fis are

a= a! = 2 - nlfi, P = Jt/16fj,, (10.12.24)

[}e= (JT — n)IApi, v= v' = fis = jz/2(i.

Since the eight-vertex model has only been solved in zero fields (both
electric and magnetic), it is not possible to use it to fully test the scaling
hypothesis (1.2.1). However, all the scaling predictions that can be tested,
namely (1.2.15), (1.2.16), oc= a' and v= v', are indeed satisfied.

If one accepts the other scaling predictions, then the other exponents
can be calculated from (1.2.12)—(1.2.14). In particular, the 'magnetic'
y, 6, r] are

y = 7n/8p, 6=15, r) = J . (10.12.25)

Universality and Weak Universality

It is worth-while recapitulating the definition of n at criticality. For given
vertex energies E\, £3, £5, ej, the weights a, b, c, d are given by (10.1.2) and
(10.2.1). The condition for criticality is (10.12.1). If £5 <£i, £3, e7, it follows
that the critical temperature Tc is given by

exp(-£5/kBTc) =

. (10.12.26)
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From (10.12.17) and (10.12.6), the critical value of n is given by

tan(,u/2) = exp[(ei + e3 - e5 - El)/2kBTc], 0<n<n. (10.12.27)

[Other cases occur when e1( e3 or e7 is the least energy, but they can be
trivially mapped to this case by using the relations (10.2.12)-(10.2.14).]

By varying e\, e3, e5, £7, this fx can be given any value between 0 and
n. Thus the exponents a, fi, y, v, (is (but not d and rj) depend on the values
of £1,. . . , £7, and vary continuously with them.

This contradicts the universality hypothesis of Section 1.3: that critical
exponents should not depend on the details of the interactions. Kadanoff
and Wegner (1971) argued that this variation was due to the special
symmetries and dimensionality of the zero-field eight-vertex model. For
instance, in the magnetic picture of Section 10.3, suppose that Jh and /„
are not both zero (in the electric picture, this means a field is applied).
Then Kadanoff and Wegner's argument suggests that the magnetic expo-
nents should be exactly those of the Ising model. From this viewpoint,
universality is expected to 'normally' hold, the eight-vertex model being
a special exceptional case. This has been supported by approximate renor-
malization group calculations (van Leeuwen, 1975; Kadanoff and Brown,
1979; Knops, 1980).

There are two other models which are believed to have continuously
variable exponents, though they have not been solved exactly. They are
the Ashkin - Teller model discussed in Section 12.9 (Kadanoff, 1977;
Zisook, 1980) and the square lattice Ising model with ferromagnetic
nearest-neighbour interactions and anti-ferromagnetic next-nearest neigh-
bour ones (Nightingale, 1977; Barber, 1979; Oitmaa, 1981).

Suzuki (1974) proposed what may be called 'weak universality'. Most
exponents are defined as powers of the temperature difference T - Tc (6
and r\ are exceptions). Suzuki suggested that it was more natural to use
the inverse correlation length %~l as the variable measuring departure from
criticality. For instance, instead of (1.1.4) one should write

Mo~F$, (10.12.28)

/? being a critical exponent. (This idea is quite attractive: from a math-
ematical point of view the temperature is rather an uninteresting divisor
of the Hamiltonian, while the correlation length gives valuable information
on the near-critical behaviour of the system.)

From (1.1.4) and (1.7.25),

J3 = p / v . (10.12.29a)

Similarly, the reduced exponents for /sing, s and % are
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(P = '(2-a)/v, iis = nJv, y=ylv, (10.12.29b)

while 6 and r\ are not affected. From (10.12.24) we have for the eight-
vertex model that

j8 = |, 0 = 2, p,= l, y=1~, 6=15, r,= ±, (10.12.30)

all of which are fixed numbers, independent of ;U.
Thus if one formulates 'weak universality' as the proposition that

/?, 0, /is, y, 8, r\ should be independent of the details of the interactions,
then the eight-vertex model is consistent with this hypothesis. Further, this
hypothesis connects well with scaling, since the scaling relations
(1.2.12)-(1.2.16) predict

<5+l (10.12.31)

Thus scaling implies that if 8 is universal, then weak universality must
be satisfied.

10.13 An Equivalent Ising Model

We saw in Section 10.3 that the eight-vertex model can be regarded as two
nearest-neighbour Ising models (one on each sub-lattice), linked by
four-spin interactions. Some people are unhappy at the introduction of
such four-spin interactions, feeling that they are somehow 'unphysical'.
Jungling (1975) has answered this objection by showing that the eight-
vertex model, and in particular the zero-field eight-vertex model, is also
equivalent to a square lattice Ising model with only two-spin interactions.
These interactions are between nearest neighbours, and between next-
next-nearest neighbours.

To see this, consider the square lattice in Fig. 10.6. It is drawn diagonally
and the two sub-lattices are distinguished, their sites being shown as open
circles and solid circles, respectively. Let N be the number of solid-circle
sites.

Divide the lattice into N squares, as indicated by dotted lines, each
containing one solid circle. Let the total energy be

= - 2 ( / i a , a m + J2OjOm + J-$okom + J^Oiam + Jofjk +
(10.13.1)
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where the sum is over all such squares; / , / , k, I, m are the sites within a
square, arranged as in the example in Fig. 10.6; and ot(= ±1) is the spin
at any site i.

This energy contains only interactions between pairs of spins; either
nearest-neighbours (e.g. otom), or next-next-nearest neighbours (e.g.
As usual, the partition function is

Z = 2 txp{-%lkBT), (10.13.2)

the sum being over the values of all the spins.

Fig. 10.6. Jiingling's formulation of the eight-vertex model: an Ising model on the
lattice of solid lines, with only two-spin interactions, is equivalent to an Ising model

on the lattice of dotted lines, with two- and four-spin interactions.

The summand in (10.13.2) factors into a product of N terms, one for
each square. Each solid-circle spin enters just one such term, so the
summation over its values (±1) is easily performed. Doing this for each
solid-circle spin gives

Z = E ( O ) II W(ot, oj, ak , a,), (10.13.3)
a

where the product is over all squares, the superfix (o) means that the sum
is over all values of all the open-circle spins, and if

then
Ki = Ji/kBT, K = J/kBT, K'=J'/kBT,

W(ou o2, o3, o4) = 2

K3o3

(10.13.4)

(10.13.5)

Since G\,. . . , a4 only have two values (+1 and -1 ) , any function of
them can be written as

L + + . . . + + . . . + L1234O1O2O304 > (10.13.6)
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where all terms are linear in O\,. . . , a4, there are 16 such terms, and
L ,. . . , L1234 are constant coefficients.

The function W(o\ ,02,03, a4) is positive, so its logarithm is real and
can be written in the form (10.13.6). Further, it is an even function of
a t , . . . , 04, so only the even terms in (10.13.6) occur. It must therefore
be possible to find L, Ln, LK, Lu, L23, L2A, L3A, £1234 such that

o2, 03, o4) = exp L + 2 LijOiOj +
|_ 1 «('<;'« 4

(10.13.7)

(This is known as the 'star-square' transformation: it is a generalization of
the star - triangle relation of Section 6.4.)

Substituting (10.13.7) back into (10.13.3), noting that each nearest-
neighbour pair OtOj occurs in two squares, we obtain

Z = exp(ML) 2 ( O ) exp (L12 + L34) 2 oi-o}- + (L23 + Lu) 2 opk<> L

+ L13 2 otok + L24 2 OjOi + Li234 2 OiOjOka, , (10.13.8)

where the summations inside the exponential are over all vertical edges
(i,/), horizontal edges (j , k), diagonal pairs (i, k) and (/ ,1), and squares
(i ,j ,k , /), respectively.

Apart from the factor exp(NL), this is the partition function of an
Ising-type model on the square lattice of open circles and dotted lines in
Fig. 10.6, with nearest-neighbour, diagonal and four-spin interactions. This
is exactly the formulation (10.3.1) of the eight-vertex model, the interaction
energies Jh and /„ therein being given by

Jh/kBT = Lu + L34, JJkBT = L7i + Lu. (10.13.9)

In general these are non-zero, so Jungling's model is equivalent to an
eight-vertex model in electric fields (and vice-versa).

Yet more interesting is the fact that if JI,J2,J2,JA satisfy the
temperature-independent conditions

h = h, J2=~Ji, (10.13.10)

then Jungling's model is equivalent to a zero-field eight vertex model.
To see this, note that Kx = K3 and K2 = -K4. The RHS of (10.13.5) is

then unaltered by interchanging o\ with cr3, or by interchanging and negating
o2 and 04. It follows that (10.13.7) must take the form

,02,03,04) = exp[L+ L13aiCT3 + L24cr204 + ^12(^1 + 03)(^2- 04)

(10.13.11)
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In particular, this implies that

Lu + LM = L23 + Lu = 0, (10.13.12)

so Jh and /„ are given by (10.13.9) to be zero.
This formulation of the eight-vertex model highlights a potential difficulty

with universality. As explained in Section 1.3, the hypothesis admits that
critical exponents may change discontinuously when a symmetry is broken.
This is consistent with the argument of Kadanoff and Wegner (1971)
mentioned in the previous section: in the presence of fields the eight-vertex
model may have fixed Ising exponents, even though it does not have these
in zero field.

In Jungling's formulation, this means that the model (10.13.1) has one
set of exponents in general, but another set if J\ = /3 and J2 = —/4. Although
we can now see that this special case has special symmetry, it is by no
means obvious a priori that this is so. The symmetry is 'hidden'. Presumably
such breaking of hidden symmetries occurs in other models: it could be
hard to anticipate.

10.14 The XYZ Chain

Closely related to the zero-field eight vertex model is the problem of
determining the eigenvalues of the operator

N

M = ~i 2 [Jxofaf+1 + Jyoyj+1 + J2afof+l] , (10.14.1)

where Jx, Jy, Jz are constants and

oj = ch oj = iCjSh of = Sj, (10.14.2)

,. . . ,SN, ci,. . . ,cN are the operators defined by (6.4.17). In direct
product notation

erf = e<g>

> ®e (10.14.3)

where there are N terms in each product; c, d, s occur in position /; and
e, c, d, s are the two-by-two Pauli spin matrices
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(10.14.4)
/ VO - 1 / V '

The of, rf, of, %t are all 2N by 2N matrices.
This operator 9*C is the Hamiltonian of a one-dimensional quantum

mechanical model of ferromagnetism: there are N spins, labelled ; =
1 , . . . , N, on a line. With each spin j is associated the three-dimensional
vector o} ={of , oy

j , of) of Pauli matrices; neighbouring spins / and / + 1
have interaction —\<jj-J- OJ+I, where J is a three-by-three diagonal matrix
with elements /*, /,,, /2 . The partition function of the model is

Zx = Trace exp(-WkBT). (10.14.5)

If Jx = Jy = Jz, this is the Heisenberg model (Heisenberg, 1928; Bloch,
1930, 1932). If Jx = Jy = 0, then W is diagonal and the model reduces to
the nearest-neighbour Ising model (each spin is effectively either up or
down, and lies in the z-direction). These models can be formulated on a
lattice of any dimension, but it is the one-dimensional case that is rep-
resented by (10.14.1), and that is related to the two-dimensional eight-
vertex model.

The case Jx = Jy = 0 is easily solved, being the one-dimensional Ising
model of Chapter 2. The case Jz = 0 is known as the 'XY model', and is
related to the Ising model. Explicit expressions for all the eigenvalues can
be given (for finite N), and the partition function evaluated. This has been
done by Lieb et al. (1961) and Katsura (1962).

The case Jx = Jy is sometimes called the 'Heisenberg - Ising' model.
Bethe (1931) gave the correct form of the eigenvectors of "X, Yang and
Yang (1966) proved rigorously that Bethe's ansatz was correct, and derived
the minimum eigenvalue in the limit of N large.

When Lieb (1967a, b, c) solved the ice-type models, he found that the
eigenvectors of the transfer matrix were precisely those of the one-dimen-
sional Heisenberg - Ising operator. He was therefore able to use many of
Yang and Yang's results.

Sutherland (1970) showed directly that the transfer matrix of any
zero-field eight-vertex model commutes with an XYZ operator 3f. They
therefore have the same eigenvectors. I was not aware of Sutherland's
result when I solved the eight-vertex model (I did much of the work in the
writing room of the P & O liner Arcadia, in the Atlantic and Indian Oceans.
This was good for concentration, but not for communication). It should
be obvious from Sections 10.4-10.6 that such commutation relations are
closely linked with the solution of the problem.

In fact it can be shown, for any Jx,Jy,Jz (Baxter, 1971b, 1972c), that 3€
is effectively a logarithmic derivative of an eight-vertex transfer matrix,
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and hence the minimum eigenvalue of 'K can be obtained. This will be
done in this section.

The calculation of Z^ involves considering all the eigenvalues. This
problem is very difficult, and in general the best that has been done is to
reduce it to one of solving a set of non-linear integral equations (see the
remarks and references regarding the correlation length in Section 10.10).

Relation Between 9£ and V

The eight-vertex transfer matrix V is given by (9.6.1), where the weight
function w is denned by (10.2.3), or equivalently (10.2.4). These definitions
can in turn be written as

w(p , a\P , v) = i{[(« + c) + (a- c)na] 6(ji, p) 8{a, v)

+ [(b + d)-(b- d)n<x] d(n , -P) 8(a, - v)}, (10.14.6)

where d(a , /?) = 1 if a = P, 8(a , P) = 0 if a * p.

First consider the case when

b = d = 0, a = c = c0>0. (10.14.7)

From (10.14.6) it is then true that

w(n , a\p ,v) = c0 d(n , p) 6{a, v). (10.14.8)

Substituting this into (9.6.1), the j U i , . . . , ^ summations can at once be
performed. If Vo is the matrix Vior this case, then its elements (a , /3) are

(Vo)ap = c$ 8(ai, p2) 8(a2 , p 3 ) . . . 8{aN, ft). (10 .14 .9 )

Thus coNVo is the left-shift operator that takes an arrow configuration
{<xi,. . . , aN} to {aN , ai ,. . . , aN-X}.

Now perturb about this case and set

a = co+da, b = 5b, c = co+6c, d=8d, (10.14.10)

where 6a, 8b, 8c, 8d are infinitesimal increments in a, b, c, d. Let 8w, 8V
be the increments induced in the weight function w and the transfer matrix
V. Then from (9.6.1)

{ j p j ) i,-!, aj\Pj, pJ+1) 8 ( a j + 1 , pj+2)

'~X (10.14.11)

(note the two sets of 8s: increments and Kronecker symbols).
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Pre-multiplying the matrix dV by VQ\ (10.14.9) and (10.14.11) give
N

(Vo1 SV)ali = co' 2 • • • Stey-i, Pj-i) dw(aj, aj+l\ps, pj+1)

x6(a r / + 2 > j 8 y + 2 ) . . . . (10.14.12)

From (9.6.9), using the eight-vertex function w, it follows that

V5"1 5V = co\6Ui + 6U2+ . . . + dUN), (10.14.13)

where dUj is the increment in the vertex operator Uj.
Also, substituting the form (10.14.6) of w into (9.6.9), and using the

definitions (6.4.17) of Sj and q, Uj can be written

Uj = i{(a + c)3> + (a-c) SjSj+1 + (b + d) CjCj+1 - (b-

(10.14.14)
or, using (10.14.2),

Uj = h{(a + c)3 + (b + d) ajaj+1 + (b - d) ofof+1 + (a - c) ofa]+l},

(10.14.15)
where 3 is the identity operator.

The increment dUj is given simply by replacing a, b, c, d in (10.14.15)
by da, db, dc, dd. Doing this, (10.14.13) becomes

N

Vo1 dV = (2co)~
l E {(da + dc)3 + (db + dd) afaj+i

+• (db - dd) a]oy
]Jt! + (da - dc) ofof+ J (10.14.16)

Apart from the additive term proportional to 3>, this is an XYZ operator
of the form (10.14.1).

To complete this identification, substitute the values of (10.14.10) of
a, b, c, d into (10.4.6). To leading order in the increments, this gives

r

so (10.14.16) can be written

(10.14.18)
If Jx, Jy, Jz are related to T and A by

Jx:Jy:Jz = l-.r:A, (10.14.19)
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then it follows that

Vo1 6V = c^ihNida + 6c)3>-(8b + fid) WJX}, (10.14.20)

where W is precisely the XYZ chain operator (10.14.1).
Suppose we keep A and F fixed while varying a, b, c, d. Then all transfer

matrices V will commute with one another and, from (10.14.20), with "dt.
Thus if (10.4.6) and (10.14.19) are satisfied, with the same F and the same
A, then the eight-vertex transfer matrix V commutes with the XYZ operator
"M. They have the same eigenvectors. [This is Sutherland's result (1970).]

If Co, db, dd, Jx are positive, then from (10.14.20) it is apparent that the
maximum eigenvalue Amax of V corresponds to the minimum eigenvalue
of %t. Further, a,b,c,d are then positive, so Amax is precisely the eigenvalue
needed in the calculation of the eight-vertex free energy.

Ground-State Energy Eo

Let NEo be the minimum eigenvalue of Hi. Then Eo is the ground-state
energy per site. From (10.8.46) and (10.14.20), in the limit of N large, Eo

is given by
d(-f/kBT) = Co'ft(& + 6c) - (6b + fid) E0/Jx}, (10.14.21)

where / is the eight-vertex free energy per site, and 6(-f/kBT) is the
increment induced in -flkBT.

Up to this point, no restriction has been made in this section on A, F,
Jx, Jy, Jz, except that Jx be positive. Now let us consider the principal
regime (10.7.5) of the eight-vertex model, wherein (from (10.4.6))

| F | < 1 , A < - 1 . (10.14.22)

From (10.14.19), this implies that

\Jy\<Jx<~Jz, (10.14.23)

so I shall call this the 'principal regime' for the XYZ chain. From (10.7.1),
the elliptic function parameters k, A, v are real, and 0 < f c < l , 0 < A < / ' .
For given values of a, b, c, d, the free energy / is given by (10.4.21) and
(10.4.23), (10.7.9) and (10.7.18), and (10.8.47) or (10.8.49).

Holding F and A fixed is equivalent to keeping k and A unaltered.
Without loss of generality we can require in this section that c — 1, so from
(10.4.21) and (10.4.23)

a = snhi(A - j;)/snh A, b = snhl(A + i>)/snhA , (10.14.24)

c = 1, d = £snhj(A - v) snhl(A + v).



10.14 THE XYZ CHAIN 263

This leaves v as a variable. The case (10.14.7) corresponds to v = -A;
incrementing v by dv gives

v = -k+dv. (10.14.25)

From (15.5.1a), (15.5.5) and (10.4.20),

d
— snh v = en iv dn iv , (10.14.26)

for all complex numbers v. Using this formula to differentiate (10.14.24)
with respect to v, then setting v = -A, gives

da/dv = —I en ik dn ik /snh A, dbldv = i/snh A ,
(10.14.27)

dc/dv = 0, dd/dv = U snh A .

[It is now easily verified that (10.4.17) and (10.14.17) are equivalent.]
Also evaluating 6{-flkBT) from (10.8.47) and (10.7.18), substituting

the results into (10.14.21) gives

where q, x are defined by (10.7.9), / is the complete elliptic integral of the
first kind of modulus k, and

T=2J r ,snhA/(l + A: snh2 A). (10.14.29)

An equivalent form can be obtained by using (10.8.49) instead of
(10.8.47), namely

E0 = i(~Jx + Jy + Jz)

_ JIT y x'm(xim - qml2) (1 - qml2x~m) (1 - x2m)

~2/m = i (1 -qm){\ +x2m) ' ( ' '

Define a parameter / by

l = 2k*/(l+k). (10.14.31a)

(This is the Landen-related elliptic modulus of (15.6.1.) Then eliminating
y2 (which is negative) between the two equations (10.4.12), using (10.4.9)
and (10.14.19), gives

/ = (7? -7 2 )V( / 2 - / 2 )* . (10.14.31b)

Solving (10.4.17) for sn/A, using (10.4.20) and (10.14.19), one obtains

it* snh k = (Jx- Jy)%Jx + Jy)\ (10.14.31c)
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Substituting this into (10.14.29) gives

r=k-\Jl-J]f, (10.14.31d)

which, using (10.14.31b), can be put into the form

T = {llkf{J2 - Jj)\j2
z - J2)J. (10.14.32)

To summarize the results so far: if Jx, Jy, Jz lie in the principal regime
(10.14.23), then the ground state energy per site of the XYZ operator
(10.14.1) is given by (10.14.28) or (10.14.30), where k, A, rare defined by
(10.14.31), q and x by (10.7.9).

Symmetries

The three Pauli matrices a], a), of can be permuted by simple similarity
transformations, so Eo is a symmetric function of Jx, Jy and Jz. Suppose,
as in (10.5.9), that N is even, and consider the similarity transformation

W-* o\alol. . . M a\a\a\ (10.14.33)

Since of anti-commutes with of and o], but commutes with all the other
Pauli operators, the effect of this on (10.14.1) is to negate Jx and Jy. Thus
Eo is unchanged by negating any two of Jx, Jy, Jz. These symmetries can
be used to map any XYZ operator "K into the principal regime (10.14.23).
The ground state energy per site is then given by (10.14.28) or (10.14.30).

These symmetries are of course related to those of the eight-vertex
model. From (10.4.6), (10.14.19) and (10.2.16)

Jx:Jy:Jz = ab + cd:ab-cd: \{a2 + b2 - c2 - d2)

= w\ - w>2 + w2 — w\: w2 - w2 - w2 + w\: w\ + w\ - w\ — w\.
(10.14.34)

It is apparent that the eight-vertex symmetries (10.2.11)-(10.2.15), or
equivalently and more obviously (10.2.17), merely re-arrange the terms
on the RHS of (10.14.34), and possibly negate two of them.

Singularities of Eo

It follows from these results that Eo is an analytic function of Jx, Jy and Jz

except when the two numerically largest coefficients Jx, Jy, Jz have equal
magnitude. The archetypal case is when —Jz = Jx > \Jy\. This is a boundary
of the principal regime (10.14.23), and on it we see from (10.14.31) that
k = 1. The behaviour near the boundary can be obtained by applying the
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Poisson summation formula (15.8.1) to the series in (10.14.27). The work-
ing closely parallels that of (10.12.8)-(10.12.12) (indeed it can be obtained
thereform by differentiating with respect to w). It gives, for -Jz

>Jx>\Jy\,

— 42 (cos 2rtfi — cos rut cos itfi) tan nfi — j- (10.14.35)
«=i (1 — p )

00

- — 2 cot[(n - i)ai/ii]p<7"-»""t/(l -
jX « = 1 /

where |U,/7 are defined by (10.12.5) and

[cosh (jt - 2fi)u - cosh fiu] sinh jUMf°°
G(u) =

sinh nu cosh J
expO*«)dw. (10.14.36)

The case 7^ >—J2 > \Jy\, can be mapped into the principal regime by
negating and interchanging Jx and Jz. As when interchanging Wi and w4 in
the eight-vertex model, this leaves \i unchanged by negates p. In fact \i and
p2 are analytic across the boundary —Jz = Jx, while near it

P^^\Jl-Jl\/(J2
x-J

2
y), (10.14.37)

so p vanishes linearly with Jz + Jx.
From (15.6.6), with k replaced by k', (10.14.31a) and (10.12.5):

oo

/'(*//)* = 1 w I IC 1 -P2")2/(1 +P2n)2- (10.14.38)
l

From this and (10.14.32) is is apparent that negating and interchanging Jx

and Jz Leaves unaltered the factor Jx/(rl') in (10.14.35), and this factor is
analytic at Jz = —Jx. Thus all terms in (10.14.35) are analytic across this
boundary, except for those in the last summation. The dominant singular
term is

(£o)sing = (2jz2r/fil') cot(;r2/2/i)p""'. (10.14.39)

When Jz = -Jx, then k = 1, 1=1, V =\n, snh A = tan A, so from
(10.14.31c) and (10.12.5) n is given by

JylJx = cos[i, 0<H<JZ, (10.14.40)

while from (10.14.32)
x = (Jl - J]f = Jx sin n , (10.14.41)
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so (10.14.39) simplifies to

(£o)sing = 4JT(i~lJx sin fi coX{n2l2fi) p^ , (10.14.42)

p being given by (10.14.37). Provided cot(j^/2fi) is finite and non-zero, it
follows that Eo has the power-law singularity

(^0)sing~| / z+/, |^ , (10.14.43)
at Jz = ~JX.

In fact, comparing (10.12.20) and (10.12.21) with (10.14.42) and
(10.14.37), it is apparent (for all values of n) that Eo has the same singularity
at Jz + Jx = 0 as the eight-vertex free energy has at t = 0.

Some General Comments on ^-Dimensional Ising Models and (d - 1)-
Dimensional Quantum Mechanical Models

Equation (10.14.20) relates the XYZ operator 3€ with the eight-vertex
model transfer matrix V. Here V is evaluated with a,b,c,d infinitesimally
close to the values (10.14.7), for which the value Vo of V is proportional
to a simple shift operator.

As Suzuki (1976) has pointed out, such relations exist for many models.
For instance, the layer-to-layer transfer matrix of the simple cubic Ising
model is a matrix V with elements

M N

2 2 [i(Ki0ijOi+Uj +

u+i + K2aljali+1) + K&qo'i,]}. (10.14.44)

Here o={on , • • • , OMN} denotes all spins in one layer of the lattice,
o* ={<7ii, • • • , O'MN) all spins in the next layer.

Defining operators Sy, ctj analogously to (6.4.17), and using the identity
(6.4.22), it follows that

(2 sinh 2K3y
iMN V = exp[K*iA + K2B)\ exp[*3C] exp[l(KiA + K2B)] ,

(10.14.45)

where tanh K* = exp(-2/C3) and
M N

A = 2 2 ^ i + i y ,
i = i y = i

M N

c = 2 2 ch•.
» = 1 ; = 1

B

M N

_y y
i = l / = l

(10.14.46)
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When Kx =K2 = K$ = 0, the RHS of (10.14.45) is simply the identity
operator. When K\, K2, K$ are all small, to first order

ln[(2sinh2^3)-WJV V] = It, (10.14.47)

where now
•M = KXA + K2B + KfC. (10.14.48)

As in (10.14.2), s,y and c,y are the Pauli operatorsa\ and o| , respectively.
The RHS of (10.14.48) can therefore be regarded as a two-dimensional
Heisenberg-type operator, in which the quantum-mechanical spins interact
with one another only via their components in the z-direction, and an
external field of strength K* is applied in the x-direction.

If K* =0, the operator is diagonal and its eigenvalues are the energy
levels of the two-dimensional Ising model. For this reason the operator 3f
is known as the Hamiltonian of the two-dimensional Ising model in a
transverse magnetic field (Stinchcombe, 1973; Oitmaa and Plischke, 1977;
Pfeuty, 1977).

From (10.14.47), if we could evaluate the eigenvalues of the transfer
matrix V of the three-dimensional Ising model, then we could also evaluate
them for the two-dimensional Hamiltonian "X. Conversely, we might hope
that solving the latter problem would lead to a solution of the former.
Unfortunately neither has been solved exactly, though the approximate
methods mentioned in Section 1.5 have been very successful.

The above arguments can easily be extended to arbitrary dimensions and
to other lattices. However, it should be noted that the two-dimensional
zero-field eight-vertex model has an extra property that does not so gen-
eralize: its transfer matrix V always commutes with some XYZ operator,
even when V is far from its shift operator value Vo.

10.15 Summary of Definitions of A, T, k, A, v, q, x, z, p, p, w

The results of this chapter have inevitably been expressed in terms of
elliptic function parameters such as q, x,p and fi. These have been defined
as needed, for both the eight-vertex model and the XYZ chain, and some
special cases have already been considered. For clarity, it seems helpful
to summarize their definitions in general.

For the eight-vertex model, with Boltzmann weights a,b,c,d, define
A and T by (10.4.6), i.e.

A = "2+?-<*;/, - 4 ^ . (10.15.la)
2(ab + cd) ab + cd y '
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For the XYZ chain, with coefficients Jx, Jy, Jz, define them by (10.14.19),
i.e.

Jx:Jy:Jz = l : T : A . (10.15.1b)

The eigenvectors of the eight-vertex transfer matrix, and of the XYZ
Hamiltonian, are the same functions of T and A only.

Re-arrangement Procedure

Now map the models into their principal regimes. For the eight-vertex
model this means using the procedure (i)-(iii) of Section 10.11. Let a, b,c,d
be the original values of these parameters, and ar, br, cr, dr their re-arranged
values. Then ar, br, cr, dr lie inside the principal regime (10.7.5), or on a
boundary thereof (since the free energy, etc. are continuous functions of
a, b, c, d, boundary cases can be handled by taking an appropriate limit),
i.e.

cr^ar + br + dn ar^0, br^0, dr^0. (10.15.2)

Define Ar, Tr by (10.15.1a), with a, b, c, d replaced by ar, br, cr, dr. Then
it follows that

| r r | « l , A , « - l , (10.15.3)

and equalities occur only on a boundary of the regime (10.15.2).
For the XYZ model the re-arrangement procedure is simpler. One

merely permutes Jx, Jy, Jz, and possibly negates a pair of them, so as to
bring them into the regime (10.14.23), or onto a boundary thereof. Let
rx, Fy, Fz be these re-arranged values. Then

\ry\^Jr
x^-Jz. (10.15.4)

Define Ar, Tr by (10.15.1b) with Jx, Jy, Jz replaced by Jr
x,J

r
y,Jz, i.e.

then clearly these Ar, Tr also satisfy (10.15.3).
It was shown in (10.14.34) that the eight-vertex symmetries merely

permute the quantities ab + cd, ab — cd, \(a2 +b2 - c2 - d2), and possibly
negate two of them. From (10.15.1) it follows that an equivalent definition
of Fr, Ar for the eight-vertex model is:

Define T, A by (10.15.1a) and choose /,, Jy, Jz to satisfy (10.15.1b), Jx

being positive. Permute and pair negate these Jx, Jy, Jz to satisfy (10.15.4).
Now define Tr, Ar by (10.15.5).

We shall find this alternative procedure helpful in the next section.
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Elliptic Function Parameters

The elliptic function parameters k, A are defined by (10.4.17), or equiv-
alently by (10.4.9), (10.4.12) and (10.4.16), using the re-arranged values
Tr, Ar of F, A. These equations can be written as

2**/(l + k) = (1 - r?)V(A? - T?)J, (10.15.6a)

snh A = JIT* (1 - r r)'/(l + r r )
J , (10.15.6b)

where snh u = —isn iu and k, A must satisfy

0 « f c « l , 0=sA=£/'. (10.15.7)

/ and /' being the complete elliptic integrals of the first kind of moduli k
and k' = (1 - k2)K Again, equalities occur in (10.15.7) only on regime
boundaries.

The parameter v in the eight-vertex model can now readily be obtained
from (10.4.21) and (10.4.23), using the re-arranged values of a, b, c, d, e.g.

snh i(A ~v) = (ar/cr) snh A , (10.15.8)
and must satisfy

-A=Si>ssA, (10.15.9)

The parameters q,x, z are then given by (10.7.9) and (10.7.18), i.e.

q = exp(-^/7/), x = exp(-JtM2I), z = exp(-«y/2/), (10.15.10)

and satisfy
O^q^x2^!, x^z^z'1. (10.15.11)

Finally, p, fi and w are given by (10.12.5), i.e.

p = exp(-2;r///'), \i = jtXII', w = nvIT , (10.15.12)
so

0 = £ p « l , O=£jU=s;r, |w|«ju. (10.15.13)

The models are critical when, and only when, k = 1. When this is so,
from Chapter 15 it follows that /' = in, I = <*>, q = 1, p - 0, while from
(10.15.6)-(10.15.13), A, v, /x, w are finite, Ar = -1 and x = z = 1.

10.16 Special Cases

There are three special cases of the eight-vertex model which were solved
before the general zero-field model, namely the Ising model of Chapter
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7, (Onsager, 1944), the 'free-fermion' model (Fan and Wu, 1970), and the
'ice-type' or 'six-vertex' model of Chapter 8 (Lieb, 1967a, b,c). These
correspond respectively to the XZ, XY and Heisenberg - Ising cases of the
XYZ chain. In each case the critical value of /z is either 0, \n or n. Felderhof
(1973) and Jones (1973, 1974) have considered these special cases in some
detail.

Ising Model and XY Chain

As was shown in Section 10.3, the ordinary two-spin nearest-neighbour
Ising model is a special case of the eight-vertex model, occurring when the
condition (10.3.10) is satisfied, i.e. cd = ab. From (10.15.1a) this implies
that

r = 0. (10.16.1)

From (10.15.1b), this corresponds to Jy being zero, i.e. to the XZ case
of the XYZ chain. Re-arranging Jx, Jy, Jz to satisfy (10.15.4) must leave
Jy as the zero coefficient, so from (10.15.5)

Tr = 0. (10.16.2)

From (10.15.6b), (15.4.32) and (10.15.12),

A = i/', n = fr. (10.16.3)

Thus ju lies exactly at the mid-point of its allowed range of values (0, n).
The critical exponents a, /?, v, & given by (10.12.24) are indeed the same

as those in (7.12.12) and (7.12.14). Note that this is a case when n/fi is an
even integer, so the free energy singularity contains a factor ln|f|, as in
(10.12.22b) and (7.12.10). Similarly, an extra factor ln|/z + Jx\ occurs in
(10.14.43).

Free-Fermion Model

Fan and Wu (1970) used the Pfaffian method mentioned in Section 7.13
to solve the eight-vertex model for the case when

(03(04 = (o5a>6 + (o7a)g (10.16.4)

Here wi,. . . , cog are the Boltzmann weights denned in (10.1.2). The
method works even if the conditions (10.1.5) are not satisfied, i.e. it works
for an eight-vertex model in a field.
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For the zero-field case, from (10.2.1) the restriction (10.16.4) becomes

a2 + b2 = c2 + d2, (10.16.5)

so from (10.15.1), A = 0 and Jz = 0. This model therefore corresponds to
the XY chain. Re-arranging Jx, Jy, Jx to satisfy (10.15.4) must take Jy to
zero, i.e. it must transform the XKchain to the XZ chain. Then (10.15.1b)
gives

rr = 0, (10.16.6)

which is the Ising case just discussed.
The zero-field free-fermion model can therefore be mapped to an Ising

model, and has \i = \n. However, the restriction (10.16.5) ensures that
a, b, c, d always lie in the disordered regime III of Section 10.11, so there
is no transition to an ordered state.

Six-Vertex Model and Heisenberg - Ising Chain

The six-vertex model is obtained from the eight-vertex by setting d = 0,
so from (10.15.1) T = 1 and

Jx=Jy. (10.16.7)

The model therefore corresponds to the Heisenberg - Ising chain, and the
eigenvectors of the transfer matrix must be those of the Heisenberg - Ising
Hamiltonian. Lieb (1967a, b, c) determined this correspondence directly
and made considerable use of it.

Take (Jx , Jy , Jz) = ( 1 , 1 , A) .thereby satisfying (10.15.1b). Permute and
pair-negate them to satisfy (10.15.4). Define the elliptic function para-
meters, in particular k, A and (i, by (10.15.5)—(10.15.13). There are three
distinct cases, and it is readily seen that they correspond to the ferro-
electrically ordered, disordered and anti-ferroelectrically ordered phases
of Section 8.10:

(i) A > 1 (ferroelectric order): Fr = — 1, Ar = - A ,
k = 0, A = / ' = oo, n = n .

(ii) - 1 < A < l ( d i s o r d e r ) : T r = - A , A r = - 1 , (10.16.8)
k = 1, k — \fi, A = - c o s / / .

(iii) A < -1 (anti-ferroelectricorder): Tr= 1, A r= A ,
k = 0, A = -cosh A, jU = O.

The case (ii) is quite remarkable, since k = 1 throughout. This is the
condition for the eight-vertex model to be critical. Thus in this phase of
the six-vertex model the correlation length is infinite [for the free-fermion
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case of the six-vertex model this has been verified explicitly (Baxter,
1970a)]. The system is disordered only in the sense that there is no
spontaneous polarization.

Conversely, a critical eight-vertex model can be mapped to a 'disordered'
six-vertex model.

The six-vertex model has transitions at A = +1 or - 1 . The former occur
in ferroelectric models, such as the KDP model, and from (10.16.8) \i is
then equal to n, which is its maximum possible value. As is shown in
Section 8.11, this transition is first order, and the ordered state is frozen.
This makes it difficult to interpret the general eight-vertex results, but note
that (8.11.8) and (8.11.10) are correctly given by (10.12.24).

The A = -1 transition occurs in anti-ferroelectric models, such as the
F model. From (10.6.8), fi is then equal to its minimum value of zero. The
derivation of the critical properties (10.12.22) and (10.12.23) is then invalid.
A proper calculation of course gives the essential singularities of
(8.11.14)-(8.11.25), and it is impossible to sensibly define critical expo-
nents. Even so, it is worth noting that merely setting n = 0 in (10.12.24)
does give the infinite exponent (8.11.18). Also, the 'exponent relations'
(8.11.26) are in fact satisfied by the general eight-vertex model.

10.17 An Exactly Solvable Inhomogeneous Eight-Vertex Model

Until now in this chapter, the eight-vertex model has been taken to be
homogeneous, i.e. the vertex energies £ t , . . . , £g do not vary from site to
site. For the solvable zero-field case, this means that the Boltzmann weights
a, b, c, d, given by (10.1.2) and (10.2.1), are site-independent.

It is possible to weaken this requirement, in a very special way, and still
be able to calculate the free energy, etc. by straightforward generalizations
of the above methods. In fact, exactly the same equations apply, but the
variables are interpreted slightly more generally.

Column Variation

To see this, first suppose that the Boltzmann weights a, b, c, d can vary
from column to column, but not row to row. Let a,, bj, Cj, dj be their values
in column /. There are N columns in the lattice, so j = 1 , . . . , N.

Consider the star - triangle relation (10.4.1), which comes from
(9.6.5)-(9.6.8). The matrices S and S' now depend on the lattice column
y to which they correspond, i.e. to their position / in the matrix products
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in (9.6.5) and (9.6.6). Even so, it is still true that (9.6.7) implies the
equality of (9.6.5) and (9.6.6), provided only that M is a single matrix,
independent of /.

This corresponds to w", and hence a", b"', c", d" in Section 10.4, being
independent of/. Since A" and F" are defined by (10.4.6) with a, b, c, d
replaced by a", b", c", d", they are also independent of/. From (10.4.26),
so therefore must be A, F, A', F'.

For each column/, define p, k, A, v by (10.4.24). Then from (10.4.17),
k and A are independent of /, and are the same for the transfer matrix V
as they are for V.

Once (10.4.26) is satisfied, the star - triangle relation reduces to
(10.4.30). Here u and u' may depend on/, but u" may not. Let Uj(vj) be
the value of v for column/ and transfer matrix V(V). Then from (10.4.23)
it follows that

vj - Vj = independent of/ . (10.17.1)

To summarise: define the transfer matrix Kby (9.6.1), where each weight
function w depends on the lattice column / to which it corresponds, i.e.
to its position in the product. For column /, define w by (10.2.3) and
(10.4.24), where k and A are independent of/ and

Vj = v f + v . (10.17.2)

(The normalising factor p enters trivially into the equations and may be
varied in any manner desired: here I shall regard it as constant for all lattice
sites.)

Then two transfer matrices commute if they have the same values of
k, A, vi,. . . , v%. Their eigenvectors are therefore independent of v: they
depend only on k, A and the differences of vi,. . . , vN.

Regard V as a function V(v) of v. Then again it satisfies (10.4.25).
The working of Section 10.5 now generalizes easily. The a,b,c,d in

(10.5.1) should be replaced by fly, bj, cy, dj. However, A and y in (10.5.2)
are still independent of/, so ps is still given by (10.5.14) and (10.5.8). The
u and v in (10.5.11)—(10.5.21) should be replaced by uf and vh still related
by (10.4.23). The factors {ph[\{X±v)]f in (10.5.23) should be replaced
in an obvious way by a product of py/t[£(A ±i>/)] over / = 1 , . . . , N; and
incrementing v by ±2A' should be read as incrememting each v, by
±2A'. However, if Vj is put into the form (10.17.2), where each vf is
regarded as a constant, then this is the same thing. We therefore again
obtain (10.5.32), but now (10.5.24) is replaced by

(10.17.3)
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Provided each uy lies in the range (-A, A) the working of Section 10.8
goes through virtually as written, the main change being that the definition
(10.8.10) of A(v) is replaced by

Mv) = II O i l -qmcxp[-Jt(vf+ v)/2I]}. (10.17.4)
m=0/=l

Note also that the v\,. . . , vn in Section 10.8 are quite different from the
v\,. . . , VN of this section.

Regard the RHS of (10.8.47) as a function of the Boltzmann weights
a, b, c, d, the parameters q, x, z being defined as in Section 10.5. Write it
as -xp{a ,b ,c ,d), i.e.

xp(a,b ,c,d) = - lnc

- y. —±- q ' % T=- — - . (10.17.5)
r^i m(\ - q2m) (1 +x2m)

Then for the inhomogeneous system being discussed, (10.8.44) becomes
(in the limit of ./V large)

N

In Amax = - 2/ V(ay > ty , Cj, dj), (10.17.6)

a remarkably simple result!
The other properties discussed in Section 10.10 are all independent of

v, so are valid as written for this inhomogeneous model.

Row Variation

Now consider a lattice in which the Boltzmann weights a, b, c, d can vary
from row to row, as well as column to column. Let a,y, £>,y, c,j, dtj be their
values for the site in row i and column /. For each site, define p, k, A, v
by (10.4.24) and require, for all i and/, that

k, A = independent of i and/ , QQ yj j\

Vjj = vf + v\ ,

where u,y is the value of v at site (r,/), v\,. . . , v% and v\,. . . ,v\i are
some parameters which are at our disposal.

The transfer matrix V now depends on the row i to which it refers, so
let us write it as Vj. Then (8.2.1) becomes

Z = T r a c e VXV2 ...Vu. (10.17.8)
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Now note that k, A and the differences of vt\, vi2, • . • , viN are indepen-
dent of i. From the remarks after (10.17.2), it follows that the eigenvectors
of Vt are independent of i: V\,. . . , VM all commute. Provided each u,j lies
in the range (-A,A), each V,- has the same maximal eigenvector. Thus
(8.2.4) generalizes to

Z ~ A m a x ( l ) . . . . Amax(M), (10.17.9)

Amax(0 being the maximum eigenvalue of V;. From (10.17.6) we therefore
obtain

M N

In Z = - 2 2 V(«ty . ba » CH > da) • (10.17.10)

Like (10.17.6), this is an amazingly simple formula: the total free energy
F = —kBT\n Z is the sum of the site free energies (but only in the limit of
M,N large, and provided the conditions (10.17.7) are satisfied). Glearly
this 'de-coupling' is connected with the commutation properties of the
transfer matrices.

Again the ^-independent properties (interfacial tension, correlation
length, magnetization and polarization) must be the same as those of an
homogeneous system with the same values of k and A.

I regret that I know of no physically interesting inhomogeneous system
satisfying (10.17.7). The staggered eight-vertex model (with different
weights on the two sub-lattices) is extremely interesting as it contains as
special cases the Ising model in a magnetic field (Wu and Lin, 1975), and
the Potts and Ashkin - Teller models (see Chapter 12). Unfortunately it
does not satisfy (10.17.7).

Even so, it can be mathematically useful to consider these inhomogeneous
generalizations of the eight-vertex model. The derivation (Baxter, 1973c)
of the spontaneous polarization of the anti-ferroelectric six-vertex model
makes extensive use of the form of the dependence of the transfer matrix
eigenvectors on v\,. . . , v%. The remarks after (10.17.2) will also play a
key role in Chapter 13 in establishing the multiplication properties of the
corner transfer matrices.



11

KAGOME LATTICE EIGHT-VERTEX MODEL

11.1 Definition of the Model

With very little extra work, the results of Chapter 10 can be generalized
to a particular class of eight-vertex models on the Kagome lattice of Fig.
11.1. Not all Kagome lattice eight-vertex models belong to this class: the
Boltzmann weights must satisfy the restrictions (11.1.7). Even so, the class
is interesting since it contains as special cases the triangular and honeycomb
Ising models, the triangular and honeycomb critical Potts models (see
Chapter 12), and the triangular three-spin model (Baxter and Wu, 1973,
1974).

The eight-vertex model can be defined for any graph or lattice with four
edges meeting at each site. (The word 'graph' is used here for any set of

\ / \ / \

•— B

2 \ / \

Fig. 11.1. The Kagome lattice, showing the three types 1, 2, 3 of sites. Also shown
are three particular sites P, Q, R, and some typical right-pointing arrows.

276
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sites and connecting edges; a 'lattice' is a regular graph.) Place arrows on
the edges (one arrow per edge). Allow onfy configurations with an even
number of arrows pointing into each site. At each site i there are eight
possible arrangements of arrows: to arrangement; assign an energy £*,- and
a Boltzmann weight

ft>,y = exp(-e,y/A:Br), (11.1.1)

where kB is Boltzmann's constant and Tthe temperature. Then the partition
function is

where the sum is over all configurations C of arrows on the graph, the
product is over all sites i, and j(i, C) is the arrow arrangement at site i for
configuration C.

For each site i, we can always label the eight arrow arrangements so that
arrangement 2 is obtained from 1 by reversing all four arrows; and similarly
for arrangements 4 and 3, 6 and 5, 8 and 7. Then the 'zero-field' condition
is

(On = 0)a, G>(3 = (On, COi5=(Oi6, COn=COig. (11.1.3)

It is then convenient to write a,, bh ch d,-for oin, oia, eo,5, con, so that

ma.,..., oii8 = a,-, a,, bit bh c,-, c,, dh dt. (11.1.4)

For the homogeneous square lattice, with the vertex arrow arrangements
ordered as in Fig. 10.1, these a,, bt, c,, dt are independent of i and are the
a,b,c,d of (10.2.1).

Now consider the Kagome lattice. It is apparent from Fig. 11.1 that there
are three types of sites. Let us call them simply 1, 2 and 3, and suppose
that all sites of the same type have the same interaction energies and
Boltzmann weights. We can then use b\ to denote the value of b for all
sites of type 1, and similarly for a\, c\, d\, a2, b2, c2, d2, a3, b3, c3, d3.

For a site of type i, order the eight vertex arrow arrangements as in row
i of Fig. 11.2. This ordering has the symmetry property that any row can
be obtained by rotating the previous row anti-clockwise through 120°.

For each site of type i, it is useful to define a vertex weight function w,
analogously to (10.2.3). To connect with relevant equations in Chapters
9 and 10, it is convenient to do this in the following asymmetric way.

With each edge m associate an 'arrow spin' am, with value +1 (-1) if
the corresponding arrow points generally to the right (left). (Some typical
right-pointing arrows are shown in Fig. 11.1). Consider a particular site
of the lattice, of type i, and let ft, a, /S, v be the arrow spins of the
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x x x x x x x x
Fig. 11.2. The three types of vertex on the Kagome lattice, with the eight arrow
arrangements allowed on each. The corresponding Boltzmann weights are shown

underneath.

(a) (b)

Fig. 11.3. The three types of vertex on the Kagome lattice, showing the labelling
(i, a, fl, v of the surrounding edge arrow-spins, and the labelling r, 5, t, u of the

surrounding faces.

Table 11.1. Values of ar|/S, v).

+ , - l + ,

H, a\P, v

+ and —, -
+ and - , +
- and —, +
— and —, -

ocPiiv=-\

- , - fli
+ , - fti
- , + ci
+ , + dx

0

w2

a2

b2

Cl

d2

0

H-3

b3
fl3

c3

d3

0
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surrounding edges, arranged as in Fig. 11.3. Let w,((i, a\/3, v) be the
Boltzmann weight of the corresponding arrow configuration, as given by
Fig. 11.2. Then the functions W\,w2, w3 have the values given in Table
11.1.

Comparing this with (10.2.3), it is apparent that this is the same as
denning each function w, by (10.2.3), with a,b,c,d replaced by
a,, bi, Ci, di, except that a3 and fo3 are interchanged. The partition function
can now be written in a form analogous to (10.2.6), namely

Z = 'ZYlwl{a,,am\ap,aq), (11.1.5)
<X

where the sum is over all choices a = {ai, <x2 ,. . .} of the arrow spins; the
product is over all sites; and for each site the symbol i denotes its type,
and l,m,p,q are the labels of the surrounding edges, arranged in the same
way as \i, a, ft v in Fig. 11.3.

Star - Triangle Restriction

It is obvious from Fig. 11.1 that there are two types of triangles in the
Kagome lattice: up-pointing and down pointing. Consider a triangle, of
either type, and let oc\, . . . , <X(, be the arrow spins on the external edges;
j3i,jS2,ft the arrow spins on the internal edges, arranged as in Fig. 11.4.

These two types of triangles contribute factors

ft) w2(ft , ft|a4 , a 3 ) ,

, ft) H>3(ft , o-2|ft ,

(a)

Fig. 11.4. The two types of triangles on the Kagome lattice. The arrow spins
ari,.. . , O&, Pi, pi, Pi are associated with edges; the Ising spins O\,. . . , oj with faces.
Equations (11.1.6) and (11.5.8) are the conditions that the total weights of the two

triangles be equal.
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respectively to the summand in (11.1-5). In each case all remaining factors
in (11.1.5) are independent of ft, ft, ft. The summations over ft , ft,
ft may therefore be performed, giving an effective total weight for the
triangle.

This weight is a function of ai , . . . , ofc. It will be shown in the next
section that the Kagome lattice eight-vertex model is solvable if the weight
is the same for both types of triangle, i.e. if

2 , a2\/32, ft) w3(a6, ft|or5, ft) w2(ft , ft

= 2 w2( a6, a, |ft, ft )w3(ft,a2|ft,a3)H'1(ft, ft \as,a4), (11.1.6)
ft.fc.A

for all values of cxu • • . , a6.
This is precisely the 'star - triangle' relation (9.6.8), with w, w", w'

replaced by w\,w2, w3. It is therefore equivalent to the six equations
(10.4.1), with a,b,c,d,a",b",c",d",a',b',c',d' replaced by
ai,bi,c1,d1,a2,b2,c2,d2,bi,a3,ci,d3. With this notation the equatiqns
(10.4.1) assume a more symmetric form, and can be written as

(aidj - bibj)ck = (c,cy - didj)bk , (11.1.7)

ibj - biaj)dk = {adj - djCj)ak ,

for all permutations (z,/ , k) of (1 , 2 , 3).
All the corollaries of (10.4.1) that were obtained in Section 10.4 can

now be applied to (11.1.7). In particular, as in (10.4.6) define

Ay = i(aj + bf - cj -

j +

for / = 1, 2, 3. Then from (10.4.26) it follows that Ai = A2 = A3 and Fx =
F2 = F3. Taking A and Y to be the common values, we may therefore write

A, = A, r, = r, / = 1 , 2 , 3 . (11.1.9)

Elliptic Function Parametrization

We can also apply the elliptic function parametrization of Section 10.4 to
the equations (11.1.7). (We shall only need it in this chapter at the end
of Section 11.7 and in Section 11.8.) Using (10.4.21), we can define k,
A, Mi, u2, M3 such that, for/ = 1, 2, 3,
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cij: bj: Cj: dj = snh(A - uj): snh w;: snh A: k snh A snh uy snh(A - uy).
(11.1.10)

Here snh u is the hyperbolic sn function of argument u and modulus k, as
denned by (10.4.20) and (15.1.4)-(15.1.6). From (10.4.17), it follows that

A = - e n ik dn ik /(I - k sn2z'A) nj i u)

r = (1 + k sn2iA )/(l - k sn2*A).

The «i, M2, «3 here correspond respectively to u, u", A - u' in Section
10.4. (Interchanging a' and &' is equivalent to replacing u' by A - «'.) Thus
(10.4.30) becomes

M1 + M2 + M3 = A. (11.1.12)

This completes the parametrization. If the ah bj, Cj, dj satisfy (11.1.10)
and (11.1.12), then the star - triangle restrictions (11.1.7) are satisfied.
Conversely, (11.1.7) implies that there exist k, A, u\, u2, u% satisfying
(11.1.10) and (11.1.12).

11.2 Conversion to a Square-Lattice Model

In this section it will be shown that the effect of the star - triangle restrictions
(11.1.7) is to ensure that certain properties of the Kagome lattice model
are the same as those of an associated square-lattice model. The results
of Chapter 10 can then be used.

The argument here can be specialized to the Ising model (Baxter and
Enting, 1978), or generalized to any graph made up of intersecting straight
lines (Baxter, 1978a, b).

First consider any up-pointing triangle in the Kagome lattice, e.g. the
triangle PQR in Fig. 11.1. Label the surrounding arrow spins as in Fig.
11.4. Then the contribution of this triangle to the partition function (11.1.5),
summed over arrow spins on internal edges, is the LHS of (11.1.6).

Replace this contribution by the RHS of (11.1.6). The partition function
is now that of the graph shown in Fig. 11.5(a), in which the horizontal line
AB has been shifted above the site R. The site P is still the intersection
of AB with the SW-NE line, and still has weight function wh Similarly,
Q and R lie on the same lines as before, and have the same weight functions
(w2 and vv3) as before.

This procedure not only leaves the partition function Z unchanged; it
also leaves unchanged any correlation, e.g.

. . . a%2) = Z'12 a3a^a9. . . a82 fl wi«i, <xm\<xp , aq), (11.2.1)
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\ / \ / \ / \ / \ / \
A \ /

• x
\ /y!

hs/\
/\

w \ / \ /
( a ) ( b )

Fig. 11.5. The Kagome lattice of Fig. 11.1 with: (a) the line AB shifted above R;
(b) the line AB shifted up a complete row. The partition function, and all corre-

lations in the lower half of the lattice, are unchanged.

provided none of the arrow spins as, a$, ag ,. . . , ai2 correspond to edges
inside the triangle PQR.

Suppose the lattice to be wound on a vertical cylinder and perform this
procedure for each triangle that initially has its base on the line AB. The
result is the graph in Fig. 11.5(b): the line AB has been shifted up one
row.

Now repeat this procedure for the horizontal line above AB, then for
AB itself, and so on until AB and all horizontal lines above it are at the
top of the graph. Similarly, shift CD and all horizontal lines below it to
the bottom of the graph. The end result is that the Kagome lattice of Fig.
11.6(a) is changed to the graph of Fig. 11.6(b).

Consider any set of edges lying between (but not on) the initial lines AB
and CD, i.e. adjacent to the middle row of sites. An example is the pair
(/, k) in Fig. 11.6. At no stage of the transformation does a horizontal line
pass over any of these edges. They are therefore external to all triangles
involved in the many star - triangle transformations, so their correlations
are unchanged.\ /

X
X; )
X

x( ;JX
< ;
X

X X
< X
A X

\ y
X X

X
X X>x
X X

XXXA
\7 \7 \7 w

(a) (b)

Fig. 11.6. (a) The Kagom6 lattice, (b) the same lattice after all upper horizontal
lines have been shifted to the top, and all lower ones to the bottom. The partition
function, and correlations in the central row such as (ayait) and (aman), are

unchanged.
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The eight-vertex models on the two graphs (a) and (b) in Fig. 11.6
therefore not only have the same partition function Z, but also the same
correlations between spins in the middle row, e.g. (ajar*).

Let 2M be the number of horizontal lines. Then Fig. 11.6(b) consists of
a central square lattice (drawn diagonally) region of 2M rows, 'framed'
above and below by regions each containing M horizontal lines. All sites
in the central region have weight function w3.

In the limit of M large, edges / and k lie deep inside the square lattice
region. We therefore expect the correlation (ajak) to be that of the usual
square lattice, drawn diagonally. In particular, this implies that

(<Xj(Xk) = function only of a3, fr3, c3, d3, (11.2.2)

and similarly for any correlation between edge spins adjacent to the central
row of sites.

Framing Boundaries

The result (11.2.2) is true even though the boundary 'framing' regions also
become large. To see this, let V3 be the row-to-row transfer matrix in the
central region, and Vu the transfer matrix in the framing regions. Then

{0Ci0Ck)= v v m M + i v ^ ' (1L2-3)

where Sj, sk are diagonal matrices with diagonal entries oj, ak, and i/> is a
vector whose entries are determined by the boundary conditions. Let An
be the maximum eigenvalue of V\2 and set

(11.2.4)

Then (11.2.3) becomes
TlIfTlM+l(t>. (11.2.5)

This is precisely the correlation inside a square lattice, with weight function
w3 and boundary conditions corresponding to the vector (p. When M is
large, <j> tends to a non-zero limit, namely the maximal eigenvector of Vu-
From the Perron - Frobenius theorem (Frobenius, 1908), this vector has
only non-negative entries, and so does the maximal eigenvector of V3.
They cannot therefore be orthogonal (unless the entries of one are zero
for all non-zero entries of the other, which is not to be expected). This
means that <p is not a pathological boundary condition on the square lattice,
and the RHS of (11.2.5) can be evaluated for M large by the methods of
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Section 2.2. These give
(a,ak) = ^ (F 3 /A 3 ) $&?£, (11.2.6)

where A3, £ are the maximum eigenvalue and eigenvector of V3. This result
depends only on V3, not on the boundary condition <$>.

For simplicity I have assumed in this argument that Vn and V3 (and the
top and bottom boundary conditions) are symmetric: this is not a necessary
restriction.

11.3 Correlation Length and Spontaneous Polarization

Return to (11.2.2). If edges/ and k are far apart, but still lie in the central
horizontal band in Fig. 11.6, then

{ajak) ~ exp[ - |y - k\/%KG], . (11.3.1)

where %KG is the horizontal correlation length of the Kagome lattice. From
(11.2.2) it follows that

&G = &G(«3 ,b3, c3, d3), (11.3.2)

where %so(a ,b,c,d)is the diagonal correlation length of the square lattice
eight-vertex model with Boltzmann weights a, b, c, d as in row 3 of Fig.
11.2. This diagonal correlation length has not to my knowledge been
evaluated (it would mean obtaining equations for the eigenvalues of the
diagonal-to-diagonal transfer matrix, which should be possible). It pre-
sumably has the same critical behaviour as the row correlation length §
given in Section 10.10, since near criticality correlations in all directions
are expected to become similarly long-ranged.

Consider any site of type 3 in the central row of the Kagome lattice in
Fig. 11.6(a). Let n, a, fi, vbe the spins on the surrounding edges, arranged
as in the last diagram in Fig. 11.3. These edges all lie between the lines
AB and CD, so analogously to (11.2.2)

(a), (an),. . . , (iiafiv) = functions only ofa3, b3, c3, d3,
being the same as those of the
regular square lattice model
with these weights, constructed
on the interior lattice of
Fig. 11.6(b). (11.3.3)

Thus all local correlations round a site of type 3 are the same as those
of the corresponding square lattice. By symmetry, analogous equivalences
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apply for sites of type 1, and of type 2. Provided the restrictions (11.1.7)
are satisfied, all local correlations of the Kagome lattice model can therefore
be expressed as square lattice correlations.

This means that for an edge / of the Kagome lattice, adjacent to a site
of type 3,

(ory> = P0(a3, b3, c 3 , d 3 ) , (11.3.4)

where P0(a ,b,c,d)is the spontaneous polarization of the square lattice
eight-vertex model with Boltzmann weights a, b, c, d. This is given by
(10.10.24), q and x being defined in Section 10.15. It depends on a, b, c,
d only via A and I\ so from (11.1.8) the RHS of (11.3.4) is unchanged by
replacing a3, b3, c3, d3 by au by, cu di or a2, b2, c2, d2. Using rotation
symmetry, it also follows that (11.3.4) is true for all edges j. Thus {aj) has
the same value for all edges of the Kagome lattice.

11.4 Free Energy

While the framing regions in Fig. 11.6(b) do not contribute (for a large
lattice) to central correlations, they certainly contribute to the partition
function, and hence to the total Kagome lattice free energy

FKG = -kBT\nZ. (11.4.1)

In fact, in the limit of a large lattice we expect the bulk free energy FKG

to be simply the sum of the bulk free energies for the three regions in Fig.
11.6(b), the contributions from their boundaries being insignificant. Thus

FKG = FSQ + 2FFR , (11.4.2)

where FSQ is the total free energy of the central region, FFR is the free
energy of either the upper or lower framing regions.

Let N be the number of sites of type 1 in the lattice. Then (for N large)
there are also N sites of type 2, and N of type 3. There are therefore N
sites in the central region, all of type 3, so

FSQ = Nf(a3,b3,c3,d3), (11.4.3)

where f(a , b , c , d) is the free energy per site of a regular square lattice
eight-vertex model, as given by (10.8.47) and Section 10.15, and kBT is
here to be regarded as some given constant.

An expanded picture of one of the framing regions is given in Fig. 11.7.
Plainly this is also a square lattice, but with sites of type 1 and sites of type
2 on alternating columns. There are N sites altogether.
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From (11.1.8), all sites have the same value of A and of F, so the
eight-vertex model in either framing region is a column-inhomogeneous
model of precisely the type discussed in Section 10.17. The total free energy
is therefore (for N large)

FFR = iNf(ai M,cu dt) + lNf(a2,b2,c2,d2). (11.4.4)

Substituting the expressions (11.4.3) and (11.4.4) into (11.4.2) gives the
properly symmetric and very simple result

FKC = N[f(a1,buc1,d1)+f(a2,b2,c2,d2) +fia3,b3,c3,d$]. (11.4.5)

Fig. 11.7. Expanded section of one of the framing regions in Fig. 11.6(b), showing
the two types of sites. This is a square lattice, with different weights on alternate

columns.

11.5 Formulation as a Triangular-Honeycomb Ising Model with Two-
and Four-Spin Interactions

Like the square-lattice model, the Kagome lattice eight-vertex model can
be formulated in terms of 'magnetic' spins on faces, instead of 'electric'
arrows on edges.

The most symmetric way to do this is to regard the arrow configuration
shown in Fig. 11.8(a) as a standard. (It is anti-ferroelectric: all vertices
are of the fifth type in Fig. 11.2.) With each face r associate a spin ar, with
values +1 and — 1. Consider an edge /', with faces r and 5 on either side.
Place an arrow on it according to the rule:

// aras = +1, point the arrow in the name direction as
the arrow on edge j in the standard configuration;
otherwise point it the opposite way. (11.5.1)

Do this for all edges.
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Imagine an observer walking round any particular site, going successively
through the four faces. If he observes a change in spin from one face to
the next, then the arrow on the intervening edge is non-standard, and
conversely. When he returns to his starting point he must have seen an
even number of changes, so there are an even number of non-standard
arrows on the four edges at each site. Since the standard configuration is
two in and two out, there must in any event be an even number of arrows
into (and out of) each site. This is the eight-vertex condition.

A / \ / \

/ \ / \ / \
(a )

Fig. 11.8. (a) The standard anti-ferroelectric arrow configuration on the Kagome
lattice (not all arrows are shown); (b) the corresponding triangular lattice con-
figuration, obtained by shrinking the up-pointing triangles of the Kagome lattice
down to points. The three sub-lattices A, B, C of the triangular lattice are also

shown.

To each configuration of the face-spins, there therefore corresponds an
arrow covering of the edges that satisfies the eight-vertex condition. Con-
versely, by the same reasoning as in Section 10.3, to each such arrow
covering there correspond two face-spin configurations (differing from one
another in the reversal of all spins). Using this one-to-two correspondence,
(11.1.2) can be written

Z = i 2 I I ««,,•(., a), (H-5.2)
a i

where the sum is over all configurations a - {o\, 02,. . .} of the face-spins,
the product is over all sites i, and j(i, a) is the arrow arrangement at site
i for spin-configuration a.

Let r, s, t, u be the faces round a site of type i, arranged as in Fig. 11.3.
Let Wi(or ,as,a,, ou) be the Boltzmann weight of the vertex arrow arrange-
ment corresponding to the face spins having the values ar, os, a,, ou. Then
from rule (11.5.1) and Figs. 11.2, 11.3 and 11.8,
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W,{+ ,-,+,+)= W,(+ , + , + , - ) = a,,

W t ( - , + , + , + ) = W , ( + , + , - , + ) = 6,- ,

W { + , + , + , + ) = W i ( - , + , - , + ) = a , (H.5.3)

Wt(- , - , + ,+) = Wi(- , + , + ,-) = dt,

Wi(ar,os,a,, au) = Wi(-or,-as,-a,, -au)

= Wi(or,-os,ot,-ou),

for i = l, 2, 3 and or, os, o,, ou=± 1. This defines the function Wh and
(11.5.2) can be written as

Z = i^\[wi{ar,os,o,,ou), (11.5.4)
a

the product being over all sites; i now denotes the type of the site, and r,
s, t, u are the surrounding faces.

From (11.5.3), the function Wt can be written as

W,{ar,os,o,, ou) = MiexplKiOrO, + K\osou + K[orosotou\, (11.5.5)

where M, Kh K\, K" are related to a,-, bh ch dt by

at = Mi exp(Kt - K't - K'<), b{ = M, exp( -Kt + K\ - K'l),

ci = Miexp(Ki + K[ + K['), d,•• = M, exp(-K,<- K\ + K"). (11.5.6)

Using this form (11.5.5) of Wh it is apparent from (11.5.4) that Z (strictly
2Z) is the partition function of an Ising model defined on the faces of the
Kagome" lattice, with two-spin interactions between opposite faces at a site,
and four-spin interactions between the four faces round a site.

Placing a dot at the centre of each face of the Kagome lattice, and linking
dots whose spins interact via a two-spin interaction, gives the lattice of
Fig. 11.9. This consists of a honeycomb lattice interlacing a triangular one.
The interaction coefficients Kh K[ associated with the various edges are
shown. Let TV be the number of sites of type 1 (or type 2, or type 3) in the
original Kagom6 lattice. Then the associated honeycomb lattice has 2N
sites, the triangular one has JV; each has 3N edges, and each edge of one
is crossed by an edge of the other. Using (11.5.5), (11.5.4) can now be
written as

Z = i(M1M2M3)

(11.5.7)
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whefe the first sum inside the exponential is over all edges ( r , f) of the
honeycomb lattice; the second is over all edges (s , u) of the triangular
lattice; and the third is over all honeycomb edges (r, t), (s ,u) being the
crossing triangular edge. In each case i ( = 1 , 2 or 3) is the type of the
edge, as in Fig. 11.9.

Fig. 11.9. The honeycomb-triangular lattice formed by placing a dot at the centre
of each face of the Kagome lattice, and linking dots whose Ising spins interact via
a two-spin interaction. The corresponding interaction coefficientsK\,. . . , Ki are
indicated; r, s, t, u correspond to the four faces in Fig. 11.3(a); m and n correspond

to the faces m and n in Fig. 11.6(a).

Thus Z is, to within a normalization factor, the joint partition function
of a honeycomb and a triangular Ising model interacting via four-spin
interactions on crossing edges.

Star - Triangle Restriction

For the solvable model, the interaction coefficients K\,. . . , K'i are not
arbitrary: they must satisfy the restrictions (11.1.7), where a,-, &,-, c,, dt are
given by (11.5.6).

These restrictions came from the star - triangle relation (11.1.6): it is
interesting to go back to this and express it in terms of 'magnetic' spins on
the faces of the Kagome lattice, rather than 'electric' spins on the edges.

The relation (11.1.6) states that the two graphs in Fig. 11.4 have the
same total weight, after summing over allowed configurations of arrows
on the internal edges. To express this relation in 'magnetic' language,
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associate spins with the faces of the graphs, as in Fig. 11.4. Then the
requirement that the two graphs have the same total weight is

2 Wi{ch ,a3,a1,ol) W2(o4 ,o5,o7, o3) W3(o6 , 0 1 , 0 7 , o5)

= 2 Wi{o, ,o4,05, o-6) W2(o7 ,o6,oi, o2) W3(CT7 , o 2 , o3, o 4 ) . (11.5.8)

This equation must be true for all values of the external spins
o\,. . . , 06. The summations are over the values of the internal spin 07:
this corresponds in (11.1.6) to summing over the allowed values of /3i,
fc, fh (only two sets of values are allowed by the eight-vertex rule).

Using (11.5.3), one can verify directly that the equations (11.5.8) are
the same as (11.1.6). Using (11.5.5), they can be written explicitly as

#30501) cosh(.KiO2 + K2a4

+ K3o6 + K'{oia2o3 + K2o3o4Os +

exp(#io4O6 + K2a6O2 + #30204)

+ K3O3 + XTO4O5CT6 + #2060102 + #30203Ot) (11.5.9)

Since they are equivalent to (11.1.6), they imply (11.1.7) and (11.1.8),
in particular I\ = T2 = F3. From (11.1.9), this means that a,fc,/c,d, is there-
fore independent of i, and from (11.5.6) this implies

K'l = independent of i. (11.5.10)

Thus all sites must have the same four-spin interaction coefficient,
regardless of their type. Let us call this coefficient simply K". Then by
considering all 64 values of Oi,. . ., o6, we find that (11.5.9) is equivalent
to the six equations:

2K') -
2Kk) -

/ 2Kk) -

for all permutations (i ,j, k) of (1 , 2 , 3).
These are the equations (11.1.7). They are not independent, since the

second set can be easily deduced from the first. The first set, containing
three equations, is plainly independent since it can be used to define
#{,#2, #3 for given values of KUK2,K3,K". Alternatively,
K[,K2,K3, K" can be regarded as given, and the equations solved for K\,
K2, K3.
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Using (11.5.6), the corollaries (11.1.8)-(H-l-9) become, for/ = 1, 2, 3,

A = - sinh 2/sTysinh 2Kj - tanh 2K' cosh 2^-cosh 2K] , (11.5.12a)

r = - t a n h 2 K " . (11.5.12b)

Eliminating}'2 (taken to be negative) between the equations (10.4.12), and
using (10.4.9), the elliptic modulus k is given by

2*'/(l+*) = /, (11.5.13)

where
iz = (i - r2)/(A2 - r 2 ) . (n.5.14)

Using (11.5.12), this last equation can be written

I2 = f 5
16(1 + vjV;v")(v" + vjDJ)(Dj + v]v"){v] + Vju") ' V1-*-1*'

where

Vj = tanh Kh vj = tanh K-, v" = tanh K". (11.5.16)

Spontaneous Magnetization

The argument of Section 11.2 can be repeated in terms of face-spins,
instead of edge arrow-spins. Instead of using (11.1.6), one uses (11.5.8).
The resulting analogue of (11.2.2) and (11.3.3) is the following.

Let 0 i , . . ., om be any set of face spins of the Kagome lattice, all lying
between the lines AB and CD in Fig. 11.6(a). Suppose the restrictions
(11.1.7), or equivalently (11.5.11), are satisfied. Then for a large lattice

(CTI . . . . om) = same as in the regular square-lattice eight-vertex
model, with weights a3, b3, c3, d3, on the
interior lattice in Fig. 11.6(6). (11.5.17)

Thus (ox. . . . om) is a function only of a3, b3, c3, rf3, or equivalently of K^,
*3, K".

In particular, this means that the expectation value of any face-spin am

is
(am) = M0(a3, bi, c 3 , d3) , (11.5.18)

regardless of whether om lies in a triangular or hexagonal face of the
Kagome lattice. Without ambiguity, we can therefore call (am) the spon-
taneous magnetization.
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Here M0(a3, 63, c3, d3) is the spontaneous magnetization of the square
lattice eight-vertex model with Boltzmann weights a, b, c, d. It is given by
(10.10,19). Like the spontaneous polarization, it depends on a, b, c, d only
via A and T. These have the same value for all three types of lattice site,
so (11.5.18) is unchanged by replacing a3, b3, c3, d3 by ax, bu cu d\, or by
o2,b2,c2, d2. Indeed, it is obvious from the rotation symmetry of the lattice
that this must be so.

Hyperbolic Trigonometry and the Elliptic Function Parametrization

Define two further parameters co, Q by

coth 2£" = cosh Q, - A coth 2K" = cosh <o . (11.5.19)

Then (11.5.12a) can be written as

cosh a) = cosh 2Kj cosh 2Kj + cosh Q sinh 2K} sinh IK]. (11.5.20)

This is the same as the relation between the sides a>, 2Kj, 2K/ of an
hyperbolic triangle, with angle n + iQ between the sides 2Kj, 2Kj (Onsager,
1944, p. 135; Coxeter, 1947). Other corollaries of the star - triangle rela-
tions (11.5.11), e.g.

- cosh 2K2 cosh 2K3 + coth 2K[ sinh 2K2 sinh 2K3 n 1 5 21)

=cosh 2Ki cosh 2K" + coth 2K[ sinh 2KX sinh 2K",

can be interpreted in terms of hyperbolic trigonometry. It seems likely that
many of the properties of the star-triangle relation, notably the 'quadri-
lateral theorem' (Baxter, 1978a), could be conveniently interpreted in this
way: as far as I know, this has not yet been done.

These ideas also provide an alternative approach to the elliptic function
parametrization of Section 10.4. It is well known that the relation (11.5.20)
can be simplified by introducing elliptic functions of modulus

/ = sinh Q/sinh a), (11.5.22)

(Greenhill, 1892, Paragraph 129). Onsager (1944, p. 144) refers to this as
a uniformizing substitution.

This /is precisely that defined by (11.5.15), so it is related to the modulus
k used in Chapter 10 by (11.5.13). From Section 15.6, / and k are therefore
related by a Landen transformation, so both approaches lead effectively
to the same elliptic function parametrization, as they should.
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11.6 Phases

From (11.3.4) and (11.5.18), the spontaneous polarization and magnet-
ization of the Kagome lattice model are the same as those of a square-
lattice eight-vertex model with the same values of A and T. From Section
10.11, it follows that the Kagome lattice model is ordered if | A | > 1,
disordered if | A | < 1.

The archetypal ordered regime is when

Ci>at + bi + dh a,>0, bt>0, dt>0, (11.6.1)

for i = 1, 2, 3. From (11.1.9), it follows that A < - 1 . The ground state is
then the anti-ferroelectric arrow configuration shown in Fig. 11.8(a), or
the one obtained from it by reversing all arrows. Since we have used this
as a standard in relating face- and arrow-spins, our resulting face-spin
interpretation of this phase is ferromagnetic: in a ground state all spins on
triangular faces are the same, and all spins on hexagonal faces are the
same. There are four such ground states.

In addition to (11.6.1), there are seven other regimes in the available
parameter space in which the system is ordered (Baxter, 1978a, p. 337).
They can all be obtained from the archetypal case by reversing appropriate
sets of spins. For example, reversing all face-spins on up-pointing triangles
is equivalent to reversing all arrows on the sides of up-pointing triangles:
from Fig. 11.2 this interchanges a, with di} and bt with c,, so maps (11.6.1)
to

bi>ai + ci + di, a,->0, c,->0, d , > 0 , (11.6.2)
with A> 1.

Alternatively, reversing face-spins between alternate pairs of horizontal
lines is equivalent to reversing all horizontal arrows. This leaves a3, fr3, c3,
d3 unaltered, but for / = 1 or 2 it interchanges a, with bt, c, with dt. Thus
it maps (11.6.1) to

dl>al + bl + cu d2>a2 + b2 + c2, c3 > a3 + fc3 + c3, (11.6.3)

all weights being positive and A < — 1.
Two other mappings can obviously be obtained from this by using the

rotation symmetry. All eight ordered regimes can then be obtained by
combinations of these various mappings.

There is only one disordered regime, namely

0 < ah bh cu dt < !(«,- + b, + c, + d,) , (11.6.4)

for i = 1, 2, 3, with -1 < A < .1.
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11.7 K" = 0: The Triangular and Honeycomb Ising Models

In Section 10.3 we remarked that the square-lattice eight-vertex model
factors into two independent Ising models if the four-spin interaction
coefficient K" is zero.

A similar factorization occurs for the Kagome lattice model. From
(11.5.10), we can set all four-spin coefficients K" simultaneously to zero.
The exponential in (11.5.7) then factors into two parts, one involving only
spins on the honeycomb lattice of Fig. 11.9, the other only spins on the
triangular lattice. It follows at once that

Z = k(MlM2M3)
NZniK,, K2, K3) ZT(K[, K2, K§ , (11.7.1)

where ZH(Ki, K2 , KT) is the partition function of the nearest-neighbour
Ising model on the honeycomb lattice, with interaction coefficients
K\, K2, Ki, and Zj{K[, K2, K?) is the partition function of the nearest-
neighbour Ising model on the triangular lattice, with interaction coefficients
K[, K2, Kj. The honeycomb lattice has 2N sites, the triangular has N.

The relations (11.5.11) can be written as

K 2 + K3) = e x p ( m + m h ( 1 L 7 . 2 )

cos^-AT! + K2 + K3)

together with two other equations obtained by permuting the suffixes 1,
2, 3. These are precisely the Ising model star - triangle relations (6.4.8)
(with R eliminated and Kj , L, replaced by Kj , Kj).

This equivalence with the Ising model star - triangle relation is even
clearer in the original equation (11.5.9). If the K" therein vanish, it factors
into two equations, one involving only the spins o\, CT3, O5, the other
involving 02, a4, a6. They are

K2aA + K3o6)
= R exp(K'iO4O6 + K2o6o2 + K^o*) , (11.7.3a)

K2O\ + K3O3)

= R exp(K[oxo3 + Kfaos + KiOsOx), (11.7.3b)

where R is a common constant. Each of these equations is precisely the
star-triangle relation (6.4.4)-(6.4.5).

From (11.5.12b), T is zero, so from (11.5.14) and (11.5.12a) we can
choose

/C;, 7 = 1,2, 3. (11.7.4)
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This is precisely the relation (6.4.13), with k, Kj, Lj therein replaced by
/, K'h Kh From (6.4.16) and (6.3.5) it follows that

(l-V?)Hl-V2)(l-V?)
16(1 + viofa) (v[ + v2v'3) (V2 + v'3v\) (v'3 + v\v'2) ' K ' '

where v{, v2, v3 are defined by (11.5.16) in terms of the triangular inter-
action coefficients K{, K2, K'3.

Alternatively, using (6.4.12), / can be expressed in terms of the honey-
comb lattice coefficients K\, K2, K3 as

/2 - 16(1 + ZXZ2Z3) {Z\ + Z2Z3) (Z2 + Z3Z1) (Z3
1 - (l-zf)2(l-zl)2(l-z|)2 ' { )

where
zy = exp(-2A)), y = l , 2 , 3 . (11.7.7)

[The similarity in form of (11.7.5) and the inverse of (11.7.6) is a
reflection of the duality relation of Section 6.3. Why they should also
resemble the eight-vertex single-site relation (11.5.15) I do not know.]

The R in (11.7.3) is the same as the R in Section 6.4, so from (6.4.14),
changing k, Lj, Kj to /, Kj, Kj:

R2 = 21 sinh 2Ki sinh 2K2 sinh 2A"3 (117 8)

= 2/(/2 sinh 2K[ sinh 2K2 sinh 2#3) •

Free Energy

In our present notation, the identity (6.4.7) becomes

Z«(Ki, K2, K3) = RNZT{K[, K2, Ki). (11.7.9)

Substituting this into (11.7.1), taking logarithms and using (11.4.1) and
(11.4.5), gives

2 In Zj{K[, K2, K3) = In 2 - A T l ^ M ^ M ^ ) (n.7.10)

writing^ for/(a ;, bj, q , dj), which is the free energy per site of the square
lattice eight-vertex model with weights a,-, bj, q, dj.

These weights are given by (11.5.6). Since K" is zero, the square lattice
model is the product of two square lattice Ising models. Choosing each My
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to be one, from (10.3.11) /J is the free energy per site of the square lattice
Ising model with interaction coefficients Kj, Kj.

It is convenient to work with the dimensionless free energy per site

xp = f/kBT. (11.7.11)

From (1.7.6), for a lattice of N sites this is related to the partition function
Zby

V- -Hm AT'lnZ. (11.7.12)

For the square lattice Ising model with interaction coefficients Kj, Kj,
ip is a function only of these coefficients. Let us write it as ipsa(Kj, Kj).
Similarly, for the triangular Ising model with interaction coefficients
K[,Ki,K$, let us write it as ipj(K[, K{, Ki). Then from (11.7.10)-
(11.7.12),

K2, K^) = h[\nR + rPsoiK,, K[) + rpSQ(K2, K'2)

* 0 ] • (H.7.13)

Also, using (11.7.9) and remembering that the honeycomb lattice herein
has 2N sites, the dimensionless free energy per site of the honeycomb
lattice Ising model, with interaction coefficients Ku K2, K3, is

,K2,K,)=\[-\nR + xps^Kx, K[) + yS(£K2, K'2)

Ki)]. (11.7.14)

The function \PSQ{K,K') has been obtained in Chapter 7, and (as a
special case of the eight-vertex model) in Chapter 10. Replacing the K, L,
k of Chapter 7 by the K', K, I herein, the equations (7.9.14), (7.9.16),
(7.6.1) give, for all values of K and K',

xpSQ(K,K') = -(2JI)'1 rin{2[cosh2A:'cosh2*:
Jo

2 i (11.7.15)

where, similarly to (11.7.4),

r1 = sinh 2K sinh 2K'. (11.7.16)

We are free to make any choice of K[, K2, K?,, or of Ku. K2, K^, so we
can use (11.7.13) or (11.7.14) to obtain the free energy of any regular
triangular or honeycomb Ising model. The other parameters are defined
by the three equations (11.7.2), and by (11.7.8).
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Nearest-Neighbour Correlations

When K' = 0, (11.5.17) relates correlations of the triangular and honey-
comb Ising models to those of the square. Consider the two faces m, n in
Fig. 11.6. Let om , on be the corresponding Ising spins and apply (11.5.17)
to (omon).

As in Section 11.5, place dots at the centre of each face and link dots
whose spins interact via a two-spin interaction. Then Fig. 11.6(a) becomes
Fig. 11.9, and m and n are vertical nearest neighbours on the honeycomb
lattice, with interaction coefficients K\, K2, K3. On the other hand, Fig.
11.6(b) becomes two interlaced square lattices: m and n are vertical nearest
neighbours on the square lattice, with interaction coefficients K3, K3. In
both cases the edge (m , n) has interaction coefficient AT3. Since (omon) is
the same for both, it follows that

gH(K3, Kx, K2) = gSf^K3, ft), (11.7.17)

where gn, gsQ are the nearest-neighbour correlations of the honeycomb
and square lattices, respectively, and the first argument is the interaction
coefficient of the edge under consideration.

Similarly, considering the correlation between the spins on the two faces
in Fig. 11.6 that are next to both m and n, we obtain

gA.K3 , K[, K$ = g5G(^3, K3). (11.7.18)

The correlations gSQ, g#, gr are derivatives of %Q, \pH, ipT. From (6.2.1)
(with K, L replaced by K', K), (11.7.12) and (1.4.4),

gSQ(K,K') = -dxl>SQ{K,K')ldK. (11.7.19a)
Similarly,

g^Ki ,K2,K3) = - d^Ky, K2, K3)ldK,, (11.7.19b)

gT(K[ ,Ki,KQ = - dxpjiKl, K2, KtydK[, (11.7.19c)

where each differentiation is performed with the other arguments kept
constant.

Alternative Derivation of the Ising Model Free Energy

The relations (11.7.17) and (11.7.18) are not mere consequences of
(11.7.19). They contain more information.

To see this, note that (11.7.13) and (11.7.14) imply that

,K2,K3)=i[-lnR + T/MXi, K2, KQ]. (11.7.20)
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(This is a simple corollary of (11.7.9).) Differentiate this equation with
respect to K3, keeping K\ and K2 constant.

The K{, Kj, #3 are defined by (11.7.2). From this, (11.7.4) and (11.7.8),
one can verify that

= - 2w, d \nR/dK3 = 2w3, ,n ? 2 1 \

dK[/dK3 = 2w2, dK'2ldK3 = 2wx,
where

w = I sinh 2Xi sinh 2K'2 sinh 2K'3, ,^ 7_22)

wr= w coth 2K'r, r = 1,2, 3 .

Differentiating (11.7.20), using (11.7.17)-(11.7.19), therefore gives
gSQ(K3, Ki) = w3 + w2gSQ(K[, K{)

+ wlgsQ(K2, K2) ~ wgSQ(K3, K3). (11.7.23)

Since Ki, K2, K3 are independent, this is a three-variable equation for
the two-variable function gsQ(K, K'). Baxter and Enting (1978) have
shown that it, together with (11.7.19a) and the symmetry property
%PSQ(K ,K') = TPSQ(K' , K), c o m p l e t e l y d e t e r m i n e s gSQ(K , K ' ) . T h e in ter -
ested reader is referred to that paper for details: equation (8) therein (with
K, L replaced by K' , K) is the equation (11.7.23) above. Briefly, (11.7.23)
implies that, for K and K' positive,

where, consistently with (11.7.4),

T1 = sinh 2£ sinh 2K', (11.7.25)

and a(l), b(l) are functions of / only. The RHS of (11.7.24) must tend to
one as K-* + °°, which implies a linear relation between a(l) and b{l).

The symmetry of %Q(K,K'), together with (11.7.19a), implies that
a(l), b(l) satisfy certain differential equations. Solving them gives, for
0 < / < ° ° ,

a(l) = [(1 + /) E(h) + (1 - /) I{h)]ln, (n.7.26)

&(/) = 2 ( l - / ) / ( / , ) / * ,

where
h = 2/V(l + 0 , (11.7.27)

and /(/1), E(l\) are the complete elliptic integrals of the first and second
kinds, of modulus /1; as defined in (15.5.9) and (15.5.13).
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Now that gsQ(K, K') is determined, the free energy can be obtained
from (11.7.19a).

The fascinating feature of this derivation is that it uses only the star -
triangle relation, which is a local property of the Ising model. It uses it
twice: once to establish (11.5.17) and the corollaries (11.7.17), (11.7.18);
and again to establish (11.7.20). (Hilhorst et al. (1978, 1979) and Knops
and Hilhorst (1979) have shown that the star - triangle relation can also
be used to obtain the critical properties of the Ising model via the renor-
malization group method.) This further underlines the significance of the
star - triangle relation, at least for the Ising model. I am not sure whether
the method can be generalized to the full eight-vertex model.

The result (11.7.24)-(11.7.27) of course agrees with the result of the
transfer matrix calculation of Chapter 7, namely (7.9.16) and (11.7.15).

The critical singularities at / = 1 arises not from the integral in (11.7.24),
but from the 'coefficients' a(l) and b{l). Near 1=1 these behave as

„ , 2 1 - / , 4(1 +/)
n(P\ = I In - —

k44 (11.7.28)

This makes it clear that all square, honeycomb and triangular Ising models
have the same critical singularities in their internal energies, namely that
of b{l). The symmetric logarithmic divergence of the specific heat follows
at once, so as in (7.12.12) the exponents a, a' are given by

a=a' = 0. (11.7.29)

Magnetization

From (11.5.18), the triangular Ising model with coefficients K[, K2, K3, the
honeycomb model with coefficients K\, K2, K3, and the square model with
coefficients Ku K[ (or K2, K2, or K3, Ki) all have the same spontaneous
magnetization. We can therefore use the square-lattice result (7.10.50).
With our present notation this is

M0 = ( l - / 2 ) 1 / 8 if | / | « 1 , ( l l i 7 . 3 0 )

= 0 if | / | > 1 .

(Each Ising model is ordered if |/| =s 1, disordered otherwise.)
Comparing this with (1.1.4), and noting that at the critical temperature

/ - 1 vanishes linearly with T - Tc, it follows that for all three models the
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exponent /S is
0=1/8. (11.7.31)

All other critical exponents are also expected to be the same for the
triangular, honeycomb and square-lattice Ising models, and to have the
values given in (7.12.12)-(7.12.16). This is in agreement both with the
scaling and universality hypotheses.

11.8 Explicit Expansions of the Ising Model Results

The results (11.7.13) and (11.7.15) are expressed in terms of elementary
functions and integrals thereof. This form is easy to understand, but is not
necessarily the most convenient to use. For some purposes, e.g. developing
series expansions or even direct evaluations, it may be easier to use elliptic
functions and their infinite product expansions.

Throughout this section it will be supposed that all the interaction
coefficients Ku K2, K3, K[, Ki, Ki are non-negative. This means that for
any lattice there are only two cases to consider: low temperature (0 <
/ < 1), and high temperature (/ > 1).

Square Lattice: Low Temperature

First consider the square-lattice Ising model with interaction coefficients
Kj, K'j. This is equivalent to a square-lattice eight-vertex model with weights
ay, bj, ch dj given by (11.5.6), M,- being one and K" being zero.

Replace the a, b, c, d of Chapter 10 by these ay, bj, q, dj. Replace u, v,
z by M;, Vj, Zj. Then from (10.4.21) and (11.5.6), k, A, uf are given by

1 = (Cjdjlcijbjf = kh snh A , (11.8.1a)

exp( - 2Kj) = djlttj = kk snh u,, (11.8.1b)

exp( - IK]) = djlb, = kh snh(A - My). (11.8. lc)

As in Chapter 15, let /,/ ' be the complete elliptic integrals of the first
kind of moduli k, k' = (1 - k2f. Then from (11.8.1a) and (15.4.32), we
obtain the result (10.9.6), i.e.

A = i / ' . (11.8.2)
From (10.4.23), (10.7.9) and (10.7.19),

nl/l), (11.8.3)

x = exp(- nXllI), Zj = exp(- jtVj/21),
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so from (11.8.2)
q = xA. (11.8.4)

Provided 0 < / < l , which from the equation (11.7.4) means that
sinh 2Kj sinh 2Kj >1, the free energy is given by (10.8.47). Using (11.5.6)
and (11.8.4), the dimensionless free energy ty = flkBT is therefore

- x2m)2(xm + x"" - zf - zjm)

m{l - x*m){\ + x2m)2m) • ( l l l l $ '

We can write Kj and Kj explicitly in terms of x and Zj by using the infinite
product expansion (15.1.5)-(15.1.6) of the function k* sn u in (11.8.1b)
and (11.8.1c), together with the definitions (11.8.3) and (11.8.4). It is
useful to define a parameter T, and two functions 0(z) and g(z) by

TCl -X^^zMl -Xin~1Z^1')

-m _ 2m_m\

where x is regarded as a constant. Then, proceeding as above, we obtain

exp(-2Kj) = <Kz;), exp(-2Kj) = (j>(zfl), (11.8.7a)

j ,K}) = -Kj-Kj-x+ g(Zj) + g(z~l). (11.8.7b)

This defines the function IJ>SQ(KJ , Kj) for all non-negative numbers
Kj, Kj such that /, given by (11.7.4), is less than one. The parameters x
and Zj are uniquely defined by (11.8.7a) and the restrictions (10.15.11),
i.e.

0<*<l, x<Zj<x~l; (11.8.8)

xpSQ(Kj, Kj) is then given by (11.8.7b).
These equations can readily be used to evaluate the function ipSQ, or to

expand tysoiKj, Kj) +Kj + Kj in powers of exp(-2Kt) and exp( -2Kj).
The parameter x is small for very low temperatures (/ < 1), increasing to
one at the critical temperature (/ = 1).

(The suffix / is irrelevant in this and the next sub-section: it is included
in anticipation of the sub-sections on the triangular and honeycomb Ising
models.)
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Square Lattice: High Temperature

The easiest way to obtain the high-temperature (/> 1) result is to apply
the duality transformation (6.2.14) to the result (11.8.7). This gives

tanh Kj = 4>{ZJ), tanh Kt = (pizf1), (11.8.9a)

II>SQ(KI ,Kj) = - ln[2 cosh Kt cosh Kj]-r+ g(zj) + g(zfl). (11.8.9b)

Again x and zy satisfy (11.8.8). Now x is small for very high temperatures.

Triangular and Honeycomb Lattices: Low Temperature

The dimensionless free energies of the triangular and honeycomb lattices
can now be obtained from (11.7.11) and (11.7.12). Define x and z,- by
(11.8.7a), for/= 1, 2, 3. From (11.7.4) and (11.5.13), / and k, and hence
q and x, are independent of/. Also, from (11.1.12) and (11.8.3), zu z2,
z3 must satisfy the relation

ziz2z3 = *"1. (11.8.10)

The main problem is to obtain a useful expression for In R from (11.7.8).
From (11.8.1b)

sinh 2Kj = i(l + k sn2 iuj)l(2kh sn iu,) . (11.8.11)

The moduli k and / are related by the Landen transformation (11.5.13).
From (15.6.3), it follows that

sinh 2Kj = il[l sn(iuj, I)], (11.8.12)
where

fly = (1+*)«,. (11.8.13)
Hence, from (11.7.4),

sinh 2K'j = -i sn(/fiy, / ) . (11.8.14)

(This result can also be obtained directly from (11.8.1c). Comparing it and
(11.8.12) with (7.8.5), we see that Kh K'h ty correspond to the L, K, u of
Chapter 7.)

Again we can use this infinite product expansion (15.1.5)-(15.1.6) of
the sn function, only now the modulus is / rather than k. Using the relations
(15.6.2), (11.8.3) and (11.8.4), it follows that
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Using this result in (11.7.8), together with (11.8.7) and (11.8.10), gives
i

=2(7)* n n [| _ x
xl~Xr)\i - * ^ f f • (1L8-16)

From (15.6.2) and (11.8.4), the nome of the modulus / is qi = x2. Using
this modulus in (15.1.4a) therefore gives

which can be re-arranged as

Taking logarithms of (11.8.18) and (11.8.16), Taylor expanding every
term of the form ln(l - x8n x constant), then summing over n and com-
paring with (11.8.6), gives

ln[2(x//)4] = 2T , (11.8.19)
3 3

In R + E (/C/ - Kj) = T + 2 fe(zy) - g(2ri)J. (H.8.20)

Using this equation for In R, together with (11.8.7b) and (11.7.13), the
dimensionless free energy of the triangular Ising model is

xl>i{K[, Ki , KS)
= -K[ -Ki-Ki- r+g(Zl) + g(z2) + g(z3), (11.8.21)

where x, zu z2, 23 are denned in terms of K{, K2, K3 by (11.8.10) and the
second equation in (11.8.7a), i.e.

z,z223=*"1, exp(-2Kj) = 4>{z[x), ;> 1,2,3. (11.8.22)

For the honeycomb lattice, using (11.7.14) and the first equation in
(11.8.7a), we obtain

2ipH(Ki, K2, K3) = -Kt -K2-K3-2t

+ g(zr') + gte1) + gte1), (11.8.23)
where

1 </)(zy), j = 1,2,3. (11.8.24)
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The inequalities (11.8.8) must still be satisfied; x and / are small at very
low temperatures and increase to one at the critical temperature.

For an isotropic system, z\ = z2 = z3 = x~K The equation (11.8.22), or
(11.8.24), then reduces to a single equation for x.

Triangular and Honeycomb Lattices: High Temperature

Above the critical temperature, the modulus / defined by (11.7.5) or
(11.7.6) is greater than one. Similarly to the square lattice, the easiest way
to handle this case is to apply the duality transformation (6.3.7) to the
above low-temperature results. For the triangular lattice this gives

XJJT{K[ , K2, K$ = -ln[2 cosh K[ cosh K'2 cosh Kfl

- 2r+ giz;1) + g{z2
x) + gizj1), (11.8.25)

where zu z2, z3, x are defined by (11.8.8) and

z1z2z3=x-1, t a n h K / = <Xz,), j = 1,2,3. (11.8.26)

For the honeycomb lattice

2y«(Ki, K2 , K3) = -ln[4 cosh K^ cosh K2 cosh K3]

(11.8.27)
where

Zlz2z3=x-\ tanh Kj^Mzf1), j = 1,2,3. (11.8.28)

The parameter x is small at very high temperatures. Again z\ = z2 = Z3
= x~* for an isotropic system.

Magnetization

From (11.5.13), (15.6.2) and (11.8.4), the nome corresponding to the
modulus / is q* = x2. Using (15.1.4b), the expression (11.7.30) for the
spontaneous magnetization is therefore equivalent to

Uj^2mu
« = l i i " * (11.8.29)

= 0 i f | / ] > l ,

which agrees with (10.10.19).
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This result applies to the square, triangular and honeycomb lattices. For
|/| s= l,i.e. below the critical temperature,x is denned by (11.8.7), (11.8.22)
or (11.8.24).

Combined Formulae for all Three Planar Lattices

The above results for the square, triangular and honeycomb lattices can
all be combined into a simple form. It is intriguing that this should be so.

Fig. 11.10. The Ising model interaction coefficients for the square, triangular and
honeycomb lattices, as used in (11.8.32)-(11.8.43).

Let q be the coordination number of the lattice, i.e. the number of
neighbours of any site. For the square, triangular and honeycomb lattices,
q = 4, 6 and 3, respectively. Let K\,. . . , Kq be the Ising model interaction
coefficients associated with the q edges at a site, as indicated in Fig. 11.10.

Note that this notation differs from the previous sub-sections: for the
square lattice Ki and K2 replace the K, and Kj of (11.8.7) and (11.8.9),
and K3 = Ki, K* = K2; for the triangular lattice, K\, K2, K3 replace the
K[, K2, K'3 of (11.8.22) and (11.8.36), and KA = Ku K5 = K2, K6 = K3, For
the honeycomb lattice there is no change.

With each Kr associate a parameter wr, denned as follows:

Square lattice : w±,. . . , n>4 = Zj, zf1, Zj, zf1;

Triangular lattice : w\,. . . , w6 = zf >, zil, z j1 , zf1, z j1 , z j 1 ;

Honeycomb lattice : w\, w2, \y3 - z\, z2, z3. (11.8.30)

Here z,- is the z, in (11.8.7) and (11.8.9); z\, z2, z3 are the zu z2, z3 of
(11.8.22)-(11.8.28). The inequalities (11.8.8) therefore imply that

0 < * < l , x<wr<x~\ r=l,...,q. (11.8.31)

The low-temperature (KI) results (11.8.7), (11.8.21)-(11.8.24) can
now all be written as

wxw2... wq=x«-\ exp(-2Kr) = (p(wr), r = l , . . . , q , (11.8.32a)
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rp=-h^Kr-r+iJ,g(w71), (11.8.32b)
r r

the sums being over r = 1 , . . . , q and r, 4>(z), g(z) being denned by
(11.8.6). Given Kx,. . . , K9, the equations (11.8.31) and (11.8.32a) define
W\, . . . , Wq and x. The dimensionless free energy per site of the lattice
(square, triangular or honeycomb) is then given by (11.8.32b). The mag-
netization is again given by (11.8.29).

Similarly, the high-temperature ( />1) results (11.8.9), (11.8.25)-
(11.8.28) can all be written as

tanh Kr = <Hw;x), (11.8.33a)

" r+T+ \E [g(wr) - r]. (11.8.33b)

Similarity to the Bethe Lattice Formulae

These results for the anisotropic planar lattices are very similar in form to
those for the anisotropic Bethe lattice of Section 4.9.

In fact, if in Section 4.9 we set h = 0 and replace t, xr by x2, (x/wrf,
respectively, then the Bethe lattice free-energy results (4.9.4), (4.9.6)
become exactly (11.8.32), but with the definitions (11.8.6) replaced by

xz
\-xL

1-x4

In both (11.8.6) and (11.8.34) it is true that

#0 = 1, cj,(x-l)=g(x-l)=0, g(x) = r. (11.8.35)

The equation (4.9.5) for the magnetization becomes

M = (1 - x2)/(l + x2). (11.8.36)

This is not the same as (11.8.29), but again M is a function only of x2.
For a ferromagnetic Bethe lattice model below its critical temperature,

the inequalities (11.8.31) are also satisfied. [Above its critical temperature
x = W\ = . . . = Wq = 1, and the Bethe lattice model becomes rather trivial:
ip is exactly -In 2 - j2 cosh Kr, and M of course is zero.]

It is fascinating that there should be these correspondences between
zero-field anisotropic Ising models on two-dimensional lattices, and on the
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infinite-dimensional Bethe lattice. I have used short series expansions to
look for similar properties for three-dimensional models, and for planar
models in a field, but with no success.

Critical Temperature

For the ferromagnetic Ising models on both the planar and Bethe lattices,
the critical point occurs when x,w\,. . . ,wq differ infinitesimally from one.
Set

jc = exp(-<5), wr= exp(-ar). (11.8.37)

Then from (11.8.6), (15.1.5) and (15.1.6), the planar function <p(wr) is

(j)(wr) = -i £* sn[I(ar + 6)i/jt], (11.8.38)

where k is the modulus of this section, with nome q = xA. Thus

jd'/4I=d. (11.8.39)

When x = 1, then k = 1 and /' = in. Using (15.7.3a) and (11.8.39),
(11.8.38) becomes

<p(wr) = tan[;r(«*r + <5)/8<5]. (11.8.40a)

This is the form of the planar function 4>(wr) in the limit when <5—»0,
ajd being kept constant.

On the other hand, for the Bethe lattice it is easily verified from (11.8.34)
and (11.8.37) that in this limit

cftO = (a, + 5)126. (11.8.40b)

In either case, (11.8.32a) must be satisfied, so

ai+ ... + aq=(q-4)6, (11.8.41a)

2Kr) = <t>(wr), r = l , . . . , q . (11.8.41b)

Solving (11.8.41b) and (11.8.40) for ar, then substituting into (11.8.41a),
gives the following conditions for criticality for the Ising model on a lattice
of coordination number q, with interaction coefficients Ki,. . . , Kf

planar: artan(£i) + . . . + artan(^) = Jt(q- 2)14 , (\\% 42)

Bethe: & + . . . + t,q = <7~ 2 ,
where

£ r =exp( -2* : r ) , r=l,...,q. (11.8.43)
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For any particular planar lattice, (11.8.42) can be simplified. Let K\, K2

(K\, Kz, K3) be the interaction coefficients of the square (triangular or
honeycomb) lattice. Then the criticality conditions are:

Square: £i£2 + £i + £2 = 1 ,

Triangular: £2£3 + £& + £i£2 = 1 , (11.8.44)

Honeycomb: Cifefe - £2£3 - £s£i - C1C2 - £1 ~ £2 - £3 + 1 = 0 ,
1

For an isotropic lattice model, with all interaction coefficients equal to
a common value K, the critical values of £ = exp( - 2K) are, from (11.8.42),

Planar: £ = tan[jt(q - 2)/4q], (11.8.45)

Bethe: £ = (q - 2)1 q .

For the particular planar lattices these values are:

Square: q = 4, £ = V 2 - 1 = 0.414214

Triangular: q = 6, £ = 1/V5 = 0.577350 (11.8.46)

Honeycomb: ^ = 3 , £ = 2 - V 3 = 0.267949.

The corresponding critical values of K = JlkBT are given in Table 11.2,
together with numerical estimates for the three-dimensional lattices (Sykes
et al. 1972; Gaunt and Sykes, 1973), and with the Bethe lattice values.

Table 11.2. Critical values of K = JlksT for the Ising model on various lattices: q
is the coordination number.

q

3

4

6

8

12

Planar

0.658479
(honeycomb)

0.440687
(square)

0.274653
(triangular)

Three-dimensional

0.36979
(diamond)

0.22169
(simple cubic)

0.15741
(BCC)

0.10209
(FCC)

Bethe

0.549306

0.346574

0.202733

0.143841

0.091161
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Since the Bethe lattice is infinite-dimensional (in the sense given in Section
4.2), for a given coordination number the three dimensional estimates
should lie between the planar and the Bethe lattice results. They do.

The results (11.8.42)-(11.8.45) apply to a ferromagnetic Ising model,
with all interaction coefficients non-negative. Any square, honeycomb or
Bethe model can be mapped into this regime by reversing appropriate
alternating layers of spins: in this way any interaction coefficient can be
negated. For the triangular lattice only pairs of interaction coefficients can
be negated: there are four critical surfaces in (£i, £2, £3) space, namely
that given in (11.8.44), and three others obtained from it by inverting any
two of &, £2, &•

11.9 Thirty-Two Vertex Model

An obvious generalization of the ice-type, or six-vertex, models on the
square lattice is to place arrows on the edges of the triangular lattice so
that at each site there are three arrows pointing in, and three pointing out.
There are then 20 possible arrangements of arrows at a vertex, so this is
known as the 'twenty-vertex' model. With each arrangement one associates
a weight co;, where ; = 1 , . . ., 20. The partition function is then

l % , c ) , (11.9.1)

where the sum is over all allowed arrangements C of arrows on the edges
of the triangular lattice, the product is over all sites i, and j(i, C) is the
arrow arrangement at site i for configuration C. This model has not been
solved in general: only when certain conditions are satisfied by the weights
(Baxter, 1969; Kelland, 1974a, b).

In the same way as one can generalize the six-vertex model to the
eight-vertex by allowing the number of arrows into each vertex to be 0 or
4, as well as 2, so the twenty-vertex model can be generalized by allowing
any odd number of arrows into each vertex. There are then 32 possible
arrow arrangements at a vertex.

The arrows can be represented by bonds: leave an edge empty if the
corresponding arrow points generally to the right (in the sense that the
arrows in Fig. 11.1 point generally to the right), place a bond on the edge
if the arrow points to the left. There are then an even number of bonds
incident to each site. The 32 possible arrangements of bonds at a vertex
are shown in Fig. 11.11. Also shown are their respective weights
(O , . . . , W16 .
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•¥;• ^ •¥:• X - ••¥- • * -X--
GJ1

* X- X- • * - *

Fig. 11.11. The 32 allowed bond arrangements at a vertex of the triangular lattice,
and their associated weights.

Free-Fermion Case

Sacco and Wu (1975) considered this model and showed that it can be
solved by the Pfaffian method of Section 7.13 provided that

COO) = 0>i2<Wl2 ~ G>13«13 + 0)uG>u ~ «15«15 + «16«16, (11.9.2a)

and
co6)mn = (OijCOu - coiku)ji + (DjiCDjk , (11.9.2b)

for all permutations i, j, k, I, m, n of 1, 2, . . ., 6 such that m < n and
i<j<k<l. There are 15 such permutations (corresponding tQ the 15
choices of m and n), and hence a total of 16 conditions.

Cases Reducible to the Solvable Kagome Lattice Eight-Vertex Model

Another interesting class of solvable cases can be obtained from the
Kagom6 lattice eight-vertex model. In Fig. 11.1 the up-pointing triangles
of the Kagome lattice are drawn smaller than the down-pointing ones.
Imagine this process continued until the up-pointing triangles become
infinitesimal. The lattice then becomes the triangular lattice.

Each site of this triangular lattice is a 'city', consisting of three sites of
the original Kagome lattice. Such a city is shown in Fig. 11.4(a). The edges
round it have spins oc\,. . ., a6 which are +1 if the edge is empty, - 1 if
it contains a bond. Summing over internal arrow or bond configurations
within the triangle, the total Boltzmann weight of this city is the function
of oc\,. . ., a6 occurring on the LHS of (11.1.6).
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It follows that if co , . . ., a>16 are these total Boltzmann weights, for the
appropriate values of a\,. . ., 0C(,, then the 32-vertex model is equivalent
to the Kagome lattice eight-vertex model. If the conditions (11.1.6), or
equivalent (11.1.7), also hold, then the model can be solved as in Section
11.2-11.5.

Considering all 32 vertex arrangements, this will be so if

C\d2d3

CO = Cl\a2b3 + d\d2C3

OJU = cic2c3 + b\b2b3

a>is = (O24 - C\<u2a3 + b\d2d3 = Cib2b3 + bxc2c3 ( H . 9 . 3 a )

(O56 = (023 = a\a2c3 + d\d2b3 = bib2c3 + Cic2b3

a>i2 = CO45 = ^10263 + aid2c3 = d\b2a-i + a\c2d3

and, for 1 < m < n =s 6,

cb = to, ibmn = comn . (11.9.3b)

If a\,. . ., d3 can be found so as to satisfy (11.9.3), which includes the
restrictions (11.1.7), then the spontaneous polarization of the 32-vertex
model is given by (11.3.4), and from (11.4.5) its free energy per site, or
vertex, is

bltd, d,) +f(a2,b2,c2,d2) +/(a3 , 63, c3, d3), (11.9.4)

where / ( a , b , c , d) is the free energy per site of the square lattice
eight-vertex model with weights a, b, c, d, and kBT is here regarded as a
constant, the same for each /.

From (11.1.8)-(11.1.12) it is apparent that there are only five degrees
of freedom: k, uu u2, u3 and a single normalization factor for co , . . . , w16.
Thus (11.9.3) implies 27 restrictions on the weights of the 32-ver-
tex model. Even so, this restricted model can still be interesting, as will
be evident in the next section.

When d\ = d2 = d3 = 0, the restricted model reduces to the solvable cases
of the twenty-vertex model discussed by Kelland (1974b) and Baxter et al
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(1978). In particular, these include the 'triangular KDP' model (Kelland,
1974a): this behaves very similarly to the square lattice ferroelectric model
of Chapter 8, having a first order transition to a frozen ferroelectric state.

Formulation as an Honeycomb Lattice Ising Model with Multi-Spin
Interactions

Like the eight-vertex model, the 32-vertex model can be regarded as an
Ising model with multi-spin interactions. With each face rn of the triangular
lattice associate a spin om, with values + 1 or - 1. As in Sections 10.3 and
11.5, establish a two-to-one correspondence between spin configurations
{CTI, OI , • . . } and allowed arrow coverings of the lattice. This can be done
by taking the arrow configuration in Fig. 11.8(b) to be the standard: if the
spins on either side of an edge are equal (different), place an arrow on the
edge pointing in the same (opposite) way as the standard. Do this for all
edges. Then at each vertex, there must be an even number of non-standard
arrows on the six incident edges, and hence an odd number of incoming
(and outgoing) arrows.

Let O\,. . ., o6 be the six spins round a site, arranged as in Fig. 11.4(a),
the triangle being shrunk to a point. Let W(oi,. . ., o6) be the function
whose value for spin configuration CTI , . . ., o6 is the weight of the corre-
sponding arrow configuration at the site. Then (11.9.1) can be written as

(r s), (11.9.5)
o i

where the sum is over all values of the spins on the faces of the triangular
lattice, the product is over all sites i, and ou,. . ., o6i are the face spins
round site i.

Negating oh•,. . ., o6i leaves unchanged the arrows into or out of site i.
Thus W{ot,. . . , Of,) is an even function, i.e.

W(-ol,...,-o6)= W ( a i , . . . , a 6 ) . (11.9,6)

Now use the dual lattice: the spins lie on the sites of the honeycomb
lattice, the product in (11.9.5) is over all hexagonal faces i of this lattice,
and On, . . ., O(,i are the six spins round face i. Thus the 32-vertex model
is equivalent to an Ising-type model on the honeycomb lattice, with inter-
actions between all six spins round each face. These interactions must be
even, so that the face weight function W satisfies (11.9.6). This equivalence
is quite general.
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Now consider the solvable case of the 32-vertex model when the weights
satisfy (11.9.3). One can of course obtain all the values of the function
W by working back through the definitions of this subsection and using
(11.9.3). For instance, W(+ , + ,+ , + ,+ , + ) corresponds to the stan-
dard vertex configuration in Fig. 11.8(b). Replacing left-pointing arrows
by bonds, from Fig. 11.11 this is the configuration with weight cou. Thus,
using (11.9.3),

+ , + , + , + , + ) = cou = cxc2c3 + bib2b3. (11.9.7a)

Other examples are

W(- , + , + , + , + ,+) = co46 = axc2a3 + dib2d3 ^ 9 7 t ) s

W(~, -, + , + , + , - ) = <O36= dxb2a3 + dxC2d3.

More directly, we can remember that this case of the 32-vertex model
is obtained by shrinking to points the up-pointing triangles of the Kagome
lattice. Doing this in the multi-spin Ising model formulation of Section
11.5, we obtain at once the Ising spin formulation of the 32-vertex model,
the spins being those that remain in Section 11.5 after summing over those
inside up-pointing triangles. The weight function W(ax,. . ., o6) is simply
the total weight of the triangle in Fig. 11.4(a), summed over the centre
spin 07. This is simply the LHS of (11.5.8). Writing the Kagome lattice
weight functions Wu W2, W3 in the form (11.5.5), and using (11.5.10), it
follows that

W ( o i , . . . ,o6) = 2MlM2M3 exp(lCioiO3 + K'2a3os + Kfaoi) x

K3o6 + K"olo2o3 + K'a3oAa5 + K'o5o6Oi). (11.9.8)

This js the LHS of (11.5.9), multiplied by the constant 2MXM2M3.
If W is given by (11.9.8), then the 32-vertex model is equivalent to the

general Kagome lattice eight-vertex model: they have the same partition
function and, since neighbouring Ising spins om, an in the former are
neighbouring Ising spins in the latter, the same spontaneous magnetization
(om) and polarization (omon).

If the restrictions (11.5.11) are also satisfied (which means that the LHS
of (11.5.8) or (11.5.9) is equal to the RHS), then the Kagome lattice model
is the one solved in Sections 11.2-11.5. The total free energy, spontaneous
magnetization and polarization of the 32-vertex model are therefore then
given by (11.4.5), (11.5.18) and (11.3.4), respectively, where ./V is the
number of vertices and a\,. . ., d3 are given by (11.5.6).
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11.10 Triangular Three-Spin Model

Historical Introduction

The solution of the eight-vertex model (Baxter, 1971a, 1972b) excited
interest in models with multi-spin interactions, notably the three-spin model
on the triangular lattice.

In this model, at each site i of the triangular lattice there is a spin a,,
with values + 1 or - 1. The energy of a given spin configuration is

E=-J^OiOjOk, (11.10.1)

where the sum is over all triangular faces (both up-pointing and down-
pointing) of the triangular lattice. From (1.4.1), the partition function is

Z = 2 e x p [ # 2 OiOjOk}, (11.10.2)
a

where

K = JlkBT. (11.10.3)

The dimensionless free energy per site is

xp{K) = - lim AT1 In Z, (11.10.4)

where N is the number of sites of the lattice.
The triangular lattice can be divided into three sub-lattices A, B, C, as

in Fig. 11.8(b), so that any triangular face (i, j, k) contains one site of
type A, one of type B, and one of type C. From (11.10.1) it is obvious that
negating all spins on just one sub-lattice is equivalent to negating J, and
hence K. Without loss of generality we can therefore take K to be non-
negative.

Wood and Griffiths (1972), and Merlini and Gruber (1972), considered
this model and showed that it satisfies the duality relation

xp(K*) = 2K + xp{K) - ln(2cosh2A:*), (11.10.5a)

where
i&nhK* = exp(-2AT). (11.10.5b)

This is precisely the duality relation (6.2.14) of the square lattice isotropic
Ising model (with L = K). The argument preceding (6.2.16) therefore
applies: if there is just one critical point, then it must occur when K = Kc,
where

sinh 2KC = \, Kc = 0.44068679 (11.10.6)
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Griffiths and Wood (1973) used this argument and series expansions to
estimate the critical exponents. They obtained 0.6 =£ a1 =s 0.8,
0.070 «s /3« 0.071, 1.25 =£ y' « 1.4, and correctly guessed that a1 = 2/3.
Their estimates of 0 and y' were somewhat out: /3 is actually 1/12 and
(assuming scaling) y' is 7/6.

Suppose that a magnetic field term -WLOJ is added to the energy
(11.10.1). Let {Oi)N,H be the average of a spin a,, evaluated as in (1.4.4)
for a finite lattice of N sites in the presence of the field H, and let

<a,>= lim lim(a,)N,H, (11.10.7)

where the limit N-* °° means that the lattice becomes large in all directions.
This is the zero-field magnetization. Like the Ising and eight-vertex

magnetization, it must be zero at sufficiently high temperatures.
This is not immediately obvious: the energy (11.10.1) is not unchanged

by reversing all spins, so the usual Ising model argument of Section 1.7
(that M is an odd function of H, continuous for sufficiently high temper-
atures) does not apply. Instead, note from (11.10.1) that, when H = 0, E
is unchanged by negating all spins on any two of the sub-lattices A, B, C.

Let oA,oB, oc denote all the spins on the A, B, C sub-lattices, respectively.
Then to any total configuration (OA,OB, OC) of spins there correspond three
others that can be obtained by negating all spins on two sub-lattices. Thus
the spin configurations can be grouped in equal-energy sets of four:

(oA , oB , oc), (oA , -oB, -oc) ,(-oA, oB, -oc) ,(~oA, -oB, oc).

(11.10.8)
For any single spin cr,, the sum of its values over four such configurations

is clearly zero. For a finite lattice, grouping configurations in such sets of
four, it must therefore be true that

toW = 0. (11.10.9)

At sufficiently high temperatures the limits in (11.10.7) can be inter-
changed; for finite N, (o,)N,H is a continuous function of H, so from (11.10.9)

(oi) - 0 for sufficiently high temperatures . (11.10.10a)

On the other hand, Merlini et al (1973), and Merlini (1973), used an
argument due to Peierls (Peierls, 1936; Griffiths, 1972) to obtain lower
bounds for (o;)^,//. They thereby showed that

(CT,) > 0 for sufficiently low temperatures , (11.10.10b)
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i.e. there is a non-zero spontaneous magnetization (o;-). This proves that
there must be a critical point: a temperature Tc at which (ot) just ceases
to be zero as the temperature is decreased.

Very similar remarks apply to (Ota}), where i and; are nearest neighbours,
evaluated by the double limiting procedure of (11.10.7). This must be zero
for sufficiently high temperatures, and is expected to be non-zero for
sufficiently low temperatures. By analogy with the multi-spin formulation
of the eight-vertex model given in Section 10.3 and (10.10.22), it is con-
venient to call (oiOj) the 'polarization' of the three-spin model.

Baxter and Wu (1973, 1974) calculated the free energy of the three-spin
model (with H = 0) directly, using the transfer matrix method and a
generalized Bethe ansatz for the eigenvectors. Baxter et al. (1975) used
series expansions to conjecture the exact expressions for the spontaneous
magnetization (o;) and polarization (OjOj).

Baxter and Enting (1976) noted that these results were exactly the same
as a particular eight-vertex model, and that the eight-vertex model also
has a four-fold symmetry between spin configurations. Guided by this, they
found a transformation of the triangular three-spin model into a square-
lattice eight-vertex model. All the three-spin results could then be seen to
be consequences of the eight-vertex ones.

Later, I was also able to show that the three-spin model is a special case
of the solvable Kagome lattice eight-vertex model (Baxter, 1978a). This
equivalence is much simpler than the Baxter-Enting one, and is the one
used in this section. From this point of view, the Baxter-Enting trans-
formation provides a way of relating these particular square and Kagome
eight-vertex models: an alternative way to that of Section 11.2.

Equivalence to a Kagome Lattice Eight-Vertex Model

In (11.10.2), perform the sum over all spins on one sub-lattice, say C. This
can readily be done because each such spin interacts only with spins on
sub-lattices A and B. This gives

Z= 2 ]Jw(ou,...,o6i), (11.10.11)

where

W(o\,. . . , o6) = 2 cosh K(oio2 + O2OT, + O3O4 + CT4CT5 + CT5<76 + O(,O\).

(11.10.12)

The sum in (11.10.11) is over all spins on the A and B sublattices. Taken
together, these form an honeycomb lattice, as is evident in Fig. 11.8(b).
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The product is over all faces i of this honeycomb lattice, ou, . . . , abi are
the six spins round face /.

Apart from a factor of %, which is irrelevant for a large lattice, (11.10.11)
is the same as the partition function (11.9.5) of the 32-vertex model.
Further, a straightforward direct calculation, using the fact that
O\,. . . , Of, only have values +1 or - 1 , reveals that (11.10.12) can equiv-
alently be written as

W(oi,. . . , o6) = 2 cosh K(a2 + CT4 + o6 + OiO2a3 + O3O4O5 + CT5CT6CTI) .

(11.10.13)

But this is precisely the function W given by (11.9.8), with

Mi = l,K'i=0, Kt = K" = K, (11.10.14)

for i= 1,2,3. Thus the three-spin model is equivalent to the Kagome
lattice eight-vertex model of Section 11.5, with these values of M,,
Kj, Kl, K". It is interesting to note that these values are quite special: the
triangular lattice edge interactions in (11.5.7) now vanish, and the remain-
ing two- and four-spin interaction coefficients all have the same value.

The restrictions (11.5.11) are automatically satisfied, so from the remarks
at the end of the previous section, the free energy per site of the three-spin
model is

f3sPin=f(a,b,c,d), (11.10.15)

where f(a ,b ,c ,d) is the free energy per site of the square-lattice eight-
vertex model with weights a, b, c, d given by (11.5.6) and (11.10.14) for
any particular value of i, i.e.

a,b,c,d = \, exp(-2#), exp(2/Q, 1. (11.10.16)

Similarly, the spontaneous magnetization and polarization are

(om) = M0(a , b , c , d ) , (11 10 17)

( a m a n ) = P0(a , b , c , d ) ,

where m and n are neighbouring sites.
The triangular three-spin model is therefore equivalent to the square-

lattice eight-vertex model with weights a, b, c, d, in that/, (am), (omon) are
the same for both. Further, let O\, . . . , om be any set of spins that all lie
on the heavy vertical zig-zag line in Fig. 11.8(b). Then by using (11.5.17)
and the above arguments, it is quite easy to show that (oi. . . om) is the
same for the three-spin model as for the eight-vertex model on the square
lattice formed by removing all horizontal edges in Fig. 11.8(b). Thus the
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two models have the same correlation length £ in the direction of the
zig-zag line.

Ordered Phase

The properties /, Mo, Po of the square-lattice eight-vertex model can be
obtained from Chapter 10. If K > Kc, where Kc is the critical value of K
in (11.10.6), then from (11.10.16)

sinh2*:>l , Oa + b + d. (11.10.18)

Thus a, b, c, d lie in the principal regime (10.7.5), and the equations of
Sections 10.4-10.10 can be used directly. No initial transformation of a,
b, c, d is needed.

From (11.10.16), ad = be and a = d. From (10.4.21), this implies that

k snh2(A - u) = 1, A: snh A snhu = 1. (11.10.19)

From (10.7.1) and (10.4.23), k, A and u are real, and 0 < u < A < /'. The
elliptic function snh u defined by (10.4.20) is real, increases monotonically
from 0 to oo as M increases from 0 to /', and from (15.2.5) and (15.2.6) it
satisfies

snh(/' -u) = {k snh M)"1 . (11.10.20)

From (11.10.19) it follows that

k-u = U', A+ « = / ' , (11.10.21)

so, using (10.4.23), (10.7.9) and (10.7.19),
A = f/', u = \V , v = -U', (11.10.22)

x = qm, z = q~yi. (11.10.23)

To relate these parameters to the interaction coefficient K, note from
(10.4.21), (11.10.16) and (11.10.22) that

exp(-2K) = -= L
S"hU x = *'snh(/74). (11.10.24)a snn(A — u)

Define
p = qm. (11.10.25)

Then, using (10.4.20), (15.1.6) and (15.1.5) to expand kh snh(/74) as an
infinite product, we obtain

which is an explicit relation betwen K and p.
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The free energy is given by (10.8.47). Using (11.10.16), (11.10.23) and
(11.10.25), this gives

3

The summand can be written as the sum of two rational functions of pm,
having denominators 1 - p8m, 1 + p3m, respectively. Taylor expanding in
powers of pm, then summing over m and taking exponentials, gives

exp(-flkBT) = exp(2£) II f* ~ P
6 n ) , } ^ ~JH-$vi\ ^ ~^-2i• (11 • 10.28)

For some purposes this form is more convenient than (11.10.27): it gives
a power series in p in which all coefficients are integers.

From (10.10.19) and (10.10.24), using (11.10.23) and (11.10.25), the
spontaneous magnetization and polarization are

Mo=n?~ P ^_3 , (11.10.29)

Pn =

To summarize: if K is given, then p is denned by (11.10.26) subject to
the inequality 0 < p < 1, and /, Mo, PQ are then given by (11.10.28)-
(11.10.30) (Baxter et al. 1975).

It is possible to eliminate p and express exp(—f/kBT), Mo, Po as
algebraic functions of exp(-2K). The results are rather cumbersome and
not particularly illuminating: they are given in Baxter and Wu (1973,1974).

Disordered Phase

If 0 < K< Kc, then a, b, c, d are not in the principal regime (10.7.5);
rather they are in the disordered regime III of Section 10.11. In this regime
there is no spontaneous magnetization or polarization, so

M0 = P0 = 0. (11.10.31)

To obtain the free energy, we must use the rearrangement procedures
(i)-(iii) of Section 10.11. These now imply the interchange of W\ and u>4

in (10.2.16), which corresponds to replacing a, b, c, d by

ar = i(a-b + c-d), br = \{-a + b + c - d), ^HQ_22)

cr = \(a + b + c + d), dr = i(-a~b + c + d).
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From (11.10.16) it follows that

ar, br, cr, dr = sinh 2K, 2 sinh2K, 2 cosh2A", sinh2A\ (11.10.33)

Like a, b, c, d, these new weights satisfy ardr =brcr and ar = dr. In fact
(11.10.33) can be written as

(ar,br,cr, dr) = sinh2tf (1 , exp(-2K*), txtfZK*), 1), (11.10.34)

where K* is defined by (11.10.5b).
These are the same as the original Boltzmann weights (11.10.16), except

that K therein has been replaced by K*, and each is multiplied by sinh 2K.
The dimensionless free energy xp = f/kBT is therefore

ip(K) = - In sinh 2K + xp(K*), (11.10.35)

which is the duality relation (11.10.5a). Using this and the ordered-phase
result (11.10.26), (11.10.28), it follows that if p is defined by

, (11-10.36)

then the free energy is given by
00 /i _6n-3\ /i _8n-4-i3/

(11.10.37)

The parameters k, A, « are now defined by (10.4.21), with a, b, c, d
replaced by ar, br, cr, dr. Since ar,...,dr differs from the a ,. . . , d in
(11.10.16) only by a normalization factor and the choice of K, the equations
(11.10.19)-(ll.10.23) remain valid. From (10.12.5) it follows that in both
the ordered and disordered phases

H = IJT, W=-IJI. (11.10.38)

Critical Behaviour

At K = Kc the three-spin model has a critical point. Since /, Mo, PQ are
the same as for the square lattice eight-vertex model with \i = 3JI/4, from
(10.12.24) the critical exponents a, a', (1, fie are

a=a' = l p = pe=&. (11.10.39a)

The correlation length § is the same as the correlation length of the
eight-vertex model in the diagonal direction. This is not the row or column
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correlation length of Chapter 10, but near the critical point it is expected
that £ diverges as in (1.7.25), with an exponent v that is independent of
the direction in which § is measured. Assuming this is so, then from
(10.12.24) it must be true for the three-spin model that

v=v' = \. (11.10.39b)

This agrees with the scaling relation (1.2.16). If one accepts the other
scaling predictions, then the critical exponents y, 8, rj, and the interfacial
tension exponent ns, are

y=i, 6=15 , r, = i, p,= |. (11.10.39c)
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POTTS AND ASHKIN - TELLER MODELS

12.1 Introduction and Definition of the Potts Model

We have seen in Section 10.3 that the eight-vertex model is a generalization
of the Ising model. There are of course an infinite number of other such
generalizations. In this chapter I shall consider two of these: the Potts
model and the Ashkin - Teller model, both in two dimensions. Neither has
been solved exactly, but they can be expressed as staggered vertex models,
and quite a lot is known about their critical behaviour.

R. B. Potts defined the former model in 1952, at the suggestion of C.
Domb. He actually defined two models. The first is now known as the 'ZN

model', and supposes that at each site of a lattice there is a two-dimensional
unit vector which can point in one of N equally spaced directions. Two
adjacent vectors interact with interaction energy proportional to their scalar
product.

The second model is the one that will be discussed here, and referred
to simply as 'the Potts model'. This can be formulated on any graph !£, i.e.
on any set of sites, and edges joining pairs of sites. For the sake of generality
it is useful to do this: later on we shall specialize to the case when X is a
two-dimensional lattice.

Let 2E have N sites, labelled 1 ,2 , . . . ,N. With each site i associate a
quantity a, which can take q values, say 1,2,. . . , q. As in the Ising and
eight-vertex model, let us call o; a 'spin'. Two adjacent spins <x, and a,
interact with interaction energy -J d(Oj, oj), where

6(0,0") = 1 iio=&

= 0 Ma*d . (12.1.1)
322
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The total energy is therefore

E = -J 2 d(o,•, oj), (12.1.2)

where the summation is over all edges (/,/) of the graph. It follows from
(1.4.1) that the partition function is

ZN = 2 expltf 2 <5(cx,, Oj)} , (12.1.3)

a I (i,j) )

where

K = J/kBT. (12.1.4)
Here the osummation is over all values of all the spins O\,. . . , o)v. Thus
there are qN terms in the summation.

For definiteness I have supposed that each CT, takes the values
1 , . . . , q, but any q distinct numbers would be equally good. In particular,
for q = 2 we could let each o; take values +1 or - 1 . It is then true that
d(a, &) =s(l + 00') ; substituting this expression into (12.1.3) and com-
paring with (1.8.2), we see that the q - 2 Potts model (with K replaced
by 2#) is equivalent to the zero-field Ising model.

In the next seven sections I shall show how the two-dimensional Potts
model can be solved at criticality (Temperley and Lieb, 1971; Baxter,
1973d; Baxter et al., 1976). There are a few other exactly solved cases:
q = 1 (which is trivial); q = 2 (the Ising model); the square-lattice model
with q = 3 and K = - °° (this is the three-colouring problem of Section
8.13); and the triangular-lattice model with q = 4 and K = -<», which is
a four-colouring problem (Baxter, 1970b).

12.2 Potts Model and the Dichromatic Polynomial

It has been shown (Kasteleyn and Fortuin, 1969; Fortuin and Kasteleyn,
1972; Baxter et al., 1976) that ZN can be expressed as a dichromatic
polynomial (Tutte, 1967).

The argument is quite simple: set

v = exp(K) - 1. (12.2.1)

Then (12.1.3) can be written as

ZN = 2 IT t1 + " %*. <*/)] • (12.2.2)
" UJ)
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Let E be the number of edges of the graph 5£. Then the summand in
(12.2.2) is a product of E factors. Each factor is the sum of two terms (1
and v d(Oj, a,)), so the product can be expanded as the sum of 2E terms.

Each of these 2E terms can be associated with a bond-graph on ££. To
do this, note that the term is a product of E factors, one for each edge.
The factor for edge (i ,j) is either 1 or v d(ot, Oj): if it is the former, leave
the edge empty, if the latter, place a bond on the edge. Do this for all
edges (i,;). We then have a one-to-one correspondence between bond-
graphs on !£ and terms in the expansion of the product in (12.2.2).

Consider a typical graph G, containing / bonds and C connected com-
ponents (regarding an isolated site as a component). Then the correspond-
ing term in the expansion contains a factor vl, and the effect of the delta
functions is that all sites within a component must have the same spin a.
Summing over independent spins, it follows that this terms gives a contri-
bution qcv' to the partition function ZN. Summing over all such terms, i.e.
over all graphs G, we therefore have

ZN = *Lqcvl. (12.2.3)
G

The summation is over all graphs G that can be drawn on !£. The expression
(12.2.3) is a dichromatic polynomial (Whitney, 1932; Tutte, 1967).

Note that q in (12.2.3) need not be an integer. We can allow it to be any
positive real number, and this can be a useful generalization. For instance,
regarding ZN as a function of q and v (as well as N), we see that

, ! = ¥ C l ' l / ? D ' ' (12-2'4)
and this is just the mean number of components in the percolation problem,
where each edge has probability p = v/(l + v) of being occupied. This is
a famous unsolved problem (Essam, 1972).

If K = -oo, then adjacent spins must be different, so from (12.1.3) it is
apparent that ZN is the number of ways of colouring the sites of i£ with
q colours, no two adjacent sites having the same colour. This is a polynomial
in q, known as the 'chromatic' polynomial. We see from the above that
it is given by (12.2.3), with v = - 1 .

The edges of regular lattices can be grouped naturally into classes. For
instance, the square lattice has edges which are either horizontal or vertical.
It is then often convenient to generalize the Potts model so as to allow /
(and hence K and v) to have different values, depending on the class to
which the corresponding edge belongs. If Jr is the value of / for class r,
then the required generalization of (12.2.3) is readily seen to be

ZN = 2 rt"2»3 • • • . (12-2.5)
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where the summation is over all graphs G, C is the number of connected
components in G, lr is the number of bonds on edges of class r (r =
1 , 2 , 3 , . . . ) , and

Kr = JJkBT, vr = exp(£r) - 1. (12.2.6)

12.3 Planar Graphs: Equivalent Ice-Type Model

The Medial Graph £'

The remarks of the previous two sections apply to any graph i£, whatever
its structure or dimensionality. From now on let us specialize to i£ being
a planar graph, i.e. one which can be drawn on a plane in such a way that
no two edges cross one another, and no two sites coincide.

We can associate with X another graph !£', as follows. Draw simple
polygons surrounding each site of i£ so that:

(i) no polygons overlap, and no polygon surrounds another,
(ii) polygons of non-adjacent sites have no common corner,
(iii) polygons of adjacent sites i and ; have one and only one common

corner. This corner lies on the edge (i,/).

Let us take the corners of these polygons to be the sites of !£', and the
edges to be the edges of i£'. Hereinafter let us call these polygons the
'basic polygons' of ££'.

We see that there are two types of sites of !£'. Firstly, those common
to two basic polygons. These lie on edges of i£ and have four neighbours
in i£'. We term these 'internal' sites. Secondly, there can be sites lying on
only one basic polygon. These have two neighbours and we term them
'external' sites. (The reason for this terminology will become apparent
when we explicitly consider the regular lattices.)

The above rules do not determine i£' uniquely, in that its shape can be
altered, and external sites can be added on any edge. However, the topology
of the linkages between internal sites is invariant, and the general argument
of the following sections applies to any allowed choice of it'. (For the
regular lattices there is an obvious natural choice.) The graph ££' is known
as the 'medial' graph of i£ (Ore, 1967, pp. 47 and 124): a typical example
is shown in Fig. 12.1.

It is helpful to shade the interior of each basic polygon, as in Fig. 12.1,
and to regard such shaded areas as 'land', unshaded areas as 'water'. Then
££' consists of a number of 'islands'. Each island contains a site of i£.
Islands touch on edges of i£, at internal sites of !£'.
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Fig. 12.1. A graph !£ (open circles and broken lines) and its medial graph T (full
circles and solid lines). The interior of each basic polygon is shaded, denoting

'land'.

Polygon Decompositions of it'

We now make a one-to-one correspondence between graphs G o n S and
decompositions of iE' as follows.

If G does not contain a bond on an edge (/, / ) , then at the corresponding
internal site of i£' separate two edges from the other two so as to separate
the islands i and /', as in Fig. 12.2(a). If G contains a bond, separate the
edges so as to join the islands, as in Fig. 12.2(b). Do this for all edges
of <£.

The effect of this is to decompose i£' into a set of disjoint polygons, an
example being given in Fig. 12.3. (We now use 'polygon' to mean any
simple closed polygonal path on if').

( a ) (b)

Fig. 12.2. The two possible separations of the edges at an internal site of it' (lying
on the edge (i ,j) of SB). The first represents no bond between i and;, the second

a bond.
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Clearly any connected component of G now corresponds to a large island
in ££', made up of basic islands joined together. Each such large island will
have an outer perimeter, which is one of the polygons into which ££' is
decomposed. A large island may also contain lakes within; these correspond
to faces of G and also have a polygon as outer perimeter.

Fig. 12.3. A graph G o n 2 (full lines between open circles represent bonds), and
the corresponding polygon decomposition of ££'. To avoid confusion at internal
sites, sites of ££' are not explicitly indicated, but are to be taken to be in the same

positions as in Fig. 12.1.

Each polygon is of one of these two types. Thus i£' is broken into p
polygons, where

S, (12.3.1)

C being the number of connected components in G, and 5 the number of
internal faces.

The graph G has N sites and / bonds (where / =h + l2 + h + . . . ) . The
numbers C, S, N, I are not independent, but must satisfy Euler's relation

= C-N (12.3.2)

(Ore, 1967 p. 48: vf therein is the total number of faces, including the
external infinite face, so iy = S + 1.)

Eliminating C and 5 from the equations (12.2.5), (12.3.1) and (12.3.2),
it follows that

_ _JV72

- q pd

/2 J1J2J3
xlx2x3

(12.3.3)
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where
(12.3.4)

and the suffix 'pd' means that the sum is now taken to be over all polygon
decompositions of X'. Here p is the number of distinct polygons in the
decomposition, and lr is the number of internal sites of class r where the
edges have been separated as in Fig. 12.2(b).

Arrow Coverings of i£'

The summand in (12.3.3) can be thought of as a product of various factors:
a factor qi for every polygon in the decomposition (for example, there are
four polygons in the decomposition shown in Fig. 12.3), and a factor xr for
every site of class r where the edges of !£' have been separated as in Fig.
12.2(b).

Fig. 12.4. Polygon corners of it' at which an observer moving in the direction of
the arrows turns through an angle or to his left, or equivalently an angle -or to his

right. Note that —n< a< n, and the angle between the edges is n—1<*|.

The xr factors are 'local', in that each depends only on what is happening
at the appropriate site. The q* factors are not local in this sense, but we
make them so by the following device.

Define quantities A and z by the equations

qk = 2 cosh A, z = exp(A/2w). (12.3.5)

Consider a polygon decomposition of !£', such as that in Fig. 12.3. Each
polygon is made up of edges of !£', and has as many corners as it has edges.
For instance, the polygon on the left side of Fig. 12.3 has 10 edges and 10
corners. Each polygon corner is the intersection of two polygon edges.

Place arrows on the edges of X' so that at each polygon corner there is
one pointing in and one pointing out. Give each corner a weight z", where
a is the angle to the left through which an observer moving in the direction
of the arrows turns when passing through the corner. Since edges cannot
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overlap, or must lie in the interval —n< a< n. Two typical examples are
shown in Fig. 12.4.

Still considering a particular polygon decomposition of X', form the
product over all corners of these weights za. Then sum this combined
weight over all allowed arrangements of all the arrows.

The result has to be qpl2. To see this, note that the arrows round a
polygon must all point the same way: either all anti-clockwise or all
clockwise. In the former case, the observer turns through a total angle In,
so the product of the corner weights for this polygon is z2n. In the latter
case the angle is —2n and the combined weight is z~2*. Both possibilities
can occur independently for each polygon, so each polygon gives a total
contribution z2" + z"2n. From (12.3.5) this is just 2 cosh A, i.e. qK There
are/? polygons, so the total sum must indeed be qp!1.

This means that we can write (12.3.3) as

ZN = qN!2 2 x\xh
2 . . . 2 II **", (12-3.6)

pd ac m

where the suffixes 'pd' and 'ac' denote that the outer sum is over all polygon
decompositions of X', and the inner sum is over all allowed arrow coverings
of the edges of X'. The product is over all polygon corners m, am being
the corresponding angle a (as denned above). The weights zam are local
properties of the corners m; so is the rule that at each corner there must
be one arrow in and one arrow out.

Ice-Type Model on X'

Consider a particular internal site of X', lying on the edge (/,/) of X. Let
a, P, y, <5 be the angles between the four edges of X', as indicated in Fig.
12.5. There are two possible ways of separating the edges, as shown in
Fig. 12.2. In each case there are four possible arrangements of arrows.
The resulting eight possibilities are shown in Fig. 12.6, together with the
product of the corresponding xr andz""1 factors. This product is the total
contribution of this site configuration to the combined summand in (12.3.6).

Note that in each case there are two arrows into the site, and two arrows
out of it. Thus the 'ice rule' of Section 8.1 is satisfied at all internal sites.
If we ignore the way in which the edges are separated, then we obtain the
usual six arrow arrangements allowed at a site (or vertex), as shown in
Fig. 12.7.

The next trick is to interchange the two summations in (12.3.6). Start
with the undecomposed graph X'. Place arrows on its edges in all the ways
that they can occur above. This means that the ice rule must be satisfied
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Fig. 12.5. A typical internal site of ££', showing the angles between edges. Note
that a and y lie inside basic polygons ('islands;) of !£', while /8 and 8 lie outside.

xxxx
Y-a -B-6 B + 6

A A A A
B-6 6-p

Fig. 12.6. The two possible separations of edges at an internal site of X', and the
eight allowed arrangements of arrows thereon. The product of the corresponding
xr and z" factors is shown underneath, using the notation of Fig. 12.5 and omitting

the suffix of x,.

at each internal site, and that there must be one arrow into (and one arrow
out of) each external site.

Every such arrow covering can occur in the combined summation in
(12.3.6), but some occur more than once. This is because arrow arrange-
ments 5 and 6 in Fig. 12.7 can each arise in two ways. Arrangement 6
comes from either of the two right-hand possibilities in Fig. 12.6, arrange-
ment 5 from the next two.

xxxxxx
Fig. 12.7. The six possible arrangements of arrows at a site of !£'. Note that this
figure is oriented so that the shaded areas ('land') are to the right and the left.
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Suppose a particular allowed arrow covering of it' contains / vertices of
types 5 and 6. Each vertex of type 1, 2, 3 or 4 corresponds to a unique
separation of the edges at that vertex, but each vertex of type 5 or 6
corresponds to two possible choices of the edge separations. Thus the
arrow covering corresponds to 2' polygon decompositions, and occurs 2'
times in (12.3.6).

However, each choice can be made independently, so there is no problem
in calculating the total contribution of this arrow covering to (12.3.6): one
simply sums the appropriate two weights in Fig. 12.6. Thus (12.3.6) can
be written as

ZN = qm 2 II (weights), (12.3.7)
ac

where now the sum is over all allowed arrow coverings of if', and the
product is over all sites of if'. Each external site contributes a weight za

to this product, where a is the angle in Fig. 12.4. Each internal site
contributes a weight cbk, where k(=l ,. . . , 6) is the arrow arrangement
at the site, as listed in Fig. 12.7, and

oh , . . . , ci)6 = za~\ z"~a, xrzf~6 , xrz
6~P,

z~p-6 + xrz
a+r, z^d + xrz'a'r. (12.3.8)

Here r is the class of the internal site, and a, /3, y, d are the angles shown
in Fig. 12.5. It is important to note that the angles a and y lie inside basic
polygons ('islands') of it', while /3 and 6 lie outside.

The sum in (12.3.7) is over all arrow coverings of it' such that each site
has as many arrows pointing in as it has pointing out. For the internal sites
this is the ice rule. Indeed, comparing (12.3.7) with (8.1.1) and (8.1.3),
we see that q~NI2ZN is the partition function of an 'ice-type' (or 'six-vertex')
model, generalized to allow different weights on different sites, and to
allow 'external' sites of coordination number two. Thus the Potts model
on any planar graph it can be expressed as an ice-type model on the medial
graph 2 ' .

Four-Colour Problem

As was remarked shortly after (12.2.4), if v = -1 then ZN is the number
of ways of colouring the planar graph it with q colours. It is fascinating
to wonder whether the ice-type formulation (12.3.7) has any bearing on
the famous four-colour problem (Ore, 1967; Saaty and Kainen, 1977),
which was only recently solved (Appel and Haken, 1976, 1977; Appel et
al., 1977) after tantalizing mathematicians for over a century.
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Certainly q = 4 is a very special case: A in (12.3.5) is real for q 3= 4; for
q < 4 it is pure imaginary. In particular, for q = 4 and D = -1 we have
that z = 1 and xr = -£. The weights in (12.3.8) are therefore real, but
d>3 and ft)4 are negative. To obtain an alternative solution to the four-colour
problem we would need to show that the negative contributions to the sum
in (12.3.7) are numerically less than the positive ones.

Another intriguing point which suggests that our transformation may be
relevant is the following. It is conjectured from numerical and other studies
that the real zeros of the colouring polynomial of an arbitrary planar lattice
cluster round limit points when the lattice becomes large. These limits are
supposed to occur at the 'Beraha numbers' q = [2cos(jr/n)]2, n =
2, 3,4 , (Beraha et al., 1975, 1978; Beraha and Kahane, 1979; Tutte,
1970, 1973, 1974). From (12.3.5) we see that this corresponds simply to
our parameter A having the values in/2, in/3, in/4, etc.

12.4 Square-Lattice Potts Model

Equivalent Ice-Type Model

For the interior of regular lattices there is an obvious natural choice of ££',
namely to take the sites of £f' to be the mid-points of the edges of ££ and
to take two sites of ££' to be adjacent if any only if the corresponding edges
of ££ meet at a common site and bound a common face. All sites of ££' are
then 'internal' except at the boundaries, which is the reason for our
terminology. The square lattice (.££) is shown in Fig. 12.8, together with
its resulting medial graph ££'. It has two classes of edges, horizontal and
vertical, which we can call classes 1 and 2, respectively. Define a parameter

s = exp(A/4). (12.4.1)

Then from (12.3.7), (12.3.8) and (12.3.5), we see that q'mZN is the
partition function of an ice-type model with weights

d>i,. . . , d>6 = 1, l,xr,xr,s~2 +x,s2,s2 +x^~2, (12.4.2)

r being the class of the site of £6', and the six arrow arrangements being
labelled as in Fig. 12.7.

We can eliminate the fractional powers of eA by associating additional
mutually inverse weights with the tips and tails of some of the arrows. With
every arrow on a SW-NE edge, associate a further weight s'1 with the
site into which it points, and a weight s with the site it points out of.
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Fig. 12.8. The square lattice i£ (open circles and broken lines) and its medial lattice
££' (full circles and lines). The two classes of edges of £', horizontal and vertical,

are indicated by the numbers 1 and 2, respectively.

Obviously these weights cancel from ZN, but the individual vertex weights
u>5, a>6 are modified: those on sites of type 1 are multiplied by s2, s~2,
respectively; those on sites of type 2 are multiplied by s~2, s2.

It must be noted that the weights in (12.4.2) are labelled as in Fig. 12.7,
where the shaded areas are to the right and left. This is the way sites of
type 1 are drawn in Fig. 12.8, but for sites of type 2 it is necessary to turn
one of the figures through 90°.

It is more convenient to use the same direction throughout. Let
coi,. . . , u>6 be the weights of the six arrow configurations shown in Fig.
12.9, always using the same orientation for this figure as for Fig. 12.8. For
sites of type 1 this is the original labelling; for sites of type 2 we have that
o)i,. . . , (06 = ftb, ft>4, Gh, ft>i, fl>6, ft>5- Allowing also for the multiplications
by s2 and s~2 mentioned above, we obtain:

Typel : co6 = 1,1, xhxh 1 (12.4.3a)yp i , , 6 , , h h \ i , ( )

Type 2 :a) ! , . .. , co6 = x2,x2,1,1, x2 + e \ x 2 + e~A. (12.4.3b)

xxxxxx
Fig. 12.9. The six possible arrangements of arrows at a site of the square lattice,

using the same orientation for all sites.
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The weights of the external sites at the right and left of Fig. 12.8 are
now always one. Those at the bottom and top are exp(^2) if the arrows
turn to the left, exp(-A/2) if they turn to the right.

Alternative Derivation of the Equivalence

The equivalence of the square-lattice Potts model to this ice-type model
was first obtained by Temperley and Lieb (1971). They used operators
which form a rather elegant and interesting algebra. For this reason it
seems worthwhile outlining this alternative approach.

Consider the Potts model on the square lattice i£. Let it have m rows
and n columns. Then in the usual way (Sections 2.1, 7.2, 8.2) we can write
the partition function as

ZN = fVWVW.. . Vg, (12.4.4)

there being m Vs and m - 1 Ws. Here § is the ^"-dimensional column
vector whose entries are all unity, V is the transfer matrix that adds a row
of horizontal edges to the lattice, and W adds a row of vertical edges. Both
V and W are q" by q" matrices,with indices a ={o\,. . . , an} and & =
{oi,. . . , &„}, and with elements

n -1 n

tf, 2 d(oj, a/+1)} n 6(oj, aj), (12.4.5a)

7 = 1
(12.4.5b)

(Note that we do not impose cyclic boundary conditions on either the rows
or columns of !£.)

Let us define matrices U\,.. . , V^-x by

II d(Oj, &t), (12.4.6a)

n

ft %°i, aj) • (12.4.6b)

Thus Un is diagonal, with diagonal elements q*d(Oi, <^+i); while f/^-i is
of the form

Uii-x = e® e® . . . (x)e®g® e(x). . . ® e , (12.4.7)

c being the unit <7-by-g matrix, and g (occuring in position / in the product)
being the q-by-q matrix with all entries equal to q~K
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From (12.4.5) and (12.4.6) it is readily observed that

V = e x p f a - * * , ^ + U. + ...+ U2n-2)}, (12.4.8a)
n

W=J1 (v23> + <7*£/2/-i), (12.4.8b)

where S> is the unit qN-by-qN matrix and v2 = exp(K2) - 1, as in (12.2.1).
The expression (12.4.8a) can be put in a form similar to (12.4.8b) by

using the fact that Uf =qiUi. Alternatively, (12.4.8b) can be put in a form
similar to (12.4.8a). We obtain

n-l

Y[ i (12.4.8c)

W = v"2 expiq-^iUi + U3 + . . . + U2n-X)}, (12.4.8d)

where vx = exp(A'i) - 1 and

exp Kt = (v2 + q)lv2 = {eKl + q- l)/(e*2 - 1). (12.4.9)

The matrices U\,. . . , f/2n-i satisfy the relations
Uf = q*Ui, i = 1 , . . . , In - 1 ,

UiUi+lUi = Ui, i = l,...,2n-2, (12.4.10)

These relations define the algebra generated by U\,. . . , U2n~\ • In par-
ticular, they define all the eigenvalues of the complete transfer matrix VW
(but not their degeneracies). They therefore define the maximum eigen-
value, and hence the large-m behaviour of the partition function.

Indeed, they define ZN even for finite m. To see this, define the matrix

R = U1U3U5...U2n-1. (12.4.11)

Using the explicit representation (12.4.6a), or (12.4.7), we see that R is
the qn by q" matrix, all of whose entries are equal to q~"12. Thus

R = q-nl2%f, (12.4.12)

where § is the column vector in (12.4.4), all of whose entries are one. It
is now obvious that for any q" by q" matrix X,

RXR = T(X)R, (12.4.13)

where x(X) is a scalar.
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More specifically, r(X) is q~nn ^X^. From (12.4.4) it follows that

ZN = q"12 r(VWVW. . . V). (12.4.14)

Now forget that V, W, Ui,. . . , U2n -I were introduced as qn by q" mat-
rices, and regard them simply as operators satisfying (12.4.8) and (12.4.10).
Let X be any sum of products of U\,. . . , U2n-i and the identity operator
3>. Then from (12.4.10) and (12.4.11) it can be established that (12.4.13)
is true, and r(X) can be evaluated. Since VT¥VW. . . V can be written as
such a sum of products, it follows from (12.4.14) that ZN can in principle
be calculated in this way.

Of course I do not claim that this programme can readily be carried out
for arbitrarily large m and n; only that it can in principle be done. This
means that we do not have to use the representation (12.4.6): any set of
operators U\,..., Uin-\ that satisfy (12.4.10), and for which R is not
identically zero, will be an equally good representation.

Temperley and Lieb (1971) showed that one such alternative rep-
resentation is to take U\,. . . , Uin-i to be 4" by 4" matrices, with
indices a = {a\, . . . , a2n} and a' = {oj ,. . . , <*2n}> where each OCJ and aj
takes the values +1 and — 1, and the elements of £/, are

a i ) . . . d(ai-i, aj-i) h(at, ai+l)

x h(a't , oi+1) S(ai+2, o^+2). . . d(a2n, <&,), (12.4.15)

for i = 1 , . . . ,2n - 1, where

h(+ ,-) = exp(-A/2), h{- ,+) = exp(A/2), (12.4.16)

and A is given by (12.3.5).
Regard oe\,. . . , oc2n as representing a row of vertical, or rather near-

vertical arrows: ar; = + if the arrow in column; points up, aj = - if it points
down. More specifically, let cc\, . . . , a2n represent a typical row of arrows
on the edges of X', such as the top row of edges in Fig. 12.8, labelled
1 , . . . , 2n. Consider the operator $> + X\U2j, using the (^-representation
(12.4.15). This acts on the arrows in positions 2/ and 2/ + 1, and can be
thought of as a 'vertex transfer matrix'. Its non-zero entries are precisely
the weights a>\,. . . , a>6 in (12.4.3a), corresponding to the six arrow
arrangements in Fig. 12.9. Thus it is the vertex transfer matrix of a site of
type 1 in the ice-type model. From (12.3.4) and (12.4.8c), we see that V
is just the product of these matrices, for y = 1 , . . . , « - 1 . Thus the V in
(12.4.8) is the transfer matrix for a row of sites of type 1 in the ice-type
model.
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Similarly, from (12.4.8b), (12.3.4) and (12.4.3b) we find that q~nl2W is
the transfer matrix for a row of sites of type 2 in the ice-type model. Noting
that N = mn, it follows from (12.4.14) that

ZN = qm x partition function of the ice-type model. (12.4.17)

We can verify that external sites have weights given by the rules following
(12.4.3). The equivalence (12.3.7) therefore follows from the two rep-
resentations (12.4.6) and (12.4.15) of the operators U\,. . . , U-m-i-

Some General Comments on the Ice-Type Model

For general values of x\ and xi, the Potts model has not yet been solved.
It is one of the most tantalizing unsolved models. For instance, as was
remarked in Section 8.12, the homogeneous square-lattice ice-type model
can be solved by the Bethe ansatz method of Chapter 8, even if the
'zero-field' restrictions (8.1.7) are violated. Then the definition (8.3.21) of
A becomes

A = {o)\a>2 + 0)3(1)4 — O)sco6)/2(o)ico20)30)4)^, (12.4.18)

and the eigenvectors of the transfer matrix depend only on this A and the
horizontal electric field E'.

The ice-type model we are considering here is not homogeneous: its
weights are different on the two sub-lattices (types 1 and 2, respectively).
Even so, from (12.4.3), (12.4.18) and (12.3.5) we see that

A = - c o s h A = - i ? ! (12.4.19)

for both sites of type 1 and type 2. (Indeed, from (12.3.8) this relation is
true for arbitrary planar graphs.) Thus A is uniform, but unfortunately the
Bethe ansatz method of Chapter 8 still fails to work.

An intriguing point is that the ansatz fails even for q = 1 and q = 2,
whereas the free energy can be calculated for these cases by other methods,
the first case being trivial and the second being the Ising model. It is also
worth noting that in this equivalence the Ising model corresponds to [x in
(8.8.1), i.e. A = -cos ft, having the value Jt/4. This contrasts with the fact
that the Ising model is also equivalent to the free-fermion model, as was
shown in Section 10.16. The free-fermion model is an eight-vertex gen-
eralization of an homogeneous six-vertex model with A = 0 and fi = nil.
There is therefore a relation between these \i = nIA and ju = nil vertex
models.
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Duality

One advantage of this ice-type formulation of the Potts model is that it
makes it very easy to show that the square lattice model satisfies a duality
relation.

To see this, note from (12.4.3) that the weights on sites of type 2 are
similar in form to those on sites of type 1: in fact we can interchange them
by replacing xu x2 by*^1, xT1, respectively, and then multiplying all type
1 weights by x2, all type 2 weights by X\.

On the other hand, for a large lattice T, we are free to choose which
sub-lattice we designate as 1, and which as 2 (a simple way of saying this
is to say that we can replace the black squares of a chequerboard by white
ones, and vice versa). This affects the boundary conditions, but we do not
expect this to affect the way ZN grows exponentially with N. Keeping only
such exponential factors, and regarding ZN as a function of X\ and x2 (q
being fixed), it follows that

ZN{XX , x2) = (xlX2)
NZdx? , xf1) . (12.4.20)

More precisely, we expect the large-lattice limit

y= - lim N'llnZN (12.4.21)
Af-»oo

to exist. As in (6.2.10) and (1.7.6), this is the dimensionless free energy
per site, being related to the usual free energy/by ip = f/kBT. Like ZN,
xf> can be regarded as a function of X\ and x2. Then (12.4.20) gives

V<*i, x2) = -ln(Xlx2) + xp{xil, V) • (12.4.22)

This is a duality relation, relating a high-temperature Potts model to a
low-temperature one. It was first obtained by Potts (1952). We could also
have obtained it by interchanging K\ and K2 in (12.4.8a) and (12.4.8d),
and replacing each (/,- by Ui+\. apart from boundary conditions and scalar
factors, this merely interchanges the two transfer matrices V and W.

We remarked in Section 12.1 that the q = 2 Potts model is equivalent
to the Ising model: the relation (12.4.22) is then the square-lattice Ising
model duality relation (6.2.14).

Location of the Critical Point

Now suppose that J\ and J2 are both positive. This means that the system
is ferromagnetic: adjacent spins 'like' to be equal. From (12.2.6) and
(12.3.4), K\, K2, Vi, v2 and xi, x2 are all positive.
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Obviously (12.4.22) relates the value of ^ at a point (*i, x2) to its value
at {x2

l ^ f 1 ) - This mapping takes the domain 0 < JCIX2 < 1 to the domain
xix2 > 1. Every point on the line X\X2 - 1 is self-dual.

We expect the ferromagnetic Potts model to be disordered at high
temperatures {x\ and x2 small), all q possible spin-states being equally
likely. At low temperatures {x\ and x2 large) we expect it to be ordered,
one of the spin-states being preferred by all the spins. Somewhere in
between we expect there to be a critical temperature Tc at which this
spontaneous symmetry breaking just starts to occur. In the (*i, x2) plane
this must be a line, separating the disordered and ordered regions. We
expect %j)(xi ,x2) to be analytic, except possibly on this line.

We now argue as in Section 6.2. If \p{x\ , x2) is non-analytic on a line
inside the domain 0 < x\x2 < 1, then from the duality relation (12:4.22) it
must also be non-analytic on a line inside x\x2 > 1. The simplest possibility
is that it is non-analytic only on the self-dual line x\x2 = 1. (For an isotropic
system, with x\ = x2, this corresponds to requiring that the critical tem-
perature be unique.) Hintermann et al. (1978) have shown that this is in
fact the case: the critical points of the square-lattice Potts model occur
when

xxx2 = 1. (12.4.23)

12.5 Critical Square-Lattice Potts Model

Suppose that the condition (12.4.23) is satisfied, i.e. x2 = llx\. Then from
(12.4.3) it is evident that the weights of type 2 are all equal to the
corresponding weights of type 1, divided by x\. Multiplying all the six
weights at any given site by some factor is a trivial modification of the
model: it merely multiplies the partition function by the same factor. The
system is therefore effectively homogeneous: more precisely, using (12.3.7)
and noting that there are N sites of type 2 in <£',

ZN = qmx{NZ2N, (12.5.1)

where Z'2N is the partition function of the ice-type model on the lattice i£'
with 2N sites, each with Boltzmann weights given by (12.4.3a).

Free Energy

Since it is homogeneous (i.e. all sites have the same weights), this ice-type
model can be solved by the methods of Chapter 8. In fact, as was remarked
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at the end of Section 8.1, vertices of type 5 and 6 must occur in pairs,
being respectively sinks and sources of horizontal arrows. Thus the weights
a>s and a>(, occur only in the combination w5aj6. This means that the partition
function is unchanged by replacing both co5 and a>6 by their geometric
mean. From (12.4.3a) and (8.3.3) (noting that the vertex ordering in Fig.
12.9 is the same as that in Fig. 8.2, after an appropriate rotation), it follows
that Z'1Nvs the partition function of a zero-field ice-type model on <£', with
weights

0 = 1, b=xh c = (l +2xi cosh A+ *?)*. (12.5.2)

The dimensionless free energy of the Potts model is defined by (12.4.21).
From (12.5.1), (1.7.6) and (12.5.2), it is

V>= -\n(qVxi) + 2f/kBT, (12.5.3)

where flksT is the dimensionless free energy of the ice-type model. This
has been calculated in Chapter 8. From (8.3.21) and (12.3.5),

A = -cosh A = -\q\ (12.5.4)

so there are two cases to consider: 0 > A > — 1, and A < - 1 . In the former
case we see that 0 < q < 4, and we use the results of Section 8.8; in the
latter case(# > 4), we use those of Section 8.9. Since ip is continuous, the
case q = 4 can be handled by taking the appropriate limits. Doing this, we
find that

y=-llnq-<t>(x1)-<l>(x2), (12.5.5)

where X\ and x2 satisfy the criticality condition (12.4.23), q is regarded as
a constant, and the function (p(x) is defined as follows:

0 < q < 4: qk = 2 cos \i, 0<[I<JZ/2,

x = sin y/sin(,u - y), 0 < y < \i , (12.5.6a)

sinh(;r - n)t sinh 2yf

t sinh M cosh fit

q = 4: x = T/(1 - T), 0 < T < 1,
/-co

<t>(x)= y~1exp(-y)sechysmh2iydy: (12.5.6b)
Jo

<7>4: <?* = 2 cosh A, A > 0 ,

oo

<j)(x) = fi + H n " 1 exp(-nA) sech nk sinh 2n/J.
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For all values of q, this function 4>{x) satisfies the identity

(12.5.6d)

Let Yj, Xj, fij be the values of these parameters y, r, /? when x = Xj. Then
the criticality condition (12.4.23) implies that

7i + 72 = ^, T1 + T 2 = 1 , /?! + & = A. (12.5.7)

Indeed, Y\ a n ^ Yi are the expressions \{fi + w) and i(jU - w) in Section
8.8, while fa and fa are the \(k + v) and £(A - v) in Section 8.9. The A of
this chapter is the same as that of Chapter 8.

The integral in (12.5.6a) can be evaluated explicitly when fx is a rational
fraction of n (e.g. nIA, JT/3 , 2JT/5). For the isotropic model, with xt =
x2 = 1, some of these cases have been tabulated by Temperley and Lieb
(1971).

Internal Energy and Latent Heat

We can also calculate the internal energy of the Potts model at its critical
point (Potts, 1952; Baxter, 1973d). To do this, we first return to considering
the general Potts model, not necessarily satisfying the criticality condition
(12.4.23). From (12.1.2), (12.1.3) and (1.4.4), the total average energy is

(E) = kBT2^-lnZN, (12.5.8)

in agreement with (1.4.6). The square-lattice partition function depends
on Tviaxx andx2, and from (12.1.4), (12.2.6) and (12.3.4), xr and Tare
related by

xr = q-\exp(JrlkBT) - 1]. (12.5.9)

Regarding ZN as a function of x\ and x% (q and iV being kept constant),
it follows that

2

(E) = -q-^Jrexv{JrlkBT)—\nZN. (12.5.10)
r = 1 dXr

Now use the expression (12.3.7) for ZN, where the vertex weights are
given by (12.4.3). For a given arrow covering of the edges of ££', let
nk(n'k) be the total number of sites of type 1 (type 2) that are in the arrow
configuration k shown in Fig. 12.9. Here k = 1 , . . . , 6. Then (12.3.7) can
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be written more explicitly as

ZN = qm E xf+"4(1 + xi eA)"5 (1 + xi e~A)"6

ac

x x$l+ni(x2 + ex)"'5 (x2 + e-k)"'6, (12.5.11)

the sum being over all arrow coverings of ££' that satisfy the ice rule at
each site.

From (12.5.10), (12.5.11) and (1.4.4), it follows that
2

<£> = ~q-^Jrt^{JrlkBT)lr, (12.5.12)

where
j =</t3> + <W4>| exp(A)(rc5) | exp(-A)(n6)

* l+^exp(A) 1+Xiexp(-A)' (12.5.13)

x2 *2+exp(A) *2+exp(-A) '

(itj) and (nj) being as usual the average values of n, and n].
We can calculate l\ and l2 when the criticality condition (12.4.23) is

satisfied, i.e. xtx2 = 1. Then ZN is given (for large N) by (12.4.21) and
(12.5.5), i.e.

InZN = N[\\nq + <p(x\) + 4>(x2)], (12.5.14)

the function #(.x) being defined by (12.5.6), q being regarded as a constant.
Using this expression for Zjyin (12.5.11), and differentiating logarithmically
with respect to Xi (remembering that x2 = IIXi), we find that

A#'(*i) -x2
2<j>'(x2)] =h -xlh. (12.5.15)

<p'(x) being the derivative of <p(x).
This is one equation relating I\ and l2. We can obtain another by

considering the symmetry relations between the 12 averages
(«!>,..., (rt6>. As we noted at the beginning of this section, when xxx2 = 1
we can renormalize the weights (12.4.3) so as to reduce them to the form
(8.3.3), where a, b, c are given by (12.5.2). These renormalizations leave
(ni),..., (rte) unchanged, but they make it clear that the ice-type model
(for X\X2 = 1) has two symmetries: it is translation invariant (sites of type
1 have the same weights as sites of type 2), and it is unchanged by reversing
all arrows (this is the 'zero-field' condition).

It is rigorously known (Brascamp et al., 1973) that if c > a + b, then
each of these symmetries is spontaneously broken. As is explained in
Section 8.10, the system is anti-ferroelectrically ordered and there is a
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spontaneous staggered polarization Po. By considering a system in an
infinitesimal staggered electric field (or with staggered fixed-arrow bound-
ary conditions), we can define Po as (ti). Here T, is the polarization of the
electric dipole on edge i: it is defined as in Section 8.10, being +1 ('right')
if the arrow points in the standard direction of Fig. 8.3, -1 ('wrong') if
it points in the other.

This Po is the same for all the 4N edges of !£', so

4 7VP0 = average number of right' arrows minus the
average number of wrong' arrows. (12.5.16)

Each arrow adjoins just one site of type 1, and each site of type 1 is the
meeting-place of four arrows (a 'vertex'). Choose the standard configur-
ation of Fig. 8.3 to correspond to all vertices of !£' of type 1 being in the
arrow arrangement 6 of Fig. 12.9. Then by comparing these figures it
becomes apparent that arrow arrangements 1 to 4 each contain as many
wrong arrows as right ones, arrangement 5 contains 4 wrong arrows, and
6 contains 4 right ones. Thus (12.5.16) can be written as

NP0 = (n6)-(n5). (12.5.17)

Although the two symmetries of sub-lattice interchange and arrow-
reversal are both spontaneously broken for c > a + b, the combined sym-
metry is not. For instance, the ground state shown in (8.3.3) is unchanged
by reversing all arrows and then interchanging sites of type 1 with sites of
type 2. It follows that

= <n2), <«2> = («i>, <«3> = <«4>, (12.5.18)

The equations (12.5.17) and (12.5.18) are still true when \a - b\ < c <
a + b. In this case the ice-type model is disordered in the sense that there
is no spontaneous symmetry breaking (though the correlation length is
infinite, as remarked in Section 8.10). This means that (n5) = (n6), so Po

in (12.5.17) is then zero.
There are N sites of type 1, each site must be in one of the six possible

arrow arrangements, so «i +. . . + n6 = N. Forming the expression
JCI/I + JC2/2, where h and 72 are defined by (12.5.13), using the symmetry
relations (12.5.18), together with (12.5.17) and (12.4.23), it follows that

x2l2 = N{l-2 Xl £(xO Po}, (12.5.19)

where

£(*) = sinh A/(l + x2 + 2x cosh A). (12.5.20)
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This is the second equation for /x and 72 that we needed. Remembering
that x2 = 1/xi, from (12.5.20) and (12.5.6d) we can readily establish that

(12.5.21)
x2 <t)'(x2) = 1.

Solving (12.5.15) and (12.5.19) for h and/2, using the properties (12.5.21),
it follows that

Ir = N[<l>'(xr)-Kxr)P0], (12.5.22)

for r = 1, 2. From (12.5.12), the internal energy per site U = (E)/N of the
square lattice Potts model is therefore

2

U = q-k 2 /, cxp(Jr/kBT) [-4>'{xr) ± t,{xr) Po]. (12.5.23)
r=\

I have introduced a ± sign to allow for the fact that the sign of the RHS
of (12.5.17) is not yet determined. If the ice model symmetries are spon-
taneously broken in favour of arrow arrangement 6 (5) on sites of type 1
(2), then the RHS of (12.5.17) is positive, and Po therein is the usual
spontaneous staggered polarization. On the other hand, if the symmetries
are broken in favour of arrow arrangement 5 (6) on sites of type 1 (2),
then Po is negated. From (12.4.3), the former situation occurs (for A > 0)
as X\X2 approaches unity from below, the latter as x\X2 approaches unity
from above. The sign in (12.5.23) should therefore be chosen positive if
T approaches the critical temperature Tc from above, negative if it
approaches Tc from below.

The spontaneous polarization Po has been evaluated (Baxter, 1973c) and
the relevant results are given in Section 8.10, notably in (8.10.9), (8.10.2)
and (8.9.1). Using (12.5.4), we see that there are two cases to consider:

( i ) 0 < g = £ 4 : 0 > A s = — 1, A pure imaginary.
The ice-type model is disordered in the sense that there is no spon-
taneous symmetry breaking (though the correlation length is
infinite). Thus Po is zero, and U is continuous across T= Tc. (We
still expect U to be non-analytic at T = Tc: certainly this is so for
q = 2, when the Potts model becomes the Ising model.)

(ii) q>4: A < - 1 , A is real and is to be chosen positive. There is
spontaneous symmetry breaking; Po is positive, being given by

Po= I] [tanhmA]2. (12.5.24)
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From (12.5.23), the Potts model therefore has a first-order transition
at T = Tc, with latent heat

2

L = 2q-* 2 Jr exv(Jr/kBT) Qxr) Po. (12.5.25)

For the isotropic model, with J\ = J2 = J and xi=^2 = l, we can
calculate 0'(*i) from (12.5.21). Using (12.5.9) and (12.5.23), we obtain
the simple formula

C/«v = - ( l + ?" ' ) /• (12.5.26)

Here Um is the average of the internal energy just below and just above
Tc, i.e. C/av

 = i(U- + U+). For q =£ 4, where there is no discontinuity in U,
this is the internal energy at Tc. This result was obtained by Potts (1952)
in his original paper.

12.6 Triangular-Lattice Potts Model

We can carry out a similar programme for the Potts model on the triangular
and honeycomb lattices, i.e. we can locate the critical points, and at these
points we can calculate the free energy and the internal energy (Baxter et
al., 1978).

Let Zji and Z" be the partition functions of the Potts model on the
triangular and honeycomb lattices, respectively, where each lattice has N
sites. These partition functions are given by (12.1.3), except that for each
lattice there are three types of edges. Let us label them 1,2,3, and let
K\, K.2, K3 be the corresponding values of K. Then each partition function
depends on K\, K2, K3, as well as on N and q.

The triangular lattice it is drawn in Fig. 12.10, together with its medial
graph T (which is a Kagome lattice). From (12.3.7) and (12.3.8) we have
that

ZT
N(K1,K2,K3)=qmZ', (12.6.1)

where Z' is the partition function of an ice-type model on ££', with weights

ft)l, .. . ,O)6=1, 1,XnXnT1 +Xrt
2,t +XJ-2. (12.6.2)

Here r = 1, 2 or 3 depending on the type of the site of i£'\ the six allowed
arrow arrangements are the first six shown in row r of Fig. 11.2. The lattice
X' has 3N sites; t and xr are defined by

l]. (12.6.3)
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Fig. 12.10. The triangular lattice 2! (open circles and broken lines) and its medial
Kagom6 lattice 56' (full circles and lines).

Triangular-Honeycomb Lattice Duality

Alternatively, consider the lattice ££D that is dual to i£. This is an honeycomb
lattice of 2N sites, the sites lying in the unshaded triangular faces of T in
Fig. 12.10. The medial graph of i£D is also <£' (apart from boundary effects),
but now the shaded and unshaded faces in Fig. 12.10 are interchanged. By
considering the Potts model on ££o, and again using (12.3.7) and (12.3.8),
we find that

UL2,L3)=qNZ\ (12.6.4)

where Z" is the partition function of an ice-type model on T, with weights

S 1 , . . . J 6 = y r j n l , l , ^ 1 + r 2 , ^ + r 2 . (12.6.5)

The corresponding arrow arrangements are ordered as in (12.6.2), t is
again given by (12.3.5) and (12.6.3), and

yr = q-\exp(Lr) - 1]. (12.6.6)

Suppose that y, =x7x. Then the weights (12.6.5) are the same as those
in (12.6.2), except that they are all multiplied by yr. Multiplying all weights
of type r by any factor or merely multiplies the ice-model partition function
by a/". From (12.6.1) and (12.6.4), it follows that

ZUKi, K2, K3) = (q'ixlx2x3)
NZU^i, L2,L3), (12.6.7)

where

xr = q-KeMKr) - 1] = ?V[exp(Lr) - 1]. (12.6.8)
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This is a duality relation, mapping a low-temperature (high-temperature)
Potts model on the triangular lattice to a high-temperature (low-temper-
ature) one on the honeycomb lattice. For the Ising model case, when
q = 2, it is equivalent to the relation (6.3.7).

Location of the Critical Point

We can associate mutually inverse weights with the tips and tails of arrows,
and incorporate these into the vertex weights. Obviously this leaves Z'
unchanged, but alters &>i,. . . , a>6. If we use the same weights for all edges
of the same type (e.g. for all horizontal edges of !£'), then a>i,. . . , a>4 are
unchanged, <w5 is multiplied by a factor ar, and (b6 is divided by ar, where
r is the type of the corresponding site, and a\a2a-5 = 1.

We may ask whether we can use this freedom to make the ice-type
model satisfy the 'zero-field' conditions oi\ = u>i, 6h, = a>4, a)5 = (b6, for
r = 1, 2, 3. The first two conditions are automatically satisfied. The third
implies that the product of the three weights w5 (for r = 1 , 2 , 3), is the
same as that of the three weights «J6. These products are unchanged by the
additional arrow weights, so from (12.6.2) we must have

3 3

U(r1 + xrt>) = Yl(t + xrr
2). (12.6.9)

r = l r = l

From (12.3.5) and (12.6.3), t is related to q by

qi = P + r3. (12.6.10)

Expanding both sides of (12.6.9), it follows that

^ 1 • (12.6.11)
This is a necessary condition for the ice-type model to be reducible to
zero-field form. It is also sufficient.

What is intriguing is that (12.6.11) is also the condition for the triangular
Potts model (or the dual honeycomb model) to be critical. This is not
obvious: unlike the Ising model, the Potts model does not in general have
a star-triangle relation, so we cannot establish a triangular - triangular
duality relation like that of Section 6.5. However, Kim and Joseph (1974)
showed that there is a star - triangle relation when (12.6.11) is satisfied
(they actually considered the isotropic case, when *i = x2 = *3, but the
argument readily generalizes). The resulting mapping takes the triangular
Potts model back to itself (with the same interaction coefficients Ku K2,
K3). Thus the model is self-dual at the particular temperature specified by
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(12.6.11). Kim and Joseph conjectured that this self-dual point is also the
critical point. Baxter et al. (1978) generalized this argument to a triangular
Potts model with additional three-site interactions on alternate triangular
faces. They showed that this more general model always has a
triangular - triangular duality relation, and that at the self-dual point the
three-spin interaction vanishes and (12.6.11) is satisfied. Hintermann et al.
(1978) have verified that the critical temperature is indeed this self-dual
temperature.

Here I shall use the variables x\, x2, X3, but is should be noted that it is
quite natural to work instead with ft, ft, ft, where ft is the value of /? in
(12.5.6) when x = xr. The condition (12.6.11) then takes the simple linear
f o r m ft + ft + ft = A. (12.6.12)

(In fact ft corresponds to ur in Section 11.1, and (12.6.12) to (11.1.12).)

Critical Free Energy

Provided the criticality condition (12.6.11) is satisfied, we can calculate
the free energy of the triangular lattice Potts model (and of the dual
honeycomb-lattice model). One way to do this is to shrink the up-pointing
triangles of the Kagome lattice down to points. As is explained in Baxter
et al. (1978), the ice-type model then becomes a '20-vertex' model on a
triangular lattice. Kelland (1974b) has investigated the conditions under
which such a 20-vertex model is solvable by the Bethe ansatz method of
Chapter 8. It turns out that these conditions are precisely that the model
correspond to the Kagome lattice six-vertex model with weights given by
(12.6.2) and (12.6.11). Thus Kelland's results enable us to calculate the
free energy when, and only when, the 20-vertex model is equivalent to a
critical triangular-lattice Potts model.

(There are also solvable 'free-fermion' cases of the 20-vertex model, but
they are solved by other methods [Sacco and Wu, 1975].)

We can also obtain the free energy by using the results we obtained in
Chapter 11. When the restriction (12.6.11) is satisfied, we can arrange the
mutually inverse 'tips and tails' arrow weights so that (12.6.2) becomes

6iu . . . , ft>6 = ar, ar, br, br, cn cr, (12.6.13)
where

ar = l, br = xn cr = (l+xrt
i)i(l+xrr')i, (12.6.14)

and again r = 1, 2 or 3 depending on the type of the site of ££' that is being
considered. The vertex arrow configurations corresponding to ar, br, cr are
shown in Fig. 11.2.
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The ice-type model is now a zero-field six-vertex Kagome-lattice model.
This is a special case of the eight-vertex model defined in Section 11.1, the
weights d\, d2, dj, being zero. Furthermore, when (12.6.11) is satisfied, we
can verify that the six 'star-triangle' relations (11.1.7) are all satisfied.

The free energy is therefore given by (11.4.5). Remembering that the
Kagome lattice &' has 3JV sites, this equation implies that (for N large)

Z' = Z%(xi) Z%(x2) Z%x3), (12.6.15)

where Zs$(xr) is the partition function of a square-lattice ice-type model,
with weights given by (12.6.14), all sites being of type r. Using the results
of Chapter 8, or simply referring back to (12.5.3) - (12.5.6), we can verify
that the dimensionless free energy per site of such a square-lattice model
is

-N-1 In Z#(x) = - # 0 • (12.6.16)

From (12.6.1) and (12.6.15), the dimensionless free energy per site of the
critical triangular Potts model is therefore

, K3) = -N~l In ZJlKx, K2, K3)

- <S>{x2) ~ <K*3) • (12.6.17)

Critical Internal Energy

The equations (12.5.8)-(12.5.13) can readily be generalized to the tri-
angular lattice, giving

3

(E) = -q-* 2 Jr exp(Jr/kBT) I,, (12.6.18)

where, using (12.6.1)-(12.6.3)

A.r i. T ,

Here r = 1, 2 or 3, and n; in (12.6.19) is the number of sites of type r in
it' that are in the arrow arrangement / of Fig. 11.2.

The ratio (rij)/N is therefore the probability that a site of type r is in
arrow arrangement j. This is a local correlation for this site, so from
(11.3.3) it depends only on ar, br, cr, and hence only on xr. (As usual, we
regard q, and therefore A and t, as constant.)

In fact, Ir must have the same value as for a square lattice of N sites,
in which all sites have weights (12.6.2), r being the same for all sites. But



350 12 POTTS AND ASHKIN - TELLER MODELS

this Ir has been calculated in (12.5.22). From (12.6.18), the internal energy
per site U = (E)IN of the triangular lattice Potts model is therefore

3

U = q~* 2 /, txp(Jr/kBT) [- <Xxr) ± Rxr)P0]. (12.6.20)
l

12.7 Combined Formulae for all Three Planar Lattice Potts Models

The critical free energy and internal energy of the honeycomb lattice Potts
model can readily be obtained from those of the triangular lattice, by using
the duality relation (12.6.7). The results are similar in form to those of the
square and triangular lattices. In fact we can combine them into single
formulae, just as we did in Section 11.8 for the Ising model. For all three
lattices the criticality condition is

I] [(1 + *rexp{A})/(l + xrexp{-A})] = exp(4A): (12.7.1)
r

the dimensionless free energy per site is then

), (12.7.2)

and the internal energy per site is

U = te-'5)/rexp(/r/*j,r)[-0'(*r) ± £(xr)P0], (12.7.3)

the upper (lower) signs being chosen if the critical temperature is
approached from above (below).

The product in (12.7.1), and the sums in (12.7.2) and (12.7.3), are over
all edges round a particular site: thus r has three values for the honeycomb
lattice, four for the square lattice, and six for the triangular lattice. The
Jr is the interaction coefficient for the rth edge in this sum, so with an
obvious notation we have /3 = J\ and 74 = J2 for the square lattice; and
J*, J5, J(, = J\, J2, J3 for the triangular lattice. As usual, xr is defined by
(12.3.4), i.e.

xr = q-\exy(JrlkBT) - 1]. (12.7.4)

The parameter A is defined by (12.3.5) (it is pure imaginary if q < 4),
and the functions 4>{x), £(x) are defined by (12.5.6) and (12.5.20); Po is
zero for q =£ 4, while for q > 4 it is given by (12.5.24).

Let q be the coordination number of the lattice (3 for the honeycomb,
4 for the square, and 6 for the triangular lattice). Then r in (12.7.1)-
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(12.7.3) runs over q values. Define

0 = 2X/q. (12.7.5)

Then for an isotropic model, where J\ = Ji = . . . = J, the criticality con-
dition (12.7.1) becomes

exp(-J/kBT) = sinh(A - d) /sinh(A + 6). (12.7.6a)

When q = 2, then A = in/4, and this equation reduces to the Ising model
formula (11.8.45a).

We can complete the comparison with (11.8.45) by noting that the
methods of Chapter 4 can readily be generalized to the ^-component Potts
model on the Bethe lattice of coordination number q. The critical tem-
perature of this model is given by

exp(-J/kBT) = { q - 2)/(q + q - 2 ) . (12.7.6b)

12.8 Critical Exponents of the Two-Dimensional Potts Model

We have calculated the free energy / and internal energy U of the planar
Potts models, but we have done so only for the zero-field model at the
critical temperature Tc. (More accurately, we have calculated f/in the limit
when T approaches Tc from above, or from below.)

This tells us that the transition is first-order (with non-zero latent heat)
for q > 4, and is continuous (no latent heat) for q «£ 4. It does not tell
what the critical exponents are for q ^ 4. To obtain these directly we would
have to solve the Potts model for general temperatures, which has not been
done. (This is a very tantalising problem as I remark in Section 14.8.)

However, we do have some information. When q = 2, the Potts model
becomes the Ising model, which was solved by Onsager (1944) and Yang
(1952). The critical exponents a, ft and 8 are given in (7.12.12), (7.12.14)
and (7.12.16). They are

a = 0 , j8=J, 6=15 whentf = 2. (12.8.1a)

Alexander (1975) has argued that the three-state Potts model and the
hard hexagon model (which each have three ordered states) should be in
the same universality class and have the same critical exponents. From the
hard hexagon results (14.7.12), (14.7.13), this implies that

a=h j8=i , 6=14 wheng=3 . (12.8.1b)
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Similarly, Domany and Riedel (1978) argue that the four-state Potts
model and the three-spin model (each with four ordered states) should
have the same exponents, so from (11.10.39),

<*=§, j8=A, <5=15 when tf = 4 . (12.8.1c)

We have seen in Sections 12.3-12.5 that the critical Potts model is
equivalent to a zero-field six-vertex model, with weights given by (12.5.2).
We can regard this as a special case of the eight-vertex model, in which
d = 0. The A of (10.15.1) is given by (12.5.4): for q<4 we see that
0 > A > - l . From (10.16.8) we see that this corresponds to a critical
eight-vertex model, with fi given by A = -cos /J,. From (12.5.4) this implies

qi = 2cosn, 0<n<\n. (12.8.2)

This fi is the parameter that enters the formulae (10.12.24) for the critical
exponents of the eight-vertex model. Den Nijs (1979) argued that the
exponents of the Potts model should also depend in a simple way on (i, or
more precisely on

y = 2/jJn. (12.8.3)

(This y lies between 0 and 1. Den Nijs and others refer to it asy®"-) He
conjectured that the critical exponent a of the Potts model (for q *£ 4) is

a=(2-4y)/(3-3y). (12.8.4)

Similarly, Nienhuis etal. (1980), and Pearson (1980) have independently
conjectured that

(12.8.5)

The scaling relation (1.2.12) and (1.2.13) then predict that

6 = (15 - 8y + y2)l(\ - y2). (12.8.6)

For q = 1,2, 3, 4, the parameter y has the values §, I, |, 0, respectively.
The conjectures (12.8.4)-(12.8.6) therefore agree with the values in
(12.8.1), and also predict that

a=~l, P=&, d=m w h e n g = l . (12.8.7)

(As we remarked in (12.2.4), the q = 1 case is the percolation problem.)
The conjectures are also consistent with numerical estimates of the expo-
nents (Blumberg et al, 1980; Blote et al., 1981), and with a
renormalization-group perturbation expansion about q = 4 (Cardy et al.,
1980). Very recently, Black and Emery (1981) have verified (12.8.4) by
using renormalization-group methods: it seems likely that (12.8.5) and
(12.8.6) are also exactly correct.



12.9 SQUARE-LATTICE ASHKIN - TELLER MODEL 353

12.9 Square-Lattice Ashkin - Teller Model

Ashkin and Teller (1943) introduced their model as a generalization of the
Ising model to a four component system. Each site of a lattice i£ is occupied
by one of four kinds of atom: A, B, C or D. Two neighbouring atoms
interact with an energy: EQ for AA, BB, CC, DD; £i for AB, CD; e2 for
AC, BD; and s3 for AD, BC.

Fan (1972b) showed that this model can be expressed in terms of Ising
spins. With each site i associate two spins: s, and a,. Let (s, , a,) = (+ ,
+ ) if there is an A atom at site / ; ( + , - ) if a B atom; (- , +) if C; and
(- , -) if D. Then the interaction energy for the edge (i,/) is

e{i ,j) = -JSJSJ - J'OiOj - JiSiOiSjOj - Jo , (12.9.1)

where
- / = (e0 + £i - e2 - £3)/4

is

- / ' = (£0 + £2 - £3 - £1 )/4 ( 1 2 9 2 )

- / 4 = (e0 + £3 - £1 - £2)/4

-Jo = (fo + £1 + £2 + £3)/4 .

As usual, we want to calculate the partition function. From (1.4.1), this

ZAT = 22 exp[- 2 s(i ,j)lkBT\ , (12.9.3)

where kB is Boltzmann's constant, T is the temperature. The summation
inside the exponential is over all edges (i ,j) of the lattice; the outer sums
are over all values of all the spins su s2, s3,. . . and ou 02, a3, . . . .

We shall find it convenient to use the dimensionless interaction
coefficients

K = J/kBT, K'=J'/kBT, (12.9.4)

Ko = JolkBT,

and the edge Boltzmann weights

^ = expi-Ei/kBT), i = 1,. . . , 4. (12.9.5)

From (12.9.2), we see that

wo = exp(*: + K' + K, + Ko), oix = exp(K - K' - K4< + Ko), (12.9.6)

oh = &xp(-K+ K' - K4 + Ko), coi = exp(-K - K' + K*+ Ko).
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Equivalence to an Alternating Eight-Vertex Model

The above considerations apply to any lattice X, planar or not. Now let
us specialize to the case when X is the square lattice, with N sites. Then
from (12.9.1) it is apparent that we can think of the Ashkin - Teller (AT)
model as two square-lattice Ising models (the s-model and the a-model),
coupled via a four-spin interaction.

This is similar to the zero-field eight-vertex model, whose Hamiltonian
is given by (10.3.1) with /„ = Jh- 0. However, the geometry is different:
for the eight-vertex model the spins are arranged as in Fig. 10.4, the s-
spins occupying the full circles, and the cr-spins the open circles. In the AT
model the spins s, and o; both lie on site i.

Even so, Wegner (1972) shows that the AT model could be expressed
as an alternating eight-vertex model. The trick is to apply the duality
transformation of Section 6.2 to the a-spins only.

To do this, note that from (12.9.1), (12.9.3) can be written as

AT = Z-i e x P £-! \&sisj "•" ^o) ZN\L{ (12.9.7)

where

(12.9.8)

the edge-coefficient L,y being given by

La = K'+ K4SiSj. (12.9.9)

Here N is the number of sites of the square lattice !£; L is the set of
coefficients L,y, one for each edge of !£.

Clearly each L,y depends on the spins st and S), but for the moment let
us regard S\,. . . , sN as fixed, and consider the expression on the RHS of
(12.9.8). This is a standard square-lattice Ising model partition function,
except that the system is inhomogeneous, having interaction coefficients
Ljj that vary from edge to edge.

Now look at the duality relation (6.2.14). Using (6.2.10) (and ignoring
boundary effects), this states that if ZN(K , L) is the partition function of
a square-lattice Ising model with interaction coefficient K for vertical edges,
L for horizontal edges, and with N sites, then

ZN(K* , L*) = [2 exp(-K - L) cosh AT*

x cosh L*]NZN(K , L). (12.9.10)

The dual coefficients K*,L* are defined by (6.2.14a).
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where

This relation applies to an homogeneous system. However, it is quite
straightforward to generalize the working of Section 6.2 to an inhomoge-
neous system, with interaction coefficient Li; on edge (i ,j). The result is

ZtAL*} = [] [24exp(-Ly) coshLf] Z^L}, (12.9.11)

tanh Lfj = exp(-2L,y). (12.9.12)

Here L denotes the set of all edge coefficients Lih and L* the set of L,*;
ZN{L} is the original partition function for the lattice i£, as defined in
(12.9.8); ZN{L*} is the partition function for the lattice i£o that is dual to
X; Lfj is the interaction coefficient of the edge of £D that is dual to the
edge (;,;) of iE.

o o

Fig. 12.11. The lattice '£ (solid circles and lines) and its dual !£D (open circles and
broken lines); (k, I) is the edge of i£D that is dual to the edge (i, /) of 2?;L,* and

Lij are the corresponding interaction coefficients of these two edges.

Let k, I be the sites of XD such that (k, I) is the edge dual to (i ,j), as
indicated in Fig. 12.11. Then

ZN{L*} = (12.9.13)

where t\ , . . . , t^ are spins on the sites of i£o.
Using (12.9.11) to express ZN{L} in terms of Zjy{L*}, substituting the

result into (12.9.7) and using (12.9.13), we obtain

i/, (12.9.14)

the product being over all edges (i , /) of ££, with

Wv = 2~* sech L* exp[Z^ + Ksis, + Ko + LJ^ , ] . (12.9.15)
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Remembering that Lif is given by (12.9.9), where s,-s;- = ±1, and that L,*
is given by (12.9.12), we can write Wg as

Wtj = exp(AsiSj + Btktt + CsiSjtkt, + D), (12.9.16)

where A, B, C, D are denned by

a = exp(A + B + C + D) = 2'\co0+ <ax)

b = exp(-A -B + C + D) = 2'\co2 - co3) ^n 9 n^

c = exp(-v4 + B - C + D) = 2'\co2 + co3)

d = exp(A -B-C + D) = 2"4(ft)0 - fl>i) •

From (1.4.1), (12.9.14) and (12.9.16), ZAT is therefore the partition
function of a model with Hamiltonian

E(s , t) = -kBT ^(AsiSj + Btkt, + CsiSjtkt, + D). (12.9.18)

Now take X to be the lattice of solid circles and lines in Fig. 10.4. Then
!£D is the lattice of open circles and broken lines. The s-spins lie on X, the
f-spins on !£[>. We see that (12.9.18) is the Hamiltonian of a model with
interactions between neighbouring 5-spins, and between neighbouring t-
spins, with a four-spin interaction between spins on crossing edges.

This Hamiltonian has the same general form as (10.3.1), with /„ = //, =
0, with /" = kBTC, and with an extra constant energy —kBTD per edge.
To avoid confusion, let us refer to the / and /' in (10.3.1) and Fig. 10.4
as JgV and J'w'- they are of course not the same as those in equations
(12.9.1)-(12.9.4) above.

There is one significant difference between (12.9.18) and (10.3.1): in
(12.9.18) A and B are associated with the solid and broken edges, respec-
tively, of Fig. 10.4; in (10.3.1) Jsv andJgV are associated with the SW-NE
and SE-NW edges of Fig. 10.4. To put (12.9.18) into the form (10.3.1)
we must therefore allow Jsv and/gv to alternate from site to site. We can
choose (/gv/^fiT7, J'wlkBT) to be {A , B) on one sub-lattice (i + j even in
(10.3.1)): it is then (B, A) on the other sub-lattice (i + j odd). The
Ashkin - Teller model is therefore equivalent to an alternating, or 'stag-
gered' eight-vertex model. From (10.3.9) (including the extra constant
energy -D/kBT), the Boltzmann weights of this eight-vertex model are
equal to the a, b, c, d of (12.9.17) on one sub-lattice. On the other sub-
lattice they are equal to a, b, d, c.

It is of course intriguing that the Ashkin - Teller model should be equiv-
alent to a staggered eight-vertex model. In many ways the equivalence is
reminiscent of that found in Section 12.4 between the Potts model and a
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staggered six-vertex model. Indeed, both equivalences can be applied to
the q = 4 Potts model (which is a special case of the Ashkin - Teller model,
with £i = e2 = £3): they lead to the same vertex model.

The form of the staggering in this eight-vertex model is particularly
simple, consisting merely of the interchange of the weights c and d. From
(10.15.1a) and (10.15.6), it follows that A, T, k and A are not staggered,
each having the same value for both sub-lattices. The staggering affects
only the elliptic function parameter v, which is negated on going from one
sub-lattice to another. Unfortunately it is still not possible to put k, A, v
into the form (10.17.7), which are the most general conditions under which
the eight-vertex model has been solved. Thus the general Ashkin - Teller
model remains unsolved.

Even so, the equivalence of the AT model to a staggered eight-vertex
model does have some interesting consequences, as I hope to indicate in
the remainder of this section.

Duality

Obviously, the partition function of the staggered eight-vertex model is
unaltered by interchanging c and d on all sites (this merely interchanges
the two sublattices). Write ZAT as a function of the Boltzmann weights
(Oo, . . . , ah, in (12.9.6). Then from (12.9.17) it follows that

ZA T («6 ,O}[,CO2, (03) = ZAT((o0, CDI , co2, 0)3), (12.9.19)

provided that

(00 = i((0O + 0 ) 1 + 0 ) 2 + O)3) ,

(0[ = i((0o + 0)1 - o)2 - 0)3), (12.9.20)

(02 = 2(ft*0 + O)2 - O)3 - 0)i) ,

0)3 = h(a>o + 0)3 - 0)1 - 0 ) 2 ) .

This is a duality relation, relating a high-temperature AT model to a
low-temperature one. It was obtained by Fan (1972a), who conjectured
that the critical temperature might be given by the self-duality condition:

O)0 = 0)1 + a>2 + 0)3. (12.9.21)

However, Wegner (1972) remarked that this is precisely the condition for
the corresponding eight-vertex model to be homogeneous; since then
c = d. The homogeneous eight-vertex model has been solved in Chapter
10. It is not in general critical (even when c = d), so nor is the AT model



358 12 POTTS AND ASHKIN - TELLER MODELS

under the condition (12.9.21). (The spins su s2,. . . occur in both models,
and it is reasonable to suppose that either model is critical if and only if
the correlation (siSj) decays as an inverse power of the distance r,y between
sites i and /, rather than decaying exponentially. This means that if one
model is critical, then so is the other.)

Indeed, it is apparent that when /4 = 0 in (12.9.1), then the AT model
factors into two independent Ising models, one for the s-spins with coef-
ficient J, the other for the ospins with coefficient / ' . Provided J + T, these
will have different critical temperatures. The AT model therefore then has
two critical temperatures. They lie on either side of the self-dual temper-
ature defined by (12.9.21), and the mapping (12.9.20) takes one to the
other.

Wegner (1972) argued that in general there should still be two such
critical temperatures for /4 # 0, and Wu and Lin (1974) have considered
the possible location of the critical surfaces in (coi/(o0, (02/(00 , (O3/000) space.
One currently unsolved problem is to locate these surfaces exactly. Pre-
sumably universality holds on these surfaces (except on certain special lines
to be discussed below), in which case the critical exponents must be those
of the /4 = 0 case, i.e. of the Ising model.

Other Symmetry Properties

In addition to (12.9.19), ZAT satisfies various other symmetry relations. It
is unchanged by permuting /, / ' , /4 in (12.9.1), since this corresponds
merely to permuting S[, a-,, s-,Oi (any two of which can be regarded as
independent spins) at each site. It is also unchanged by negating /' and /4 ,
since this corresponds to negating alternate a-spins. From (12.9.4) and
(12.9.6) it follows that

ZAT(a)j, Wj, (ok , (o{) = Z A T ( W O , O ) I , co2, a)3) (12.9.22)

for all permutations i, j, k, I of 0, 1, 2, 3. Thus ZAT is unchanged by
permuting the weights «o ,. . . , (03.

Another way of obtaining the duality and symmetry relations (12.9.19)
and (12.9.22) is to define the eight-vertex 'w-weights' w\, w2, w3, w4 as in
(10.2.16). The symmetry relations (10.2.17) are true even for an inhomo-
geneous eight-vertex model. Applying them, using (12.9.17), we again
obtain (12.9.19) and (12.9.22).

Critical Isotropic AT Model

If / = / ' , then the above argument that the AT model should have two
critical temperatures breaks down. This is a particularly interesting case:
let us refer to it as the 'isotropic' AT model. From (12.9.6) we see that it
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corresponds to imposing the condition

(Di = <«2 (12.9.23)

on the AT model weights.
This still corresponds to a staggered eight-vertex model, in which the

weights c, d are interchanged on alternate sites, so in general has not been
solved. However, if the self-duality condition (12.9.21) is satisfied, then
c = d and the eight-vertex model becomes homogeneous. Using (10.2.16),
its V-weights' are

H>I = i(a + b) = 2*0)!

w2 = i(a -b) = 2'\(ox + co3) (12.9.24)

w3 = i(c + d) = 2"\(Oi + w3)

From (10.2.17), ZAT is unaltered by interchanging w2 and vv4. Let a', V,
c', d' be the resulting new eight-vertex weights. Then we see that

a' = b' = 2*0)!, C = 2*((Wi + «3)» d' = 0. (12.9.25)

Since d' = 0, the model reduces to a six-vertex model (in fact to an F-
model). Let / b e the free energy per site of the AT model, defined as in
(1.7.6) by

-flkBT = lim AT1 In ZA T . (12.9.26)

Remembering that the vertex model has twice as many sites as the original
AT model, from (8.3.3), (8.8.9), (8.8.17), (8.9.7) and (8.9.9) it follows
that when the restrictions (12.9.21) and (12.9.23) are satisfied, then / i s
given by the following equations:

o>3<a)1: cosG*/2) = j ( l +

-f/kBT = 2 ln(2V) + f t a n h ^ s i n i ^ - ^ ck ; (12.9.27a)1 J-co xs inh^x

a), = o)v ~flkBT = 2 ln(2*©i) + 4 ln[r(i)/2T(i)]; (12.9.27b)

oi: cosh(A/2) = ifl + —V A>0,
V (oj

00

-flkBT = 2 ln(2Jo)i) + A + 2 2 m'1 exp(-mA) tanh ml. (12.9.27c)
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Critical Exponents

The homogeneous eight-vertex model is critical if and only if the two
middle numbers of the set |wi|, | W2U | w3|, |w4|, arranged in decreasing
order, are equal. In this case the symmetry relation (10.2.17) can be used
to map it into a six-vertex model of the type discussed in Section 8.8, i.e.
with -1 < A < 1. The critical exponents are then given by (10.12.24). Let
us give them a superfix '8V to denote 'eight-vertex', and give the 'magnetic'
exponents (corresponding to introducing a field -HLot) a suffix 'm'. The
'electric' exponents (corresponding to a field —EZojoj, where i, j are
nearest-neighbours) already have a suffix 'e'. Then from (10.12.24)

, ( 1 2 9 2 8 )

0f=(2-y)/(4y),

where

y = 2fjJn, (12.9.29)

H being the parameter defined in Section 8.8. [This y is the
renormalization-group exponent that we used in (12.8.3).]

Applying these general considerations to the self-dual isotropic AT
model, it follows from (12.9.24) that the model is critical provided that
(1)3 < a>\. Its free energy is then given by (12.9.27a), the \i therein being
the same as that in (12.9.29).

As with the Potts model, we have only evaluated the free energy/at the
critical point: we are not in a position to see how/varies with temperature
or field, so we cannot directly determine any critical exponents. Certainly
we cannot apply the homogeneous eight-vertex results (12.9.28) to the
AT model, because the models are equivalent only at criticality.

Even so, Kadanoff (1977, 1979) and Kadanoff and Brown (1979) have
used operator algebras and scaling theory (Kadanoff, 1976) to relate the
critical exponents of the eight-vertex and isotropic Ashkin - Teller models.
Knops (1980) obtained the same relations by using renormalization-group
arguments; den Nijs (1981) has extended this approach, as well as justifying
(1979) Enting's (1975) conjecture that 5m = 15 for the AT model. Zisook
(1980) and Zittartz (1981) have checked some of these relations by devel-
oping perturbation expansions.

Altogether, they find that the Ashkin - Teller exponents are

a A T =(2-2y) / (3 -2y) , tf? = (2 - y)/(24 - 16y) (12.9.3o)
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As with the eight-vertex model, there are two sets of critical exponents:
'magnetic' exponents corresponding to a field -//2a,, and 'electric' expo-
nents corresponding to a field -£2opj. I use the suffix m for the former,
e for the latter. Thus fim is the exponent of the order parameter {o\), /3e of

The same arguments that give (12.9.30) also imply the scaling relations
(1.2.12)-(1.2.16), so we can use these to obtain ym, dm, r]m, ye, de, rje and
v. Both the eight-vertex and Ashkin - Teller models violate universality,
having exponents that vary continuously with the parameter y. Both models
satisfy the relations

dm = (2 - a- /3m)//3m = 15 , (12.9.31)

The criticality conditions (12.9.21) and (12.9.23) can be written in terms
of the interaction coefficients K, K', K4. From (12.9.6) they are

K' = K, exp(-2£4) = sinh 2K, (12.9.32a)

the restriction oh, < o)\ is equivalent to

K<<K, (12.9.32b)

and the definition of pi in (12.9.27a) can be written as

cos n = i[exp(4A:4) - 1], (12.9.33)

where 0 < ft < 2nl3.

Phase Diagram of the Isotropic AT Model

In fact (12.9.32) is not the only critical line of the isotropic AT model. The
complete phase diagram has been obtained by Ditzian et al. (1980) and is
surprisingly rich. It is shown in Fig. 12.12. There are give regions in (K4 , K)
space: in I the system is ferromagnetically ordered, (o\), {s\) and (oiS\) all
being non-zero; in II these order parameters are all zero and the system
is disordered; in III there is partial ordering, ((XiSi) being non-zero, but
(o\) and (s\) vanishing; IV is similar to III, except that the order is anti-
ferromagnetic, (oiSi) alternating from site to site; V is similar to I, except
that (oi) and (s{) are anti-ferromagnetically ordered.

The line EF, which is the boundary between regions I and II, is the
critical line (12.9.32) discussed above. This is a line of continuously varying
exponents, fi in (12.9.29) varying from 0 at F to 2^/3 at E. F is the point
(K,, Kt), where K, = iln 3 = 0.2746 . . .; E is where KjK = - 1 , K^> ».
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The line E'F' is also one of continuously varying exponents, and is
obtained from EF simply by negating K. Indeed, negating all spins s,- and
Oi on one sub-lattice of & is simply equivalent to negating K, so the whole
of Fig. 12.12 is symmetric about the X4 axis.

Fig. 12.12. Phase diagram of the isotropic Ashkin - Teller model, in (#4, K) space.

The line EF continues onto the broken line FG. This is the self-dual line
with oh, > m\. the system is not critical on this line segment; instead there
are two critical lines FB and FC bifurcating from F. Their positions are not
precisely known, but B must be the point (Kc ,0), and C the point
(00 , hKc), where Kc is the Ising-model critical value of K, given by

sinh2A:c = l, Kc = 0.4406 (12.9.34)

The lines FB, FC map into one another under the duality relation (12.9.20).
The critical exponents thereon are expected to be fixed, having Ising-model
values.

Similarly, the position of the critical line EDE' is not precisely known,
but D is the point (-Kc, 0) and the exponents are also expected to be
those of the Ising model.
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CORNER TRANSFER MATRICES

13.1 Definitions

Notation

In Chapters 7-10, much use has been made of the row-to-row transfer
matrix V. Multiplication by this matrix corresponds to adding a row to the
lattice. Each element of V is the total Boltzmann weight of a row of the
lattice, as in (7.2.2) and (8.2.2).

Another useful concept is the 'corner transfer matrix' (CTM), which
corresponds to adding a quadrant to the lattice. In this section I shall define
four such CTMs (one for each corner), and shall call them A, B, C, D.
I shall also define four corresponding normalized matrices An, Bn, Cn, Dn;
and four normalized and diagonalized matrices Ad, Bj, Cd, Dd. Here n and
d are not indices, but merely denote 'normalized' and 'diagonalized',
respectively.

The {a, &) element of one of these matrices will be denoted by a further
double suffix o&: e.g. BO(j and (An)acf are the (a, &) elements of B and
An, respectively.

The IRF Model

Corner transfer matrices can be defined for any planar lattice model with
finite-range interactions, but for definiteness let us consider a square lattice
model with interactions round faces. For brevity I shall call this the 'IRF'
model. It is defined as follows.

To each site i of the square lattice associate a 'spin' at. In this chapter
363
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we shall suppose that each a, has value +1 or — 1; in the next chapter it
will be more convenient to let then have values 0 or 1; in general they can
take any desired set of values.

Let the total energy be

% = J,e(oi,ohok,ol), (13.1.1)

where the summation is over all faces of the lattice, and for each face the
i, j, k, I are the surrounding sites, arranged as in Figure 13.1(a). From
(1.4.1), the partition function is

Z = (cT;, Oj, ak , a , ) , (13.1.2)

where the product is over all faces of the lattice, the sum is over all values
of all the spins, and

w(a ,b,c,d) = exp[-e(a , b , c , d)/kBT]. (13.1.3)

This w(a , b , c , d) is the Boltzmann weight of the intra-face interactions
between spins a, b, c, d.

Let N be the number of sites of the lattice and define
l w

K = lim Z

Then from (1.7.6), the free energy per site is

/= -kBT\nK.

(13.1.4)

(13.1.5)

(a)

t

u

t'

u

y

z

y

(b)

Fig. 13.1. (a) The ordering of the sites i, j, k, I round a face of the square lattice;
(b) the quadrant lattice whose partition function is the Aac, in (13.1.8).
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Also, from (1.4.4) the expectation value of a particular spin o\ is

= Z~l 2 ffi IT w(oi, Oj, ok , or,). (13.1.6)

The object of statistical mechanics is to calculate quantities such as K
and (oi) in the limit of a large lattice. They are expected to be independent
of the way in which the lattice becomes large, so long as it does so in all
directions.

The function w{a , b , c , d) is at this stage arbitrary, so this IRF model
includes many models of particular interest in statistical mechanics. For
instance, it includes the case of diagonal interactions together with a
four-spin interaction in each face: this is the spin formulation (10.3.1) of
the eight-vertex model. More generally, it includes the eight-vertex model
in both 'magnetic' and 'electric' fields, and the Ising model in a field.

Ground State

The system will have one or more 'ground-states': these are configurations
of all the spins on the lattice for which the energy %, given by (13.1.1), is
a minimum. More generally, they can be defined as the configurations
which give the largest contribution to the sum-over-states in (13.1.2).

For a ferromagnetic Ising-type system there arc at most two ground
states: either all spins up, or all spins down. For a system which includes
anti-ferromagnetic interactions, the ground state may consist of an alter-
nating pattern of spins. This state is not translation-invariant, even though
the energy function (13.1.1) is. There must be at least two ground states
in this case, since applying a translational shift changes the spin configur-
ation but not its energy.

In this chapter I refer often to the 'ground-state'. By this I mean a
particular ground state, and it is important that the same ground state of
the complete lattice be used throughout. For instance, formulae for (oi)
are given in (13.1.11), (13.1.14) and (13.5.15): if the ground state is not
translation invariant, then (o\) may depend (for sufficiently low tempera-
ture) on which ground state is used. In this case the translation invariance
symmetry is 'spontaneously broken'.

The Matrices A, B, C, D

Consider the lattice in Fig. 13.1(b). Label the left-hand spins
o i , . . . , om, and the top ones o{,. . . , &m, as indicated. Clearly ox and
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are both the upper-left corner spin, so

(13.1.7)

Fix the boundary spins, i.e. those on the sites shown as triangles in Fig.
13.1(b), to have their ground-state values. For instance, for the ferro-
magnetic Ising model they can all be chosen to be +1.

Let a denote all the spins {oi,. . . , om}; and d all the spins
{oi,. . . , &m}. Define

Aa,& = 2 I I , ok, if Oi =

= 0

(13.1.8a)

(13.1.8b)

where the product is now over the lm{m + 1) faces in Fig. 13.1(b), and
the sum is over all spins on sites denoted by solid circles. Note that the
spins O\,. . . , dm are not summed over, so the RHS of (13.1.8) is a function
of a and &.

Define Bo^ in the same way as Aa^, only with Fig. 13.1(b) rotated
anti-clockwise through 90°, so that a±,..., om lie on the bottom edge, and
o i , . . . , dm on the left. Similarly, define Ca,d, Da,& by rotating Fig. 13.1(b)
twice more through 90°.

Now consider the lattice shown in Fig. 13.2. Divide it by two cuts into
four quadrants of equal size, as indicated. Let Oi be the centre spin, and

c

[

0

• \

0f

E
E

y
r

\

\

Fig. 13.2. The lattice with partition function (13.1.10). Boundary spins (on sites
denoted by triangles) are fixed at their ground state values; a\ is the centre spin;
ais the set of all spins (including Oi) on the lower half of the vertical heavy line;
& is the set of spins (including ai) on the right half of the horizontal heavy line;

and similarly for o", d".



13.1 DEFINITIONS 367

let a, &, o", d" be the sets of spins (including Oi) on the corresponding
half-cuts in Fig. 13.2. Then from the definition of A, B, C, D, the product

^a,& Brf,d' *~d',d" L)<f ,a , (ij.l.yj

is the product of the Boltzmann weights of all the faces, summed over all
spins other than those on the cuts. The partition function Z of the lattice
is Fig. 13.2 is therefore

Z= 2 ,,Aa,a.B&t<fCd;d"Dd»,a. (13.1.10)

The summation is over all spin-sets o,. . . , d", subject only to the
restriction that O\=&\ = d[ = of, since each of these is the centre spin.
However, this restriction can be ignored since from (13.1.8b) the summand
vanishes unless it is satisfied. It follows that

Z = Trace ABCD. (13.1.11)

From (13.1.6), the average value of o\ is the ratio of the RHS of
(13.1.10), with an extra factor ox in the summand, to its value without this
factor. It follows that

<oi> = Trace &45C£>/Trace ABCD , (13.1.12)

where S is the diagonal matrix whose element (o, o) is o\.
The matrices S, A, B, C, D are all block-diagonal, their elements

(a, &) being zero unless O\=&\. The matrix 5 commutes with A, B, C
and D. In particular, for the Ising-type models where each Oj has value
+ l o r - 1 :

/ M n\ ii n \
(13.1.13)

where / here is the identity matrix. In this case, (ox) is the magnetization
M.

In (13.1.11) it is apparent that multiplication by A corresponds to
introducing the lower-right quadrant, or 'corner', of the lattice. I therefore
call A the 'lower-right corner transfer matrix'. Similarly B, C, D are
respectively the upper-right, upper-left, lower-left CTMs.

The Normalized Matrices An, Bn, Cn, Dn

Let s, s', s", s'" be the values of the spin-sets o, &, o", d" in Fig. 13.2 when
all the spins are in the ground state configuration.
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Set

7= Qy , <5 =

a-ASS', f}—BS'S", (13.1.14)

and define
An = a~1A, (13.1.15)

These matrices An, Bn, Cn, Dn are the normalized corner transfer mat-
rices. Their ground-state elements, e.g. {An)ss<, are unity. We shall find
them useful when considering the limit m —* °°.

Many formulae involving CTMs are independent of the normalization
of A, B, C, D: an obvious example is (13.1.12). Thus A, B, C, D therein
can be replaced by An, Bn, Cn, Dn.

The Diagonal Matrices Ad, Bd, Cd, Dd

It is often useful to use the diagonal forms Ad, Bd, Cd, Dd of A, B, C, D
(and of An , Bn, Cn, £>„), normalized so their maximum entries are unity.
These are defined by

, (13.1.16)
Cn = YR CdT'\ Dn = \

where a1, fi', y', 6' are scalars; P, Q, R, T are non-singular matrices; and
Ad, Bd, Cd, Dd are diagonal matrices whose maximum entries are unity.

The matrix P is the matrix of eigenvectors of AnBnCnDn, Q of
BnCnDnAn, etc., and all matrices can be chosen to commute with S, i.e.
to have the block-diagonal structure in (13.1.13). Then (13.1.12) can be
written as

(oi> = Trace SAdBdCdDd/TraceAdBdCdDd. (13.1.17)

For definiteness, I shall suppose that Ad, Bd, Q, Dd are arranged so that
their maximum entries are in the position (1,1). Then

(Ad)1A = ( 5 d ) u = ( Q ) u = ( A , ) u = 1. (13.1.18)

The eigenvector matrices P,Q,R,T are not uniquely defined, since the
normalization of the eigenvectors is arbitrary. This means that P, Q, R,
Tcan be post-multiplied by diagonal matrices. This affects Ad, Bd, Cd, Dd,
but not their product.
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In some cases there is a natural unique choice of P, Q, R, T. For instance,
for a ferromagnetic isotropic reflection-symmetric model (e.g. the isotropic
nearest-neighbour Ising model), A, B, C, D are all equal and symmetric.
It is then natural to take P, Q, R, T to be equal and orthornormal. Ad is
then the matrix of eigenvalues oi A, normalized to satisfy (13.1.18).

Once the diagonal matrices Ad, Bd, Cd, Dd are known, the magnetization
is easily obtained from (13.1.17). The main thrust of this chapter is to show
that>ld, Bd, Cd, Dd can be evaluated quite easily for certain models (notably
the eight-vertex model), provided the lattice is infinitely large. In Section
13.8 it is also shown that self-consistent equations for Ad, Bd, Cd, Dd (and
certain other matrices) can be written down. These equations are exact
and infinite-dimensional, but they can be truncated to a finite set of
approximate equations, and these can be used to obtain good numerical
approximations to K, or long series expansions of K.

13.2 Expressions as Products of Operators

Consider the matrix £/,- whose element (a, &) is

( o i ) . . . d(oi-i, o|_i) w(Oi, ai+i, a- , CT,_0

xd(oi+1,&i+1)...6(om,&m). (13.2.1)

As is indicated in Fig. 13.3, this corresponds to adding a single face to the
lattice, going in the NE to SW direction. Indeed, [/,• can be regarded as
a 'face transfer matrix', or as a 'face operator'. It is analogous to the vertex

Fig. 13.3. A picture of the effect of pre-multiplying by the matrix (/, defined by
(13.2.1). This corresponds to introducing the square shown, with its appropriate
weight function w, and summing over the spin of. We use the convention that spins

on open circles are fixed, while spins on solid circles are to be summed over.
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operator of (9.6.9), the only difference being that here we are thinking in
terms of 'spins on sites', rather than 'arrows on edges'.

Two operators Uh Uj commute if i and / differ by two or more, i.e.

j = UjUt if \i - ; | > 1. (13.2.2)

The corner transfer matrix A can be written as a product of face operators,
one for each of the \m{m + 1) faces in Fig. 13.1(b). To allow for the faces
near the boundary, define lfm to be the operator Um given by (13.2.1) with
am+i fixed to have the value s, i.e.

(Ulda^ = d(oi,oi). . . d(om-i,&m-i)w(om,s ,&m,om-i). (13.2.3a)

Similarly, define U%+\ to be Um+i with crm+i, om+2, <4+i replaced by s,
t, z, i.e.

?+1) = fifa , oi). . . 6{om ,&m)w(s,t,z, om) . (13.2.3b)

Thus Ifm+i is a diagonal matrix.
Let s, t , . . . , y, z and s', t' , . . . y' be the boundary spins, arranged

as in Fig. 13.1(b). Then it is easy to see that

A = m<U'2Wz f o r m = 2 , ( 1 3 2 4 )

= Ifi 'if^UiUl yU$U%y for m = 3 ,

and in general that

A = W{"9>'iu . . . WXh , (13.2.5)

where

9f' = C ^ i £ 4 t / m - i £ / m - 2 ...Uj. (13.2.6)

13.3 Star - Triangle Relation

In Section 9.6 it was shown, using the 'electric' language of arrow spins on
edges, that two six-vertex model transfer matrices commute provided the
'star-triangle' relation (9.6.8) is satisfied. This result was generalized to
the eight-vertex model in Section 10.4, and in Section 11.5 it was expressed
in the 'magnetic' language of Ising spins.

This last formulation can of course be derived directly. In fact it can be
written down (but not necessarily solved) for any IRF model. Let the
square lattice have Af columns and be wound on a cylinder, so that column
1 follows column N. Then the row-to-row transfer matrix V has elements
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(13.3.1)

where OJV+I = ou &N+X =a[, a = fa , . . . , oN}, & = {o{ , . . . , ON], and
the weight function w(a ,b,c,d) is now arbitrary.

Let V be similarly defined, with w replaced by w'. Then the elements
of the matrix product V V are

(13.3.2)

where
s ( a , a" ,a'\b, b" ,b')=w(a,b, b",a") w'(a",b", b',ar). ( 1 3 . 3 . 3 )

In fact s(a , a" , a'\b , b" , b') is the weight of the two adjacent squares
shown in Fig. 13.4.

Fig. 13.4. The adjacent squares, the lower with weight function w, and the upper
with weight function w'. Their combined weight is thes(a ,a" ,a'\b ,b", b') of

(13.3.3).

For given values of O\ , . . . aN and a{,..., &N, the RHS of (13.3.2) is
a matrix product. Let S(a , a'\b , b') be the two-by-two matrix (for two-
valued spins) with element s(a , a" , a' \b , b" , b') in row a" and column
b". Then (13.3.2) can be written

(VV')a& = Trace Sfa M\<h, 4) S(a2, &21CT3 , o*)

&N\ai, &i). (13.3.4)

Define S' similarly, but with w and w' interchanged in (13.3.3). Then
V'V is given by (13.3.4), with S replaced by S'. Clearly V and V will
commute if there exist two-by-two matrices M(a , a') such that

S(a,a ' |6,&') = M(a,a')S'(fl,a'|fe,fe')[M(ft,&')]"1. (13.3.5)

since the matrices M will cancel out of (13.3.4).
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Post-multiply (13.3.5) by M(b , b'). Write the element (c , d) of M(a , a')
as w"{c ,a , d , a'), and write the two-by-two matrix products explicitly.
Then (13.3.5) becomes

2 w(a , b , c, a") w'{a", c , b', a') w"(c , b , b", b -)
c

= X w"(a" ,a,c,a') w'(a ,b , b " ,c)w(c , b " , b ' , a r ) , ( 1 3 . 3 . 6 )
c

for all values of a, a', a", b, b', b".

b = a

Fig. 13.5. Graphical representation of the generalized star - triangle relation
(13.3.6): the partition functions of the two graphs are the two sides of the

equation.

This equation can be represented as in Fig. 13.5. Define the operators
£/, as in (13.2.1), and similarly define [// and U,! by replacing w therein by
w' and w", respectively. Then (13.3.6) is equivalent to the operator relation

Ui+1U'iU"+, = UlU'i+xU,, (13.3.7)
" • " I T l l l T l 1 1 ^ 1 1 7 \ /

for / = 2 , . . . , m - 1.
Clearly this is a generalization to the IRF model of the star - triangle

relations (6.4.27), (9.6.10) of the Ising and eight-vertex models.
For a given function w, (13.3.6) in general only admits trivial and

uninteresting solutions for w' and w". One obvious one is

w' = w, w"(a ,b,c,d) = %a,c), (13.3.8)

which corresponds merely to the fact that V commutes with itself.

Solvable Cases

We are interested in finding classes of commuting transfer matrices, and
therefore in finding functions w such that (13.3.6) has infinitely many
solutions for w' and w". (One can of course always multiply w' and w" by
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scalar factors, since these must cancel out of (13.3.6): this is not to be
regarded as a new solution.)

We have already found one such family of solutions, namely the zero-
field eight-vertex model. In fact (13.3.6) is the equation (11.5.8), with
O\,. . . , a-i r e p l a c e d b y b ' , a', a", a , b , b " , c ; W 2 b y w ; W 3 ( a , b , c , d )
b y w " ( c , d , a , b ) , a n d Wx{a , b , c , d ) b y w ' ( b , c , d , a ) .

Let us define p, k, A, u such that

w(a ,b ,a ,b) = p s n h A

w{a , b , -a , -b) = pk snh A snhu snh(A - u) (13.3.9)

w(a ,b,a, -b) = p snh(A - u)

w(a , b , —a , b) = p snh u

for a = ±1 and b = ±1. Here snh u is the elliptic function of argument
u and modulus k, defined by (10.4.20) and (15.1.6).

Now define w', w" by (13.3.9), but with u replaced by u', u", respectively.
Then from (11.5.3) and (11.1.10), these u, u', u" correspond to the u2,
A - «i, u3 in Chapter 11. From (11.1.12) it follows that the star-triangle
relation (13.3.6) is satisfied provided

u' = u + u". (13.3.10)

Regard p, k, A as fixed, and u as a complex variable. Then
w(a ,b,c,d) is a function of u, as well as of the four spins a, b, c, d.
Write it as w[u\a ,b,c,d], or simply w[u]. Then the solution of (13.3.6)
is

w = w[u], w' = w[u + u"], w" = w[u"]. (13.3.11)

Equivalently, writing the operator [/, as a function t/,(w) of u, from (13.3.7)
it follows that

Ui+1(u) Ut(u + u") Ul + l(u") = Uiu") Ui+i(u + u") Ui(u), (13.3.12)

for all complex numbers u and u". This is the relation (9.7.14), expressed
in terms of spins-on-sites, rather than arrows-on-edges.

Rotating the lattice through 90° is equivalent to replacing a, b, c, dby
b, c, d, a, and from (13.3.9) this corresponds to replacing u by A - u. Thus

w [A - u] = weight function w after rotating lattice

through9Q°. (13.3.13)

Suppose, as in (10.7.1a), that

p>0, 0 < * < l , 0 < A < / ' , (13.3.14)
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where /' is the complete elliptic integral of the first kind of modulus
k' = (1 - k2)K Then from (13.3.9)

w[u\a,b,c,d] 3=0 ifO=£«=sA, (13.3.15)

for all values of the spins a,b,c,d. From (13.1.3), the Boltzmann weights
w must be non-negative if the energies are real, so the 'physical' values of
u are those lying on the interval (0 , A) of the real axis.

In the next chapter, similar properties will be found for a restricted hard
square model: the relations (13.3.8) are changed, but again it is possible
to express the function w in terms of a complex variable u (and certain
'constants' k and A) so that equations similar to (13.3.9)—(13.3.15) are
satisfied. It is therefore interesting to consider the consequences of

The star - triangle relation (13.3.6) implies that the two row-to-row
transfer matrices V and V commute. This result can be generalized to a
column-inhomogeneous model of the type discussed in Section 10.17. Let
the Boltzmann weight function w be different for different columns of the
lattice, but in such a way that k and A are the same for all columns. For
the matrix V, let « i , . . . , uN be the values of u for columns 1, . . . , N.
Similarly, let u[,. . . ,uh be their values for V. Then the derivation
(13.3.1)—(13.3.6) of the commutativity of V and V still applies, provided
that u", and hence w" and M, is the same for all columns. From (13.3.10),
it follows that

V V = V'V if M- - Uj is independent of; . (13.3.16)

This in turn implies that the normalized eigenvectors of V depend only on
the differences of U\,. . . , uN.

Product Relation for CTMs

Now consider the lattice shown in Fig. 13.6, in which faces to the right of
the centre line have weight function w[u], while those to the left have
weight function w[v], and all faces have the same value of k, and of A.

Let a = {(Ti , 02 , • . . } a n d d ={a[ , & 2 , . . . } , w h e r e o{ =<j\. T h e n o
and & together denote all the spins on the bottom row of the lattice.
Define

VW = 2 II w(oi, Oj, ok , a,), (13.3.17)

where the product is over all the M faces of the lattice and the sum is over
all spins on solid circles in Fig. 13.6.
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We consider two possible boundary conditions. Firstly, apply the bound-
ary conditions of Figs. 13.1 and 13.2. Then it is obvious from the definition
(13.1.7) of A, and the corresponding definitions of B and C, that

= [B(u) C(v)U . (13.3.18)

where the dependence of B on the parameter u, and of C on v, is explicitly
exhibited.

w[v] w[u]

Fig. 13.6. Lattice with weight function w[u] for faces to the right of the heavy line,
w[v] for faces to the left. Its partition function is the tpa<f in (13.3.17).

Secondly, suppose instead that cylindrical boundary conditions are used,
and fix the top row of spins to have values . . . ,s'$,S2, S\,S2,s$,. . . . Let
s = { s \ , s 2 , • • . } a n d s " ={s{, s 2 , - • • } , w i t h s [ = s h T h e n

(13.3.19)

where r is the number of rows, V is the row-to-row transfer matrix of this
section, a and & together form the row-index of V in (13.3.19) while s and
s' form the column-index.

In the limit of r large it follows that xp is, apart from a normalization
factor, the maximal eigenvector of V. From the remark following (13.3.16),
this eigenvector depends on u and v only via their difference u - v. Thus

(13.3.20)

where t'(u , v) is a normalization factor, independent of o and &, and
[X'(u — v)\o& depends on u and v only via their difference u — v. For later
comparison with (13.3.18), it is useful to regard [X'(u - v)]o& as the
element (a , &) of a matrix X'{u — v). Since O\=&\, X'(u — v) can be
taken to have the block-diagonal structure (13.1.13): it is not the transpose
ofX(u-v).
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13.4 The Infinite Lattice Limit

To proceed further we must go to the limit when the lattice is infinitely
large and the matrices are infinite dimensional. It is not easy to be mathe-
matically rigorous in handling this limit, although tools are available
(Ruelle, 1969). Here I shall rely heavily on physical intuition, much of it
gained from considering low-temperature series expansions, where one
perturbs about the ground state of the system.

The parameter or in (13.1.14) is itself a partition function, namely that
of the lattice in Fig. 13.1(b), with all boundary spins fixed at their
ground-state values. There are \m{m + 1) faces, so from (13.1.4) we expect
that

K= lim o2/m(m+1). (13.4.1)

If a fixed number of the boundary spins a, d are changed from their
ground-state values, we expect this only to introduce an extra multiplicative
factor which tends to a finite non-zero limit as m-» °°, That is, we expect
that the limit

lim (Aa&/As,), (13.4.2)

m—> co

exists, provided there exists an integer r (independent of m) such that

a,: = Si and o/ = s\ for /s=r. (13.4.3)
However, (13.4.2) is simply the element (a, a') of the matrix An defined
by (13.1.14) and (13.1.15). We therefore expect that

lim {An)a& , (13.4.4)

exists, and in this sense that the matrix An should tend to a limiting
infinite-dimensional matrix as m—* °°. Similarly, we expect Bn, Cn, Dn to
tend to limits.

Arrange the columns of P, Q, R, T so that the diagonal entries of
AdBdCdDd in (13.1.16) are in numerically decreasing order. Then
Ad, Bd, Q, Dd can be chosen so that each has its entries in numerically
decreasing order. For a wide class of choices of the function
w(a ,b,c,d), and for sufficiently low temperatures, it appears that a1,
P', y\ <5', P, Q, R, T,Ad, Bd, Cd, Dd in (13.1.16) can all be chosen to tend
to limits a sm^<» . This is in the sense that matrix elements such as P^
and (Ad)jj tend to limits, for fixed; and a fixed spin-set osatisfying (13.4.3).

(High temperature regimes can be handled by using 'free-spin' boundary
conditions, but let us concentrate on the low temperature case.)
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For the ferromagnetically ordered eight-vertex model it will be found
in Section 13.7 that Cd =Ad, Db = Bd. and that the largest six diagonal
elements of Ad (in the limit m —* °°), are

I,s,s2,s3,s\s\ (13.4.5)

where s = (xz)*, and x,z are the elliptic function parameters defined by
(10.4.23), (10.7.9) and (10.7.18). (The elements oiBd are given by inverting
z.) At low temperatures s is small: it increases to one as the temperature
increases to its critical value.

More generally, for any IRF model at sufficiently low temperature, it
seems that each of the corner transfer matrices has a discrete eigenvalue
spectrum a s m - * " . This is in the sense that for any e > 0 there are only
a finite number of eigenvalues numerically larger than e.

This is quite different from the eigenvalue spectrum of the row-to-row
transfer matrix V. If the lattice has N columns, then V usually has a unique
maximum eigenvalue, then a band of JV eigenvalues all close together, then
another band of kN(N - 1) eigenvalues, etc. These bands become con-
tinuous in the limit N—> °°. The normalized matrix of eigenvalues of V
does not tend to a limit as N—* °°.

13.5 Eigenvalues of the CTMs

Now let us return to Section 13.3 and suppose that w is such that the
star - triangle relation (13.3.6) does admit a one-parameter class of sol-
utions for w' and w"; that the members of this class are w[u\, where u is
any complex number, and (13.3.9)—(13.3.12) are satisfied.

The relations (13.3.18) and (13.3.20) are then true. For a finite lattice,
i/W is different in the two equations, since different boundary conditions
are imposed on the lattice. However, in the limit of an infinite lattice, we
expect the boundary conditions to be irrelevant. Eliminating i/W> using
(13.1.15) and absorbing the factors a and fi into T'(M , v), gives

Bn(u) Cn(v) = T?{U , v) X'(u - v), (13.5.1)

where Bn(u), Cn(v) are the normalized corner transfer matrices of the
infinite lattice.

Three equations analogous to (13.5.1) can be obtained by successively
rotating the lattice through 90° intervals. In particular, rotating clockwise
through 90° gives

-v), (13.5.2)
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where T(M , v) is some scalar factor and X(u — v) is a matrix that depends
on u and v only via their difference u - v. I shall now regard (13.5.2) as
the archetypal equation, and (13.5.1) as one of its rotated analogues.

There are problems with this equation, due to the infinite dimensionality
of the matrices. The sum-over-elements involved in the matrix product on
the LHS is probably not convergent, giving a divergent factor. However,
this factor is common to all elements of An(u) Bn(v), so can be absorbed
into T(M , v) and plays no role in the subsequent analysis. What I do expect
to be true is that if s, s" are the ground-state values of the spins a, o" in
Fig. 13.2, and if there exists an integer r (independent of m) such that

O j = S j a n d d j = s " f o r j ^ r , (13.5.3a)

and if An(u), Bn(v) are again defined for finite m, then the limit

lim {[An(u)Bn(v)U/[An(u)Bn(v)]sA, (13.5.3b)

should exist and depend on u,v only via their difference u — v.
Also, I expect that there exist representations in which the appropriately

normalized infinite dimensional matrices An(u), Bn(v) exist, together with
the product An{u) Bn(v).

From now on I shall therefore treat (13.5.2) as a normal matrix equation.
Further, I shall assume that An(u), Bn{v) are not identically singular for
all u,v, and shall as required assume completeness of eigenvector sets.
Obviously all this is very non-rigorous. Even so, the assumptions appear
to be justified, and the results to be exactly correct.

Symmetric Case

There is a wealth of information in (13.5.2). It is most easily explored when
there is no spontaneous breaking of the translation invariance of the lattice,
and when

w(a , b , c , d) = w{c , b , a , d) = w(a , d , c , b). (13.5.4)

In this case (which includes the ferromagnetic eight-vertex model), the
boundary spins s, t,. . . , z in Fig. 13.1 are all equal, A and B are symmetric
matrices, and C = A, D = B. Also since B is obtained from A by rotating
the lattice through 90°, from (13.3.13) it follows that

Bn{v)=An{k-v), (13.5.5)
for all values of v.

Replacing v by A - v in (13.5.1) therefore gives

An(u) An(v) = T(M , A - v) X(u + v - A). (13.5.6)
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Interchanging u and v, and eliminating X, gives

r(v , A - u) An(u)An(v) = <u,A - o)Alv) A^u). (13.5.7)

By considering a representation in which An(u) is diagonal, it can be seen
that (13.5.7) implies

r(v ,k-u) = T ( W , A - V) (13.5.8)

An(u) An(v) = An(v) Alu). (13.5.9)

From (13.5.9) and (13.5.6), the matrices An(u), An(v), X(u + v - A)
therefore commute and have common eigenvectors, independent of u and
v. For some physical value of u, saylA, letpi,p2,P3, • • • be the eigenvectors
of An(u) arranged so that the corresponding eigenvalues
a\(u),a2{u),aT,{u),. . . are in numerically decreasing order. Let
x\(u), x2{u), XT,(U) ,... be the corresponding eigenvalues of X(u). Define

Ad{u) = P'lAn(u) Plax{u),

Xd(u) = P~lX(u) P/xi(u). (13.5.10)

Then Ad(u),Xd(u) are diagonal matrices whose top-left entries are unity.
Putting (13.5.6) into diagonal form by pre-multiplying by P'1 and post-
multiplying by P, the (1,1) element gives

T(M , A - v) = a\{u) a\{v)lx\{u + v - A), (13.5.11)

and the equation then becomes

Ad(u)Ad(v)=Xd(u + v - A ) . (13.5.12)

Any given diagonal entry of (13.5.12) is a scalar equation of the same
form, and must be true for all real numbers u, v in the interval (0 , A).
Differentiating logarithmically, it is readily verified that the general solution
is, for r = 1, 2, 3 , . . . ,

[Ad(u)]r,r = mrexp(-aru), (13.5.13)

where mn ocr are constants, independent of u.
For a given model, the values of mr, ar can be determined from periodicity

considerations and by considering special cases: this will be done in the
next section for the ferromagnetically ordered eight-vertex model.

Using (13.5.5) and the fact that C = A, D = B, it is obvious that An(u),
Bn{u), Cn(u), Dn(u) all commute with one another, so the P,Q,R,T in
(13.1.13) can all be taken to be P. Then

Cd(u)=Ad(u), Dd{u)=Bd(u)=Ad(k-u). (13.5.14)
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Let Sr be the eigenvalue of S corresponding to the eigenvector pr. Substi-
tuting the expressions (13.5.13) and (13.5.14) for the eigenvalues into
(13.1.17), it follows that

00 CO

= E Srm
4

r exp(2a rA)/E m4
r exp(2o>A). (13.5.15)

Asymmetric Case

It is still possible to obtain explicit forms for Ad, Bd, Cd, Dd from (13.5.2)
(and its rotated analogues), even if the symmetry conditions (13.5.4) and
(13.5.5) are not satisfied. It is merely a little more tedious.

First replace u, v in (13.5.2) by A - v, A - u and then eliminate
X(u - v). This gives

T(A - v , A - u) An(u) Bn(v) = r(u , v)An{k - v) Bn{k - u). (13.5.16)

Set u equal to some fixed value u0, and suppose that An(uQ) is invertible,
so that (13.5.16) can be solved for Bn(v). Substitute the result back into
(13.5.1) and post-multiply by B~\k -UQ)A~\UQ). The result is

d(u) si(k -o) = 4>{u , v) Y(u - v), (13.5.17)

where

si(u) =An(u)A-\uQ),

Y(u) =X(u)B~\k-uo)A-\uo), (13.5.18)

4>(u , v) = T(M , v) T(A - a , A - UO)/T(UO, V) .

This equation (13.5.17) is precisely of the form (13.5.6), with v replaced
by A - v. It can be solved by exactly the same methods, giving

s£(u) =al(u)PAd(u)p-1, (13.5.19)

where P is independent of u and Ad{u) is diagonal. The columns of P are
arranged so that for physical values of u (or at any rate for some particular
physical value), the diagonal entries of Ad(u) are in numerically decreasing
order. The top-left entry in Ad(u) is unity. The (r , r) entry is

\Ad(u)]r,r = mr exp(aru), (13.5.20)

where mr, ar are independent of u.
From (13.5.19) and the first of the three equations (13.5.18), it follows

that
Q~\ (13.5.21)
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where Q, like P, is independent of u. [In fact Q =An1(u0)P.] Substituting
this form for An(u) into (13.5.16), setting u = u0, solving for Bn(v), replac-
ing v by u, and using the fact that Ad(X - u) and Ad(u0) commute, gives

Bn(u) = b,{u) QAlk-u)R-\ (13.5.22)

where b\{u) is a scalar factor, and R is independent of u.
Now consider the first rotated analogue of (13.5.2), namely (13.5.1).

Substituting the form (13.5.22) of Bn{u) into (13.5.1) is precisely analogous
to substituting the form (13.5.21) of An(u) into (13.5.2) and (13.5.16). The
result analogous to (13.5.22) is

Cn{u) = c1{u)RAd(u)T-\ (13.5.23)

where CI(M) is a scalar, and T is independent of u.
Similarly, the Cn{u) Dn{v) analogue of (13.5.2) gives

Dn(u) = d^u) TAlk - u) W-1, (13.5.24)

where d\{u) is a scalar, and W is independent of u.
Substituting the forms (13.5.24), (13.5.21) of £>„(«), An{v) into the

Dn{u) An(v) analogue of (13.5.2) gives

Ad(X - u) W^PAlv) = T"(M , v) X"{u - v), (13.5.25)

where t"(u , v) is a scalar factor. Since Ad(u) is diagonal, with element
(1,1) equal to unity, it follows from the (1,1) element of (13.5.25) that
T"(M , v) can be taken to be unity. It is then readily apparent that the
element (r , s) of W~XP satisfies

(W~lP)rs = 0 if txr * as . (13.5.26)

Thus W~lP is a block-diagonal matrix, independent if u.
Post-multiplying P, Q, R, T, W above by constant matrices with this

block-diagonal structure, we can reduce W~lP to the unit matrix, and
(13.5.21)-(13.5.24) to the form

An(u) = fll(u) PAlu)Q ~\ Biu) =biu)QBd{X-u)R-\

\ k-u)p-\ (13.5.27)

where Ad{u), Bd{u), Cd{u), Dd{u) art all diagonal matrices, with elements
given by (13.5.20). For each integer r, the value of ar is the same for all
four matrices, but mr may be different. In every case cx\ = 0, mi = 1.

As for the symmetric case, the values of ar and the mr can be obtained
from periodicity conditions and special cases: this will be done in the next
chapter for a restricted hard square model.
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Substituting these forms (13.5.27), (13.5.20) into (13.1.17), we again
obtain the formula (13.5.15) for the magnetization, except that nowm* is
to be replaced by the product of the values of mr for An, Bn, Cn and Dn.

13.6 Inversion Properties: Relation for K(K)

When u = 0 it is apparent from (13.3.9) that

w(a,b,c,d) =psnhA<5(a,c). (13.6.1)

Suppose the boundary conditions are such that s = t= . . . = z and s' =
t' = . . . =y ' . Then from (13.2.1)

(13.6.2)

where $ is the identity matrix and i = 1 , . . . , m - 1. Further from (13.2.3),
(13.6.2) is also true for the boundary matrices Um, l/m+i that occur in
(13.2.4)-(13.2.6). It follows that

^(0) = (psnhA)im<m+1^, (13.6.3a)

and hence from (13.1.14) and (13.1.15) that

An(0) = 3 . (13.6.3b)

Setting u — 0 in the first of the equations (13.5.27), it follows that

G = a1(0)/M,(0), (13.6.4)

and hence that

An(u) = [al(u)/al(0)]PAJiu)A;X0)P~1- (13-6.5)

From (13.5.13), the matrix Ad(u) A2l(0) is diagonal, with elements

\ (13.6.6)

ar being independent of u.
Let 'Kd be the diagonal matrix with entries au a2, a3,. . . , and set

-1. (13.6.7)

Then from (13.6.5) and (13.1.15) it follows that

A{u) = T(M) exp(-u'X), (13.6.8)

where, noting that arcan depend on u,

x(u) = aax{u)lax(Q). (13.6.9)
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As m—* °° we expect a\{u) and 2£ to tend to limits. From (13.4.1), the
partition function per site is therefore

*(«)= lim [T(«)]2/m(m+1\ (13.6.10)
m—> °°

These equations have been derived for the physical values of u, namely
those on the interval (0 , A) of the real axis. For these we expect the various
large-m limits to exist. In particular, we expect that if the diagonal elements
of Ad(u) Aax(0) are arranged in numerically decreasing order, the largest
being normalized to unity, then any given element will tend to a limit as
m—> °°. This means that <x\, oti, 03 , . . . are non-negative and that 'K is
non-negative definite.

However, it seems that these equations can be extended to small negative
values of u, and that the resulting values of K{U) are those obtained by
analytically continuing the function from positive values.

[For u negative, this K(U) is not that given by (13.1.4). This is because
the order of the eigenvalues of exp(-u'St) is reversed and it is now the
smallest eigenvalue that is normalised to unity, instead of the largest.]

Suppose therefore that (13.6.8) is true for sufficiently small values of u,
positive or negative. Then obviously

A(U)A(-U) = T(U)T(-U)3> . (13.6.11)

This result can be obtained directly. From (13.3.9) it is readily established
that

^w(u\a,b,a',d)w(-u\a',b,c,d) = g(u) <5(a , a ' ) , (13.6.12)
a'

for all spins a,b,c,d and all complex numbers w, where

g(u) = p(u) p(-«) (snh2 A - snh2 u), (13.6.13)

and for generality I now allow the normalization factor p in (13.3.9) to be
some given function of u (but k and A continue to be regarded as constants).

From (13.6.12) and (13.2.1) it follows that

U(u) U(-u)=g(u) 3. (13.6.14)

This is true for i = 2 , . . . , m - 1 and also for lfm, provided s is fixed.
It is not true for lF£+\ defined in (13.2.3b), but without doing violence to
the boundary conditions this diagonal matrix can be replaced by one for
which it is true. Since we are supposing that s =t= . . . - z and s' =t' =
. . . = / , from (13.2.4)-(13.2.6) it follows that

A(u)A(-u) = [g(u)]^m + 1)3> , (13.6.15)
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which is of the same form as the previous result (13.6.11). Comparing
them, we obtain

r(u)r(-u) = [g(u)]^m + 1\ (13.6.16)

Taking \m{m + 1) roots in this equation, using (13.6.10) and (13.6.13),
gives

K(U)K(-U) = p(w)p(-w)[snh2A- snh2u]. (13.6.17a)

A similar equation can be obtained by rotating the lattice through 90°.
From (13.3.13) this is equivalent to replacing the functions K(U), p(u) by
JC(A - u), p(k - u), respectively: (13.6.17a) then gives

K(U) K(2X -U) = p{u) p(2A - u) [snh2A - snh2(A - u)]. (13.6.17b)

Let us set

p = p(u) = p'tfeiiX) 0(i«) 0(rA - iu) , (13.6.18)

where p' is a constant. This ensures that the parametrization (13.3.9) of
the Boltzmann weights is the same as (10.4.24) (with p replaced by p'),
and that the weights are entire functions of u. Using the formula (15.4.19),
(13.6.17) becomes

K(U) K(-U) = p'2h{k - u) h{l + u), (13.6.19a)

K(U) K(2X -U) = p'2h{u)h(2K - u), (13.6.19b)

where h(u) is denned by (10.5.16), i.e.

h(u) = -i 0(0) H(iu) ®{iu). (13.6.20)

We have in fact already encountered the second equation (13.6.19).
From (13.1.5), (10.8.46) and (10.4.23), the function A(v) in Chapter 10
is related to K(U) by

A(v) = {K[i(^+v)]}N, (13.6.21)

where ./V is the number of columns in the lattice of Chapter 10. Replacing
u in the second equation (13.6.19) by J(A + v), and taking Mh powers, the
equation becomes

A(v) A(2A - v) = <p{k + v) 0(3A - v), (13.6.22)

where the function <p{v) is defined by (10.5.24). However, this is precisely
the relation (10.8.43).

The relations (13.6.19) are therefore certainly true for the eight-vertex
model, which gives me greater confidence in the assumptions used to derive
them. Analogous relations have been used by Stroganov (1979) for two
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special cases of the '81-vertex' model, and yet others will be used in the
next chapter for a modified hard squares model.

More generally, for any IRF model we can always define an 'inverse'
weight function w such that

^w(a,b,f,d)w(f,b,c,d)=dia,c), (13.6.23)

for all spins a, b, c, d. Define £/,• by (13.2.1), with w replaced by w. Then
(13.6.23) implies

UjJi = 3> , (13.6.24)

for i = 2 , . . . , m. Write *: as a function JC[H>] of w. Define K\W] as the
analytic continuation from w to w. Then one can use arguments similar to
those above to establish that

K[W] 4W] = 1. (13.6.25)

[Probably the simplest way is to consider the diagonal-to-diagonal transfer
matrix (U1U3U5. . . UN-i) (U2U4U6. . . UN). Then K can be defined as the
Mh root of the eigenvalue whose corresponding eigenvector has no negative
entries. Inverting each Ut inverts all the eigenvalues, and hence inverts
K.]

This equation (13.6.25) is the generalization of (13.6.17a). The gener-
alization of (13.6.17b) is obtained by rotating the lattice through 90°, i.e.
by using the NW to SE inverse of w, instead of the NE to SW inverse w.

In the next section it will be shown for the eight-vertex model that
(13.6.17), together with some simple analyticity and periodicity properties,
determines the function K(U), and hence the free energy. It is fascinating
to speculate whether (13.6.25) does the same for any IRF model, e.g. the
Ising model in a magnetic field. Unfortunately it seems that K is then a
much more complicated function and that (13.6.25), while true, is no
longer sufficient to determine K.

13.7 Eight-Vertex Model

Free Energy

Let us use the definition (13.6.18) of p{u) and regard p' as a constant.
Then the parametrization (13.3.9) of the Boltzmann weights is the same
as that in (10.4.24), but with p therein replaced by p'. If (13.3.14) and
(13.3.15) are satisfied, then the system is in an ordered ferromagnetic
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phase. We can therefore use the results of Section 10.8 to obtain the free
energy, and hence K(U). From (13.6.15) and (10.8.44),

where q, x, z are given by (10.4.23), (10.7.9) and (10.7.18), i.e.

q = exp{-nl'll), x = exp{-nkl2I), z=x~l exp(-nu/I). (13.7.2)

Since p', k, A are regarded as constants, so are q and x. The parameter
z varies with u. From the result (13.7.1) it can be seen that

In K(U) = analytic in a domain containing the vertical
strip 0 =s Re(u) =£ A, periodic of period 2il. (13.7.3)

These analyticity and periodicity properties, together with the 'inversion'
relations (13.6.17), actually define K(U).

To see this, note that (13.7.3) implies that In K(U), regarded as a function
of z, is analytic in the annulus x =£z =£ x'1. It therefore has a Laurent
expansion which converges in a domain containing this annulus, i.e. there
exist coefficients cn, independent of z and u, such that

oo

In K(U) = 2 cnz", x^z^x-1. (13.7.4)

Also, from (10.8.6),

In h(u) = In y + nulll - 2 xnzn/n(l - qn), (13.7.5)
n¥0

where the sum is over all integer values of n, positive or negative but not
zero, and u must lie in the strip 0 <Re(w) < /'.

The equations (13.6.17) are equivalent to (13.6.19). Take logarithms of
both sides of (13.6.19a). There exists a strip about the imaginary axis in
the complex u plane inside which all functions can be expanded by using
(13.7.4) or (13.7.5). This gives

= 2 ln(p'y/x) - 2 (x3n + qnx~n) zn/n(l - qn). (13.7.6a)

In both sums n runs from — °o to °°, but n = 0 is excluded in the second.
Similarly, (13.6.19b) gives

= 2 \n(p'y/x) - 2 (*" + qn
X-3")zn/n(l - q"), (13.7.6b)

n ¥0
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for a vertical strip about Re(u) = A. Equating coefficients of z" in (13.7.6a)
and (13.7.6b), the resulting equations can be solved for cn to give

c0 = ln(py/x), (13.7.7)

cn = c_B = -(x3n + qnx~n)/[n(l + xln) (1 - qn)] torn ¥ 0.

Substituting these expressions into (13.7.4) gives the result (13.7.1) of
Chapter 10.

The analyticity and periodicity properties (13.7.3) could have been
guessed from low-temperature series expansions, and K(U) then obtained
by the above reasoning. Provided one is prepared to make these initial
assumptions, this method is undoubtedly the simplest way yet known for
evaluating K(U), and hence for obtaining the free energy of the eight-vertex
model.

Magnetization

The ground state of the ordered ferromagnetic phase can be taken to be
the configuration in which all spins have value ±1. Since w(a ,b,c,d) is
symmetric with respect to interchange of a and c, or b and d, it follows
that the corner transfer matrices A, B, C, D are symmetric and that
C = A and D = B. This case has been discussed in (13.5.4)-(13.5.15).
From (13.5.10) and (13.5.5).

An(u) = Cn(u) = P-lAd(u) Plaiu) , (13.7.8)

Bn{u) = Dn(u) = P-xAd{k - u) PlaiX - u).

The matrix Aa(u) is diagonal, with elements of the form (13.5.13), where
m\ = \ and <x\ = 0. From (13.6.3b) it follows that mr = 1 for all r, so the
diagonal elements of Ad(u) are

(13.7.9)

The <X\, oci , . . . are constants, independent of u.
The Boltzmann weights (13.3.9) are periodic functions of u, of period

MI. There seems to be no problem in extending the reasoning of Section
13.5 to all complex numbers u in the vertical strip 0 < Re(«) < k (if we
look at low-temperature series expansions, u only enters them via integer
or half-integer powers of the z in (13.7.2)). This implies that Ad{u) is also
periodic of period MI, so from (13.7.9) it follows that

[Ad(«)]rr = exp(-mirulll), (13.7.10)

where n1; n2 , • • • are integers.
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These integers can be obtained by considering the case when k—* 0 while
XIF and u remain fixed. The first and third weights in (13.3.9) then remain
comparable with one another, while the other two become relatively
negligible. From (15.1.6) and (13.7.2),

w(a,b ,a,b)

w(a,b, -a, -b)-*0, (13.7.11)

w(a ,b,a, -b) -*ipx'1 exp(-mi/2I),

w{a ,b,—a,b)—*0.

From (13.2.1) and (13.2.3), the matrices £/, are therefore diagonal, with
entries

1 exp[-jtu(l - ai_1oj+1)/4/], (13.7.12)

for i = 2 , . . . , m + 1, where am+i and am+2 are to be given the ground
state value of +1. From (13.2.4)-(13.2.6), the matrix A is also diagonal,
so Ad{u) is obtained by normalizing this matrix to have maximum element
unity. This gives

m + l

[Adiu)]a,o = txp^-mi S (i - 1) (1 - ffi-iffi+i)/4/] . (13.7.13)

Comparing this with the general formula (13.7.10), and replacing the
single index r by the multiple index a ={o\, 02, • • • , om}, we see that

m + l

« , = lE ( i - l ) ( l - o i _ i o > + i ) . (13.7.14)
1=2

It follows that (13.7.13) is true throughout the ferromagnetic ordered
phase, in the limit of m large. By this I mean that if we consider the rth
largest diagonal element of Ad(u) (for u positive), and let m-* °° while
keeping r fixed, then this element tends to a limit, and this limit is given
by (13.7.13). If a is the spin set corresponding to this rth largest element,
then there must be an integer /, independent of m, such that

o i = + l for i>j. (13.7.15)

It is convenient to introduce a new set of spins fJi , . . . , ^, by

Hi = OiOi+2, i=l,...,m, (13.5.16)

(taking <ym+1 = om+2 = +1 as before). Then Ad{u) is a diagonal matrix
whose rows and columns are labelled by \i ={\i\,. . . , fim}, and whose
diagonal entries are



13.7 EIGHT-VERTEX MODEL 389

(13.7.17)

Also, since O\ = frfofo . . . , the 5 in (13.1.13) is diagonal and has entries

S^ = fi^3fi5... . (13.7.18)

The matrices Ad(u) and S are now direct products of two by two matrices.
Set

(13.7.19)

Then, using (13.7.

Ad(u) =

Bd(u) =

s = (xzf --

t = (x/z)»

.8) and (13.1

Cd(u) = (

(1 0\
0Vo - i /

= exp(-mi/2I),

• 1 6 ) ,

0\

5/

>

/ I ON

VO h

G
G

1 ® I

>

t2/

C c
VO - 1

'2/]

/ I

VO

/I

Vo

) €

0

0

I3
(13.7.20)

These equations are true only in the limit m —* », when there are
infinitely many terms in each of the direct products. I first conjectured
them in 1976 (Baxter, 1976), but could not then prove them.

Substituting them into (13.1.17) gives
oo

<<*> = II (1 - *4"~2)/(l + * 4 r e ~ 2 ) , (13.7.21)

which is the formula (10.10.9) for the spontaneous magnetization of the
eight-vertex model. We have therefore established this result, originally
conjectured by Barber and Baxter (1973).

This reasoning does not easily generalize to the spontaneous polarization:
the formula (10.10.24) is still a conjecture.

13.8 Equations for the CTMs

In this section I return to the general IRF model of Sections 13.1 and 13.2,
and show that there are equations which relate K and the CTMs, and in
principle determine them. They have not so far proved particularly useful
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for exactly solvable models, but they have been used very successfully to
obtain high-order series expansions (Baxter and Enting, 1979; Baxter et
al., 1980) and good numerical approximations (Baxter, 1968; Kelland,
1976; Tsang, 1979; Baxter and Tsang, 1980).

Define

A * = optt'uopuu'u <3fiyy'z

3 4 • • • m + 1 (13.8.1)

A * * ~ cfiuu'v QLyy'z

Then from (13.2.5) and (13.2.6),
A - &2 A , A - J-3 A , (13.8.2)

G&Ss't — G&SS't TJ

For simplicity, suppose that the ground state is translation invariant, so
that s, t, u , . . . and s', t' , . . . are all equal. (This is not essential, but
for a non-translation invariant system we must keep track of the boundary
conditions appropriate to the various corner transfer matrices, and this
complicates the notation.) Then eliminating 3F2 and S^ between the equa-
tions (13.8.2) gives

A = A* (A**)'1 U2A* . (13.8.3)

These A* and A** are themselves corner transfer matrices, only with
the spins shifted and m reduced. In fact

(A*)ai...Om\ot...om = <5(CTI , o[) AO2...Om]a2...am , (13.8.4a)

a'2)Aa,..aM...am (13.8.4b)

where the A on the RHS of (13.8.4a) is defined by (13.1.8) with m replaced
by m - 1, and the A in (13.8.4b) has m replaced by m — 2.

Let us refer to the lattice quadrant in Fig. 13.1(b) as being of size 'm by
m'. Then (13.8.3) defines A for an m by m quadrant in terms of its values
for m - 1 by m - 1 and m - 2 by m - 2 quadrants. It is a recursion relation.

There are of course analogous recursion relations for B, C and D,
obtained from (13.8.3) by rotating the lattice successively through 90°
intervals.

Recursion Relation for Ad, Bd, Cd, Dd

We are interested in calculating the diagonal forms^4rf, Bd, Cd, Dd . There
are at least two reasons for this: for those models which have been solved
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exactly, the diagonal forms have a very simple structure, e.g. (13.7.20);
for other models only approximate calculations can be performed. In such
approximations the corner transfer matrices must be truncated to man-
ageable size. As will be discussed at the end of this section, it seems that
a very good way to do this is to work with the diagonal forms of the
matrices.

Rather than calculate the original CTMs A, B, C, D from (13.8.3) and
its analogues, and then use (13.1.15) and (13.1.16) to obtain
Ad,Bd,Cd,Dd, we can make the substitutions (13.1.15) and (13.1.16)
directly into (13.8.3).

First let us establish some notation. For any 2m~1 by 2m~x matrix X,
with elements Xq, define a 2m by 2m matrix X*, with elements

XilM = d(ai,ai)Xll. (13.8.5a)

Here the rows of X* are labelled by the double index (CTI , /) the columns
by (o[,/). In obvious notations we can write

(0 x ) , (13.8.5b)

e\ being the unit two-by-two matrix.
Similarly, for any 2m"2 by 2"1"2 matrix X, define a 2m by 2m matrix X**

by

, (f2) Xq, (13.8.6a)

i.e.

X** = el<8>e2®X = (13.8.6b)

These definitions are consistent with the equations (13.8.4) for A* and
A**, being the obvious generalizations thereof.

Let P*, Q*, Ad be so defined, using the matrices P, Q, Ad appropriate
to the m — 1 by m - 1 lattice quadrants. Similarly, define P**, Q**, Ad*
in terms of the m — 2 by m — 2 quadrants. Let xm = aa*, where a, a1 are
the scalar factors in (13.1.15) and (13.1.16), evaluated for an m by m
quadrant. Then substituting (13.1.15) and (13.1.16) into (13.8.3), using
(13.8.4)-(13.8.6), we obtain

KPrAdQ7l=At, (13.8.7)
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where

Al=AS(Q?yl(Ar)~1u2prAs, (13.8.8)

pr = (p*ylp, Qr = (Q*y1Q,

P* = (P**y^P*y Q?=(G**)".1e*. (13.8.9)

K=Tmrm-2/4,-i. (13.8.10)

All matrices in (13.8.7)-(13.8.10) are of dimension 2m by 2m. We have
used the fact that P is of the block-diagonal form (13.1.13), so that P**
commutes with C/2. The suffix r can be regarded as standing for 'ratio', and
t for 'total calculated corner transfer matrix'.

To understand this last remark, note that (13.8.7) is one of four relations
which can be obtained from it by rotating the lattice through 90° intervals.
This cyclicly permutes A, B, C, D and P, Q, R, T. The four equations are

KRrCdT7l = C,, KTrDdP;1 = Dt. (13.8.11)

These equations are precisely of the form (13.1.16). Since Ad, Bd, Cd,
Dd are the diagonalized CTMs of the m by m lattice quadrants, it follows
that A,, Bt, C,, D, are also allowed representations of these CTMs. They
are not in general diagonal, but appear to be 'more diagonal' than the
original CTMs A, B, C, D: for instance, there seems to be no problem
with the convergence of the relevant matrix products in the infinite-lattice
limits. Since A, is related to A by

A, oc {P*)lA Q* , (13.8.12)

we can regard A, as a 'partially diagonalized' form of A.
Suppose we have evaluated the 2m~1 by 2"1'1 matrices Ad, Bd, Cd, Dd,

Pr, Qr, Rr, Tr appropriate to m - 1 by m - 1 quadrants, and the 2m~2 by
2m~2 matrices Ad, Bd, Cd, Dd appropriate to m - 2 by m - 2 quadrants.
Then the definitions (13.8.5) and (13.8.6) give the 2m by 2m matrices
Ad,P*, Q*,Ad* in (13.8.8), so we can evaluate A,. Similarly, using the
rotation analogues of (13.8.8), we can evaluate B,, C,, Dt. The equations
(13.8.11) can then be solved for the 2m by 2m matrices Ad, Bd, Cd, Dd,
Pr, Qr, Rr, Tr appropriate to m by m lattice quadrants.

(There is still some freedom, notably in the normalization of the column
vectors of Pr, Qr, Rr, Tr, but in any given example there is usually an
obvious sensible choice of such factors. For instance, the simplest case is
that of an isotropic reflection-symmetric model, when A = B = C = D is
symmetric. We can then choose Pr= Qr = Rr= Tr to be orthogonal, and
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Ad = Bd - Cd = Dd to have maximum eigenvalue unity. It is helpful to
keep this simple case in mind.)

Also, for large m we expect the ex1 in (13.1.16) to tend to a limit, so
from (13.4.1) it follows that xm = K

im<m+1), where ic is the partition function
per site. The definitions (13.4.1) and (13.8.10) of/care therefore equivalent.

We can therefore use the equations (13.8.8) and (13,8.11) to calculate
K and Ad, Bd, Cd, Dd, Pr, Qn Rr, Tr recursively for successively larger
values of m.

Truncated Equations

Let us consider in a little more detail how we would solve (13.8.11), given
At, B,, C,, D,. Multiplying gives

K*PrAdBdCdDdP7l =A,B,CtDt. (13.8.13)

Thus one has to diagonalize A,B,C,Dt: f^AdBdCdDd is the diagonal matrix
of eigenvalues (*r4 being the largest), and Pr is the matrix whose columns
are the right-eigenvectors. Also, if Ps, Qs, Rs, Ts are the inverses of Pr,
Qr, Rr, Tr, respectively, then Ps is the matrix whose rows are the left-
eigenvectors of AtB,C,Dt. Similar results for Qr,. . . , Ts can be obtained
by cyclically permuting A, B, C, D, and the definition (13.8.8) of A, can
be written as

A, = A*dQt{Aryl U2PfA*d . (13.8.14)

If one keeps all such eigenvalues and eigenvectors, then the diagonal
matrices Ad, Bd, Cd, Dd double in size at each recursion. However, we
expect these to tend to infinite-dimensional limits. This is in the sense given
in Section 13.4, namely that if their diagonal elements are arranged in
numerically decreasing order, then any given such element (e.g. the 6th
largest) should tend to a limit.

This suggests a self-consistent truncation of the equations, namely to
keep only the larger half of the eigenvalues of A,B,CtD,, and the corre-
sponding right- and left-eigenvectors. This means that we are solving the
equations

KPrAd = A,Qr, (13.8.15a)

KAdQs = PsAt, (13.8.15b)

QsQr=$, (13.8.16)

together with (13.8.14) and their rotated analogues.
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If the number of eigenvalues thereby kept is n, then it follows from
(13.8.5) and (13.8.14)-(13.8.16) that the dimensions of the various matrices
are as follows:

Ad:nXn; Al:2nx2n; A$*:An x An;

A,:2nx2n; Pr:2nXn; Qs:nx2n;

P*: An x 2n; Q*: 2n x An; U2: AnxAn; (13.8.17)

and the dimensions are unchanged by cyclically permuting A, B,C,D and
P, Q, R, T.

From (13.8.14), the matrices At, B,, Ch D, are block-diagonal of the
form (13.1.13). The diagonal elements of Ad (and of Bd,Cd, Dd) therefore
fall into two sets: those from the block with S = +1, and those from the
block with S = - 1 . Label the elements i = 1 , . . . , n, and let £• = +1 (-1)
if the element comes from the S = +1 (-1) block. Then using (13.2.1), the
elements of the various matrices can be written as:

(Ad)i\j = fl,-6(i,/) ; (AS)aui\auj = ciid(oi

{Pr)aui\i =
(13.8.18)

, 01)8(02

Here the row- and column-indices are usually compound, and a vertical
bar is used to separate them; e.g. P* has row-index (o\ , 02 , i) , and
column-index {&\,/). The extra factors a,/a; and a/ai are introduced for
later convenience.

The matrix equations (13.8.14)-(13-816), together with their rotated
analogues, are now finite-dimensional. Given a reasonable initial guess at the
solution, they can be solved iteratively by calculating A,, B,, Ct, D,
from (13.8.14) and its analogues, then diagonalizing A,BtC,Dt and selecting
the n largest eigenvalues (and the corresponding eigenvectors) to obtain
the K, Ad, Bd, Cd , Dd, Pr, Qr, Rr, Tr, Ps, Qs, Rs, Ts in (13.8.15) and its
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analogues. The equation (13.8.16) is then just a normalization condition
on the various eigenvectors.

Once a solution is obtained for a given value of n, then selecting the
n + 1 largest eigenvalues of A,BtC,Dt gives an initial guess for the next
value of n. Thus one can in principle solve the equations systematically for
n =1,2, 3 , . . . , at any rate for sufficiently low temperatures, when the
iterative procedure converges and the initial guesses are quite good.

Accuracy of a Given Truncation

The equations (13.8.14)—(13.8.16) cannot usually be solved analytically,
but for finite n they can be solved numerically on a computer, or they can
be used to obtain a low-temperature series expansion of the solution. In
the latter case, one expands K and all the matrix elements in powers of
some low-temperature variable x.

Of course, for any finite value of n the resulting K, Ad, etc. do not have
their true infinite lattice values, but we do expect them to converge thereto
as n-* oo.

It is therefore of interest to estimate the relative error in K that is caused
by using a finite-n truncation. Fortunately there seems to be a simple way
of estimating this.

Note from (13.1.11) and (13.1.17) that a significant variable is

Pi = Trace AdBdCdDd. (13.8.19)

The n eigenvalues of AdBdCdDd are contained in the 2« eigenvalues of
K~*AtBtC,Dt, and the largest of each is unity. Let

A = largest eigenvalue of K~4A,B,CtDt

omitted from AdBdCdDd. (13.8.20)

Then in some sense this A is a measure of the relative error in px caused
by truncating the equations to finite n. Since (cxi) is a derivative of In K and
from (13.1.17) is proportional to pu this suggests that

relative error in K — A . (13.8.21)

Of course this is a great over-simplification, since omitting one eigenvalue
affects all the other eigenvalues, and indeed all matrix elements. However,
in actual numerical calculations (13.8.21) seems in fact to be true (Tsang,
1979; Baxter and Tsang, 1980; Baxter, Enting and Tsang, 1980).

Further, in those series expansion calculations which have been per-
formed (Baxter and Enting, 1979; Baxter et al., 1980), it has always been
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found that if A~ xP, where p is some positive integer, then the relative
error in K is also of order xp.

This means that quite long series expansions can be obtained from quite
small values of n. For instance, from (13.7.20) and (13.7.19), for the
zero-field eight-vertex model,

\ / I 0 \ / I 0 \

where x is a parameter that is small at low temperatures, so can be used
as the low-temperature expansion variable.

From (13.8.22), the first 14 eigenvalues of AdBdCdDd, in numerically
decreasing order, are

i V2 V4 V6 V6 V8 V8 v10 v10 v10 V12 V12 12 v 12 /-i o o <?o\
I, X , X ,X , X , X , X , X ,X ,X ,X ,X ,X ,X . {IJ.O.6J)

Keeping the first three of these, the largest eigenvalue omitted is of
order x6. Thus even the n = 3 truncation gives K correctly to order x5. Then
n = 10 truncation gives K to order xn.

There are other examples for which the eigenvalues decrease still more
rapidly: for the hard squares model, Baxter et al. (1980) were able to
obtain the first 43 terms in the low-density expansion of K, using only 13
by 13 matrices.

Variational Principle

The truncated equations (13.8.14)—(13.8.16) are in fact equivalent to a
variational approximation for K.

To see this, use the explicit forms (13.8.18) of the various matrices. Then
(13.8.14) becomes

a;/oi) = 2 w(£,-, £k , £,, ox) qika^kj. (13.8.24)

k

Using this, (13.8.15) and (13.8.16) become

j = 2 H>(£,- , £ * . & , Cj) qikdkPkibiqij, (13.8.25a)

2 (£* , Ci, £y, ^dPik^kiiPij, (13.8.25b)

if 6 = § . (13.8.26)
A:

The three rotated analogues of these equations can be obtained by
cyclically permuting a, b, c, d, and p, q, r, t, and the four arguments of
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the function w. The first such analogue of (13.8.25b) is

K afijbj = 2 w(& , & , £ , , $) qikakfkibiqij. (13.8.27)

Comparing this with (13.8.25a), and using the analogous comparisons, it
is apparent that the equations permit solutions such that

?ij = Pa, Uj = qtj, pij = nj, qy = Uj- (13.8.28)

They then simplify to

2 tikakbkqkj = aJ>,S(i, j) if fi = § , (13.8.29)

2 w(& ,&,&, $) tikakpk,b,qij = KOiPijbj. (13.8.30)
kl

In both of these equations, / and / are integers from 1 to n. The first is true
only if t; = £,-, the second is true for all / and /.

It is useful to introduce an obvious new matrix notation. Let a be the
n by n diagonal matrix with elements a, <5(/,;'), p the n by n matrix with
elements p,y, etc. Then (13.8.29) and (13.8.30) become

(tabq),y = (ab),y if £ = Cy, (13.8.31a)

2 = ic (apb),y. (13.8.31b)

These equations, and their rotated analogues, can be derived from a
variational principal. Define

Px = Trace abed ,

P2 = Trace abqcdt, H3 8 32^

P2 = Trace bcrdap ,

Pi = 2 w(£,, £y, Ct, C;) Uj (&pb)jkqki (crd)ft-,

and consider the quantity

(13.8.33)

Differentiating KV logarithmically with respect to any element of
a , . . . , t, we find that the derivative vanishes if (13.8.31) are satisfied,
together with their rotated analogues. Further, from (13.8.31) it is readily
verified that px = pz = Pi =K~1PS, so

KV = K. (13.8.34)
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We therefore have a variational principle for the partition function per
site K: K is the stationary value of KV. This is exact in the limit of n large,
and a good approximation even for quite small n.

The equations (13.8.31)-(13.8.34) can be obtained (at least for suffic-
iently symmetric systems) from a variational approximation to the maxi-
mum eigenvalue of the row-to-row transfer matrix V. This is the way they
were originally derived (Baxter, 1968; Kelland, 1976; Baxter, 1978c).

Matrices a, b, c, d not Necessarily Diagonal

The equations (13.8.31) are formally unchanged by the transformation

(13.8.35)

where a, fi, y, 8 are any non-singular matrices that are block-diagonal in
the sense that their elements (i, j) are non-zero only if £, = £,. If the rows
and columns of the various matrices are arranged so that £,• = +1 for i =
1, . . . , n', and £,• = -1 for i = n' + 1 ,. . . , n, then it follows that a, /8,
y, 5 have the form

(13.8.36)

a—*

c—*

P~»

r—»

8aa\ I

per1, t
apa"1, c

yry1 , t

>-^ab/81 ,
1-^ydS1 ,

l^pqP1,

-» S t S 1 ,

the top-left block being n' by n", the lower-right being n - n' by n - n'.
The transformation (13.8.35) therefore destroys the strict diagonality of

a, b, c, d, but they remain block-diagonal of the form (13.8.36). (This is
actually equivalent to dropping the original requirement that Ad, Bd, Q,
Dd be diagonal, but still insisting that they be of the form (13.1.13).)

It can in fact be useful to work in a representation in which a, b, c, d
are non-diagonal. In particular, in series calculations it is inconvenient to
insist that a, b, c, d be completely diagonal, since this can introduce
irrational coefficients. It is better to require merely that they be block-
diagonal, all elements within a block having (to leading order) the same
power-law dependence on the expansion variable x, and any element (i ,j)
being zero if £, # £,.
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Graphical Interpretation

The equations (13.8.31) can be interpreted graphically. Consider the first
lattice quadrant shown in Fig. 13.7. Regard i as denoting the spins on the
left-hand edge, and £,- as being the top such spin. Similarly, let / denote
the spins on the upper edge, and £, the left-hand such spin. Let a^ be the

Fig. 13.7. Lattice segments and their corresponding partition functions, or total
weights. The i and j denote all the spins on the corresponding edges.

element (i,/) of the matrix a. Since a is no longer necessarily diagonal,
ay can be non-zero if i + j, but

Bj-*0 only if £,•=£/• (13.8.37)

Since £, and £, both denote the top-left spin, they must be equal. Regard
a,y as the 'total weight' of the lattice quadrant.

More generally, regard a#, b^, c,y, d,y,p,y, qtj, rtj, fy as weights of the cor-
responding lattice segments in Fig. 13.7, where in every case £, is the spin
at the circled end of the edge labelled i, and similarly for £,.

Now consider the composite lattice segment shown on the left of Fig.
13.8. This consists of four pieces, with 'weights' tik, aw, bim, qmi. Summing
over all the spins internal to this composite segment is equivalent to
summing over k,l,m, remembering that £fc = £/ = £m is the spin on the site
denoted by the solid circle. But this simply gives (tabq),y, so this is the
total 'weight' of the left-hand figure in Fig. 13.8.

Similarly, the weight of the right-hand figure is (ab),y, so (13.8.31a) is
represented graphically by Fig. 13.8(a).
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(a)

= K

(b)

Fig. 13.8. Graphical representation of equations (13.8.31a) and (13.8.31b). Each
figure represents its total weight, which is given by multiplying the segment weights

(e.g. tabq) and summing over spins on internal lines.

Also, remembering that w is the Boltzmann weight of a square face of
the lattice, (13.8.31b) is represented by Fig. 13.8(b). For infinitely large
lattice segments these graphical equations have an obvious meaning: the
partition function of a semi-infinite lattice is unchanged, apart from a
normalization factor, by adding an extra column to the lattice; and this
factor is independent of the choice of the spins on the left-hand edge.

The quantities p\, p$, P2, pz are the weights of the composite lattice
shown in Fig. 13.9, so the variational principle (13.8.33) can be interpreted
graphically as indicated.

Since KV is stationary with respect to small perturbations of ay ,. . . , %
from their exact values, (13.8.33) should give reasonably good approxi-
mations to K even with quite simple choices of at)••,. . . , tq. An obvious
choice is to take them to be the exact Boltzmann weights of finite lattice
segments. If each long edge in Fig. 13.7 is taken to have r sites, then from
(13.8.34) and Fig. 13.9 an approximation to K is

„_ 7 7 „ l(7_ , „ y. „ ,i fi-j e i.s\
j \ —~ £-t2.r 1 2 r l ^ v 2 r 2 /7 \ ^ J 2 r — 1 2 r i ' ^ / 2 / ' 2 r — 1 / ? iijfOf JU^

c

d

q

t

b

a

c

r

d

q

w

t

b

P

a

c

r

d

b

P

a

Fig. 13.9. Graphical representation of the variational principle (13.8.33)
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where Zmn is the partition function of a rectangular lattice of m rows and
n columns. Appropriate boundary conditions should be applied: at low
temperatures the boundary spins can be fixed at their ground-state values.

For a given size of the matrices a ,. . . , t, this approximation is nothing
like as good as can be obtained by solving (13.8.31) and (13.8.32) exactly.
Even so, it is moderately satisfactory, and has been discussed by Enting
and Baxter (1977).

Throughout this section I have supposed that the ground state is trans-
lation invariant. If it is not, and the translation invariance is spontaneously
broken, then one must define several corner transfer matrices A and a:
one for every distinct position of the corner relative to the grpund-state
spin configuration of the infinite lattice. Similarly for the matrices B, C,
D,b,...,t

The equations (13.8.31) can be extended to other planar lattices, notably
the triangular lattice (Baxter and Tsang, 1980). (In some ways this is a
simplification, since the equations are of lower degree.)

They can also be extended to three dimensions: one obvious way being
to write down the generalization of Fig. 13.9, which will involve a cube
sliced into 27 pieces by 6 cuts! Unfortunately the resulting equations are
quite complicated and involve 'corner tensors' with three indices, There
is no analogue of matrix diagonalization for these tensors, and as yet the
equations have not been investigated.
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HARD HEXAGON AND RELATED MODELS

14.1 Historical Background and Principal Results

From an historical point of view, an excellent example of the use of corner
transfer matrices is provided by the hard hexagon model. This is a two-
dimensional lattice model of a gas of hard (i.e. non-overlapping) molecules.
In it, particles are placed on the sites of the triangular lattice so that no
two particles are together or adjacent. A typical allowed arrangement of
particles is shown in Fig. 14.1. If we regard each particle as the centre of
a hexagon covering the six adjacent faces (such hexagons are shown shaded
in Fig. 14.1), then the rule only allows hexagons that do not overlap: hence
the name of the model.

For a lattice of N sites, the grand-partition function is
A/73

Z=£z"g(n,A/), (14.1.1)
n = 0

where g{n , N) is the allowed number of ways of placing n particles on the
lattice, and the sum is over all possible values of n. (Since no more than
1/3 of the sites can be occupied, n takes values from 0 to N/3.) We want
to calculate Z, or rather the partition-function per site of the infinite lattice

*:= lim Z1W (14.1.2)
Af->°=

as a function of the positive real variable z. This z is known as the 'activity'.
This problem can be put into 'spin'-type language by associating with

each site i a variable o;. However, instead of letting ot take values +1 and
— 1, let it take the values 0 and 1: if the site is empty, then cr, = 0; if it is
full then a, = 1. Thus ot is the number of particles at site i: the 'occupation

402
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Fig. 14.1. A typical arrangement of particles (black circles) on the triangular lattice,
such that no two particles are together or adjacent. The six faces round each particle

are shaded: they form non-overlapping (i.e. "hard") hexagons.

number'. Then (14.1.1) can be written as

— ^ (I"***), (14.1.3)

where the product is over all edges (i ,;) of the triangular lattice, and the
sum is over all values (0 and 1) of all the occupation numbers
O\,.. . , aN.

This form of Z is very similar to the Ising model partition function
(1.8.2). In fact it was shown in Section 1.9 that the general nearest-
neighbour Ising model in a field is equivalent to the lattice gas with
nearest-neighbour interactions. The hard hexagon model is a limiting
special case of the latter.

We expect this model to undergo a phase transition from an homogeneous
fluid state at low activity z to an inhomogeneous solid state at high
activity z.

To see this, divide the lattice into three sub-lattices 1, 2,3, so that no
two sites of the same type are adjacent, as in Fig. 14.2. Then there are

Fig. 14.2. The three sub-lattices of the triangular lattice: sub-lattice 1 consists of
all sites of type 1, and similarly for sub-lattices 2 and 3. Adjacent sites lie on
different sub-lattices, a close-packed arrangement of particles (black circles) is
shown: all sites of one sub-lattice (in this case sub-lattice 1) are occupied, the rest

are empty.
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three possible close-packed configurations of particles on the lattice: either
all sites of type 1 are occupied, or all sites of type 2, or all sites of type 3.

Suppose we fix the boundary sites as in the first possibility, i.e. all
boundary sites of type 1 are full, and all other boundary sites are empty.
Then for an infinite lattice the second and third possibilities give a negligible
contribution to the sum-over-states in (14.1.3).

Clearly, sites on different sub-lattices are no longer equivalent. Let pr

be the local density at a site of type r, i.e., using (1.4.4),

pr = (a,) = Zl 2 a , z ^ - ^ IT (1 - oflj), (14.1.4)

where / is a site of type r.
When z is infinite, the system is close-packed with all sites of type 1

occupied, so p\ = 1, p2 = P3 = 0. We can expand each pr in inverse powers
of z by considering successive perturbations of the close-packed state. For
a site / deep inside a large lattice, this gives

Pl = 1 - z~l - 5z~2 - 34z~3 - 267z"4 - 2037z"5 - . . .

P2 = p3 = z'2+ 9z'3 + 80z"4 + 965z"5 +

The system is therefore not homogeneous, since p\, pi, ft, are not all
equal. This contrasts with the low-activity situation: starting from the state
with all sites empty and successively introducing particles, we obtain

Pi = ft = P3 = z-lz2+ 58z3 - 519z4 + 4856z5 - . . . (14.1.6)

To all orders in this expansion it is true that pi = ft = ft.
The system is therefore inhomogeneous for sufficiently large z, and

homogeneous for sufficiently small z. [Assuming the series converge: pre-
sumably a proof of this can be constructed using arguments similar to
Peierls (1936).] There must be a critical value zc of z above which the
system ceases to be homogeneous. Since the homogeneous phase is typical
of a fluid, and the ordered inhomogeneous phase is typical of a solid, the
model can be said to undergo a fluid - solid transition at z = zc.

Two related quantities of interest are the mean density

P = (Pi + Pi + Ps)/3 = z(d/dz) In* , (14.1.7)

and the order parameter

R = P1-P2 = P1-P3- (14.1.8)

Note that R is by definition zero for z =s zc. For z > zc we expect it to be
positive.
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Numerical Calculations

Several approximate numerical calculations were made of this model before
it was solved exactly (Baxter, 1980). They are interesting in that they led
to the exact solution.

Runnels and Combs (1966) calculated the maximum eigenvalue of the
transfer matrix for lattices of finite widths. By extrapolating to an infinite
width lattice they estimated zc = 11.12 ± 0.1.

Gaunt (1967) developed the series expansions (14.1.5) and (14.1.6)
to orders z~5, z8, respectively. From these he estimated

zc = 11.05 ±0.15. (14.1.9a)

He also observed that K(Z) appeared to have only two singularities in the
complex z-plane, at z = zc and at z = zNP, where NP stands for 'non-
physical' and

zNP = -0.0900 ± 0.0003 (14.1.9b)

He speculated that zc and zNP might be the two roots of some simple
quadratic equation, so he formed their sum and product, giving

zc + zNP = 10.96 ±0.15, (14.1.10)

zczNP =-0.995 ±0.014.

Gaunt then conjectured that these numbers might be exactly 11 and — 1,
respectively, in which case zc is given by

z ? - l l z c - l = 0 , zc = i( l l + 5 V5) = 11.09017... (14.1.11)

Unfortunately he did not publish this conjecture. This was a pity, since we
shall see that it is exactly correct.

Metcalf and Yang (1978) did some more finite width lattice calculations
for the special case z = 1. They found that to four-figure accuracy

In K = 0.3333 (14.1.12)

and conjectured that hue was exactly 1/3.
Baxter and Tsang (1979) also looked at the case z = 1, but used the

truncated corner transfer matrix equations (13.8.31), modified appropri-
ately for the triangular lattice. We argued that since z < zc, the CTM
method should converge rapidly and give good numerical results. The
results were indeed very encouraging for the CTM method: truncating the
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matrices to 2 x 2, 3 x 3, 5 x 5, 7 x 7 and 10 x 10 gave

In tc = 0.333 050 ,

0.333 242657,

0.333 242721958,

0.333 2427219761,

0.333 2427219761,
respectively.

(14.1.13)

Table 14.1. The corner transfer matrix eigenvalues ax,. . . aw, for the hard hexagon
model with z = 1. The values are approximate, being calculated from finite
truncations of the triangular lattice analogue of the matrix equation (13.8.31).
The eigenvalues occur in groups of comparable magnitude, and it is sensible to
include all members of a group. For this reason the truncations used are 2 x 2 ,
3 x 3,5 x 5,7 x 7andlO x 10. Each a, is given for successively larger truncations,
and clearly each is tending rapidly to a limit. This limit is its exact value for the
infinite-dimensional corner transfer matrix.

i

1
2
3
4
5
6
7
8
9
10

r
Si

2 x 2

0 1.0
1 0.7603903
0
0
1
0
1
0
0
1

3x3

1.0
0.7608436

-0.2548910

a,

5x5

1.0
0.7608440

-0.2549635
0.06499191
0.04944546

7X7

1.0
0.7608440

-0.2549636
0.6500641
0.4945972

-0.01657025
-0.01260704

10 x 10

1.0
0.7608440

-0.2549636
0.06500641
0.04945974

-0.01657427
-0.01261043
0.004225773
0.004224830
0.003214313

Obviously Metcalf and Yang's conjecture was wrong, but some fasci-
nating properties were emerging. In Table 14.1 are given the values of the
eigenvalues a, of the corner transfer matrix A, normalized so that the
largest is unity, for each truncation.

These eigenvalues divide naturally into two classes, corresponding to the
two diagonal blocks in (13.8.36). One of these blocks corresponds to the
corner site being empty, the other to it being full. Let £,• = 0 if a, comes
from the former block, and £, = 1 if a, comes from the latter. The values
of £, are shown in Table 14.1.
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In Table 14.2 are given the values of aia^al, a\ail(a2al), a\a(Ja\ and
aifl7/(a2fl3). It appears that these quantities are tending towards one as the
matrices became larger. This is consistent with the assertion that in the
limit of infinitely large matrices (which is when the equations are exact)

a, = «(£,) x"' for i 2* 1, (14.1.14)

where

x = fla/a! (14.1.15)

and n, is a non-negative integer.

a4a\

07/(020-

Table

D

14.2 Values of 04/03, etc.,

5 x 5

0.999 777 067
0.999 711 560

for successively larger

7 X 7

0.999 999 853
0.999 999 539
0.999 757 797
0.999 730 684

truncations.

10

0.999
0.999
0.999
0.999

x 10

999 999
999 999
999 849
999 592

The reason this was fascinating is that the corresponding a, of the eight-
vertex model are all integer powers of some variable x, or s, as in (13.7.20).
If the hard-hexagon model has a similar property, then perhaps it also can
be solved exactly.

Dr Tsang therefore repeated the calculations for 2 = 0.7, and I used a
series-expansion computer program to expand partially the first few a* in
powers of 2 (for small 2) and of 2"1 (for large 2). Again our results were
fully consistent with (14.1.14).

Exact Solution

Indeed, at this stage it was not difficult to guess the exact solution for the
functions K(Z) and R(z). Defining x as in (14.1.15), I expanded 2 to order
30 in a power series in x (for z<zc). Guided by the eight-vertex model
results, I then put this expansion into the form

Y[{l-xn)c", (14.1.16)
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and found that

C!,. . . , c» = 5, - 5 , - 5 , 5, 0, 5, -S , - 5 , 5, 0,

5 , - 5 , - 5 , 5 , 0 , 5 , - 5 , - 5 , 5 , 0 ,

5, - 5 , - 5 , 5,0,5, - 5 , - 5 , 5 . (14.1.17)

It was then not hard to guess that

z = -x[H(x)/G(x)]5, (14.1.18)

where

Gw=n[(i-*5""4)(i-*5""i)]~i,
" = 1 (14.1.19)

H(x) = l\[(l-x5n-3)(l-x5n'2)]-1.
n = \

The same computer run gave K to order 29 in x. Writing it as a product
like (14.1.16), it was not quite so obvious, but still very plausible, to guess
that to all orders

_ H \ x ) < 2 V ) fr (1 - x 6 " - ' ) (1 - * 6 " - 3 ) 2 ( l - x 6 " - 2 ) n 4 1 9 m
K M ^Az">

where
oo

G O O = n (i - *") • (14.1.21)

These infinite products are of the type that occur in the elliptic theta
functions (15.1.5). For large z, I computed z, K, R only to relative order
9 in their x- expansions. Even so, this was enough to suggest that these
functions could be written in terms of similar theta function products,
namely

z = x-1[G(x)/H(x)]5, (14.1.22)

t- ^^ ^ I I I 1 4 1 XT I

n. \X) « = 1 \y X )

R = Q(x) Q(x5)/Q2(x3) (14.1.24)

As x decreases from 0 to —1, the z in (14.1.18) increased from 0 to zc,
where zc is given by (14.1.11). Also, as x increases from 0 to +1, the z in
(14.1.22) decreases from °° to zc. This suggests that the guesses (14.1.18)
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and (14.1.20) apply throughout the fluid phase 0 < z < zc (with
0>x> -1 ) , while (14.1.22)-(14.1.24) apply throughout the solid phase
z> zc (with 0 < ; E < 1). The guesses also agree with Gaunt's conjecture
(14.1.11) for the position of the critical point.

Having guessed the exact answer, the next step was to look for a way
of deriving it. This calculation is given in Sections 14.2-14.7, and itself
uses corner transfer matrices. It is not mathematically rigorous, in that
certain analyticity properties of K are assumed, and the results of Chapter
13 (which depend on assuming that various large-lattice limits can be
interchanged) are used. However, I believe that these assumptions, and
therefore (14.1.18)-(14.1.24), are in fact correct.

14.2 Hard Square Model with Diagonal Interactions

As is shown in Section 10.4, the first step in the solution of the eight-vertex
model had been to set up a class of commuting row-to-row transfer matrices.
Guided by this, I looked for lattice models whose transfer matrices com-
muted with that of the hard hexagon model. This led me to draw the
triangular lattice as in Fig. 14.3(a). The hard hexagon model then becomes
a square lattice model, in which nearest-neighbour sites, and next-nearest
neighbour sites on NW- SE diagonals, cannot be simultaneously occupied.

I then generalized this model to one in which nearest-neighbour sites
cannot be simultaneously occupied, and diagonally adjacent particles inter-
act. This is a special case of the IRF model of Chapter 13: the partition
function is given by (13.1.2), where each ot takes the values 0 or 1, and

w(a,b,c,d)=mz^a+b+c+d)"eLac+mdra+b-c+

(14.2.1)

= 0 otherwise .

( a ) ( b )

Fig. 14.3. (a) The triangular lattice, drawn as a square lattice with one set of
diagonals, (b) The diagonals associated with the interaction coefficients L, M in

(14.2.1).
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Here a, b,c, d each take values 0 and 1; m is a trivial normalization factor;
t cancels out of the partition function; L and M are diagonal interaction
coefficients, as indicated in Fig. 14.3(b); z is the activity. The hard hexagon
model is regained by taking m = 1, L = 0 and M = - » .

Star - Triangle Relation

Consider two such models, one with weight function w, the other with
weight function w'. As is shown in Section 13.3, their row-to-row transfer
matrices will commute if there exists a third function w" such that the
star-triangle relation (13.3.6) is satisfied, for all values 0, 1 of a, a', a",
b, b', b". Take w' (tv") to be given by (14.2.1), with z, L, M, t replaced
by z', L', M', t' (z" , L" , M" , f). For convenience, interchange L' and
M', invert t', and define

s = (zz'z")V(tt ' t").

Then (13.3.6) reduces to just seven distinct equations, namely

(z' z")* = s + i

(z" z)' = s + j

(zz')' = s +.'

z(z'z")k eM = s2 +

z'(z"z)leM' = s2 +

z"(z z'f eM" = s3 +
_ ,i ,11 OM + M' + M" _ J i
£,£&. C — o ~T

f 2 e L ,

i2 eL",

.3 PL' + V

s3eL"+L,

s3eL+L',

s*eL+L' + L",

which for the moment we shall refer to simply as (a)-(g).
ei'(a)-ez-(b) gives the simple corollary

(z '*e L ' - z*e t )z^ = («

Multiplying (c), (f), (g), by s, s~\ s~l

equations are homogeneous and linear in

z"J, s, s2, s3eL\

sL'-eL)s.

(14.2.2)

(14.2.3a)

(14.2.3b)

(14.2.3c)

(14.2.3d)

(14.2.3e)

(14.2.3f)

(14.2.3g)

Forming

(14.2.3h)

, respectively, we see that the
the five expressions

(14.2.4)

with coefficients that are independent of s, z", L", M".
For any five equations (or four equations not involving M"), the deter-

minant of these coefficients must vanish: requiring this is equvalent to
eliminating s, z", L", M" between the equations. Doing this, we are left
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with the three equations

A,- = AJ, i = 1,2,3 , (14.2.5)

where

(14.2.6)

A3 = z-*(e-L + e"M - e~L'M - z eL+M),

and A{, A2, A3 are defined similarly, z, L, M being replaced by z', L', M'.
[The equations (a), (b), (d), (e) give A! =A{ ; (h), (c), (d), (e) give

A2 =A2 ; (h), (d), (e), (f), (g) give A3 = A£.J
The three equations (14.2.5) are a sufficient condition for the star-

triangle relation (14.2.3) to have a solution for s, z", L", M". A corollary
of (14.2.6) is

A!A2 - 1 = (A3 - Ai - A2) z
J eL+M . (14.2.7)

Suppose Ai, A2, A3, are given: normally (14.2.7) will then define
z*exp(L + M). The first equation (14.2.6) then gives z*, and the second
gives L and M. It follows that in general the only solutions of (14.2.5) are
z', L', M' = z, M, L or z, L, M: these are not very interesting or useful,
since they imply merely that the transfer matrix commutes with itself and
its transpose.

However, suppose Ai, A2, A3 satisfy the constraints

A2 = Af1, A3 = Ai + Af1 (14.2.8)

Then (14.2.7) no longer defines z*exp(L + Af), so (14.2.6) has infinitely
many solutions for z, L, M. The transfer matrices corresponding to these
solutions all commute.

From (14.2.6) the constraints (14.2.8) are both satisfied if

z = (1 - e~L) (1 - e~M)/(eL+M - eL - e M ) . (14.2.9)

Set A = Ai, i.e.
A = z - i ( l - z e t + M ) . (14.2.10)

If two models differ in their values of z, L, M, but have the same value
of A and both satisfy (14.2.9), then their transfer matrices commute.

Note that (14.2.9) is satisfied for all z in the limit L-» 0 and M-+ - °° ,
which is the hard hexagon model. It is not so satisfied if L, M—> 0, which
is the hard square model. Indeed, numerical solutions by Baxter et al.
(1980) give no indication for hard squares of any simple property like
(14.1.14) for the eigenvalues of the corner transfer matrix.
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Elliptic Function Parametrization

Eliminating z between (14.2.9) and (14.2.10) gives

A - 2 tL + M = (eL _ ! ) ( « , « _ ! ) (£L + M _ eL _ gM) (14.2.11)

Given A, this is a symmetric biquadratic relation between eL and eM. As
is shown in Section 15.10, such a relation can be parametrized in terms of
elliptic functions, the general form being

eL = <p(v), cM=<t>{v-X), (14.2.12)

where the function (p(v) is defined by

<t>{v) = %H(v + a) H(v - a)l[H{v + b) H(v - b)]. (14.2.13)

Here H(v) is the elliptic theta function of argument v and modulus k, as
defined by (15.1.5); k, A, £, a, b are constants. (We have replaced the
symbols u, I, t], A, /j, of Section 15.10 by v, k, A, a, b, and have chosen the
lower sign in (15.10.14).)

From (15.2.3), <p(v) is periodic of periods 2/ and 2H', i.e.

<p{v + 21) = <p(v + 2H') = (j)(-v) = (p(v) (14.2.14)

where / and /' are the complete elliptic integrals of the first kind of moduli
k and k' = (1 - A:2)*, respectively.

[Given L, it follows that the first equation (14.2.12) has many solutions
for v, obtainable from one another by incrementing v by integer multiples
of 2/ and 2H, and possible negating. However, all of these still give only
two distinct solutions for eM in (14.2.12): this is correct, since (14.2.11) is
quadratic in this variable.]

Let vo be a value of v for which eL = 1. Then from (14.2.12) and
(14.2.13),

I = H(v0 + b) H(v0 - b)l[H{v0 + a) H(v0 - a)]. (14.2.15)

From this and (14.2.14), it follows that (j)(v) - 1 vanishes when v =
Vo + 2ml + 2inl', so it contains a factor H(v - v0). Since it is even, it also
contains a factor H(v + v0). Arguing as at the end of Section 15.3, or
simply applying the identity (15.3.10), it follows that

eL - 1 = <p{v) - 1
H(a + b)H(a-b) H(v + v0) H(v - v0)
H(a + vo)H(a - v0)H(v + b)H(v -b) ' K '' '

To relate A, a, b, v0, consider some special values of L and M. If
eL = 1, then (14.2.11) gives eM = 0 or °o. From (14.2.16), v is either v0
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or -VQ- Associating these values of eM and v, respectively, it follows from
(14.2.12) and (14.2.13) that we can choose

a = vo-X, b=-vo-X. (14.2.17)

If eL = 0°, then (14.2.11) gives both solutions for eM to be 1, while
(14.2.12) gives v = b or -b. The RHS of (14.2.16) must therefore vanish
for v = —X ± b, and this gives the extra condition

H(2X + 2v0) = 0 . (14.2.18)

The general solution of this is vo= -X + ml + inl', where m and n are
integers. However, simultaneously incrementing v, v0, a, —b by ml + inl'
leaves cf)(v) and <p(v — A) unchanged, so without loss of generality we can
choose

vo=-X. (14.2.19)

Substituting these forms of eL and eM back into (14.2.11) [using (14.2.12)
on the LHS, (14.2.16) on the RHS], we obtain the relation

A-2/^(A) //2(3A) H{p + 2A) H(v - 3A)///4(2A)

= //4(2A) H{v + A) H(v - 2A) - H\k) H%3X) H(v) H(v - A). (14.2.20)

This has to be an identity, true for all complex numbers v. Setting
v = 3A and v = 0 gives

H{X) #3(3A) = H\2X) H{AX), (14.2.21)

A'2 = /^(2A)/[H5(A) //3(3A)]. (14.2.22)

These conditions ensure that the ratio of the RHS of (14.2.20) to the
LHS is an entire doubly periodic function of v, equal to one when v = 0.
From Liouville's theorem the ratio is therefore equal to one for all complex
numbers v, and the identity is established.

Setting u, v, x, y = 0, A, 2A, 3A in (15.3.10), we obtain the identity

H\2X) H{4X) - H(X) H\3X) = H\X) H(5X) , (14.2.23)

so the condition (14.2.21) is equivalent to

H\X) H (5A) = 0 • (14.2.24)

The solutions A = 2ml + 2inF (where m, n are integers) of this equation
are spurious, since from (14.2.12) and (14.2.14) they imply that eL = eM.
It follows that

A = (2m/ + 2inI')/5 , (14.2.25)

where m and n are integers, not both divisible by 5.
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We can choose A to have any of these values. From now on let us take

A = 2//5 . (14.2.26)

(Other choices merely lead to related parametrizations; for instance A =
2*775 is equivalent to using elliptic functions of conjugate modulus.)

Rather than work with the variable v and the elliptic theta function
H(v), it is convenient in this chapter to transform to the variable

w = JIV/21 (14.2.27)
and the function

oo

dy(u , q2) = sin M I I (1 - 2 q2n cos 2M + q*n) (1 - q2n)
n = l

= H{v)l{2qh). (14.2.28)

(This notation is non-standard: the usual elliptic 6\ function contains the
factor 2qK Since 6\ enters our equations only via ratios of the form
6i(u , q2)/di(u' , q2), this factor is irrelevant. It is convenient to remove it
here, since we shall sometimes want q2 to be negative: our present definition
ensures that 0i(u , q2) then remains real.)

Using this definition to replace the functions H in (14.2.13), (14.2.15),
(14.2.22) by 6\, and writing 6\{u , q2) simply as 0i(w), we finally obtain the
parametrization

<14-229)

iW »'&)}'• <»•»<»
where we have used the identity 6i(u) = 6i(jt — u). From (14.2.9) it follows
that

z = tf(f) flfoO flf(f - «)/[ tf(0 et(f + «)] • (14.2.31)
We can use this parametrization to explicitly solve the full set of star -

triangle relations (14.2.3). Let L', M', z' be given by (14.2.29) and
(14.2.31), with u replaced by u'. Similarly, let L", M", z" by obtained by
replacing u by u". Take q2 to be the same throughout. Then all the equations
(14.2.3) are satisified, provided only that

u + u' + u" = JT/5 , (14.2.32)
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( 1 4 - 2 3 3 )

Regions in the L, M Plane

We are interested in values of L and M such that z, as given by (14.2.9),
is positive. These values lie in the unshaded regions in Fig. 14.4, the shaded
regions corresponding to negative values of z.

M

VI

= 8TT/5

= - T T / O

Fig. 14.4. The six regimes in the (L, M) plane, as listed in (14.2.37). Shaded areas
are unphysical, since (14.2.9) gives z therein to be negative. Regimes I, III, V are
disordered, II and VI have triangular ordering, IV has square ordering. The system
is critical on the (I, II), (III, IV) and (V, VI) boundaries, where |A| = Ac. the

values of u on the (L, M) axes are indicated.

We can regard (14.2.29) as a mapping from the variables L, M to the
variables q2, u. This is rather like a transformation from Cartesian to polar
coordinates: q2 increases from — 1 to +1 as we go out radially from the
origin through an unshaded region, while u increases as we move anti-
clockwise round the origin. The three cases -a/5 < M < 0 , 0 < M < n/5, and
JT/5<U<2JT/5 correspond respectively to the unshaded parts of the
lower-right, upper right and upper-left quadrants.

We therefore take L, M to satisfy the restriction

z>0 (14.2.34)
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where z is given by (14.2.9). We also take q2 and u to satisfy

-Kq2<l, -JZI5<U<2TCI5. (14.2.35)

The mapping from (L , M) to (q2, u) is then one-to-one.
When q = 0 it is obvious from (14.2.28) and (14.2.30) that A = ±AC,

where

Ac=[sin(f)/sin(f)]5

(14.2.36)

We shall need to distinguish the cases when q2 > 0 from those when
q2 < 0. This leads us to divide the unshaded areas in Fig. 14.4 into six
regions:

I: A > Ac, q
1 < 0, -a/5 < u < 0 ,

II: 0 < A < Ac, q2 > 0, -a/5 <u<0,

III: - A c < A < 0 , q2>0, 0<u<a/5, (14 2 37)

IV:A<-AO q2<0, 0<u<n/5,

V: A > Ac, q2 < 0, n/5 < u < 2n/5 ,

VI: 0 < A < Ac, q2> 0, a/5<u< 2a/5 .

Regions V and VI differ from I and II only in the interchange of L and
M. This is equivalent to merely rotating the lattice through 90°, so without
loss of generality we hereinafter consider only regimes I, II, III and IV.

We can classify these regions as disordered or ordered by considering
the following limits:

I: L-*0,Mfinite: z,A'l^0.

II: L, -Af-^+oo: z - e x p ( - L - M ) ; A-*0 .

III:L,M-^+oo : z - e x p ( - L - M ) ; - A - > 0 .

IV: 2-^ +oo, Land M finite: - A " 1 - ^ .

In these limits the dominant contribution to the partition function comes
from the following states, respectively:

I. the vacuum.
II: a state such as that shown in Fig. 14.5(a), in which every third site

is occupied. Forming a triangular lattice by adding diagonals as in
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Fig. 14.3, this state becomes that of Fig. 14.2. There are three such
states, corresponding to occupying any one of the three sub-lattices
of the triangular lattice.

Ill: the vacuum.
IV: a close packed square-lattice state such as that shown in Fig. 14.5(b),

in which every second site is occupied. There are two such states.

I 1

—1

t

°2

1

"3 °4

(

( » (

ff2

- <

°3

(

(a) (b)

Fig. 14.5. (a) Typical ground-state in regime II, (b) in regime IV. Solid circles
denote particles. The other ground states can be obtained by uniform translations,
giving three ground-states of type (a), two of type (b). If we add diagonals to the
lattice as in Fig. 14.3.(a), then the particles in (a) occupy one of the three sub-
lattices of the resulting triangular lattice. We therefore refer to (a) as 'triangular
ordering', (b) as 'square ordering'.

The heavy lines divide each lattice into four quadrants, corresponding as in Fig.
13.2 to the corner transfer matrices A, B, C, D (the shape of the outer boundary
has been changed: this is irrelevant in the thermodynamic limit). The &i, (h, <h,. . .
in (14.4.26) are the ground-state values of the o\, Oi, 03,. . . in the figures, so both

figures correspond to taking k = 2 in (14.5.1).

The states in II and IV are ordered, in that the translation invariance
of the lattice is spontaneously broken. We expect this to persist for finite
values of L, M, z sufficiently close to the appropriate limits.

More strongly, we shall calculate the order parameter R given by (14.1.8).
It is zero in regimes I and III, positive in regimes II and IV. Thus I and
III are disordered regimes, while II and IV are ordered.

We shall also find that R vanishes on the boundary between regimes I
and II, and between III and IV, and that the free energy is singular across
this boundary. The system is therefore critical on this boundary, i.e., when
q2 = 0 and A = ±AC.
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Boltzmann Weights

From (14.2.1), the Boltzmann weights of the allowed spin configurations
around a face are:

(Oi = w(0 ,0 ,0 ,0) = m ,

<«2 = w ( l , 0 , 0 , 0 ) = w ( 0 , 0 , 1 , 0 ) =mzir\

co3 = w(0,1,0,0) = w ( 0 , 0 , 0 , 1 ) =mzit, (14.2.38)

co4 = w ( l , 0 , 1 , 0 ) =mzht'2eL,

CD5 = w(0,1,0,1) = mzit2eM.

Using the expressions (14.2.29), (14.2.31) for L, M and z, we can choose
m and t so that

(14.2.39)

The parameters m' and f' are related to the original m and f. They enter
the working rather trivially, the partition function for a lattice of N faces
being proportional to m'N, and independent of t'.

Conjugate Modulus Parametrization

We shall assume and use certain analyticity and periodicity properties of
the partition-function-per-site («•), and of the eigenvalues of the corner
transfer matrices. These properties are most easily expressed and under-
stood by making a 'conjugate modulus' transformation from our variables
qz and u to new variables x and w. [This variable w is not to be confused
with the Boltzmann weight function w{a , b , c, d).]
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We use the relations (15.7.2) and (15.1.5) to write the infinite product
in (14.2.28) in terms of the conjugate name q'. We shall find it convenient
to express the results in terms of the function

/(w , q) = II (1 - qn~lw) (1 - q"w~l) (1 - q") (14.2.40)
n - l

Basically this is merely another way of writing the elliptic theta function.
A useful symmetry property is

f{w,q)=f{qw-\q). (14.2.41)

We shall sometimes write f(w , q) simply as f{w), the particular nome q
being understood.

If q2 is positive we can convert (14.2.28) directly from (15.7.2a). If it is
negative we first split the product in (14.2.28) into terms with n even and
with n odd, and then use (15.7.2a) and (15.7.2d). This gives the identities

u , *") = *(*f)' «p[f - g
(14.2.42)

Let us define parameters x, w, a as follows:

I and IV ( - l < $ 2 < 0 ) : ^ 2 =-exp( -e )

x = -exp(—j&IS e), w = exp(2jr«/e) (14.2.43)

II and III (0 < q2 < 1): q2 = exp(-e)

x = exp(-4^2/5e), w =

Then by using the identities (14.2.42) in (14.2.30) and (14.2.39), we can
define m' and t' so that

I and IV (-1 < x < 0):

A"2 = -x[f(x)/f(x2)]5, ^ = f{xw)lf(x),

a>i = <xr-\-x?f{w)l[f(x)f{x2)]\ o>3 = r/(^V)//(^2) , (14.2.44a)

ft>4 = r2 wf{xw-l)lf(x), o)5
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II and HI (0 < x < 1):

A"2 = x - W ) / / « ] 5 , «i = f(x2w)/f(x2),

0)2 = ar-lx^f{w)l[f{x)f(x2)}\ a)3 = rf{xw-l)lf{x), (14.2.44b)

co4 = r'2 wf(x2w-x)lf{x2), co5 = r2w-lf(xw)/f(x).

Here/(w) = f(w , x1) is the function defined by (14.2.40), with q therein
replaced by x5. The parameter r is proportional to t', and is at our disposal;
a = ±1 is chosen to ensure that a>2 is positive.

From (14.2.33) and (14.2.39), it follows that

I: l>w>x2; II: Kw<x~1; (14.2.45)

III: \>w>x; IV: \<w<x~2;

IandHI: a= +1; IlandIV: a=-l. (14.2.46)

One advantage of this parametrization is that x is small in the limit of
extreme order or disorder. This means that the infinite product in the
definition (14.2.40) of f(w,x5) is rapidly convergent, and it is easy to
compare our results with high-density or low-density series expansions.

14.3 Free Energy

To recapitulate, the parametrization (14.2.44) comes from solving the
star - triangle relation (13.3.6). If two models have the same value of x,
but different values of u and r, then their row-to-row transfer matrices
commute. The Boltzmann weights are entire functions of u.

These properties are very similar to those of the eight-vertex model
(Section 10.4). Further, we put (14.2.3) into a symmetric form by inter-
changing L' and AT, which from (14.2.29) is equivalent to replacing u' by
(flr/5) - u'. If we had not done this, then (14.2.32) would have been

u' = u + u". (14.3.1)

This is the same equation as (13.3.10). It follows that (13.3.16) and
(13.5.16)-(13.5.27), with A replaced by Jt/5, are valid for this model.

We now seek to calculate the free energy by the matrix-inversion trick
given in Section 13.6. To do this we need analogues of the eight-vertex
model equations (13.6.17a), (13.6.17b) and (13.7.3).
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First Inversion Relation

Define the single-face transfer matrix £/, as in (13.2.1), where the Boltzmann
weights w(a,b,c,d) are given by (14.2.38). Restrict the spin-set o =
{o\,. . . , om} to take only values in which no two adjacent spins are both
unity. This restriction corresponds to ignoring forbidden spin configurations
and can be written as

= 0 fori= 1 ,2 , . . . ,m - 1 . (14.3.2)

Restrict & ={o[,. . . , (fm} similarly. Then for m = 3 there are five allowed
values of a and &, namely {0 ,0 , 0}, {0 ,0 ,1}, {0 , 1 , 0}, { 1 , 0 , 0}, and
{1 ,0 ,1} . With this ordering, U2 is the five-by-five matrix

U2 =

/ 0)\

' 0

Oh

0

\°

0

O)3

0

0

0

oh

0

O)4

0

0

0

0

0

0)3

0

0

0

0

0

0

0 \

, /

(14.3.3)

(From now on we restrict all transfer matrices to act only between
allowed states of a line of spins, i.e. states satisfying the restriction (14.3.2).
This reduces the size of the matrices. This reduction is peculiar to the
generalized hard-hexagon model, and is connected with its solvability,
since it reduces the number of conditions implicit in the star - triangle
relation (13.3.7).)

Clearly U2 can be arranged as a block-diagonal matrix consisting of the
blocks

(14.3.4)

3 and 2 =£ i =e m - 1. It

(14.3.5)

and define £/,• in the same way as (/,, but with o>!,. . . , 0)5 replaced by
o>i,. . . , 0)5, then

UiUi = 3, (14.3.6)
where 3 is the identity matrix.

U>2 O)4

More generally, so can any matrix I/,, for m
follows that if we define

d>i =

d Y , =

0)5 =

0>4/(0>i0

« * \

» 4 ~ 0)2), ri>2 =

0) 4 =

- O ) 2 / ( « l O ) 4

O)i/(O)iO)4 -

- f t>2 2 )

O)i),
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From the definition (14.2.40) of f(x , q), with q = x5, we can establish
the identity

wf(x2w)f(x2/w) xf\w) _wf(xw)f(x/w)
f(x2) f{x) f{x2) f\x) • KM-i-')

(The proof is similar to that of (15.3.10): take the ratio of the LHS to the
RHS, and regard this as a function of w; show that it is analytic for 0 <
| w| <°°, and is unchanged by replacing w by x5w; it is therefore bounded,
and by a simple generalization of Liouville's theorem it is therefore a
constant; setting w = 1 gives this constant to be unity.)

The Boltzmann weights (Oj (for i = 1 , . . . , 5) are defined by (14.2.44)
as functions of r and w (regarding x a s a given constant), so we can write
them as «;(r, w). Substituting these definitions into (14.3.5) and using the
identity (14.3.7), we find that

( b i = % o ) i { r - l , w - 1 ) , i = l , . . . , 5 , (14.3.8)

where the factor £ is given by

I and IV: % = fix2)l\fix2w)fix2lw)] ( 1 4 . 3 . 9 )

II and III: § = f\x)l\fixw) fixlw)].

Thus replacing a>x,..., to^ by a)\,..., u>5 is equivalent to inverting r and
w in (14.2.44), and multiplying each weight by §.

Obviously we can now regard each matrix Ut as a function of r and w.
Since £/,- is linear in the weights a>i,. . . , co5, (14.3.8) implies that Ut =
ZUiir1, w"1). The relation (14.3.6) therefore gives

§ Utir, w) Uiir1, w'1) = 3-. (14.3.10)

This is a relation satisfied by the face transfer matrices U2,Us,...,
defined as functions of r and w by (13.2.1), (14.2.38) and (14.2.44). In fact
it is the inversion relation (13.6.24). Define *: to be the Mh root of the
eigenvalue of the diagonal-to-diagonal transfer matrix (C/if/3.. . U^-i)
x(U2U4. . . UN), choosing the eigenvalue corresponding to the eigenvector
with all entries non-negative. Then it is easily seen that K is independent
of r (changing r is merely equivalent to a diagonal similarity transformation
on the transfer matrix). It is still a function of w, and it follows from
(14.3.10) that it satisfies

ZKiw)Kiw~1) = l. (14.3.11)

This is the 'inversion' relation (13.6.25). When w has the 'physical' values
in (14.2.45), then the Boltzmann weights a>i,. . . co5 are all positive and
K is the partition-function per site, as in (13.1.4). For other values of w
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(notably those obtained by passing through the point w = 1), it seems that
this K is the analytic continuation of the 'physical' K(W).

Second Inversion Relation

The inversion relation (14.3.11) and (14.3.12) is the analogue of the
eight-vertex model relation (13.6.17a). We still need the analogue of
(13.6.17b). This is a second inversion relation, obtained by working in the
SE-NW direction, instead of the SW-NE.

Remember that w(o;, q•, ak, ai) is the Boltzmann weight of the intra-
face interactions between spins on sites i, j, k, I, where i, j, k, I are arranged
as in Fig. 13.1(a). Clearly, rotating the lattice through 90° is equivalent to
replacing w(a ,b ,c ,d) by w(b ,c ,d ,a). From (14.2.40) this is in turn
equivalent to interchanging o>i with 0)3, and <w4 with <o5.

Let Vt be the SW-NE face transfer matrix. It is given by (13.2.1), with
w(a ,b ,c,d) replaced by w{b,c,d,a). Its inverse Vt can be obtained
similarly to the inverse (7, of £/,•: all we have to do is interchange the suffixes
2 and 3, and the suffixes 4 and 5, in the equation (14.3.5). Doing this and
repeating the working as far as (14.3.10), we obtain

r) Vi(r, w) Vi{rllr, wllw) = 3> , (14.3.12a)

where

vv0 = —x3,x~3l2,x,x~2

in regimes I, II, III, IV, respectively, and

r, = fix)f{xl)rll[\x\fiw) fiwl/w)], (14.3.13)

fix) = fix)/fix2) = Hix)/G(x), (14.3.14)

Gix) and #(*) being defined as in (14.1.19).
Actually, there are an infinite number of relations of the form (14.3.12),

corresponding to multiplying wo by an integer power of x512. The particular
ones given above ensure that w0 is as close as possible to 1, while lying on
the same side of unity as the physical values of w given in (14.2.45).

Just as (14.3.10) implies (14.3.11), so does (14.3.12) imply the relation

) = 1. (14.3.15)
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Analyticity of K(W)

For 'physical' values of w, i.e. those satisfying (14.2.45), the function K(W)
in (14.3.11) and (14.3.15) is the partition function per site (13,1.4). For
other values it seems that it is the analytic continuation of the 'physical'
K(W). More strongly, from series expansions it seems that

lnfw"'' K(W)] = analytic in an annulus

a < | w | < b containing the (14.3.16)

points w - 1 and w = w0.

Here n = 0, 3, 0, i in regimes I, II, III, IV, respectively.
This analyticity property is the analogue of the relation (13.7.3) for the

eight-vertex model. I have not proved it, but it seems to be correct:
arguments in its favour can be deduced from the corner transfer matrix
equations (13.8.31); it also leads to results in regime I that agree with
(14.1.18)-(14.1.20), and hence with the original order 29 hard hexagon
series expansions mentioned in Section 14.1. Hereinafter I shall assume
that (14.3.16) is correct.

Calculation of K(W)

The equations (14.3.11), (14.3.12) and (14.3.16) are the analogues of
(13.6.17a), (13.7.17b) and (13.7.3). Just as the latter set can be solved for
the free energy of the eight-vertex model, so can the former be solved for
the free energy of our generalized hard-hexagon model.

To do this, note that (14.3.16) implies
00

ln[w~/'ic(H')] = 2 cnw
n, (14.3.17)

where the summation is convergent for \w\ in the neighbourhood of 1, and
in the neighbourhood of w0. In the neighbourhood of 1, (14.3.9) and
(14.2.20) give

00

In §= d0 + E dn(w
n + w'n), (14.3.18)

where, for n > 0,

I and IV: d0 = 21n/(x2), dn = (x2n + x3")/[n(l - x5n)] ( 1 4 3 1 9 )

II and III: d0 = 2 lnf(x), dn = (x11 + x4n)/[n(l - x5")].
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Taking logarithms of both sides of (14.3.11), substituting these Laurent
expansions and equating coefficients of powers of w, we obtain

cn + c-n = -dn, n&0. (14.3.20)

Similarly, (14.3.15) gives

cn + wo2nc-n = -d'n - 2nIn w0dn,0 (14.3.21)

where the d'n are the coefficients of the Laurent expansion of In r\ in an
annulus containing the point w = w0. From (14.3.13), (14.2.45) and
(14.2.46), these are given by

di> = \n{iiwrlf{x)f{x2)l\x\}, (14.3.22)

d'n = (l + x5anwo2n)/[an(l -x5an)], n¥0.

The equations (14.3.20) and (14.3.21) can now be solved for the
coefficients cn, giving

c0 = -M>, (14.3.23)

Cn = {wU'n ~ dn)l(l ~ Wl") for* * 0 .

More explicitly, from (14.3.19) and (14.3.22), together with the above
definitions of a and w0, we obtain

c0 = - ln/(*2) in regimes I and IV, (14.3.24a)

= - ln/(*) in regimes II and III,
and, for n # 0,

I: cn=- *2"(1 + xn)/[n(l - x5n)(l + x3n)]

II: c = - xin(l -xn + x2n - x4n)/[n(l - x5n) (1 - x3")]

III: cn = - x\l -xn + x2n)l[n{\ - x5n)] (14.3.24b)

IV: cB = - x4n(l + xn)/[n(l - x5n) (1 + x2n)].

The partition function per site, namely K(W), can now be obtained at
once from (14.3.17), remembering that \i = 0, \. 0, \ in regimes I, II, III,
IV, respectively. The resulting series can be simplified by working with

OJ5), rather than K. Using (14.2.44), we find that

V (xn + xln)(wn - w~n)
I: WcorK/axcos) = - In w - Z ^Tx^)

I I : = i l nH , + 2 ^ 3 ^
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III: In (C»IK/O)4 W5) = 0

n{l+x2n) . (14.3.25)

Taylor expanding the denominators in the summand, summing each
term over n, and using the definition (14.2.40), these results can be written
as

II: = w^fixw'1, x3)/f(xw, x3)

III: = 1

IV: = w'tfixw, xyf(xw~l, x4). (14.3.26)

These product expressions (14.3.26) are valid for all values of w satisfying
(14.2.45), even though the sums in (14.3.25) are not always convergent.
(This lack of convergence is merely due to the fact that <w4 and coi have
zeros at w = x and w — x~l in regimes I and IV, respectively.)

14.4 Sub-Lattice Densities and the Order Parameter R

We can obtain the sub-lattice densities, defined by (14.1.4), by using the
corner transfer matrix methods of Section 13.5. We can then calculate the
order parameter R from (14.1.8).

Diagonal Form of the Corner Transfer Matrices

As we remarked after (14.3.1), the equation (13.3.10) is satisfied by our
parametrization of the generalized hard hexagon model. Regarding An,
Bn,Cn,Dn, as functions of w, we therefore again obtain the product relation
(13.5.1) and its rotated analogues. Again this leads to the relations
(13.5.27), where Ad(u), Bd(u), Cd(u), Dd(u) are all diagonal matrices of
the form (13.5.20), i.e.

(14.4.1)

and similarly for Bd(u), Cd(u), Dd(u). The coefficient a$ is the same for all
four matrices; m; may be different.

We only need to calculate these coefficients aj and m;. This can be done
by considering the case u = 0, by using the inversion property (14.3.12),
and by considering the limit *—» 0; as will now be shown.
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The Case « = 0 and the First Inversion Relation

When u = 0, it is clear from (14.2.43) that w = 1. From (14.2.44) and
(14.2.38), it follows that the Boltzmann weight function (not to be confused
with the variable w) is then

w(a,b,c,d)= r
b+d-tt-c %a,c). (14.4.2)

This in turn implies that when u = 0, then

A = C = An = Cn = L, (14.4.3)

where L is the diagonal matrix with elements

L(tf!, th, • • • \o[, ti, • • •) =rOi ( V i , oi) <X<72, o 9 . . . (14.4.4)

Setting M = 0 in (13.5.27), it follows that

(0) (14.4.5)

All the matrices are block-diagonal, their elements being zero unless
CTi = of. It follows that L commutes with them all. Substituting the expres-
sions (14.4.5) for Q and Tback into (13.5.27), we can re-define the scalar
factors ai(«), b\(u), C\{u), d\{u), and the diagonal matrices Ad(u),
Bd{u), Cd{u), Dd(u), so that

Bn{u)=biu)PBd(k-u)R-\ ( 1 4 4 6)

Cn(u) = Cl(u)RCd{u)R-\ Dn(u) =d1(u)RDd(k-u)p-\

where ai(0) = Ci(0) = 1 and

= Q(0) = L . (14.4.7)

These matrices may depend on the parameter r in (14.2.44), but the
dependence is quite trivial: An(u), Ad(u), Cn{u), Q(M) are all of the form

L x (matrix independent of r); (14.4.8)

Bn(u), Bd(u), Dn(u), Dd{u) are of this form, but with L replaced by L"1;
P and R are independent of r.

The elements of the diagonal matrices Ad(u), Bd(u), Cd(u), Dd{u) are
all of the form (14.4.1), <Xj being the same for all four matrices. Using
(14.4.7) it follows that

[Ad(u)]u = [Cd(u)]u = r°i exp(ajM), (14.4.9)
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where (Xj is independent of both u and r, and s, = 0 or 1, being the value
of Oi for the element (;',;). From (14.4.6), exhibiting explicitly the depend-
ence on r of An and Cn, it follows that

An(r,u)An(r'1, -u) =aiu)ax{-u) 3>, (14.4.10)

Cn(r,u)Cn{r-\ -u) = C I(U)C,(-H) S>.

To within a scalar factor, the inverse of An(r , u) is therefore A«(r^1, - u ) ;
and similarly for Cn.

We could have predicted this inversion property directly from (14.3.10),
using (14.2.43) and the fact that A and C are products of operators [/,-, as
in (13.2.4) and (13.2.5).

The Second Inversion Relation

The operator Vt is defined by (13.2.1), with the Boltzmann weight function
w(a ,b,c,d) replaced by w(b ,c,d,a). This is in turn equivalent to
interchanging u>i with 0*3, and W4 with a>s. The corner transfer matrices B
and D are then given by (13.2.4) and (13.2.5), with each £/, replaced by
Vit using the appropriate boundary spins s, t,. . , y'.

We want to use the second inversion property (14.3.12) to obtain equa-
tions for B and D analogous to (14.4.10), but we have to be careful. For
a start, when u = u0 then w = w0, and it can be seen from (14.3.12b) and
(14.2.44) that only in regimes III and IV is ah, then zero. Thus only in
these regimes is V, (and hence B and D) then diagonal. This means that
we cannot in general construct equations analogous to (14.4.7).

More seriously, consider the particle configuration in Fig. 14.5a. This
is one of the three possible ground-states of the system in regime II (the
other two are obtained by first shifting all particles one site to the right,
and then repeating). The upper-right corner transfer matrix is B, and it
is obvious that in the ground-state limit (x = 0) it is mapping the spin-state

O O I O O I O O I . . .

(on the upper vertical heavy-line segment, starting at the centre) to the
spin-state

O l O O I O O t O O . . .

(on the right horizontal heavy-line segment).
For an infinite system, this effect will persist to non-zero values of x, in

that B will map a vector space T to a vector space °W. Here T is the space
of functions tp{o\, CT2 ,. . .) subject to the condition that

0 3 * — > 1 , ch,k±\—*0 d&k—* <x> ; (14.4.11a)
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while °W is the corresponding space such that

*0 ask-»<x>. (14.4.11b)

Since V and W are distinct, it makes no sense to multiply B by itself.
What we can do is note, using Fig. 14.5a,thatDmaps'WtoT. Remembering
that Bn differs from B only by a scalar factor, and similarly for Dn and D,
from (14.3.12) and (14.2.43) it follows that

Bn(r , u) Dn{rilr, 2u0 - u) <* 3 , (14.4.12)

where u0 is the value of u when w = w0. Substituting the expressions
(14.4.6) for Bn and Dn into this equation, we obtain

Bd{k - u) Dd(X - 2u0 + u) = y(u) L\L ~2, (14.4.13)

where y(u) is a scalar factor and Lo is the value of L when r - r0.
From the remarks following (13.5.27) and (14.4.9), Bd(X — u) and

Dd(X — u) are diagonal matrices whose (J ,/') elements are of the form

[Bd(k - u)]j,f = mjr-'i exp(-^«) , (14.4.14)

[Dd{X - u)]u = mf rsi exp(- OCJU) ,

where the coefficients mj and m'f are independent of r and u. Looking at
the (/,/) element of (14.4.13), and substituting these expressions, we
obtain

mjmf = y(u) r$' exp(2ayiio) (14.4.15)

Clearly y(u) is independent of u, so it can be written simply as y.
In (13.1.17) we expressed the local density (oi) in terms of Ad, Bd, Cd

and Dd. Since this equation was obtained from (13.5.27) and (13.1.12)
(with A ,B ,C , D replaced by their normalized values An , Bn , Cn , £>„),
it follows that the Ad, Bd, Cd, Dd in (13.1.17) are the Ad(u), Bd(X - u),
Q(M) , Dd{X — u) of this section.

(The parameter A plays no role in this section: effectively it is just part
of the notation for Bd and Dd, considered as functions of u.)

We can therefore substitute the expressions (14.4.9) and (14.4.14) for
Ad, Bd, Cd, Dd directly into (13.1.17). Doing this, we find that r and u
cancel out of the resulting expression. (This is as it should be, since we can
use arguments similar to those in (7.10.28)-(7.10.48) to write (CTI) as
fplStpR, where S here is the diagonal operator with elements Oi, and %I>L

and tyR are the left- and right-eigenvectors of the row-to-row transfer matrix
V. This V is defined in (13.3.1): it is independent of r and its eigenvectors
are independent of u. Hence (oi), and all correlations within a single row,
must be independent of r and u.)
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j % mjmf (14.4.16a)

Using (14.4.14), this result can in turn be written as

<<*> = 2 y ? ' exp(2ar,u0) /S rp exp(2a>«0) (14.4.16b)

From (14.4.9) it follows that

<(Ti) = Trace S^( r 0 , «o)/TraceA%r0, u0). (14.4.17)

The Coefficients a,

We still have to calculate the coefficients aj. To do this, we first invoke a
periodicity property, just as we did in obtaining (13.7.10) for the eight-
vertex model.

From (14.2.43) it is apparent that incrementing u by is (or He in regimes
II and III) leaves w unchanged. From (14.2.44) this leaves the Boltzmann
weights, and hence the diagonal matrices Ad, Bd, Cd, Dd, unchanged.
Further, it seems that these matrices are analytic in a vertical strip containing
the points u = 0 and u = u0, so the expressions (14.4.9) and (14.4.14) must
apply throughout this strip. These expressions must therefore be periodic
of period ie (or He), which implies that

I and IV: aj = 2jtn//e, (14.4.18)

II and III: OCJ = -Ann/e,

where each «; is an integer. From (14.4.9), the diagonal elements of
, u) are therefore

, «)],.,=/-%>"'. (14.4.19)

Since the Sj and n; are integers, they can be calculated by considering
any suitable limiting or special case. In particular, consider the case when
x—* 0 while w remains fixed. Then o>i in (14.2.44) tends to zero, so from
(13.2.1) and (14.3.3) the matrices I/, are diagonal. So therefore is A.
Further, from (14.2.43) the Boltzmann weight function is

w(a,b,c,d) =rb+d'2aw"-Tbd8(a,c), (14.4.20)

where
r = 0 in regimes I and IV (14.4.21)

= 1 in regimes II and III.
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Substituting this expression into (13.2.1), it follows that £/, is a diagonal
matrix with elements

{Ui)o,o = rai-i+a<+i-2a>wa>-T<*-M+l (14.4.22)

From (13.2.1)-(13-2.5), for a finite lattice A is given by

A = U2l%Ul..UZ+l, (14.4.23)

where cxm+i and am+2 are to be given their ground-state values. Using
(14.4.22), it follows that the diagonal elements of A are

X vy~I(<7l<I3 + 2<72<74+ •+mamam+2) ( 1 4 4 2 4 X

From (13.1.15) and (14.4.6), the matrices A and Aj differ only by a scalar
factor and a similarity transformation. Both are diagonal, so the similarity
transformation can at worst only re-arrange the diagonal entries.

Let CTi, &i,. . . , CTm+2 be the ground-state values of o i , . . . am+2. Then
it turns out that these values maximize (14.4.24) (with r = 1), so we can
take Ad to be the diagonal matrix with entries

[Ad]o,o = f ( a ) w n ^ , (14.4.25)

where a denotes the spin-set {oi,. . . , am} and

SW = Ol' (14.4.26)

n(o) = 2

Plainly this result is of the expected form (14.4.19), the only difference
being that the index j is replaced by a. Clearly s(o) and n(o) are integers,
so (14.4.25) is valid not just in the limit x—* 0, but for all x (provided we
take the limit m -> «). From (14.4.17) it follows that

{ad = 2 oufrwti** /2 iiOlwln(a) • (14.4.27)
a l a

This is a general formula for the density at a given site (site 1). In
calculating the sum it should be remembered that ax,. .. , am are not
completely arbitrary: they must satisfy the requirement

= 0 for i = 1 , . . . , m . (14.4.28)

As was remarked after (14.3.3), this condition is implicit in the above
working, being built into the definition of the vector spaces on which the
transfer matrices act. It corresponds simply to the fact that no two particles
can be adjacent.
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Symmetries

The corner transfer matrices A, B,C, D satisfy various symmetry relations.
We have not used these in this section but it is helpful to be aware of
them.

From (14.2.38), the Boltzmann weight function satisfies the relations

w(a , b , c, d) = w{c, b , a , d) = w(a , d , c , b) (14.4.29)

These are precisely the relations (13.5.4). They imply that the model is
symmetric with respect to reflection through either diagonal. In regimes
I, III and IV this symmetry is not spontaneously broken (regime IV is
ordered, but from Fig. 14.5(b) it is apparent that each of the ground states
has this symmetry). It follows that

I, III, IV: A=AT=C = CT, B = BT=D = DT. (14.4.30)

The matrices P and R in (14.4.7) are then equal and orthogonal.
The ground states in regime II are indicated in Fig. 14.5(a). It is apparent

that these are symmetric on reflection through the SE-NW diagonal, but
not through every SW-NE diagonal. This means that in general we only
have the relations

II: A=AT, C = CT, B = DT. (14.4.31)

The matrices P and R are orthogonal, but not necessarily equal.
On the other hand, if the centre site lies on the preferred sublattice in

Fig. 14.5(a), then the SW-NE reflection symmetry is in fact preserved
and (14.4.30) still applies: this is the k = 1 case of regime II, as classified
in the next section.

14.5 Explicit Formulae for the Various Cases: the Rogers - Ramanujan
Identities

The sums in (14.4.27) can be evaluated, but there are seven different cases
to consider. One reason for this is that n(o) has a different form in (14.4.26)
depending whether r is 0 or 1. Another reason is the boundary condition
that CTm+i and am+i have their ground state values. In regimes I and III the
ground state is unique:

I and III: ay=0, / = 1,2,3,-•• (14.5.1a)
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In regime IV the system has square ordering, as in Fig. 14.5(b). There
are two ground states:

IV: O2,-+* = l, O2j+k+i = 0, all integers /, (14.5.1b)

where k = 1 for one ground state, and k = 2 for the other. In regime II
the system has the triangular ordering of Fig. 14.5(a), the three ground
states being:

II: 03j+k=l, cfij+k±i = 0, all integers/, (14.5.1c)

where k = 1, 2, 3, for the three ground states, respectively.
To evaluate (14.4.27) we therefore first fix the regime and (if we are in

II or IV) the value of k. We then perform the summations over a =
{o\, Oi,.. . om}, subject to the condition (14.4.28). We find that the sums
converge to limits as m—* °°. The result is the density p, or (in regimes II
and IV) the sub-lattice density pk.

Performing the oi-summation explicity, (14.4.27) can be written as

Pk = <oi> = ^F(1)/[F(O) + rlF(l)], (14.5.2)

where

^ 2 wg"(o) (14.5.3)
7 "<72,"3,...,CTm

and the suffix k j§ redundant in regimes I and III. Our calculations therefore
proceed in three stages: calculate F(Q) and F(l) from (14.5.3); then cal-
culate (oi) from (14.5.2); and (for the ordered regimes) calculate R from
(14.1.8).

Regime I

From (14.4.21) and (14.3.12b):

T = 0, wo = -x\ ri=-x G(x)IH{x), (14.5.4)

where - 1 < x < 0 and G(x), H(x) are defined in (14.1.19). From (14.5.3),
(14.4.26) and (14.5.1a), we have

F(CTO= 2 ^+2"3+3«4+...) (14.5.5)
Ol,O},...,Om

where q -wl = x6. Thus 0 < q < 1.
First consider the ground state, with Oi, ch,,... all zero; then consider

the states with one of them unity; then two of them unity; and so on.
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Taking the limit m—* °° and remembering the restriction (14.4.28), we
obtain

( 1 4 . 5 - 6 )

{\-q){\-q2)---(l-qn)

These series are well-known in the mathematical theory of partitions
(Andrews, 1976, Chapter 7). From (14.5.5) it is fairly easy to see that
F(l)/F(0) (which is the ratio that enters (14.5.2)) is the simple continued
fraction

1/(1 + q l { \ + q \ \ +q3/ ••• ) ) ) . (14.5.7)

What is by no means obvious, but was proved by Rogers (1894) and found
by Ramanujan (1919), is that

F(0) = 1/1(1 -

(14.5.8)

- q2)(l-q3)(l -<?7)(1 -q*)0- '^ ' ' \

= H(q),

where the functions G(q) and H(q) are those defined in (14.1.19). Thus
these functions occur not only in the formula (14.5.4) for IQ, but also in
our results for F(0) and F(l). Using the elliptic function identity (15.9.2),
the expressions (14.5.8) can alternatively be written as

5 9 )

where
oo

GO?) = 1 1 ( 1 - < ? " ) • (14.5.10)

The identities implied by (14.5.6) and (14.5.8) are known as the
Rogers-Ramanujan identities. There are many generalizations of these
identities (Slater, 1951), and it is a remarkable fact that many of them



14.5 EXPLICIT FORMULAE FOR VARIOUS CASES 435

occur naturally in the course of our present working. For instance, sub-
stituting (14.5.8) into (14.5.2), using (14.5.4) and q = x6, we obtain

p = -x G(x) H(x6)/[H(x) G(x6) - x G(x) H(x6)]. (14.5.11)

It turns out that the denominator in this expression can be written as a
simple infinite product of the type that occur in the theta function expansions
(15.1.5). Ramanujan stated (Birch, 1975, eq. 8), and Rogers (1921) proved
that

H(x) G(x6) - x G(x) H(x6) = P(x)/P(x3), (14.5.12)

where
oo

POO-rUl-*2""1)- (14.5.13)
n = 1

Thus we finally find that the density is

p=-x G(x) H(x6) P(x3)/P(x2). (14.5.14)

It is fascinating that these Rogers - Ramanajuan type identities should
occur in this problem, and it is of course very convenient to thereby simplify
the results. This is particularly useful when we come to examine the critical
behaviour when |x| —* 1: G(x), H{x) and P{x) can all be related to elliptic
functions, and their behaviour near \x\ = 1 can be obtained from "conjugate
modulus" identities such as (15.7.2). I know of no such straightforward
techniques for handling the original expressions (14.5.6).

Regime II

Regime I is the simplest case to handle, but regime II is the most difficult.
The function n(a) is more complicated and there are three ordered states
to consider. These correspond to k = 1, 2, 3 in (14.1.5c), and each has its
own F(0), F(l) and local sub-lattice density pk.

From (14.4.21) and (14.3.12b),

, (14.5.15)

where 0<x< 1. From (14.5.3), (14.4.26) and (14.5.1c) it follows that

2 ( ) (14.5.16)
<72,oj,...,am

where q = x3, the inner summation is over integer values of i from Horn,
di is given by (14.5.1c), and a\,..., am must satisfy (14.4.28).
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We can develop recurrence relations to evaluate F(0) and F(l). Define

2 2-(+2-ai+1+&i+1) (14.5.17)
01+2 am

where now the inner summation is from i = I to i = m. Then by considering
explicitly the sum over O/+2, it is readily verified that

G J(0,0)=j8 /[G / + , (0,0)+G,+ i(0,l)]

G,(0 ,1) = p,q-'Gl+i(l , 0) (14.5.18a)

G,(l, 0) = j8,[G,+i(0 , 0) + q'Gl+1(0 ,1)],

where

A = q' ii(l-k + l)/3 is an integer , (14.5.18b)

= 1 otherwise,

and that

F(0) = G0(0,0) = Go(l,0), F(1)=G 0 (0 ,1) . (14.5.19)

Each Gt{a,&) tends to a limit as m-»<», and these limiting values
satisfy

0,(0,0) =(l-qyl + €(q),

G,(0 ,1) = q(l - qr\l - q2)'1 + €(q) , (14.5.20)

provided that / is large and (/ - k)/3 is an integer.
The recurrence relations (14.5.18), together with the large / boundary

conditions (14.5.20), define the G/. We can then obtain F(0) and F(l) from
(14.5.19). Exhibiting the ^-dependence by writing these as Fk(0) and Fk(l),
we find that

Fi(0) = 1 + 2q + Iq1 + 4q3 + 5<?4 + 8tf5 + llq6 + .. .

Fi(l) = 1 + q2 + 2q3 + 3q* + 4q5 + Iq6 + . . .

F2(0) = F3(0) = 1 + q + 2q
2 + 3q3 + 5q* + 7qs + 10q6 +...

F2(l) = F3(l) = q + q
2 + 2q3 + 2qA + Aq5 + 5q6 + 8qJ + . . .

(14.5.21)

In regimes I, III and IV we can readily write F(0) and F(l) in explicit
series forms like (14.5.6) (this can be done by regarding G; as a function
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of /, and expanding it in powers of q', as in (14.5.35)). We can then use
appropriate analogues of the Rogers - Ramanujan identities (14.5.6)-
(14.5.8) so as to write F(0) and F(l) as simple products of theta functions.

In regime II this program is more complicated. However, Andrews
(1981) has shown that each Fk(0) and Fk(l) can be written as a double
series, and from this he has established that

Fi(0) = [Q{q)V 2 ( - l )yM«+ 1)^-4* _ q**+* + q(q-n _ ^ + i)] >
n = 0

(14.5.22a)

-ln _ 7» + 7 _ q(q-2n _ ^ )]

(14.5.22b)

F2(0) = F3(0) = [Q(q)]~l 2 (-l)"9iMn + i)/2(9-6« _ g6n + 6) (I4.5.22c)

F2(l) =F3(1) =q[Q{q)V 2 ( - l j - ^ 1 ^ " ^ ^ " 3 " - 9
3 " + 3) . (14.5.22d)

These expressions are similar to (14.5.9): the most obvious difference being
that the first two involve the sum of two theta-function series, instead of
just one.

First consider the cases k = 2 and 3. Using (15.9.2) and the definitions
(14.5.8), (14.5.10) of the functions G, H, Q, we can write (14.5.22c) and
(14.5.22d) as

F2(0) = F3(0) = Q(q15)/[Q(q) H(q*)], (14.5.23)

F2(l) = F3(l) = q Q{ql5)'[Q(q) G(q3)].

From (14.5.15) et seq, we have that r\ =x~xH{x)IG(x) and q = x3.
Substituting the expressions (14.5.23) into (14.5.2), it follows that

fh = P3 = x2H(x) H(x9)/[G(x) G(x9) + x2H(x) H(x9)]. (14.5.24)

Now we consult the list of Ramanujan's identities given by Birch (1975),
and find from eq. (6) therein that

G(x) G(x9) + x2H(x) H(x9) = [Q(x3)]2/[Q(x) Q(x9)] (14.5.25)
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so (14.5.24) simplifies to

P2 = p3 = x
2H{x) H(x9) Q{x) Q(x9)/[Q(x3)]2 (14.5.26)

The case k = 1 is more complicated, but from (14.5.22a) and (14.5.22b)
we can establish that

Fx(0) = [G(x9) Q(x9) - H(x) Q(x)]/[x Q(x3)] , ( 1 4 5 2 7 )

Fx(l) = [G(x) Q(x) + x2H(x9) Q(x9)]/Q(x3).

(To do this we expand the numerators on the RHS as series, using the
identities implied by (14.5.8) and (14.5.9). For H{x)Q{x) and G(x)Q(x)
we break their series into three parts: terms with n = 3r, with n = 2>r + 1,
and with n = 3r + 2. After some cancellations, and remembering that
q — x3, we regain (14.5.22). In particular it follows that each RHS in
(14.5.27) can be expanded in integer powers of x3: something that is far
from obvious.)

Substituting these expressions for Fi(0) and Fi(l) into (14.5.2), using
(14.5.15), we obtain

Pl = H{x) [G(x) Q(x) + x2H(x9) Q{x9))m{x9) [G(x)

+ x2H(x) H(x9)]} (14.5.28)

Again we can use Ramanujan's identity (14.5.25) to simplify the denom-
inator, giving

Pl = H(x) Q{x) [G(x) Q(x) + x2H(x9) Q(x9)]/[Q(x3)]2 (14.5.29)

Substituting these expressions for p\ and pi into (14.1.8), the order
parameter is

R = pi-p2= G(x)H(x) [Q(x)/Q(x3)]2 (14.5.30)

= Q(x)

= I I (1 - x") (1 - x5n)/(l - x3")2. (14.5.31)
n — 1

This expression is rather similar to that for the order parameter of the
eight-vertex model, namely (13.7.21).

Regime III

In this case the analogues of (14.5.15) and (14.5.16) are

r = l , wo = x, ti = xH{x)IG{x), (14.5.32)
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2 2to+i-<w+2); (14.5.33)
05 Om

whereO <x < 1, q = x2 and <7m+i = am+2 = 0. This is the same as (14.5.16),
except that q is inverted and the dt are zero. We can therefore evaluate
F(0) and F(l) by using the recursion relations (14.5.18), with q inverted
and Pi = 1, together with (14.5.19). Again we take the limit of m large.
The boundary conditions are then that for / large

G(0,l)=®(q) (14.5.34)

We can expand the G/ in powers of q1, and systematically evaluate the
coefficients from (14.5.18) (with q replaced by q~l). Doing this, we find
that

oo

Gi(0,0)= 2 qnlan,

oo

" -q2"'1), (14.5.35)

G(l,O)='loq
n'+nan/(l-q

2n + 1),

where a0 = 1 and

a. = ^ f l . - i / U l - qn) (1 - if2"'1)] (14.5.36)

for n 5= 1. Evaluating the an from this last relation, it follows from (14.5.19)
that

S ?"(3n-1)/2/ [(1 -
n = 0

X (1 - q){\ ^q*){\ -q5). . . (1 - ? 2 " " 1 ) ] , (14.5.37)

2 / [(1 " q)(l ~ q2) . . . (1 "?")
2
n=0

Just as the regime I series (14.5.6) could be simplified by using the
Rogers-Ramanujan identities, so can (14.5.37) be simplified by using the
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further identities (46) and (44) in the list compiled by Slater (1951). These
give

F(0) = G{q2) Q{q2)IQ{q), (14.5.38)

F(l)=H(q2)Q(q2)/Q(q).

From (14.5.2) and (14.5.32), it follows that

p = x H(x) H(xA)/[G(x) G(xA) + x H(x) H(x4)]. (14.5.39)

Ramanujan stated (Birch, 1975, eq. 2), and Rogers (1921) proved that

G(x) G(xA) + xH{x) H(xA) = [P(-x)]2, (14.5.40)

where P(x) is defined by (14.5.13). Thus (14.5.39) simplifies to

p = x H(x) H(x4)/[P(-x)]2. (14.5.41)

Regime IV

This regime is ordered and we have to distinguish the two cases k = 1 and
k = 2 in (14.5.1b). From (14.4.21), (14.3.12b), (14.4.26) and (14.5.3),

T = 0, wo = x~2, ri = -x'1 G(x)/H(x), (14.5.42)

F(CTO = 2 (?
z'(*<+i~<7<+>) (14.5.43)

Ol,...,Om

where -1 < x < 0, q = xA. The a, are defined by (14.5.1b) and the sum-
mation is as usual over all values (0 or 1) of o2,. . . , am that satisfy
(14.4.28), where om+i = am+i-

As in regimes II and III, we can set up recursion relations that define
F(0) and F(l). Define

G/(CT;) = 2 ?
2'to+i-<*+i) (14.5.44)

where now the inner sum is over i = / , . . . , m. Considering explicitly the
contributions from o/+i = 0 and o/+1 = 1, we find that

G;(0) = A[G/+i(0) + q-'Gl+1(l)], (14.5.45a)

G ; ( l ) = # G ; + 1 ( 0 ) ,
where

A = l i f / - ^ i s even, (14.5.45b)

= q' if / — A: is odd .
Clearly

G,(l) . (14.5.46)
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Each G/(CT) tends to a limit as m—* <», and these limiting values satisfy
the boundary condition

GiO)->(l-q)-\ G,( l ) ->las / -»oo, (14.5.47)

provided / - k is even.
We can expand G;(0) and G;(l) in powers of ql. Substituting the expan-

sions into (14.5.45) and equating coefficients, we find that, for / - k even,
oo

G,(o) = 2<7"V(i-<72n+1),
n = 0

00

Gil)=*2yan, (14.5.48)

where a0 = 1 and

an = q^-lan-il{l - q2"'1)^ - q2"). (14.5.49)

This last equation can be solved sequentially for a\, a2, a-$, etc; F(0) and
F(l) can be obtained from (14.5.46) and (14.5.48). (For k = 2 we need G;
for / - k odd: this can readily be found from (14.5.45).) Exhibiting explicitly
the dependence of F(0) and F(l) on k by writing them as Fk(0) and Fk(l),
we find that

2
n = 0

"=° (14.5.50)

F2(0) =

F2(l) = 2J q"2l[(l

Again we look at the list of Rogers - Ramanujan-type identities compiled
by Slater (1951). From her equations (94), (99), (98) and (96) we find that

= H(-q)/P(q),

= G(-q)/P(q) , ( 1 4 5 5 1 )

F2(0) =

F2(l)=qH(qyP(q),
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where again the functions G, H, P, Q are defined by (14.5.8), (14.5.13)
and (14.5.10).

Substituting these results into (14.5.2), using (14.5.42) and q =,x4,

(H = G(x) G(-x4)l[G{x) G(-xA) -xH(x)H(-x*)] (l4^52)

P2 = -x3G(x) H(x16)/[H(x) G(x16) - x3G(x) H(x16)]

The first of these denominators does not appear to have been explicitly
studied by Ramanujan, but he did state, and Watson (1933) proved, that

G(x) H(-x) + G(-x) H(x) = 2/[P(x2)]2 (14.5.53)

(this is eq. 23 of Birch, 1975). Further, Rogers (1894) showed that

G(-x4) = Q(x2)[H(x) + H(-x)]/[2Q(x*)] , (14.5.54)

H(-x') = Q(x2)[G(x) - G(-x)]/[2xQ(x»)].

From these three identities it follows that

G(x)G(-x*) -xH(x)H(-x*) =P(-x2). (14.5.55)

Also, Ramanujan stated (eq. 5 of Birch, 1975), and Rogers (1921)
proved that

H(x) G(x16) - x3G(x) H(x16) = P{ -x2). (14.5.56)

Using these last two identities, we can therefore simplify (14.5.52) to

Pl = G(x)G(-XyP(-x2), (14.5.57)

(h = -x3G(x) H(x16)/P(~x2).

Rogers (1894) proved that

H(x16) = Q(x2)[H(x) - H(-x)]/[2x3Q(x*)]. (14.5.58)

Substituting this expression for H(x16), and the expression (14.5.54) for
G(-x4), into (14.5.57), we find that the mean total density is

P = i(p! + Pi) = iG(x) H(-x) [P{x2)]2, (14.5.59)

and the order parameter is

R = Pl-p2=G(x)H(x)[P(x2)]2

= [Q(x2)f Q(x5)/{Q(x) [Q(x*)]2} (14.5.60)
00

= n a -xin)\i -x
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This has a similar form to the order parameter (14.5.30) in regime II,
and the eight-vertex model order parameter (13.7.21), being a ratio of
products of Q-iunctions.

This completes the derivation of the sub-lattice densities and order
parameters of the generalized hard hexagon model. I have discussed the
four regimes separately, but we can now see some common features: we
can write down recursion relations defining Fk(0) and Fk(l). In regimes I,
III, and IV these can be solved to give Fk(0) and Fk(l) as infinite series.
We can then use the appropriate Rogers - Ramanujan-type identities, as
listed by Slater (1951), to write Fk(0) and Fk(l) as infinite products of
theta-function type. (In regime II this program is more difficult, but it still
turns out that Fk(0) and Fk(l) can each be written as a sum of at most two
theta-f unction products.) Further, when we substitute the results into
(14.5.2), we find that the denominators can be simplified by using some
of the Ramanujan identities listed by Birch (1975). Finally, in regimes II
and IV the order parameter R = pi - pi is found to be a simple ratio of
products of Q-functions.

It is fascinating that these Rogers-Ramanujan and Ramanujan-type
identities occur so frequently in this working. With the benefit of hindsight,
we can see signals of this in the star - triangle relations (14.2.3), in particular
the elliptic function parametrization of (14.2.11). This led automatically
to (14.2.29)-(14.2.30), and thence to (14.2.44). This last equation abounds
in factors/(* ,x5) andf(x2,x5). From (14.2.40), (14.1.21) and (14.1.19),
these are just the functions H(x) Q(x) and G(x) Q(x). The natural occur-
rence of these functions (particularly their ratio) should perhaps have
warned us to expect the Rogers-Ramanujan identities to occur.

14.6 Alternative Expressions for the K, p, R

Our results can be summarized as follows. Given a hard square model with
activity z and interaction coefficients L, M satisfying (14.2.9), calculate
A from (14.2.10). Determine from (14.2.37) the regime in which the model
lies (if V or VI, interchange L and M). Calculate x and w (and m, t and
r) from (14.2.38) and (14.2.44). Then the partition-function-per site K is
given by (14.3.26), and the density p (or, in regimes II and IV, the sub-
lattice densities pk and order parameter R) are given by the appropriate
equations in Section 14.5.

All these results are expressed in terms of infinite products. These
converge well when x is small, which is the condition for extreme disorder
or extreme order. They can readily be compared with low-density or
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high-density series expansions. However, they converge poorly when x
is close to one, which is when |A| is close to Ac and the system is near-
critical. It is then convenient to convert the products into forms which
converge rapidly for \x\ close to one.

Part of this procedure has been performed already: we merely return
from the 'conjugate modulus' equations (14.2.44) for w and x to the original
equations (14.2.29)-(14.2.31) for q2 and u.

Partition-Function-Per-Site K

To convert the equations (14.3.26) for K, we use the identity (14.2.42) in
reverse, going from/-functions to ^-functions. Doing this we find we also
need the elliptic theta function

?
4 " - 2 ) ( 1 -q2n) (14.6.1)

rc = l

which satisfies the 'conjugate modulus' relation

exp[- ^ + 2u(jt~ M > ] / ( - e - ^ , e " 4 ^ ) . (14.6.2)

From (14.3.26), using (14.2.43) and (14.2.38), and then applying the
identities (14.2.42) and (14.6.2), we obtain the following expressions for
the partition-function-per-site in the four regimes:

n 5u 10/3\ In Su 0/3
- ~r , P yi T ~ ~ T ^

TT. _ f l (" 5u
 nsa\/0 (n+5u

 n5/3

ii. 0 1 ( " T P ) / d l \ + T p

Ill: = 1, (14.6.3)

5u s\ /a (n , 5u
5

Here p = e~
e-\q2\ (14.6.4)

where this is the q defined by (14.2.28) and (14.2.29). Thus we have now
expressed our results for *: in terms of the parameters q2 and u discussed
in (14.2.29)-(14.2.39).
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The parameter in is introduced in (14.2.1) as a simple factor that mul-
tiplies all Boltzmann weights. It therefore multiplies K, SO tdm is indepen-
dent of m. This means that (13.3.26) and (14.6.3) are correct for all values
of m (notably m = 1), even though we made a particular choice of m in
(14.2.44).

Sub-Lattice Densities pk and the Order Parameter R

The results of Section 14.5 are all expressed in terms of the functions G(x),
H(x), Q(x), P(x), where

G(x) = El [(1 - x5"-4) (1 - JC5""1)]-1 , (14.6.5a)

H(x) = n [(1 - x5"-3) (1 - X5""2)]-1, (14.6.5b)

" xn) , (14.6.5c)
n = \

P(x) = J\(l-x2"-1). (14.6.5d)

We can use the identities (14.2.42) and (14.6.2) to convert these infinite
products into forms which converge rapidly for x close to + 1, or to - 1.
(To do this we start by considering (14.2.42) in the limit u-* 0, and taking
cube roots of each side. This gives the conversion formulae for Q(x). The
remaining formulae can then be obtained directly.)

This procedure introduces two more functions, G\(x) and H\(x), denned
by

Gx(x) = (2 sin j V 1 II [l - 2xncosy + x2n\ ', (14.6.5e)

00

Ht(x) = (2 s inyY l II [l - 2xncosy + x2n\~X. (14.6.5f)

We obtain the identities

i [^ - Q 2(exp[ -4^/e]) , (14.6.6a)

= 2* exp [~j-A- ^] /P(exp[ - 2rf/e]), (14.6.6b)
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G(e-') = exp [ - ^ + ^j G!(exp[ - 4^/5e]), (14.6.6c)

t f (e" e ) = exp [^ + ^] ^(expf - 4^/5e]), (14.6.6d)

Q( - e"e) = (;r/e)Jexp [^ - ^j Q ( - exp[ - jz2le]), (14.6.6e)

P( - e"£) = exp [ - ± + ^] P( - exp[ - ;r2/£]) , (14.6.6f)

G( - e - ) = exp [ - ^ + ^] //x( - exp[ - Jt2/5e]), (14.6.6g)

//( - e-*) = exp [ ^ + ^ ] d ( - exp[ - JZ2/5E]) . (14.6.6h)

Applying these identities to the formulae in Section 14.5 for p and R,
we find that

I: p = Hii - p) Hiip™) Pi -p5/yPi -p5),

II: P2 = p3 = H,ip) H.ip119) Qip5) Qip'yQ'ip513) ,

R=pi-P2= i3/V5)P
ll9Q(p5) Qip)IQ2(pm),

III: p = Hiip) H&vyPX -p514), (14.6.7)

IV: Pl = H^ ~ P) Hii ~PW)IP{ -p512),

P = i(pi + fh) = H^ ~ P) Hi

R = Pl-P2= (2/V5>1/4e( - P) Q2(PW)/[Q( -P5) Q2(P5)] •

In regime II there is no simple product formula for pi, or for the mean
density p = (pi + pi + Pi)l?>, but one can establish that p is expandable in
integer powers of pm.

The parameter p in (14.6.3) and (14.6.7) is defined by (14.6.4), where
e is in turn defined by (14.2.43), and q2 therein by (14.2.28)-(14.2.31). In
particular, from (14.2.30) we can take p to be defined by

A2/5 = / / 1 (±p) /G 1 (±p) , (14.6.8)

choosing the positive sign in regimes II and III, the negative signs in
regimes I and IV; p is non-negative.
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Critical Singularities
Our results are now in a form where we can discuss the behaviour across
the I—II and III-IV regime boundaries. From (14.2.37) these occur when
A = ± Ac and q2 = p = 0.

We have only solved the general model, i.e. the hard square model with
diagonal interactions, when the constraint (14.2.9) is satisfied. This means
that we cannot consider the full (L , M, z) parameter space: only the
two-dimensional surface (14.2.9).

Consider a line in that surface, crossing the boundary line A = ± Ac

non-tangentially at a point C. Consider K, p and R as functions of position
along the line. They are analytic except at C; R is identically zero on the
disordered side of C (regimes I and III), positive on the ordered side
(regimes II and IV). Thus C is a critical point.

The parameters u and q2 are defined by (14.2.28)-(14.2.31). Both are
analytic functions of position along the line, even at C. At C, u is non-
zero, while q2 vanishes linearly with position. We can therefore take q2

(or — q2) to be our 'deviation-from-criticality' variable, corresponding to
t in Section 1.1.

More precisely, let us here define t to be given by the following equations:

ht=-q2=p; U:t=-q2=-p; (14.6.9)

Ill:t = q2=p; W:t = q2= -p.
Then t is positive for disordered regimes and negative for ordered ones,
as in Section 1.1. It vanishes linearly at the critical point C. We want to
obtain the leading behaviour of K, p, R as functions of t, for t small.

This is readily done, using the results (14.6.3) and (14.6.7) together with
the definitions (14.2.28), (14.6.1) and (14.6.5). We find that

I and II:-
mz

III: = 1, (14.6.10)

IV: = 1 - 4( - tf2 sin 5M + 0(f5),

I and II: p = pc- sgn(f) |f|M/V5 + 0(0 ,

III: p=pc- tw/V5 + C(f1/2), (14.6.11)

IV: p = pc + 0(0

II: R = (3/V5) ( - 01/9{l + t + 2 ( - 05/3 + 6(t2)}, (14.6.12)

IV: R = (2/V5) ( - 01/4{l - t + G(t2)}.
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Here pc, the critical density is

pc = (5 - V5)/10 = 0.27639 . . . . (14.6.13)

We expect R and the dominant singular parts of K and p to behave for
small t as

R~{-tY, Ksins~t2-«, p»as~t1-*, (14.6.14)

where 0, a, a are the critical exponents of (1.1.14) and (1.7.9). From
(14.6.10)-(14.6.12), this is the case for this model, and across the I—II
boundary

o-= or =1/3, 0=1/9 (14.6.15)

while across the III-IV boundary

a=-l/2, a =3/4, 0=1 /4 . (14.6.16)

For the general hard square model, with weight function (14.2.1), the
mean density p is related to K by (14.1.7), the differentiation being per-
formed with L, M held fixed. This means that if we consider K, p and JR
along a line parallel to the z-axis in (z ,L ,M) space, then a and a in
(14.6.14) must be the same. However, we are unable to do this, since we
can only consider lines on the surface (14.2.9). Thus a and a are not
necessarily equal, and indeed we see that they differ along the III-IV
boundary.

The ground state in IV is either that shown in Fig. 14.5(b), or the one
obtained by shifting each particle one lattice space to the right. These are
the ordered ground states of the usual hard-square model, which is (14.2.1)
with L = M = 0. It seems likely that our critical III-IV boundary line lies
on the same critical surface as the hard square model critical point (z =
3.7962 . . ., L = M = 0). Since the exponents (14.6.16) apply only to the
surface (14.2.9), it is not surprising that they differ from those expected
for hard squares, namely a = a = 0, 0 = 1/8 (Baxter et al., 1980). Even so,
it is disappointing that they seem to have no connection at all.

14.7 The Hard Hexagon Model

We started this chapter by discussing the hard hexagon model, i.e., the
triangular lattice gas with nearest-neighbour exclusion. In order to solve
it, we generalized it to the hard-square model with diagonal interactions.



14.7 THE HARD HEXAGON MODEL 449

In Sections 14.2-14.6 we have considered this more general model; let us
now return to the original hard hexagon model.

To do this, we let m, L, M in (14.2.1) tend to the values 1, 0, - » ,
respectively. From (14.2.29) it follows that

u^-n/5, (14.7.1)

while from (14.2.10) and (14.2.30),

(14.7.2)

the function 6\ being defined by (14.2.28). If the activity z is given, then
we can regard (14.7.1) and (14.7.2) as defining our two parameters u and
q2-

There are two cases to consider, corresponding to q2 being negative and
positive, respectively. From (14.7.2) these in turn correspond to z < zc and
z> zc, where

/ . 2n I .
zc= I s i n - j y s i n -

= [1(1 + V5)] 5

+ 5V5) = 11.09017 . . . . (14.7.3)

We see that this is the value (14.1.11) conjectured by Gaunt (1967).
The case z < zc is the u = —jt/5 limit of regime I, while z > zc is the

corresponding limit of regime II. We define x as in (14.2.43). Then from
(14.2.10) and (14.2.44), x is related to z by:

z<zc: z = -x[H(x)/G(x)]5, (14.7.4)

z>zc: z = x~\G{x)IH{x)]s,

where G(x) and H(x) are the Rogers-Ramanujan functions defined in
(14.1.19) and (14.6.5). These are precisely the relations conjectured in
(14.1.18) and (14.1.22), so the x of this section is the same as that of
Section 14...

To obtair. K, we first re-normalize the weights a>i ,. . . , (o5 in (14.2.44)
to ensure that co\ is unity. This means that m in (14.2.38) and (14.2.1) is
unity. Using these re-normalized weights, and remembering that f(w) in
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(14.2.44) means/(w ,x5), from (14.2.44) we have that

f(xw,xs)f(x2,x5) (14.7.5)

I I : (1)40)5/0)1 = 71, 2 5\~7y 5\ •

We now use (14.3.26) (which is true for all normalizations of
CDI ,. . . , 0)5) and take the limit w—» —n/5. From (14.2.43) this means that
w —> x2 in regime I, w —> x"1 in regime II. In both cases the RHS of (14.3.26)
has a simple pole at this value of w, but this is cancelled by a corresponding
zero of (14.7.5). We find that K is indeed given by (14.1.20) and (14.1.23).

For z < zc, the density p is given at once by (14.5.14). For z > zc, the
sub-lattice densities pu pi, Pi, and the order parameter R, are given by
(14.5.29), (14.5.26) and (14.5.30). This last formula is the same as (14.1.24)
so we see that all the conjectures of Section 14.1 have been verified.

Critical Behaviour

To study the behaviour near z = zc, we use the alternative forms of the
results, as given in the previous section, specializing them to the hard
hexagon model.

The first step is simply to note that q2 is given by (14.7.2). Using (14.2.28)
and (14.7.3), this equation can be written explicitly as

[(l - 2^-COSy + q^j/(l - V»COSy + fl*)]. (14.7.6)

This defines q2 for all real positive values of z; q2 is negative for z < zc,
positive for z > zc.

To obtain the small-g expansion of K, we use (14.6.3) together with
(14.2.29) and (14.2.31). We take m = \ and let U - » - J T / 5 . Using the
functions Q{x), P(x), d(x), Hx{x) defined in (14.6.5), we find that:

z < z . 3 V3 G\{q2) Q\q2) Q(p5) P3(p10/3)
5 H2(q2) Q3(p5B) P(pw) ' (14.7.7)

3V3 Gl(q2)Q2(q2)Q(p5)
Z --> Zc . K TJ2/ _2\ /->3/ 5/3\
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where p is defined by (14.6.4), i.e. p = \q2\. The critical value KC of K is
obtained by setting q2 = p = 0 in either of these formulae, giving

KC = 3V3 sin2(2;r/5)/[10 si

= [27(25 + llVsyiSO]* = 2.3144

For z < zc, the density p is given by the first formula in (14.6.7). For
z> zc the regime II formulae apply: in particular, the order parameter is

R = (3/V5)p1/9Q(p5) Q(p)/Q2(p513). (14.7.9)

From (14.7.6) it follows that q1 is an analytic function of z at z = zc,
having a Taylor expansion of the form

q2 = (z - zc)/(5V5zc) + 0[(z - zc)
2]. (14.7.10)

These results are exact. To obtain the critical behaviour we expand them
in powers of q2 and p, keeping only the first two or three terms. This gives

q2 = (z - zc)/(5 V5 zc) + 6{(z - zc)
2},

K = KC{\ + f ( V 5 - 1)<?2+ 3|<72|5/3

R = (3/V5) (q2)119 {I~q2 + 2qim

Here pc=(5 - VT)/10 is the critical density of Section 14.6. The last
equation (for R) applies only for z> zc; the first three apply for both
z> zc and z < zc. Defining the critical exponents a, a, fi in the usual way
by (14.6.14), with t replaced by z — zc, we again obtain (14.6.15), i.e.

a=a= 1/3,13= 1/9. (14.7.12)

Using these values, the scaling hypothesis relations (1.2.12)-(1.2.16)
predict that the other critical exponents are:

y=13/9, 6 = 1 4 , (14.7.13)

JX=V= 5/6, r\ = 4/15 .

The results (14.1.18)—(14.1.24) involve elliptic functions of nomes x5,
x6, x3 and x. It should be possible to obtain algebraic relations between
these functions (just as the Landen transformation of Section 15.6 relates
elliptic functions of nomes q and q2), and hence to eliminate x from the
results. This program has been carried out by Joyce (1981) for the relation
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between z and the order parameter R, for z > zc. He finds that

V>18(5 + lQs + s2)3 = (27s + V6) (2435 + t/>6)3, (14.7.14a)

where

V = V5R, s = 125z/(z2 - l lz - 1). (14.7.14b)

Thus R is an algebraic function of z.

14.8 Comments and Speculations

In this chapter we have used the "matrix inversion" trick to calculate the
free energy, and have calculated the sub-lattice densities and order par-
ameters by diagonalising the corner transfer matrices. Unlike the eight-
vertex model calculation in Chapter 10, we have not obtained exact equa-
tions for all the eigenvalues of the row-to-row transfer matrix. As a result,
we have not been able to calculate the interfacial tension and correlation
length.

This has very recently been done (Baxter and Pearce, 1982). Regard m'
and t' in (14.2.39) as fixed. Then the Boltzmann weights to-,, and the
row-to-row transfer matrix V, are functions of u. One can verify that

V(u) V(U + A) = <t>(k - u) 0(A + u)3> + cj)(u) V(K - 2A), (14.8.1)

where 3> is the identity matrix and

A = 2JII5 , <p(u) = [m'6i(u)/d^k)]" . (14.8.2)

As usual, the star-triangle relation implies that V(«) and V(w) commute,
for all complex numbers u and v. We can therefore choose a representation
in which V(«) is diagonal, for all u. Then (14.8.1) is a functional relation
for each eigenvalue. Together with the analyticity and quasi-periodic
properties of V(M) , this relation in principle enables one to calculate every
eigenvalue, for finite N. The free energy, interfacial tension and correlation
length can thus be calculated. The results of course agree with (14.3.26).
They also give

H=v=v' = 5l(> (14.8.3)

for the critical exponents of the original hard-hexagon model. Together
with (14.7.12), it follows that the scaling relations (1.2,14a), (1.2.15) and
(1.2.16) are satisfied.

We have seen in Sections 10.1 and 10.3 that the eightrviertex model
contains as special cases the previously solved Ising and six-vertex models.
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When F. Y. Wu and I solved the three-spin model in 1973 and 1974, it
appeared then to be a quite distinct model. Howeve, as has been shown
in Section 11.10, it can be expressed as a special case of the eight-vertex
model.

Will history repeat itself for the hard hexagon model? More precisely,
will a more general model be solved that contains both the eight-vertex
and hard hexagon models as special cases? I doubt it. For one thing, the
fact that the critical exponent 6 is 15 for the former, and 14 for the latter,
model, suggests that the two are quite distinct. On a more detailed level,
the star - triangle relation (13.3.6), or equivalently (11.5.8), contains many
more equations than unknowns. For the eight-vertex model the two
spin-reversal symmetries reduce the number of equations by a factor of
four, from 64 to 16. For the generalized hard hexagon model, the require-
ment that no two particles be adjacent eliminates 44 of the 64 equations:
they just become 0 = 0. The reasons for success in the two cases are
therefore quite different, and its seems to me unlikely that one can trace
a continuous path of solvable models from one to the other.

Can one extend these methods to Ising-type models in three dimensions?
One can extend the star - triangle relation (13.3.6) or (11.5.8), getting a
"tetrahedron relation", as has been shown by Zamolodchikov (1981).The
trouble is that one then has 214 equations to satisfy (instead of 26), and it
is difficult to see where to begin. More seriously, one very useful property
in two dimensions does not go over to three. If the model factors into two
independent models, one on each sub-lattice of the square or simple cubic
lattice, then the weight functions w factor. The planar star - triangle relation
then factors into two identical relations (each being the original Ising model
star - triangle relation of Section 6.4); but the three-dimensional tetrahed-
ron relation factors into two non-identical relations, one of which is trivial
and seems to preclude interesting solutions.

Even so, Zamolodchikov has found strong evidence that the tetrahedron
relations do have some (non-factorizable) solutions. It will be fascinating
to examine these and see if they correspond to interesting statistical
mechanical models.

Of course one would still like to go much further in two dimensions.
The Ising model in a magnetic field remains unsolved. Indeed the only
models that have been solved in the presence of an appropriate
symmetry-breaking field are the spherical model of Chapter 5, and the
KDP ferroelectric model of Section 8.12. Only such solutions give a com-
plete check on the scaling hypothesis (Section 1.2), and give the form of
the scaling function hs{x).

It seems unlikely that the "commuting transfer matrix" trick can be used
to solve the Ising and other models in the presence of a field, or even the
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non-critical Potts model. The only hope that occurs to me is that just as
Onsager (1944) and Kaufman (1949) originally solved the zero-field Ising
model by using the algebra of spinor operators, so there may be similar
algebraic methods for solving the eight-vertex and Potts models. (Some
credence to this hope is given by the fact that the diagonalized infinite-
lattice corner transfer matrices of the eight vertex model have the simple
direct product form (13.7.20).)

If so, it is conceivable that such methods might work for a staggered
eight-vertex model, in which the weights are different on the two sublattices,
but the combinations A and T in (10.4.6) are the same. In particular, one
can still define a single parameter n for this model, using (10.4.17) and
(10.12.5). The case n = nil corresponds to T = 0: the model then factors
into two independent staggered Ising models, and these can be solved
algebraically. (Similarly, so can the "free fermion" case A = 0: see Section
10.16.) In attempting to generalize such algebraic methods it would be
natural to look first at other values of n that are simple fractions of n, e.g.
(i = n/3, 3JT/4, etc.

If this could be done, it would indeed be a giant step forward. Many
fascinating models can be expressed as special cases of such a staggered
eight-vertex model, notably the non-critical Potts model (Section 12.4),
the Ashkin - Teller model (Section 12.9), and even the Ising model in a
magnetic field (Wu, 1979). Obviously it would be foolish to pin all one's
hopes on such a possibility, which has evaded attainment for at least a
decade. At the same time, I feel it is equally foolish to dismiss it out of
hand.
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ELLIPTIC FUNCTIONS

15.1 Definitions

The usual elliptic functions are functions of two variables, which we can
take to be the nome q and the argument u. Usually q is regarded as a given
real constant, with value between 0 and 1; while u is regarded as a variable,
in general complex.

The half-period magnitudes I, F (usually called K, K') are then given
by

4. n2n-l 1 _ ,_2n

I' = 7T-lIln(q-1), (15.1.2)

so

q = exp(-*/77). (15.1.3)

The modulus k and the conjugate modulus k' are given by

4- n2n \ 4

455
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The theta functions are

H{u) = 2<f sin — 11 1 - 2qln cos —

00

Hx{u) = V cos ^ II (l + 2q2n cos ^ + A (1 -

II
n = l

Also, from (15.1.1), (15.1.2) and (15.1.4a),

kl' = iqHnil/q)

(15.1.5)

©i(«) = 1 1 ( 1 + 2qln^ cos-y- + g
4"-21 (1 - qln).

The Jacobian elliptic functions are

sn M = A:"4 H(u)/®(u),

cnu = {k'lkfHi{u)l®{u), (15.1.6)

dn« = fc'*Oi(u)/0(u).

Multiplying (15.1.1) by (15.1.4b) gives the relation

15.2 Analyticity and Periodicity

The theta functions H, Hi, 0, Gi are entire functions of u (i.e. they are
analytic everywhere). Their zeros are all simple. In particular the zeros of
H(u), @(u) are given by

H(u) = 0 when u = 2ml + linl', (15.2.1)

0(«) = 0 when u = 2ml + i(2n - 1)1', (15.2.2)

where m, n are any integers.
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From (15.1.6); sn u, en u and dn u are therefore meromorphic (i.e. their
only singularities are poles). Their poles are all simple and occur when
(15.2.2) is satisfied.

The function H(u) satisfies the quasi-periodic relations

H(u + 21) = -H(u), (15.2.3a)

H(u + 2W) = -q'1 exp(-mu/I) H(u) . (15.2.3b)

The other theta functions are related to H(u) by

Hl{u)=H(u + I), 0,(M) = 0(w + / ) ,

0(M) = -iqi exp(imu/J) H(u + W), (15.2.4)

0i(w) = qk exp(iniu/r) H(u + I + U').

It follows that sn, en, dn satisfy the relations:

sn(-M) = - sn u, cn(-«) = en u, dn(-«) = dn u

sn(u + 21) - - sn u

cn(w + 27) = - en u

dn(u + 2I) = dnu (15.2.5)

sn(« + 2U') = sn u

cn(« + 2U') = - en u

dn(w + 2iT) = - dn u ,

and

sn(« + W) = ()ksnw)~1,

cn(« + U') = -i dn u/(k sn «), (15.2.6)

dn(« + il') = - j en u/sn u .

Any upright rectangle of width 2/ and height 2H' in the complex M-plane
is known as a period rectangle (Fig. 15.1). Any function/(M) satisfying the
relations

/ ( « + 2/) = ±/(M), f(u + 2il') = ±f(u), (15.2.7)

is said to be doubly periodic (or perhaps anti-periodic). If such a function
is known within and on a period rectangle, then its value at any point in
the complex plane can be obtained by repeated use of (15.2.7). To within
a sign, all values that it attains are attained within and on any period
rectangle.
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2il '-

t

- i : o

- i l -

i

I ! 21

Fig. 15.1. A typical period rectangle (shown by broken lines) in the complex
u-plane. It has width 2/ and height 21'.

15.3 General Theorems

Theorem 15(a)

A well-known theorem in complex variable theory is Liouville's theorem,
which states that if a function is entire and bounded, then it is a constant.
A useful corollary for this chapter is:

if a function is doubly periodic (or anti-periodic)
and is analytic inside and on a period rectangle, then it
is a constant. (15.3.1)

The proof is simple: since it is analytic in a closed region, it is certainly
bounded. From the double periodicity it is therefore analytic and bounded
everywhere. From Liouville's theorem it is therefore a constant.

Theorem 15(b)

If a function f(u) is doubly periodic (or anti-periodic)
and meromorphic, and has n poles per period rectangle,
then it also has just n zeros per period rectangle.
(Multiple poles or zeros of order r being counted r
times.) (15.3.2)
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Proof: choose a period rectangle such that f(u) has no poles or zeros on
the boundary (since they are isolated, this must be possible). Consider the
integral

£ [/'(«)//(«)] da, (15.3.3)

where C is the boundary of the rectangle, traversed anti-clockwise as in
Fig. 15.1. The integrand is analytic on C and is strictly doubly periodic,
so the contributions to (15.3.3) from the two sides (and the top and bottom)
cancel. Thus (15.3.3) is zero.

On the other hand, if /(«) has n poles and m zeros within the rectangle,
then f'(u)/f(u) has n poles with residue -1 and m poles with residue +1.
These are its only singularities, so by Cauchy's integral formula

1[/'(«)//(«)] dw = 2m (m-n). (15.3.4)
'c

Since the LHS is zero, it follows that m = n, which is the theorem.

Theorem 15(c)

If a function f(u) is meromorphic and satisfies the (anti-) periodicity
conditions

/ (H + 2/) = ( - 1 ) 7 ( « ) (15.3.5)
f(u + 2ii') = (-iyf(u),

where r, s are integers; and if /(M) has just n poles per period rectangle,
at Mi , . . . , « „ (counting a pole of order r as r coincident simple poles),
then

/(«) = C cAu I] [H(u - Vj)/H(u - uj)], (15.3.6)

where C, A, vx,. . . vn are constants satisfying

t>i + . . . + vn = Mi + . . . + un + (r + 2m)/ - i(s + 2n)F , (15.3.7)

A = fctfo + 2n)//, (15.3.8)
and m, n are integers.

Proof: from theorem 15(b),/(M) has n zeros per rectangle. Let these be
v\,. . . vn and let $(M) be the product in (15.3.6), ignoring for the moment
the restriction (15.3.7).

Now consider the function

] • (15-3.9)
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From (15.2.3) and (15.3.5), this is strictly doubly periodic. Since/(u) and
0(u) have the same zeros and poles, the function (15.3.9) is analytic. From
theorem 15(a), it is therefore constant.

Integrating, it follows that /(«) must be of the form (15.3.6). The
conditions (15.3.7) and (15.3.8) are necessary to ensure that (15.3.5) is
satisfied.

This is a truly remarkable result: any double periodic meromorphic
function must be expressible in the form (15.3.6). For this reason there is
a bewildering array of identities between elliptic functions: many sums of
products of such functions will satisfy the conditions of this theorem; if
their zeros can be located, then they can be explicitly factored as in (15.3.6).

It is helpful to think of (15.3.6) as a 'generalization' of the fundamental
theorem of algebra, which states that any polynomial of degree n can be
factored into n linear forms.

These theorems are extremely powerful. They will be useful in the next
section to obtain a number of algebraic identities satisfied by the elliptic
functions, but perhaps the simplest example of the use of theorem 15(a)
is the identity

H(u + x) H(u - x) H(v + v) H(v - v)

- H{u + y) H(u - y) H(v + x) H(v - x) (15.3.10)

= H(x - y) H(x + y) H(u + v) H(u - v).

To prove this, regard x, y, v as constants and u as a complex variable.
Let/(u) be the ratio of the LHS to the RHS. From (15.2.3),/(u) is periodic
of periods 2/ and 2*7'. It is meromorphic, with possible simple poles when
M = ± v + 2ml + 2m/', for any integers m and n. Plainly the LHS of
(15.3.10) vanishes when u = v or u = —v, so these poles are removeable.
By periodicity, so are all the others; /(«) is therefore entire and doubly
periodic. From theorem 15(a), it is therefore a constant. Setting u-y gives
this constant to the unity. This proves the identity (15.3.10).

Note that this derivation does not use the explicit formula (15.1.5) for
H(u). It needs only the following properties: (a) H(u) is entire; (b) H(u)
satisfies the quasi-double-periodicity conditions (15.2.3); (c) H(u) is odd,
i.e. H(-u) = -H(u).

15.4 Algebraic Identities

Relations Between sn, en, dn

Consider the expression

(M) - 02(O) H\{u)]IH\u). (15.4.1)
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Clearly this is a meromorphic function of u, with possible double poles
when H{u) = 0, i.e. when u = 2ml + 2inF. However, the numerator clearly
vanishes when u = 0, and since it is even, so does its derivative. Thus
(15.4.1) is analytic at u = 0, and hence is analytic inside and on the period
rectangle centred on the origin.

From (15.1.6) and (15.2.5) it is easily seen that (15.4.1) is (strictly)
doubly periodic, so from theorem 15(a) it is a constant. Setting u = I fixes
this constant, giving

Hf(0) S2(u) - e\0)Hl(u) = Ql(0)H\u). (15.4.2)

From (15.1.5), the definitions (15.1.4) can be written

** = Hiioye^o), (15 4 3)

k* = 0(O)/0i(O).

Dividing (15.4.2) by Hl(0) 02(w), using (15.1.6) and re-arranging, it
follows that

cn2u + sn2u = 1. (15.4.4)

Incrementing u by il' and using (15.2.6), this also gives

dn2u + k2 sn2M = 1. (15.4.5)

These identities (15.4.4) and (15.4.5) make the elliptic functions par-
ticularly suitable for parametrizing expressions involving square roots of
two quadratic forms. For instance, if one had the equation

y = x(l - x2)h + (1 - k2x2)*, (15.4.6)

an obvious parametrization would be to set

x = snu, (15.4.7)

whereupon (15.4.4)-(15.4.6) would give

y = sn u en u + dn u . (15.4.8)

This would ensure that x and v are both single-valued meromorphic func-
tions of u, which can be a very convenient feature in carrying out some
complicated calculation involving them. Unless k2 = 0 or 1, such a para-
metrization cannot be performed in terms of elementary functions.

From (15.1.6), (15.4.3) and (15.2.4), it is readily verified that

s n / = l , dn I = k'. (15.4.9)
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Setting u = I in (15.4.5) therefore gives the relation

k2 + k'2 = l, (15.4.10)
between the two moduli.

If 0 < q < 1, then it is obvious from (15.1.4) that k and k' are positive.
From (15.4.10) it follows that

0<Jfc<l, 0 < f c ' < l . (15.4.11)

The Modified Amplitude Function

Another useful function for our purposes is

Am(u) = -i lnfiit* sn(« - W)]. (15.4.12)

From (15.1.6) and (15.1.5),

A-OO - -'"[*'fla I P l w - A - t ] • <15413>
where

z = exp(i;rw//) . (15.4.14)
Taking logarithms term by term and Taylor expanding each logarithm, the
summation over n can be performed to give

Am(«) = ^ + 2 %x m{f+ qm) Mmnu/r) , (15.4.15)

provided |Im(w)|<£/'.
For real u, this function is real, odd and monotonic increasing. It satisfies

the quasi-periodic relation

+ jr. (15.4.16)

It is not meromorphic, since it has logarithmic branch cuts at u = 2ml +
Kn - £)/'.

The usual elliptic amplitude function is am(w), which is given by (15.4.15)
with q replaced by q2. Such transformations from elliptic functions of nome
q to nome q2 are common: they are known as Landen transformations,
and will be discussed in Section 15.6.

Addition Formulae for Theta Functions

The theta functions satisfy the following identities, for all complex numbers
M and v. Each can be proved quite simply by regarding the ratio of the
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LHS to the RHS as a function of u and verifying, using (15.2.4) and
H(0) = 0, that this is entire and doubly periodic. From theorem 15(a) it
is therefore constant. Setting u = 0, this constant is found to be unity.

H(u) &(u) Hi(v) 0i(u) - H(v) e(v) Hx{u) S{u)

= H(u - v) 0(w + v) #i(0) 0i(O) , (15.4.17)

H(u) 8!(«) Hx{v) ®{v) - Hx{u) 0(w) H(v) &{v)

= H(u - v) ©i(w + v) Hi(0) 0(0) , (15.4.18)

H2{u) @\v) - ©2(M) H\V) = H{u - v) H{u + v) 02(O). (15.4.19)

Incrementing u by il' in (15.4.19) and using (15.2.4) and (15.2.3) gives

02(u) 0» - H\u) H\v) = &(u - v) 0(u + v) 02(O) . (15.4.20)

Dividing each side of (15.4.17) by the corresponding side of (15.4.20) and
using (15.1.6) and (15.4.3) gives the addition formula for sn:

. sn M en v dn v — en u dn u sn v ,„ „ .
sn(w - v) = JJ—J j • (15.4.21)

v 1 - kl sn2 u sn2 v v /

Other addition formulae are:
—i sn(iT — u — v) en u en v - cn(//' — u - v) sn u sn v

= AT1 dn(i/' -u-v), (15.4.22)

sn(a - «)sn(a - v) - snu snv , , . , , , ,
^ i—i -1 — = sn a sn(a -u-v), (15.4.23)

1 — AT sn u sn v sn(a — u) sn(a - v)

sn v sn(a - u) - sn u sn(a - M) _ sn(a -u-v)
sn(a — «) sn v — sn(a - v) sn M sn a

0(«) 0(u) 0(a - M) 0(a - u) - H(M) / / (U) //(a - u) H{a - v)

= 0(0) 0(a) 0(M - v) 0(a - « - v) , (15.4.25)

(u) //(a - v) 0(«) 0(a - u) - 0(i>) 0(a - v) H(u) H(a - u)

= 0(0) 0(a) //(u - u) H(a - u - v) , (15.4.26)

0(M) 0(y) - H(u) H(v) = -2q{H$(ir + u - v)] H[i(U' - u + v)]

x HWfT + u + v)] H[h(U' -u- y)]/[//t(0) 0X(O)], (15.4.27)
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0(u) H(v) + H(u) G(y) = 2 H[i(u + v)\ @[h(u + v)]

x H,[i(« - v)] ei[J(u - u)]/[#i(0) e^O)], (15.4.28)

!(«)ifr(u) - H(u)H(v) =

x 9[i(/ +u-v)] 0i[£(/ + u -

(M) H{V) + H(u) Hi(v) = 2 #[£(« + »)] Hi[4(M + v)]

x e[i(u - v)] 9i[J(« - »)

Special Values of sn, en, dn

From (15.1.5), (15.1.6), (15.2.6), (15.4.4) and (15.4.5), $ is readily verified
that

sn0 = 0, cn0 = dn0 = l, (15.4.30)

s n / = l , en 7 = 0, dn/ = fc', (15.4.31)

sn HI' = i k~k, en W = (1 + k'x)\ dni//' = (1 + k)K (15.4.32)

15.5 Differential and Integral Identities

Consider the expression
X = sn'(u)/(cn u dn u), (15.5.1a)

where the prime denotes differentiation with respect to «, q being kept
constant. Differentiating (15.4.4) and (15.4.5) gives

X = - cn'(«)/(sn u dn u), (15,5,1b)

= - dn'(«)/(A:2 sn u cnu). (15.5,lc)

Substituting the expressions (15-1.6) for sn, en, dn and remembering
that the theta functions are entire, the above equations (15.5,1) give

^ ,(u) H(u) H^u) ' ( 1 5 5 ' 2 )

where in each case . . . stands for an entire function. From the first
expression above for X, X has poles only when Hi(u) or ©I(M) vanishes.
From the second, it does not have poles when Hx{u) vanishes. From the
third, it does not have poles when 0i(u) vanishes.

It follows that X has no poles and is therefore entire. From (15.2.5) it
is doubly periodic, so it is a constant.
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Obtaining sn u from (15.1.6) and (15.1.5), then letting u-> 0, we obtain

^ ) 3 . dO.5.3)
«-»0 U

Using (15.1.1), (15.1.4) and (15.1.5), this gives the simple result

lim (sn u)lu = 1. (15.5.4)
«-»o

[In fact, the definition (15.1.1) of / can be regarded as chosen to ensure
(15.5.4).]

Equation (15.5.4) ensures that sn'(0) = 1, while from (15.1.6) and
(15.4.3) it is obvious that cn(0) = dn(0) = 1. Evaluating the constant X by
setting u = 0 in (15.5.1a) therefore gives

X=l. (15.5.5)

Using (15.4.4) and (15.4.5) to express en u and dn u in terms of sn u,
(15.5.1a) becomes a first-order differential equation for sn u.

It can be integrated to give

dt
(15"5-6)

Defining 0 such that
sn u = sin 0, (15.5.7)

(10.5.6) can be written

u = \*T.—,d2
a. 2 . t . (15.5.8)

Jo (1 - kr sin** ay
This is the usual integral form of the relation between u and sn u. Care

has to be taken in choosing the path of integration and the sign of the
integrand, but for u real and between 0 and 1 there is no problem: sn u,
en u, dn u are then all positive, and 0 < sn u < 1. Thus u is then given by
the real integral (15.5.8), with positive integrand and 0 < <p < \n.

Now let «->/. From (15.1.6), (15.2.4) and (15.4.3), s n / = 1. Hence
<p = \n and (15.5.8) becomes

fa/2 dor
/= j . , 2 2 ,h, (15.5.9)

Jo (1 - kr sinz ay
which is the usual expression for / as the complete elliptic integral of the
first kind, of modulus k.

If M is positive pure imaginary, then so is sn u; while en u and dn u are
real and of the same sign. Thus -i sn u increases monotonically with Im(w),
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and is finite for 0 =s Im(«) < /'. In this case the appropriate path of inte-
gration in (15.5.8) is the positive imaginary axis. Again the integrand is
positive.

From (15.1.5) and (15.1.6), snw becomes infinite in the limit u-*U'.
Setting a= ifi, (15.5.8) gives

f i <15-510)
This is an integral expression for /'. It can be reduced to a more standard
form by the substitution

tany=sinh/3, (15.5.11)

giving, using (15.4.10),

'• = 1 p - rW <15'5-12)
Comparing (15.5.9) and (15.5.12), it is obvious that the relation between

/ and k is the same as that between /' and k': /' is the complete elliptic
integral of the first kind, of modulus k'.

The complete elliptic integral of the second kind, of modulus k, is

(1-Jfc2sin2y)*dy. (15.5.13)
o

Small-it Behaviour of sn u, H(u)

When |w| < 1 it is easily seen from (15.5.6) and (15.1.6) that

snw~u, H(u) ~ k{ 0(0) u . (15.5.14)

15.6 Landen Transformation

Exhibit the dependence of q, I, / ' , sn u, en u, dn u, etc. on the modulus
k by writing them as qt, h> 1'k, sn(« , k), cn(« , k), dn(u , k), etc. If

I = 2**/(l + k), u = (l+k)u, (15.6.1)

then by replacing u, k, t in (15.5.6) by u, I, (1 + k)tl{\ + kt2}, respectively
(and noting that sn / = 1, sn il' = <»), it can be verified that
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I,= (l + k)Ik, //=J(1+*)/£, q, = qi, (15.6.2)

/ sn(u , /) = 2)t4 sn(w , *)/[l + k sn\u , k)}, (15.6.3)

jfe* sn(u , A:) = [1 - dn(w , /)]/[/ sn(fl , /)] • (15.6.4)

Solving (15.6.1) for k, using (15.6.2) and replacing k, I by >n, fc, we obtain

m = (l-k')/(l+k'), qm = ql (15.6.5)

From (15.1.1) and (15.1.4b), it follows that

I(k'/m'y = in II (1 - 44")2/(l + <74")2- (15.6.6)
l

15.7 Conjugate Modulus

Set

X(u) = (///')* exp[-^M2/(4//')]. (15.7.1)

Then

H(u ,k) = - ixiu) H{iu , k'), (15.7.2a)

@(u , k) = x(u) H^iu , k') , (15.7.2b)

H1(u,k)=X(u)e(iu,k'), (15.7.2c)

e1{u,k)=XLu)el(iu,k'), (15.7.2d)

s n ( « , k ) = - i sn(iu , k')/cn(iu , k ' ) , (15.7.3a)

cn(« , k) = l/cn(i« , k'), (15.7.3b)

dn(« , A:) = dn(iw , k')/cn(iu , k'). (15.7.3c)

These identities can be proved by using theorem 15a. For instance, both
sides of (15.7.2a) are entire functions of u, with simple zeros at 2ml + 2inF,
for all integers m, n. Their ratio is therefore entire. Using (15.2.3) we can
verify that it is doubly-periodic, so from theorem 15a it must be a constant.

As is often the case, it is much harder to obtain this constant than it is
to obtain the rest of the equation. One way is to reason as follows.

The relations (15.7.2b)-(15.7.2d) can be obtained from (15.7.2a) by
replacing w b y « + i / ' , « + /,M + /+ W, respectively, and using (15.2.4).
It follows that (15.7.2a)-(15.7.2d) are all valid, except possibly for the
inclusion of some extra common factor on the RHS.
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This factor must be independent of u, but may depend on A:, or equiv-
alently on

£ = / ' // . (15.7.4)

Let us write the factor as c(e) and define a function

R(e) = e1 e-**112 H(l- e'2n!Z£). (15.7.5)

n = l

From (15.1.5), (15.5.9) and (15.5.12),

q = exp( - ne), q' = exp( - nle) (15.7.6)
where q is the nome corresponding to the modulus k, and q' is the nome
corresponding to the conjugate modulus k' = (1 - k2)K Taking the limit
u—*0 in (15.7.2a), including our still-to-be-determined factor c(e), using
(15.1.5) and (15.7.5), it follows that

R\e) = c(e) RXe-1). (15.7.7)

Similarly, multiplying (15.7.2a) and (15.7.2b) and taking the limit «-»0,
we obtain

R\el2) R\e) = c\e) R\2le) R\e~l). (15.7.8)

We can obtain a third equation by replacing e in (15.7.7) by ell. Elim-
inating R(e) and R{ell) between the three equations gives

c{ell) = c\e). (15.7.9)

Further, from (15.7.7) it is obvious that c{e~l) = Vc(e). Replacing e in
(15.7.9) by 2/e, and using this inversion property, it follows that

c(e) = c\ell). (15.7.10)

It follows at once that c(e) = c4(e). Since c(e) is real and non-zero, this
implies that

c(e) = l. (15.7.11)

Thus the factor multiplying the RHS of (15.7.2) is in fact unity: the
equations are correct as written. The equations (15.7.3) follow from (15.7.2)
and (15.1.6).

15.8 Poisson Summation Formula

CO SO

2 f(nd) = d-1 2 g(lmlS), (15.8.1)
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where

g(k)=f exp(ikx)f(x)dx. (15.8.2)

This identity is true for any function f(x) that is analytic for real values
of x, and for which the integral (15.8.2) is absolutely convergent (Courant
and Hilbert, 1953, pp. 75-77). It can be used to express series such as
(15.4.15) in a form which converges rapidly as q—* 1. This corresponds to
going from elliptic functions of modulus k to ones of modulus k'.

15.9 Series Expansions of the Theta Functions

tf(n) = 2 2 (-l)"-y"~i)2sin[(2n - \)mil2l\, (15.9.1a)
n = l

CO

0(u) = 1 + 2 2 (-1) V2 cos(nmi/I), (15.9.1b)
n = l

#i(u) = 2 2 <7<"-i)2 cos[(2« - l)mi/2i], (15.9.1c)

00

0i(«) = 1 + 2 2 / cos(nmi/I), (15.9.Id)
1n~ 1

n=0

CO

= II (1 - qn~lz) (1 - q'z'1) (1 - q") • (15.9.2)

To establish the identities (15.9.1), note from (15.1.5) that H(u) is an
entire function, odd and anti-periodic of period 21. It therefore has a
Fourier expansion of the general form

oo

H(u) = 2 K sin[(2n - \)TMI2I\. (15.9.3)

From (15.2.3b) it follows that hn+i = - q2nhn , and hence that

hn = 2c{-l)n'lq(n-i)\ (15.9.4)

where c is some constant. Substituting this result into (15.9.3); replacing
M by u, u + U', u + I, u + I + U', respectively; and using (15.2.4); we
obtain the four identities (15.9.1a)-(15.9.1d), except that each has an extra
factor c multiplying the RHS.
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As in Section 15.7, it is the evaluation of c that causes the most problems.
It is independent of M, but may depend on k, or equivalently q. Let us
write it as c(q) and define two functions

U
0 = 1

:1 + 2 Z ( - 1 ) " ? " 2 . (15.9.6)

Setting u = 0 in (15.9.1b), including our still-to-be-determined factor
c{q), and using (15.1.5), we obtain

S(q) = c(q) T(q). (15.9.7)

Similarly, multiplying (15.9.1b) by (15.9.Id), setting w = 0 and using
(15.1.5), we get

00 00

W) =c2(q)Jlxn'lj-l)
mqm2+nl. (15.9.8)

Set m = r + s,n = r — s. Then (15.9.8) becomes

5 V ) = c\q) 2 2 (- l)r+s q2r2+2s2 • (15.9.9)

Here r and s are either both integers, or both half-an-odd-integer. In the
latter case the sum over s vanishes, the terms occurring in pairs of equal
magnitude and opposite sign. Thus we can restrict the sum to all integer
values (positive, zero or negative) of r and s. We then have

(15-9.10)

Replacing q in (15.9.7) by q2 and comparing with (15.9.10), it follows that

c(q2)=c(q). (15.9.11)

However, it is obvious from (15.9.7) that c(q) is Taylor expandable about
q = 0 with leading term one. Substituting the Taylor series into (15.9.11)
and equating coefficients, we find at once that

c(q) = l. (15.9.12)

The identities (15.9.1) are therefore correct as written. The other identity
(15.9.2) is a corollary of (15.9.1a), being obtained by using (15.1.5), setting
z = exp(imi/I), and replacing q by qi.
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15.10 Parametrization of Symmetric Biquadratic Relations

In the Ising, eight-vertex and hard hexagon models we encounter symmetric
biquadratic relations, of the form

ax2y2 + b(x2y + xy2) + c(x2 + y2) + 2dxy + e(x+y)+f = 0. (15.10.1)

Here x and y are variables (complex numbers), and a, b, c, d, e, f are
given constants.

Any such relation can conveniently be parametrized in terms of elliptic
functions. To see this, first apply the bilinear transformations

x->(ax + P)l(yx + 8), y-»{ay + P)/(yy + 8), (15.10.2)

where a, fS, y, 8 are numbers (in general complex) such that a8 + /3y. In
general we can choose a, ft, y, 8 so as to make b and e vanish in (15.10.1),
and so that a = f # 0. (Exceptional cases can arise, but these can be handled
by taking an appropriate limit.) Dividing (15.10.1) through by a, the
biquadratic relation assumes the canonical form

x2y2 + 1 + c(x2 + y2) + 2dxy = 0. (15.10.3)

This can be regarded as a quadratic equation for y. Its solution is

y = - {dx ± V[ - c + (d2 - 1 - c2)x2 - cx*\}/(c + x2). (15.10.4)

The argument of the square root is a quartic polynomial in x. It can be
written as a perfect square by transforming from the variable x to the
variable u, where

x = kisnu, (15.10.5)

sn u being the Jacobian elliptic sn function of argument u and modulus k,
where

k + k~l = (d2 - 1 - c2)/c. (15.10.6)

Using (15.4.4) and (15.4.5), the argument of the square root is

-c[ l - (* + ArV + *1
= - c(l - sn2w) (1 - k2 sn2u) = - c cn2u dn2u. (15.10.7)

Define a parameter r/ by

c = - l/(Jfc sn2»7). (15.10.8)

Then from (15.10.6) it follows that we can choose the sign of r\ so that

d = en rj <in ri/(ksn2rj). (15.10.9)
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Substituting these expressions into (15.10.4), it follows that

s n K c n . d n ^ s n . c n . d n u

1 - kr sn̂ M sn2?j

Using the addition theorem (15.4.21), this result simplifies to

y = kk sn(w ± rj). (15.10.11)

Thus y is given by an equation of the same form as the equation (15.10.5)
for x, but with u replaced by u ± rj.

Put another way, if we transform from x, y to u, v according to the rule

x = k*snu, y = kisnv, (15.10.12)

then the canonical biquadratic relation (15.10.3) simplifies to the pair of
linear relations

v = u + rj or v-u-t]. (15.10.13)

We can now go back to the general biquadratic relation (15.10.1), using
the transformation (15.10.2). This of course changes c and d , and it should
be remembered that the c and d in (15.10.6)-(15.10.9) are those of
(15.10.3). Even so, it is still true that there exist parameters k and r\ such
that (15.10.1) reduces to

x = 4>{u), y = 4>(u±ri), (15.10.14)

where the function (p{u) is defined by

4>{u) = (ak1 sn u + /S)/(yA:4 sn u + 6). (15.10.15)

Define two further parameters A, \i by

sn A = - Jfc-*j8/ar, snp = - k^bly. (15.10.16)

Then (15.10.15) can be written as

<p(u) = (aly) (sn u - sn A)/(sn u-snp). (15.10.17)

Using (15.1.6) to express the sn function as a ratio of theta functions,
then applying the identity (15.4.28) (with u negated), we obtain

<P(u) = constant x <» A) r(M - 2/H-A)

where the function T(U) is defined by

r(u) = H(ul2) 0 (M/2 ) . (15.10.19)

From (15.1.5), to within a constant factor, T(M) is the elliptic //-function
with q replaced by qi and ull by w/(2/). From (15.6.2), this means that they
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are related by a Landen transformation. In fact

T(U) = constant x H{u',t), (15.10.20)

where

V A:), u' = 1(1+ k)u . (15.10.21)

Modify each of u, A, (x by subtracting7 and then multiplying by 1(1 + k).
Multiply rf by 1(1 + k). Then (15.10.18) becomes

H{u-X,t)H{u + X,t)
<p(u) = constant x -) ' ) , (15.10.22)

H(u - f i , l ) H(u + n , l )

and (15.10.14) is unchanged.
The general symmetric biquadratic relation (15.10.1) therefore can be

reduced to the form (15.10.14), where <p(u) is given by (15.10.22), or
equivalently by

*«) = constant x S " > ' % ~ " f f ' j> . (15.10.23)
snl(u , I) - %n\n ,1)

The multiplicative constant herein, and the parameters /, A, fx, r/, are inde-
pendent of x and y , being determined solely by the coefficients a ,. . . ,f
in (15.10.1). In any specific case we can obtain these parameters by
substituting the expressions (15.10.14) and (15.10.22) for x and y directly
into (15.10.1), and then considering particular values of u .

There are many excellent books on elliptic functions. I mention Whittaker
and Watson (1915, Chapters 20-22), Neville (1944) and Bowman (1953).
I find particularly useful the identity list in Sections 8.110-8.197 of Grad-
shteyn and Ryzhik (1965): once one is familiar with the use of the theorems
in Section 15.3, it is usually straightforward to verify any particular identity,
as I hope I have managed to indicate.
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INDEX

Anti-ferroelectric phase
of eight-vertex model, 246
of ice-type model, 152

Ashkin-Teller model, 254, 353-362
Asymptotic degeneracy of maximum

eigenvalues of the transfer
matrix, 111-114, 152-153, 239-
240

Bethe ansatz, 139, 168
Bethe lattice, 13, 47-59, 306-309, 351

Cayley tree, 47-49
Coexistence curve, 29
Commuting transfer matrices, see also

star-triangle relation
eight-vertex model, 214
general two dimensional IRF

model, 370-372
hard hexagon model, 452
ice-type model, 180-181, 185-186
planar Ising model, 85-86, 96

Corner transfer matrices, 363-401
eight-vertex model, 385-389
hard hexagon model, 405^07, 426-

432
Correlation length, 19

eight-vertex model, 241-243, 284
hard hexagon model, 452
ice-type model, 154-155
one-dimensional Ising model, 36
planar Ising model, 118, 120
relation to the eigenvalues of the

transfer matrix, 36, 115-118
Correlations, 10, 18-19

one-dimensional Ising model, 35-36

planar Ising model, 297-298
Critical exponents, 4, 17, 19, 20, 29,

see also scaling hypothesis and
scaling relations

Ashkin-Teller model, 360-361
Bethe lattice Ising model, 58
classical values, 30-31
continuously variable, 8, 253-254,

361
eight-vertex model, 253-255
hard hexagon model, 448-452
ice-type model, 157, 160, 165
mean-field Ising model, 44—46
one-dimensional Ising model, 38
planar Ising model, 122
Potts model, 351-352
spherical model, 69-71
three-spin model, 320-321

Critical point, 3, 10, 28
Ashkin-Teller model, 359-362
Bethe lattice Ising model, 54, 307-

308
eight-vertex model, 248
hard hexagon model, 405, 447, 449
ice-type model, 156
mean field Ising model, 44
numerical values for the isotropic

Ising model, 77, 308
one-dimensional Ising model, 37
planar Ising model, 77-78, 87, 120-

121, 307-308
Potts model, 338-339, 347-348
spherical model, 67
three-spin model, 314

Curie point, 2, 44, see also critical
point
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Dichromatic polynomial, 324
Difference kernel, transformation to,

145, 171
Dimer problem, 124-126
Disorder points, 247
Duality,

Ashkin-Teller model, 357
eight-vertex model, 206
planar Ising model, 73-80, 86-87
Potts model, 338, 346

Dual lattice, 74, 79

Eight-vertex model, 202-321
'electric' arrow formulation, 202-

204, 276-279
'magnetic' spin formulation, 207-

210, 286-289
Elliptic functions, 455^73

conjugate modulus identities 419,
444-446, 467-468

in eight-vertex model, 212-215
in hard hexagon model, 412-415
in planar Ising model, 102-103
in square-lattice four-colouring

problem, 171-176

Ferroelectric ice-type model in a field,
160-165

Ferroelectric phase
of eight-vertex model, 246
of ice-type model, 151

F model, 129
Four colour problem, 331-332
Free energy, 16-17

Bethe lattice Ising model, 55-56,
59, 306

critical Potts model, 339-340, 348-
350

eight-vertex model, 236-237, 285-
286

hard hexagon model, 408, 426, 444,
450

ice-type model, 145-150
inversion relation for, see inversion

relations
mean field Ising model, 42
one-dimensional Ising model, 34
planar Ising model, 110-111, 296-

306
spherical model, 61-64

three-spin model, 319-320
Free-fermion model, 270-271, 310

Hard hexagon model, 402-454
Heisenberg chain, see XYZ chain
Hyperbolic trigonometry and the star-

triangle relation, 292
Hyperscaling, 7

Ice model, 127-129, 148
Ice-type model, 127-201
Interfacial tension, 20, 110-114, 152-

153, 239-241, 452
Internal energy, 9, 16

critical Potts model, 344-345, 349-
351

spherical model, 64
Inversion relations for local transfer

matrices, free energy, and
corner transfer matrices, 383-
387, 421^23, 427-429

Ising model, 19-32, see also specific
properties, e.g. free energy

Bethe lattice, 13, 47-59, 306-309
mean field, 13, 39-46
one-dimensional, 12, 32-38
planar, 72-126, 294-309
relation of d-dimensional model to

a (d-l)-dimensional quantum-
mechanical model, 266-267

Kagome lattice, 276-277
KDP model, 129

Landen transformation, 466-467
Latent heat of Potts model, 345, 349-

351
Lattice gas, 24-30

hard hexagons, 402, 409
mean field, 46

Liouville's theorem, 458
Local transfer matrices Ui

edge transfer matrices for the planar
Ising model, 84-85, 124

face transfer matrices for the
general two-dimensional IRF
model, and for the hard hexagon
model, 369, 421

inversion relations for, see inversion
relations
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vertex transfer matrices for the ice-
type and eight-vertex models,
188

Magnetization, 1-4, 17, 21-23, see also
spontaneous magnetization

Bethe lattice Ising model, 52-54, 59
mean-field Ising model, 41
one dimensional Ising model, 34
spherical model, 64

Mean-field model, 13, 39-46
Medial graph, 325, 332-333, 345-346

One-dimensional Ising model, 12, 32-
38

Order parameter, see also spontaneous
magnetization and spontaneous
polarization

hard hexagon model, 404, 438, 442,
446, 451

Pair-propagation through a vertex,
194, 215

Partition function, 8-9, 16, 25
per site, see free energy

Percolation problem, 324
Pfaffian, 125
Phase transition, 1-3, see also critical

point
Poisson summation formula, 468-469
Polarization, see also spontaneous

polarization
ferroelectric ice-type model,
162-165

Potts model, 322-352

Renormalization group, 11
Rogers-Ramanujan and related

identities, 434-443

Scaling hypothesis, 4-7, 37
full verification for the one-

dimensional Ising, mean-field
Ising, Bethe lattice Ising,
spherical and ferroelectric ice-
type models, 37, 46, 58, 71, 165

Scaling relations between critical
exponents, 6, 20, 21

verification of (a,n,p) relations for
the planar Ising, ice-type, eight-
vertex, three-spin and hard
hexagon models, 122, 160, 253,
321, 452

verifications for other models, see
scaling hypothesis

Series expansions, 10, 22-23, 395-396,
404

Six-vertex model, see ice-type model
Specific heat, 16
Spherical model, 13, 60-71
Spontaneous magnetization, 1-4, 23

Bethe lattice Ising model, 57, 306
eight-vertex model, 243-244, 291,

389
mean-field Ising model, 44
planar Ising model, 119, 299, 304-

306, 389
spherical model, 68-69
three spin model, 319

Spontaneous polarization and
spontaneous staggered
polarization

eight-vertex model, 244-245, 253,
285

ice-type model, 153-154, 157, 159
three-spin model, 319

Star-triangle relation
eight-vertex model, 210-215, 279-

281, 289-291
general two-dimensional IRF

model, 370-374
hard hexagon model, 410-411
ice-type model, 187-192
operator form, 83-85, 124, 188,

192, 215, 372-373
planar Ising model, 80-86, 92-93,

122-124
three-dimensional, 453

Susceptibility, 4, 18
divergent for the spherical model,

70

Thirty-two vertex model, 309-313
Three-colourings of the square lattice,

165-179
Three-spin model, see triangular three-

spin model
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Transfer matrix
commutation, see commuting

transfer matrices
corner, see corner transfer matrices
edge, see local transfer matrices Ui
eight-vertex model, 185, 214
face, see local transfer matrices Ut
general two-dimensional IRF

model, 371
hard hexagon model, 452
ice-type model, 130-131, 185
one-dimensional Ising model, 33-34
planar Ising model, 85-86, 89-96
three-colourings of the square

lattice, 167
vertex, see local transfer matrices

U,
Triangular lattice gas with nearest-

neighbour exculsion, see hard
hexagon model

Triangular three-spin model, 314-321
Twenty-vertex model, 311-312

Universality, and violations thereof, 7-
8, 253-255, 361-362

van der Waal's equation of state, 13,
30-31

Wave numbers, in the Bethe ansatz,
143-144, 169-170, 177

Weak-graph expansion, 206
Wiener-Hopf factorization, of eight-

vertex model eigenvalue
equation, 229, 231

XYZ chain, 258-267, 269-272

ZNmodel, 322











Several two-dimensional lattice models in statistical mechanics
have been solved exactly, notably the Isiny, spherical, ice, eight-
vertex and hard-hexagon models. Their solutions are presented
here, and it is shown how they give invaluable information on
critical behaviour, particularly on universality. Emphasis is laid
on the development of the calculational techniques and methods
from one model to the next, and on \ arious unih ing features such
as the star-triangle relation.
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