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Abstract: This paper describes an approach for constructing fractal patterns on a Web browser by using CSS and 
XHTML. This simplifies the construction of fractals in a Web page as it is not necessary to use any additional software, the 
CSS Table Model, HTML tables, image files, complex mathematical algorithms, or the canvas tag introduced in HTML5. 
 

1  Introduction 
 

In a recent article (1), we described the design of CSS tableless layouts using a row primary 
approach. A row primary layout is one built with partitioned row divisions. This has several benefits. 
First, it forces a Web browser to render content from left to right and one-row-at-a-time. Second, the 
way content is rendered conforms to the way search engines and screen readers process 
documents. Third, a row primary layout allows one to associate an iteration level, therefore a row 
level, to the styling and nesting of markup elements.  
 
In a follow up article (2), we explained why replacing table-based layouts with CSS tableless design 
not necessarily produces table-equivalent layouts. In two additional articles (3, 4) we described a tool 
that automates the creation of Web page layouts, including fractal layouts.  
 
The traditional way of constructing fractals is with computer algorithms (5). Some of these use pixel-
by-pixel drawing techniques wherein the output of a recursive function is evaluated against a 
predefined condition. Other strategies or combination of techniques use HTML tables, image files, 
VML, SVG, or the canvas tag introduced in HTML5  (6 - 8). In most cases, implementing these 
strategies and techniques involves a learning curve, requires of a large number of iterations, and 
consumes server resources.  
 
The purpose of this article is to present an alternative to the design of fractals that does not require of 
any additional software or special resources, but of a Web browser that supports CSS and XHTML. 
Fractals are then generated with our row primary approach. Since this requires of a small number of 
iterations, the patterns can be coded by hand. Coding can also be automated by writing a JavaScript 
tool. 
 
This paper is organized as follows. In section 2 we describe our experimental setup. The procedure is 
discussed in section 3. Results are presented in section 4. Findings and drawbacks are discussed in 
section 5. Finally, in section 6 we draw some conclusions. 

 
2  Setup 
 
An Acer computer with Windows 7 and at a screen resolution of 1366 x 768 pixels, landscape 
orientation, was used. All iterated patterns were tested with versions of Internet Explorer 8 and 7 (IE 
8, IE 7), Firefox 3 (FF 3), Opera 10 (OP 10), Safari 4 (SF 4), and Google Chrome 4 (GC 4). The 
Fractal CSS Design Studio 2 (FCDS 2) tool described in Reference 3 was modified in order to iterate 
the markup instructions to be discussed and renamed FCDS 3. 
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3  Procedure 
 
To create a pattern, a canvas division of length L and area A = L2 is defined. Unlike the HTML5 
canvas tag which addresses pixels, this division holds markup. Next, we declare row divisions; i.e. 
 

<div class=”canvas”><div class=”row”>…</div>…</div>  
 
Each row will accommodate cell divisions, to be left-floated or positioned according to design 
requirements. Cell divisions are styled by defining their sizes and background colors. CSS borders 
are optional, but if used, one should understand that these consume additional pixels, affect the area 
occupied by a cell, and impact the shape of a pattern. Upon recursion, bordered cells can also end 
touching neighboring borders. If these are styled with the background color of a cell, the layout will 
look disconnected.  
 
To give the illusion of using bordered cells, wrapper divisions (i.e., <div class=”wp”></div) are used 
within cells and their borders styled. It is not necessary to declare all four borders of a wrapper, but 
the top (or bottom) and left (or right) borders. To avoid the cumulative effect of CSS borders, the 
iteration level used is also assigned to a style instruction. An example follows.  
 
3.1  Associating an iteration level to style instructions 
 
Let 
 

<div><div class=”wp”></div></div>  
 
be a markup fragment. Its first iterate (i = 1) is  
 

<div><div class=”wp”><div><div class=”wp”></div></div></div></div> 

 
To style the top and left borders of the internal wrapper without styling the external wrapper, the 
following CSS rule is used.  
 

div.wp div.wp{border-top:1px solid #000;border-left:1px solid #000;} 

 
Thus for i iterations, the div.wp is repeated i + 1 times in the CSS rule. This is an example of 
associating an iteration level to the style rule. With the FCDS 3 tool, this is accomplished with a FOR-
TO loop. If bordered cells are not needed, the wrappers and rule can be removed altogether.  
 
3.2  A word on rows and cells 
 
The numbers of rows and cells per rows to be declared depend on the type of fractal to be generated. 
In general, the following markup is used: 
  

<div class=”row”> 
<div class=”c11”><div class=”wp”></div></div> 
<div class=”c12”><div class=”wp”></div></div> 
⁞     ⁞     ⁞ 
<div class=”bk”></div> 
</div> 

 
For subsequent rows, the markup is defined in a similar way. A breaker division (i.e., <div 
class=”bk”></div>) is also declared to prevent repositioning (refloating) of cells upon any resizing of 
the browser window. This division is styled with the div.bk{clear:both;height:0px;} style rule. Any 
iteration of the markup occurs within the wrapper divisions. 



 4  Results 
 
In this section, we describe the construction of the fractal patterns shown in Figures 1 through 13. 
These were generated with IE 8. Source code instructions for these figures are available online from 
Mi Islita.com (http://www.miislita.com/fractals/fractal-source-codes.html) or by email by contacting the 
author. Due to limitation of space, in this article we only discuss the style and markup instructions for 
the Sierpinski Gasket. 
 
4.1  Sierpinski Gasket 
 
This is one of the best known fractals, sometimes also called the Sierpinski Triangle. To construct this 
pattern, two row divisions are declared within the canvas division. The area of each row is ½ of the 
whole canvas.  
 
The first row spans across three cells, c11, c12, and c13. The area of c11 and c13 is ¼ of the whole 
first row while the area of c12 is ½ of this row. The second row spans across two cells, c21 and c22. 
The area of each cell is ½ of the whole second row.  
 
The initial layout at i = 0 and sometimes also called generator, motif, or blueprint is shown in Figure 1. 
Its CSS and markup instructions are listed in Table 1. Comment instructions are in red. Note that the 
generator consists of a three- and a two-column layout. These types of layouts are commonly used in 
Web page design (1 - 4). 
 

 
 

Figure 1. Sierpinski Gasket generator, resembling a Web page layout with three and two columns. 

 
Table 1. Style and markup instructions for the Sierpinski Gasket generator. 

CSS XHTML 

html,body{font-size:100%;height:100%;width:100%; 
margin:0px;padding:0px;border:0px;} 
div{height:100%;margin:0px;padding:0px;border:0px; 
overflow:hidden;} 
div.canvas{margin:0 auto;width:25em;height:25em; 
border:1px solid #000;} 
div.r{height:50%;background:#606;} 
div.bk{clear:both;height:0px;} 
/*Repeat ‘div.wp’ i + 1 times. See Procedure section.*/ 
div.wp{border-top:1px solid #606;border-left:1px solid #606;}     
div.c11,div.c13{float:left;width:25%;} 
div.c12,div.c21,div.c22{float:left;background:#fc3;width:50%;} 
/*Add next line for IE 7.*/ 
div.c13,div.c22{float:none;width:auto;}                                         

<div class="r"> 
<div class="c11"><div class="wp"></div></div> 
<div class="c12"><div class="wp"> 
<!-- Iterated layout goes here --> 
</div></div> 
<div class="c13"><div class="wp"></div></div> 
<div class="bk"></div> 
</div> 
<div class="r"> 
<div class="c21"><div class="wp"> 
<!-- Iterated layout goes here --> 
</div></div> 
<div class="c22"><div class="wp"> 
<!-- Iterated layout goes here --> 
</div></div> 
<div class="bk"></div> 
</div> 

 
 

http://www.miislita.com/fractals/fractal-source-codes.html


To construct the Sierpinski Gasket, this markup is iterated by pasting it back into each cell except 
cells c11 and c13. Figure 2 shows the emergence of the Sierpinski Gasket after six iterations. 
 

   
 

         (a)           (b)           (c) 
 

   
 

         (d)          (e)           (f) 
 

Figure 2. Sierpinski Gasket, obtained after iterating six times the row primary layout described in Figure1 and Table 1. 

 
4.2  Left-Skewed Sierpinski Gasket 
 
This is a modification of the previous pattern. Two rows are defined on the canvas, each spanning 
two cells: c11, c12, c21, and c22. Essentially each row is partitioned into a two-column layout.  
 
The area of each cell is ½ the area of a row. Since the canvas occupies the area of four cells, the 
area of each cell is, therefore, ¼ the area of the whole canvas. This markup is iterated on each cell, 
except c12. Figure 3 shows the generator (a) and attractor (b) obtained after six iterations.  
 

  
 

 (a)         (b) 
 

Figure 3. Left-Skewed Sierpinski Gasket, showing its generator (a) and attractor (b) after six iterations. 

 
 
 
 
 
 



4.3  Sierpinski Carpet 
 
According to Peitgen, et. al (9), unlike the Sierpinski Gasket the Sierpinski Carpet is a universal object 
that houses any one-dimensional object in the plane in the topological sense. This includes lines, 
squares, and other fractals like modified versions of the Sierpinski Gasket, Koch Curve, and Cantor 
Set.  
 
The Sierpinski Carpet is constructed by defining three row divisions on the canvas. The area of each 
row is 1/3 of the whole canvas. Each row spans across three cells. The area of each cell in a row is 1/3 
of the whole row or 1/9 of the whole canvas.  
 
The markup for rendering the carpet is iterated on each cell, except cell c22. Figure 4 shows its 
generator (a) and attractor after three iterations; with (b) and without (c) declaring borders. 
Definitively, borders impact the end result. 
 

   
 
           (a)                (b)              (c) 
 

Figure 4. Sierpinski Carpet, showing its generator (a) and attractor after three iterations, with (b) and  
without (c) declaring borders. 

 
4.4  Vicsek Fractal 
 
Also known as Vicsek Snowflake or Box Fractal, this pattern arises from a construction similar to that 
of the Sierpinski Carpet, except that it can be constructed from two equivalent generators. These are 
shown in Figure 5 (a) through (d) and after four iterations.  
 
In (a), the generator is iterated on all cells except c12, c21, c23, and c32. In (c), the generator is 
iterated on all cells except c11, c13, c31, and c33. The two attractors and fractal dimensions are 
equivalent, except that one attractor (d) is rotated by 45 degrees. 
 

    
 

 (a)         (b)       (c)        (d) 
 

Figure 5. Vicsek Fractal, showing its generators (a, c) and attractors (b, d) after four iterations.  
 
 

 



4.5  New Carpets 
 
Rani and Kumar (10) have documented a new class of carpets within the Sierpinski Carpet. In the 
next subsections these are reproduced with our row primary approach. 

 
4.6  Dhan Carpet 
 
The Dhan Carpet is constructed as described by Rani and Kumar (10). Four row divisions are defined 
in the canvas division. The area of each row is 1/4 of the whole canvas. Each row spans across four 
cells. The area of each cell in a row is 1/4 of the whole row or 1/16 of the whole canvas. The HTML 
markup for rendering the carpet is iterated on each cell, except cells c11, c14, c41, and c44. Figure 6 
shows its generator (a) and expected attractor after just two iterations. 

 

  
 

    (a)        (b) 
 

Figure 6. Dhan Carpet, showing its generator (a) and attractor (b) after two iterations. 

 
4.7  Black and Red Carpet 
 
Constructing this carpet consists in defining three row divisions in the canvas division. The area of 
each row is 1/3 of the whole canvas. Each row spans across three cells. The area of each cell in a row 
is 1/3 of the whole row or 1/9 of the whole canvas. The HTML markup for rendering the carpet is 
iterated on each cell, except cell c31. Figure 7 shows its generator (a) and expected attractor after 
three iterations. 

 

 `   
 

  (a)         (b) 

 
Figure 7. Black and Red Carpet, showing its generator (a) and attractor (b) after three iterations. 

 
 
 
 

 

 
 



5.  Discussion 
 
5.1  Fractal Dimension Calculations 
 
In a strict sense, construction of a fractal requires defining an initiator, a generator, and a scaling 
factor (11, 12). For fractals of the Sierpinski family, the initiator is a square of unit length (L = 1) and 
unit area (A = L2 = 1). This is partitioned into b2 smaller squares of length L(1/b) = L*1/b = 1/b and 
area A(1/b) = A*(1/b)2 = (1/b)2,  where b = 2, 3, 4... From here that b, therefore 1/b, is a scale factor. 
 
The generator consists of n smaller squares to be removed and b2 – n smaller squares to be 
retained. The generator is then iterated within the retained squares and the fractal dimension D is 
computed as 
 

D = log(b2 – n)/log(b)                    (Eq 1) 
 
where the probability that b2 – n parts remain in the fractal is p = (b2 – n)/ b2  =  1 – n/ b2.   
 

For instance for the Sierpinski Carpet, b = 3, n = 1, and p = 8/9 = 0.88…; so, D = log(8)/log(3) 1.89. 
Table 2 lists D values computed for several fractals. 
 

Table 2. Patterns and their fractal dimensions. 

Fractal Sierpinski 
Gasket 

Left-Skewed  
Sierpinski Gasket 

Sierpinski 
Carpet 

Vicsek 
Fractal 

Dhan 
Carpet 

Black & Red 
Carpet 

D  1.58 1.58 1.89 1.46 1.79 1.89 

 
5.2  Mann Iteration Method 
 
Rani and Kumar (10) have documented a new class of carpets within the Sierpinski Carpet using 
different scaling factors on a given generator. These scaling factors are computed with Mann Iteration 
Method (10, 13, 14) which works as follows. For a function f on a linear space X and an initial value 
x0 (in X), define x1 as a new value. In general, at a given iteration level i  
 

xi + 1 = λ*f(xi) + (1 - λ)*xi                   (Eq. 2) 
 
where 0 < λ ≤ 1 and λ and 1 – λ are scaling factors. 
 
Note that uniformly scaling a k-dimensional shape reduces to computing λk and (1 – λ)k, where for a 
line k = 1, for a square k = 2, and for a sphere or cube k = 3. Thus for a square of area A, Mann’s 
scaling factors define two scaled areas: 
 

A(λ) = A*λ2                       (Eq 3) 
 
A(1 – λ) = A*(1 – λ)2                    (Eq 4)  

 
These two areas define the cells of the generators used by Rani and Kumar. In the rest of this section 
we reproduce their carpets with our row primary approach. The only drawback is the number of 
iterations that a Web browser can handle without crashing. Fortunately, our approach requires of a 
few numbers of iterations.  
 
 
 
 



5.3  Kangri Carpet 
 
This pattern, from Rani and Kumar (10), is shown in Figure 8. For its construction, we define two row 
divisions, r1 and r2, within the canvas. Row r1 contains rows r11 and r12, where r11 contains cells 
c11 and c13 and r12 includes c12. Row r2 contains cells c21, c22, and c23.  
 
Initially, we tried to design this carpet with a simpler layout by placing c11, c12, and c13 all in one 
row, with smaller cells floated to the left and the larger cell floated to the right, but inconsistent results 
were obtained across browsers. This simpler layout, however, produced acceptable results with their 
Krishna and Vinod Carpets. 
 
In the Kangri Carpet, the area of the smaller cells is 1/9 = (1/3)2 of the whole canvas while the larger 
cell occupies the area of 4 smaller cells or 4/9 = (2/3)2 of the whole canvas. These areas conform to 
Equations 3 and 4, but differ from those reported by Rani and Kumar. The markup of this layout is 
then iterated on each cell, except cell c21. Figure 8 shows its generator (a) and expected attractor 
after four iterations. It can be confirmed from Equation 1 that the fractal dimension of the carpet is the 
same as that of the Sierpinski Carpet. 
 

  
 

  (a)         (b) 
 

Figure 8. Kangri Carpet, showing its generator (a) and attractor (b) after four iterations. 
 

5.4  Krishna Carpet 
 
To design this carpet (10), we define two rows in the canvas. Each row spans across five cells. The 
area of the first row is 4/5 of the whole canvas and that of the second row is 1/5 of the whole canvas. 
The largest cell (c12) is CSS-floated to the right of c11 and occupies the area of 16 smaller cells. Its 
area is 16/25 = (4/5)2 of the whole canvas and that of each of the smaller cells is 1/25 = (1/5)2 of the 
canvas. These areas differ from the ones reported by Rani and Kumar. The markup is iterated on 
each cell, except cell c14. Figure 9 shows its generator (a) and attractor after three iterations. 

 

   
 

              (a)        (b) 

 
Figure 9. Krishna Carpet, showing its generator (a) and attractor (b) after three iterations.  

 
 



5.5  Vinod Carpets 1 and 2 
 
To create their Vinod Carpet, Rani and Kumar said (10): 
 

“To design a Vinod carpet, divide the whole square into ten squares. Out of all the squares, the area of the largest one 
is 4/5 and that of the remaining squares is 1/5 of the whole square. Drop the alternate small squares starting from the 
left top square as shown in the blueprint. By repeating this process on each square again and again, after enough 
iterations, we get Vinod carpet.” 

 
We disagree with this procedure for three reasons:  
 

 First, the largest cell in their reported blueprint occupies the area of 16 smaller cells, being 
16/25 = (4/5)2 of the whole canvas. So the area of each of the smaller cells is 1/25 = (1/5)2 of 
the whole canvas.  

 Second as depicted in Figure 10, their generator does not produce the expected carpet.  

 Third, since the generator was not the right one, the fractal dimension obtained from the 
generator does not correspond to that of the carpet. 

 

  
 

(a)        (b) 

 
Figure 10. Vinod Carpet 1, showing its generator (a) and attractor (b) after five iterations.  

 
To reproduce their Vinod Carpet, we modified the previous generator by iterating the markup five 
times on each cells, except c11, c21, and c25. The new generator and carpet (herein termed Vinod 
Carpet 2) are shown in Figure 11. 
 

  
 

               (a)       (b) 

 
Figure 11. Vinod 2 Carpet, showing its generator (a) and attractor (b) after five iterations.  

 
These results now agree with those of Rani and Kumar. The fractal dimension of Vinod Carpet 1 is D 

= log(22)/log(5)  1.92 while that of Vinod Carpet 2 is D = log(20)/log(5)  1.86. 
 
 
 



5.7  Multifractal Sierpinski Carpets 
 
A multifractal is a pattern whose complexity cannot be characterized with a single fractal dimension. 
One way of constructing these patterns on a two-dimensional grid consists in color-coding cells. The 
following example was inspired from Perfect et al. (12), but with some modifications. As in their work, 
the generator is a square with 9 cells of equal sizes, without borders. These are colored in different 
shades of black and white according to a distribution function.  Figure 12 shows the generator (a) and 
two different attractors (b, c) after four iterations. In (b) the generator was iterated on all cells except 
c33 while in (c) it was iterated on all cells. The new attractors house several fractal patterns. 
 

   
 

(a)              (b)             (c) 
 

Figure 12. Multifractal carpets, showing the generator (a) and attractors (b, c) after four iterations.  

 
The following example was motivated from Pallat et al. (15). As in Reference 12, they used a 3x3 
square, but cells were color-coded representing statistical properties associated to a link graph 
network. We modified their generator by iterating it on all cells except c12 and c21. Figure 13 shows 
the generator (a) and new attractor (b) after four iterations. As in Figure 12, several fractal patterns 
are found in this carpet.  
 

  
 

Figure 13. Multifractal carpet, showing its generator (a) and attractor (b) after four iterations.  

 
5.8  Drawbacks: sub-pixel rounding problems across browsers 
 
Resig (16) has shown that browsers introduce sub-pixel resolution errors because of the different 
approach used when, for instance, rounding widths calculated from percentages. He found that OP 
10 and SF4 tend to round sub-pixels down, IE 7 and 6 tend to round up, and Firefox 3 tends to round 
alternately up and down.  
 
To the best of our understanding, the effect of browsers sub-pixel rounding errors on iterated patterns 
is not well documented; and we haven’t found a benchmark on this. The topic is important as small 
errors can lead to unexpected results. Conversely, iterated layouts obtained from Web browsers 
should shed some light into the rounding rules used by these. To test this idea, in Table 3 we have 
generated several Sierpinski Carpets with the above browsers. Their layout engines are also listed. 
 



Table 3.  Effect of browser sub-pixel rounding errors on the Sierpinski Carpet. 

Browser i = 1 i = 2 i = 3 

Opera 10 (OP 10) 
Engine: Presto 
 

   
Safari 4 (SF 4) 
Engine: WebKit 

   
Google Chrome 4 (GC) 
Engine: WebKit 

   
Internet Explorer 7, 6 
Engine: Trident 

   
Firefox 3 
Engine: Gecko 

   
Internet Explorer 8 
Engine: Trident 4.0 

   
 
 
 



Note that OP 10 and SF 4 leave gaps, confirming that these browsers round sub-pixels down. The 
carpet is ruined after few more iterations.  
 
The table also reveals that IE 7, like IE 6, rounds up, causing elements to overflow containers, and 
fragmenting the Sierpinski Carpet. These browsers were not tested directly, but emulated. For 
example, IE 7 was emulated by placing the following tag in the head section of the generated markup: 
 

<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" /> 
 

In the case of FF 3, this browser was capable of correctly drawing the Sierpinski Carpet, confirming 
that it rounds sub-pixels alternately up and down in order to make elements fit completely. 
 
In Table 3 we listed two additional browsers, not included in Reference 15: GC 4 and IE 8. The 
results suggest that GC 4 could be using rounding rules more similar (i.e., not necessarily identical) to 
those of SF 4 than to IE 7 while IE 8 could be using rounding rules more similar to those of FF 3 than 
to IE 7 or GC 4. 
 
This educated guess can be reasoned in terms of the type of layout engines used by these browsers. 
GC 4 and SF 4 are built around the WebKit layout engine, so it is not entirely surprising that these 
browsers produce similar results.  By contrast, IE 7 uses Trident while IE 8 uses Trident 4.0; thus, it is 
not equally surprising to see these browsers producing dissimilar results. (17 - 22). 
 
We have retested these browsers with other patterns like the Vicsek Fractal 2. Our results are 
summarized in Table 4. The best results were obtained with IE 8. As before, the rounding rules used 
by the rest of the browsers ruined the final output. 
 
We tried to find CSS workarounds to fix these results with limited success. For instance, for IE 7 we 
found that assigning  
 

{float:none;width:auto;} 

 
to the last cell of a row tends to prevents these from overflowing a row, while assigning a height 
slightly above 100% to the cells,  
 

{height:101%;overflow:hidden;} 

 
hides the extra horizontal gaps in IE 7 and FF 3, but causes not so obvious distortions. This second 
fix is not recommended for the other patterns like the Dhan Carpet. Actually, we were not able to find 
a simple fix that would work well 100% of the time across patterns and browsers. Accordingly, at the 
time of writing we can only recommend Web users to view our patterns with the latest versions of 
Internet Explorer or Firefox, with IE being the preferred option. Fortunately, most users prefer these 
over all other browsers (23).  
 
 
 
 
 
 
 
 
 
 



 
Table 4. Vicsek Fractal 2 patterns after four iterations and obtained before and after CSS workarounds. 

Browser Before After 

OP 10 

  
SF 4 

  
GC 4 

  
IE 7, 6 

  
FF 3 

  
 
 
 
 
 
 
 
 
 



6  Conclusion 
 
We have demonstrated a simple technique for constructing fractal and multifractal patterns with a 
Web browser. The iterated layouts shed some light into the sub-pixel rounding rules used by these. 
 
Rani and Kumar’s carpets were also reproduced and their results corrected. However compared with 
their carpets, ours were of low resolution since a few numbers of iterations were used to prevent the 
Web browsers from crashing. 
 
Fractal carpets have widespread applications in many areas: from graphic design, to physical carpets 
design; and from the study of complex electrodes, to the study of diffusion-limited aggregation 
phenomena (24). Even electronic devices like cell phones have fractal antennas shaped as Sierpinski 
carpets (25, 26).  
 
Although not demonstrated in this work, our row primary approach can be used to speed up other 
Web-based tools, like the Bifurcation Diagram program described in Reference 6 and the Mandelbrot 
Viewer developed by Aliverti (27). In each case, img and td table elements can be replaced with 
styled division elements and the iterated output colored one row at a time.  
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