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“It’s love that makes the world go round.”
- Ancient Ditty

“Energy makes the world go round.
ENERGY explains EVERYTHING.”

- Modern Ditty to be
found in science books

WORK, POWER, KINETIC ENERGY

by

John S. Ross, Rollins College

1. Introduction

The fundamental problem of particle dynamics is to determine the
external forces that act on an object, then use them to find the position of
the object as a function of time. In more detail, once we know the forces
we add them to get the resultant force ~FR, which we put into Newton’s
second law in order to get the acceleration ~a. We can then find the final
velocity by integrating the time-varying vector equation, inserting the
initial velocity as an integration constant. We can repeat the integration
to find the time-varying position. If the resultant force is constant in time
these integrations produce ~v = ~v0+~a t and ~s = ~v0 t+(1/2)~a t

2. However,
there is an important class of problems in physics in which the force
is not constant but varies as a function of the position of the particle.
The gravitational force and the force exerted by a stretched spring are
examples.

With the introduction of work, power, and energy, we have alterna-
tive methods for the solution of dynamics problems, methods that involve
scalar equations rather than the vector equations required in the direct
application of Newton’s laws.

More important than the alternative methods themselves is the con-
cept of energy and the conservation law associated with it. The principle
of conservation of energy is universal: it holds in all cases if all energy is
carefully accounted for. It is true even for areas of physics where New-
ton’s laws are not valid, as in the atomic-molecular-nuclear world. It is
of major interest in an energy-conscious world.
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2. Work

2a. Meanings Associated with Work. Ever since your childhood
you have heard and used the term “work.” Family members went to
work. You were encouraged to work hard in school. You worked on your
car, or it was difficult work riding a bike up the hill. All of us have an
intuitive feeling about what is meant by work. However, it is necessary
for the scientist/technologist to have a precise definition for meaningful
communication with other professionals.

Technically, “work” is the amount of energy transferred into or out
of a definite mechanical system through the action of a mechanical force
acting on that system along a finite trajectory. By conservation of energy,
work done on a system enhances its energy while work done by a system
depletes it. If we can calculate this energy, we can often use it to then
calculate what happens to various properties of the system.

2b. Definition for Constant Effective Force. We start with the
special case where the effective force acting on an object is constant:

Work (for a constant effective force): the product of the effective
force acting on an object times the path-wise displacement of the
point of application of the force.

By “effective force” we mean the component of the force in the direction
of the displacement: it is that portion of the force that is effective in doing
work on the object. The “pathwise displacement” is the distance along
its path that the point of application of the force moves while the force is
being applied.

In Fig. 1, θ is the angle between the actual applied force ~F and
the horizontal displacement vector ~s (not shown). The effective force

is |~F | cos θ = F cos θ. This implies that in order for work to be done:
(a) a force must act upon an object: (b) the point of application of the
force must move through a displacement; and (c) the force must not be
perpendicular to the displacement. Unless these conditions are fulfilled,
no technical work has been done. Just thinking about this definition, or
holding this page to read it, is not scientific “work.” However, if you
take your pencil and copy the definition, you will be doing “work” in the
technical sense of the word.

2c. Work Done by a Constant Force. By our definition, the work
done by a constant force ~F that makes a constant angle θ with the direc-
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F
`

q

F cos q

Figure 1. The effective force for horizontal displacement.

tion of the displacement ~s (see Fig. 1) is:1

W = |~F | cos θ |~s| = F s cos θ . (1)

We recognize that the right hand side of this equation has the same form
as the scalar (or dot) product of the two vectors ~F and ~s, so we can
express the work done as:

W = |~F | |~s| cos θ = ~F · ~s . (2)

Work is a scalar quantity, although the force and displacement involved
in its definition are vector quantities.

Notice that we can write Eq. (1) either as (F cos θ) × s or as
F × (s cos θ). This suggests that the work can be calculated in two differ-
ent ways: either we multiply the magnitude of the displacement by the
component of the force in the direction of the displacement or we multiply
the magnitude of the force by the component of the displacement in the
direction of the force. These two ways are entirely equivalent.

Work can be positive or negative since cos θ can take on positive or
negative values (−1 ≤ cos θ ≤ +1). If the force acts in the displacement
direction, the work is positive. If the force acts in the opposite direction
to the displacement, the work is negative. For example, consider a person
lowering an object to the floor. In this case ~F points up and ~s points
down. While lowering the object, negative work is done by the upward
force of the person’s hand.

2d. Units of Work. The units of work are products of units of force
and units of distance. In SI units, work is expressed in joules, abbreviated
J. A joule is a newton-meter: one joule is the work done by a force of one
newton when it moves a particle one meter in the same direction as the
force. Recalling that N = kgm/s2 we have that:

J = Nm = kgm2/s2 .

1See “Vectors I: Products of Vectors” (MISN-0-2).
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Figure 2. One-body force diagram for a pulled car (see
text).

The name joule was chosen to honor James Joule (1816-1889), a British
scientist famous for his research on the concepts of heat and energy.

2e. Illustration of the Work Concept. An Example/Problem: A
Toyota (mass equal to 1.0 × 103 kg) that had run out of gas was pulled
down a level street by 3 people, each exerting 7.0 × 102N of force on
a rope inclined at 30.0◦ to the horizontal. The motion was at constant
velocity because of friction, mostly between the tires and the street. The
people pulled the car for one block (150 meters) before becoming tired
and quitting.

• How much work was done by the people?

Fpeople =
3
∑

i=1

Fi = 3(700N) = 2100N

Wpeople = ~F · ~s = F (cos θ) s = (2100N)(cos 30◦)(150m)

= 2.7× 105 J. (2 digits of accuracy)

• How much work was done by the normal force ~N?

Since
∑ ~Fvertical = 0, then ~N = (mg − F sin θ) ŷ.

Wnormal = ~N · ~s = 0, since ~N ⊥ ~s.

• How much work was done by the gravitational force, ~Fg?

The answer: Wgravity = ~F · ~s which is also zero, since ~Fg ⊥ ~s.

These last two cases emphasize that, whenever θ = 90◦, the work
done will be zero.

• Where did the energy go? We found that 2.7 × 105 joules of work
were performed, by the people, on the car-earth system. This means
that the people lost, and the car-earth system gained, 2.7×105 joules

8
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Figure 3. The effective force versus the displacement.

of energy. What happened to that energy? Some might have gone
into energy of motion, kinetic energy of the car, but the car wound
up not having any motion. In fact, the energy went into heating the
pavement, the tires, the axles, the wheel bearings, the wheel bearing
grease, and eventually the air surrounding these items as they cooled
off. Finally, the atmosphere radiated some of the energy out into
space and it became lost to the earth.

2f. Graphical Interpretation of Work. For a graphical interpreta-
tion of the work concept we plot the effective force (F cos θ) versus the
displacement during the interval from the initial position si to the final
position sf . The work done is (F cos θ)(s), the area under the curve shown
in Fig. 3.

3. Work Done by Variable Forces

3a. Work During Infinitesimal Displacement. Let us now con-
sider the more usual case where the work is done by a force whose value
will depend on the position of the point of application. For a force that
is changing only in magnitude, we can represent the situation graphically
as in Fig. 4.

In order to find the work done for some displacement, we imagine di-
viding the displacement into a very large number of infinitesimal intervals.
The work done by a force ~F (s) during any one infinitesimal displacement
d~s is given by:

dW = ~F (s) · d~s . (3)

In order to obtain the total work done, which is a finite measurable
parameter, we must sum up (integrate) those (infinitesimal) increments
of work.

9
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3b. One Dimensional Motion: An Integral. As a first stab at
integrating Eq. (3), let us investigate the situation where the force and
the displacement are along the same line of action (say the x-axis) and

the force is a known function of the position x. That is, ~F = F (x)x̂ where
F (x) is known. During a small displacement dx, so d~s = dxx̂, the force
does an amount of work dW given by:

dW = ~F · d~s = F (x) dx .

To obtain the work over a finite interval we sum these infinitesimal
contributions by integrating. As the force moves the particle from a to b
the work varies from zero to its final value:

∫ W

0

dW =

∫ b

a

F (x) dx

F
o

rc
e

F
(x

)

Displacement

a b Figure 5. The area under the curve
represents Work.
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Figure 6. Force characteristics of a spring. (a) The spring
force F as a function of its displacement x. (b) The spring
in its equilibrium state. (c) The spring stretched by a dis-
placement x to the right and with a spring force F to the
left. (d) The spring compressed with a displacement x to
the spring force F to the right.

or

Wa→b =

∫ b

a

F (x) dx . (4)

Graphically, the work is the area under the curve of F (x) versus x (see
Fig. 5). In order to calculate it we did not need to know the actual details
of the motion, such as velocity as a function of time. Note that the
graphical representation illustrates that work requires a displacement (if
we are to have an area under the curve) and the notationWa→b also serves
to remind us of this fact. Work is not

a function of a single position in space like F (x). Work at a point has no
meaning; only over a displacement is it meaningful.

3c. Example: a Stretched Spring. As a helical spring is stretched or
compressed, away from its equilibrium position, the spring resists with a
force that is fairly accurately linear (unless it is poorly made or becomes

11
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-kx

x

F

0
Figure 7. The work done by a force
compressing a spring from 0 to x is the
area (1/2)kx2 under the “force versus
displacement” curve.

deformed). That is, if a “linear” spring is stretched or compressed a
distance x, it resists with a force F = −kx. Here the (−) sign indicates
that the spring’s force is opposite to the direction of the displacement
from equilibrium. We call this a “restoring” force since it tends to restore
the spring to its equilibrium position. The quantity k is called the “spring
constant”: it is a measure of the “stiffness” of the spring. By the way,
saying the spring is in its “equilibrium position” merely means that it is
neither compressed nor stretched.

Suppose one finds that a 36N force compressed a particular spring
by 6.0 cm. How much work is done by the force if it compresses the spring
by 5.0 cm? First, note that the value of the spring constant is:

k = −
F

x
=

−36N

−6.0× 10−2m
= 6.0× 102N/m .

Then the work done by the compressing force is:

W =

∫

~FR · d~s =

∫ 0

−x

(−kx) dx ,

since ~F is parallel to d~s and is in the same direction. Thus:

W = −k

∫ 0

−x

x dx =
kx2

2
= 0.75 J .

This transfer of energy depleted the energy of the system applying the
force and increased the (internal) energy of the spring.

We can arrive at the same result graphically by calculating the area
under the “F versus x” curve. Since the area of a triangle is half its height
times its base, we have:

1

2
(−kx)(−x) =

1

2
kx2 .

12
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Figure 8. A force whose point of
application follows a curved path.

3d. General Motion: A Line Integral. The force ~F doing work may
vary in direction as well as in magnitude, and the point of application may
move along a curved path. To compute the work done in this general case
we again divide the path up into a large number of small displacements
d~s, each pointing along the path in the direction of motion. At each point,
d~s is in the direction of motion.

The amount of work done during a displacement d~s is:

dW = ~F (s) · d~s = F (s)(cos θ) ds ,

where F (s) cos θ is the component of the force along the tangent to the
trajectory at d~s. The total work done in moving from point si to point sf

is the sum of all the work done during successive infinitesimal displace-
ments:

W = ~F1 · d~s1 + ~F2 · d~s2 + ~F3 · d~s3 + . . .

Replacing the sum over the line segments by an integral, the work is found
to be:

WA→B =

∫ B

A

~F (s) · d~s =

∫ B

A

F (s)(cos θ) ds , (5)

where θ is a function of s, the position along the trajectory. This is the
most general definition of the work done by a force ~F (s). We cannot
evaluate this integral until we know how both F and θ vary from point
to point along the path.

For any vector ~V which is a function of position, an integral of the
form

∫ f

i

~V · d~s ,

along some path joining points i and f , is called “the line integral of ~V .”
Equation (5) is of this nature because it is evaluated along the actual path
in space followed by the particle as it moves from i to f .

13
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A
B

Figure 9. The total work is the sum over suc-
cessive infinitesimal displacements.

Equation (5) is the “line integral definition of work.” For each in-
crement of displacement d~s along the path, the corresponding increment
of work dW = ~F · d~s is calculated and then these scalar quantities are
simply summed to give the work along the total path.

We can obtain an equivalent general expression for Eq. (5) by ex-

pressing ~F and d~s in scalar component form. With ~F = Fxx̂+Fy ŷ+Fz ẑ
and d~s = dxx̂+dyŷ+dzẑ, the resulting work done in going from position
A = (xA, yA, zA) to position B = (xB , yB , zB) can be expressed as:

Wi→f =

∫ xf

xi

Fx dx+

∫ yf

yi

Fy dy +

∫ zf

zi

Fz dz , (6)

where each integral must be evaluated along a projection of the path.

Example: At Space Mountain in Disney World the space rocket ride is
simulated by a cart which slides along a roller coaster track (see cover)
which we will consider to be frictionless. Starting at an initial position
#1 at height H above the ground, find the work done on this rocket when
you ride it to the final position f at the bottom of the track (see Fig. 10).

The forces that act on this “rocket” are: the force of gravity, ~Fg =

−mgŷ and the “normal” surface reaction force ~N . The total work done
by the resultant force ~FR = ~Fg + ~N on the rocket between the two end
points is:

Wi→f =

∫ f

i

~FR · d~s =

∫

(~Fg + ~N) · d~s =

∫

~Fg · d~s+

∫

~N · d~s.

Since the surface force is always perpendicular to the path, it does
no work. That is,

∫

~N · d~s =
∫

N cosφds = 0, since the angle between ~N
and d~s is always 90◦. This is true despite the fact that the angle between
~Fg and d~s changes continuously as the rocket goes down the track.

14
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Figure 10. Force diagram for rocket cart.

Now we can write d~s = dx x̂+ dy ŷ so that:

Wi→f =

∫

~Fg · d~s =

∫

(−mgŷ) · (dxx̂+ dyŷ)

= −

∫ 0

H

mg dy = −mg

∫ 0

H

dy = mgH

Here we see that the line integral reduces to a simple summation of the
elements dy, which are the projections of d~s on the constant direction ~Fg.
The answer, mgH, is an important one to remember. It is the energy
of the earth-plus-rocket system that was transferred from gravitational
energy to mechanical energy. That answer holds for any earth-plus-object
system.

4. Power

4a. Definition of Power. Let us now consider the time involved in
doing work. The same amount of work is done in raising a given body
through a given height whether it takes one second or one year to do so.
However, the rate at which work is done is often as interesting to us as
is the total work performed. When an engineer designs a machine it is
usually the time rate at which the machine can do work that matters.

Instantaneous power is defined as the time rate at which work is
being done at some instant of time. That is, it is the limit, as the time
interval approaches zero, of the amount of work done during the interval
divided by the interval. Since this is the definition of the time derivative,
we have:

P =
dW

dt
. (7)

15
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For constant force or velocity, using Eq. (3) and ~v = d~s/dt we get:

P = ~Fconst · ~v ; P = ~F · ~vconst . (8)

The average power Pav during a time interval ∆t is:

Pav =
W

∆t
.

If the power is constant in time, then Pconst = Pav and

W = Pconst∆t . (9)

4b. Units of Power. According to the definition of power, its units
are units of work divided by units of time. In the MKS system, the unit
of power is called a watt, abbreviated W, which is equivalent to a joule
per second. One watt is the power of a machine that does work at the
rate of one joule every second. Recalling that J = m2 kg/s2, we have
that:

W = J/s = m2 kg/s3 .

The name watt was chosen in honor of the British engineer James Watt
(1736-1819) who improved the steam engine with his inventions.

Work can be expressed in units of power × time. This is the origin
of the term kilowatt-hour (kWh). One kilowatt-hour is the work done in
1 hour by an agent working at a constant rate of 1 kW (1000W). Elec-
tricity is sold “per kWh.”

Example: Under very intense physical activity the total power output
of the heart may be 15 unitwatts. How much work does the heart do in
one minute at this rate?

W = Pconst∆t = (15W) (60 s) = 900 J .

5. Kinetic Energy

5a. Definition of Kinetic Energy. A particle’s kinetic energy is
defined as the amount of energy a particle has, due solely to its velocity.
Using Newton’s second law and the definition of total work, one can show
that the kinetic energy, Ek, of a particle of mass m traveling at velocity
v is:

KINETIC ENERGY = Ek =
1

2
mv2 . (10)

16
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This is valid whenever Newtonian mechanics is valid. We can easily il-
lustrate this derivation for the special case of a resultant force, ~FR, that
acts on a particle of mass m along the direction of its displacement. For
this case the total work done on the particle is:

WT,i→f =

∫ sf

si

~FR · d~s =

∫ xf

xi

FR dx . (11)

Since the force, hence the acceleration, is along the direction of displace-
ment, we can use Eq. (11) and Newton’s second law2 to write:

Wi→f =

∫ xf

xi

madx =

∫ xf

xi

m
dv

dt
dx =

∫ xf

xi

mdv
dx

dt

=

∫ xf

xi

mv dv = m

∫ xf

xi

v dv =
mv2

f

2
−
mv2

i

2
.

(12)

Thus the work that went into accelerating the particle, from vi to vf ,
is exactly equal to the change in the kinetic energy for that particle.
Note that kinetic energy is a scalar quantity. It is, as we shall see, just
as significant as the vector quantity, momentum, that is also a quantity
used to describe a particle in motion.

From its definition, kinetic energy has dimensions ML2/T 2, either
mass multiplied by the square of speed, or, since it is equivalent to work
[as shown in Eq. (12)], force multiplied by distance. Thus, the kinetic
energy of a particle may be expressed in joules. It follows that a 2 kg
particle moving at 1m/s has a kinetic energy of 1 J.

The kinetic energy of a particle can be expressed in terms of the
magnitude of its linear momentum, m~v = ~p:

Ek =
1

2
mv2 =

(mv)2

2m
=

p2

2m
=
|~p|2

2m
(13)

Example: A particle of mass m starts from rest and falls a vertical
distance h. What is the work done on this particle and what is its final
kinetic energy?

The particle experiences only a single constant force, ~F = −mg ŷ, in
the downward direction. The displacement, d~s = − dy ŷ, is also downward

2See “Free-Body Force Diagrams, Frictional Forces, Newton’s Second Law” (MISN-
0-15).
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for a distance h. Therefore the work done by the gravitational force is:

W =

∫

~F · d~s =

∫ h

0

(−mg ŷ) · (−dy ŷ) =

∫ h

0

mg dy = mg h .

Since this is the only work done on the particle, it is equal to the final
kinetic energy:

mgh =
1

2
mv2 .

Solving for velocity:
v =

√

2 g h ,

which is the same result we obtain from kinematics for an object falling
with constant acceleration g (a “freely-falling” object).

Example: It is possible for a person with a mass of 7.0 × 101 kg to fall
to the ground from a height of 10.0 meters without sustaining an injury.
What is the kinetic energy of such a person just before hitting the ground?
The velocity of the person is:

v =
√

2 g h =

√

2(9.8m/s2)(10m) = 14m/s .

Then the kinetic energy of the person is:

Ek =
1

2
mv2 =

1

2
(70 kg)(14m/s)2 = 6.9× 103 J .

5b. The Energy Concept. Of all the concepts of physics, that of
energy is perhaps the most far-reaching. Everyone, whether a scientist
or not, has an awareness of energy and what it means. Energy is what
we have to pay for in order to get things done. The work itself may
remain in the background, but we recognize that each gallon of gasoline,
each Btu of heating gas, each kilowatt-hour of electricity, each calorie of
food value, represents, in one way or another, the wherewithal for doing
something. We do not think in terms of paying for force, or acceleration,
or momentum. Energy is the universal currency that exists in apparently
countless denominations, and physical processes represent a conversion
from one denomination to another.

The above remarks do not really define energy. No matter. It is worth
recalling the opinion of H.A.Kramers: “The most important and most
fruitful concepts are those to which it is impossible to attach a well-defined
meaning.” The clue to the immense value of energy as a concept lies in its
transformation. We often find energy defined in general as the ability to do

18



MISN-0-20 15

work. A system possesses energy; it can do work. At any instant a system
has a certain energy content. Part or all of this energy can be transformed
into the activity of work. Work is only an active measure of energy and
not a form of energy itself. Work is best regarded as a mode of transfer
of energy from one form to another. It is a medium of exchange. In this
unit we are dealing with only one category of energy–the kinetic energy
associated with the motion of an object. If energy should be transferred
from this form into chemical energy, radiation, or the random molecular
and atomic motion we call heat, then from the standpoint of mechanics
it is gone. This is a very important feature, because it means that, if we
restrict our attention purely to mechanics, conservation of energy does not
hold. Nevertheless, as we shall see, there are many physical situations in
which total mechanical energy is conserved, and in such contexts it is of
enormous value in the analysis of real problems.

6. The Work-Kinetic Energy Relation

6a. Derivation of the Relation. Equation (12) shows that the work
done on a particle, when the resultant force acting on the particle is in
the direction of the displacement, is equal to the change in the particle’s
kinetic energy. For the more general case of a force that is not in the
direction of motion, we can still derive this valuable relation between the
work done and the change in kinetic energy.

Write ~FR for the resultant force acting upon a particle of mass m,
moving along a path between the two positions si and sf , then:

∑

Wi→f =

∫ sf

si

~FR · d~s =

∫

m~a · d~s = m

∫

d~v

dt
· d~s

= m

∫

d~v ·
d~s

dt
= m

∫

d~v · ~v .

Thus:

∑

Wi→f = m

∫ vf

vi

d~v · ~v =
mv2

f

2
−
mv2

i

2
= Ek,f − Ek,i = ∆Ek .
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The evaluation of the integral in this last step can be easily seen if you
write ~v and d~v in scalar component notation.3 In summary,

Wi→f =

∫ f

i

~FR · d~s = ∆Ek . (14)

Equation (14) is known as the Work-Kinetic Energy Relation and it is
valid no matter what the nature of the force:

The total work done on a particle (by the resultant force acting on
it), between some starting point si and ending point sf , is the change
in the particle’s kinetic energy between those two end points.

This relation applies quite apart from the particular path followed, so
long as the total work done on the particle is properly computed from the
resultant force.

6b. Significance of the Relation. The work-kinetic energy relation
is not a new independent relationship of classical physics. We have derived
it directly from Newton’s second law, utilizing the definitions of work and
kinetic energy. This relation is helpful in solving problems where the work
done by the resultant force is easily computed, or where we are interested
in finding the speed of a particle at a particular position. However, we
should recognize that the work-kinetic energy principle is the starting
point for formulating some sweeping generalizations in physics. We have
stressed that this principle can be applied when ΣW is interpreted as
the work done by the resultant force acting on a particle. In many cases
however, it is more useful to compute separately the work done by each
of certain types of forces which may be acting and to give these special
designations. This leads us to the identification of different types of en-
ergy, and the principle of the conservation of energy.4

Example: (a) How much work is required to stop a 1.0× 103 kg car that

3For additional discussion of the mathematical steps presented in this deriva-
tion see Newtonian Mechanics, A. P. French, W. W. Norton & Co. (1971), pp. 368-
72, or Physics for Scientists and Engineers, Volume 1, Melissinos and Lobkowicz,
W. B. Saunders Company (1975), p. 170.

4See “Potential Energy, Conservative Forces, the Law of Conservation of Energy”
(MISN-0-21).

20



MISN-0-20 17

is moving at a speed of 20.0m/s?

WT,i→f = Ek,f − Ek,i = 0−
1

2
mv2

i = 0−
1

2
(100 0 kg)(20m/s)2

= −2.0× 105 J.

The negative (−) sign indicates that there was a decrease in the kinetic
energy of the car; that is, work was done on the car by a braking force
opposing its motion.

(b) If this car requires 100 meters to come to rest, what is the total
resultant braking force acting on the car?

Wi→f =

∫ f

i

~FR · d~s = −f

∫ sf

si

ds ,

since the total resultant force can be represented by a single constant
braking force f which directly opposes the motion. Thus:

−2× 105 J = −f(100m) or f = 2× 103N .

Example: In a previous example we found that a stretched spring did
an amount of work kx2/2 on an object when the spring returned to its
equilibrium position from a displacement x.

We can now use the Work-Kinetic Energy relation to easily find the
velocity of the block as it passes the equilibrium position:

Wi→f = ∆Ek

kx2

2
=
mv2

f

2
−
mv2

i

2
.

Since it initially started from rest we find:

vf = x
√

k/m .

Acknowledgments

Professor James Linneman made several helpful suggestions. Prepa-
ration of this module was supported in part by the National Science Foun-
dation, Division of Science Education Development and Research, through
Grant #SED 74-20088 to Michigan State University.

21

MISN-0-20 PS-1

PROBLEM SUPPLEMENT

Note: If you have trouble with a problem, see the activities in the Special
Assistance Supplement. If there is a help reference, it also is in the Special
Assistance Supplement.

In all problems involving the calculation of work, you should start with
the line-integral definition and show how it can be applied and simplified
for the particular situation.

Take g = 9.8m/s2, 1HP = 550 ft lb/sec = 746watts.

Problems 21, 22, and 23 also occur in this module’s Model Exam.

1. A crate whose mass is 39 kg is dragged at constant speed across the
floor for 9.0meters by applying a force of 100.0N at an upward angle
of 35 degrees to the horizontal.

a. What is the work done by the applied force Answer: 5 Help: [S-1]

b. What is the coefficient of friction between the crate and the floor?
Answer: 14 Help: [S-1]

2. A constant force ~F = (5.0x̂ + 2.0ŷ + 2.0ẑ)N acts on an object dur-
ing the displacement ∆~r = (10.0x̂ + 5.0ŷ − 6.0ẑ)m. Determine the
net work done by this force during the displacement. Answer: 6
Help: [S-2]

3. Determine the speed of a proton that has: kinetic energy = 8.0 ×
10−13 J and mass = 1.67× 10−27 kg. Answer: 13 Help: [S-3]

4. What is the kinetic energy of a 5.0 kg object with a velocity: ~v =
(3.0 x̂+ 5.0 ŷ)m/s? Answer: 3 Help: [S-4]

5. An escalator in a department store joins two floors that are 5.0meters
apart.

a. When a 51 kg woman rides up this escalator, how much work does
the motor do to lift her? Answer: 18 Help: [S-5]

b. How much power must the motor develop in order to carry
80 people between floors in one minute, if the average person’s
mass is 70.2 kg? Answer: 23 Help: [S-5]
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6. What horsepower must be developed by the engine of a racing car
when a forward thrust of 2.8 × 103N moves it at a constant velocity
of 67.5m/s (150mph)? Answer: 2 Help: [S-6]

7. A car with a mass of 1.2 × 103 kg is pulled at constant velocity up a
sloping street, inclined at a 31 degree angle from the horizontal, by a
truck having a tow cable attached at an angle of 41◦to the street. The
coefficient of friction between the car and the street is 0.30. What is
the minimum work the tow truck would have to do on the car to move
it 204 meters along the sloping street? Answer: 12 Help: [S-7]

8. A particle of mass m hangs from a string of
length ` as shown. A variable horizontal force
~F starts at zero and gradually increases, pulling
the particle up very slowly (equilibrium exists at
all times) until the string makes an angle φ with

the vertical. Calculate the work done by ~F to
raise m to this position. Answer: 1 Help: [S-8]

f
l

F
`

m

9. A particle is moving with a velocity v0 along the x-axis at time t0.
It is acted upon by a constant force in the x-direction until time t1.
Show that:

∫ t1

t0

(~F · ~v) dt =
∆(p2)

2m

where ∆(p2) is the change in the square of its momentum. Help: [S-9]

10. A field goal kicker hits the ball at an angle of 42◦ with respect to
the ground. The football, of mass 0.40 kg, sails through the air and
hits the cross bar of the goal post 3.0 × 101m away. If the cross
bar is 3.0 meters above the ground, determine the work done by the
gravitational force over the flight of the ball. Answer: 11 Help: [S-10]
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11. A 2.0 kg particle, currently at
the origin and having a veloc-
ity of ~v = 3.0x̂m/s, is acted
upon by the force shown in
the graph.

a. Determine the work done,
both graphically and an-
alytically, for a displace-
ment from x = 0.0 to x =
5.0meters. Answer: 16
Help: [S-11]

b. What is the velocity of
the particle when it is at
x = 5.0m? Answer: 24
Help: [S-11]

F
o

rc
e

(N
)

Displacement(m)

2

6

10

1 2 3 4 5

12. A car whose mass is 1.8× 103 kg has a safety bumper that can with-
stand a collision at 5.0mph (2.25m/s). Suppose the average retarding
force of the energy absorbing bumper mechanism is 5.0× 104N. How
much will the bumper be displaced if the car is going at 5.0mph when
it hits a tree? Answer: 17 Help: [S-13]

13. An object is thrown with a velocity of 61m/s vertically downward
from a height of 202 meters. What is its velocity when it hits the
ground? Work this problem two ways–by the work-kinetic energy
relation and by the laws of linear motion. Answer: 9 Help: [S-14]

14. A bullet pierces a 4.0 cm thick piece of metal armor plate with a
velocity of 708m/s and leaves the other side with a velocity of 310m/s.
Determine the thickness of the metal plate that would be required to
stop the bullet completely. Answer: 21 Help: [S-15]

15. A Mercedes-Benz 450SL is moving at 41m/s (90mph) when the
brakes become locked. How far will the car slide on:

a. dry pavement (µ = 0.90)? Answer: 22 Help: [S-16]

b. wet pavement (µ = 0.50)? Answer: 27 Help: [S-16]

c. icy pavement (µ = 0.10)? Answer: 8 Help: [S-16]

16. A girl in an archery class finds that the force required to pull the
bowstring back is directly proportional to the distance pulled. She

24



MISN-0-20 PS-4

finds that a force of 29N is needed to pull the bow string back a
distance of 0.10 meter. If she pulls a 55 gram arrow back a distance
of 0.30 meters,

a. what would be the velocity of the arrow if 81% of the work done
was converted into kinetic energy? Answer: 20 Help: [S-17]

b. If she shoots the arrow straight up, how high will it go (neglect the
effects of air resistance)? Answer: 26 Help: [S-17]

c. If the arrow actually only goes 91% of the height in part (b), what
is the average resistive force of the air? Answer: 29 Help: [S-17]

17. A particle of mass 4.0 kg is acted on by the force:

~F = [(x+ 2y)x̂+ (2y + 3xy)ŷ] N ,

as the particle moves along a straight line path from the point (0,0)
to the point (2.0m,2.0m), that is along x = y.

a. Find the work done by the force. Answer: 19 Help: [S-18]

b. If the particle was at rest when it was at the coordinate origin,
what is its speed when it is at x = 2.0m, y = 2.0m? Answer: 7
Help: [S-18]

18. An airplane lands on an aircraft carrier, and is halted by the arresting
cable. The force equation for the cable is ~F = −kx2x̂, where k =
1.20 × 102N/m2. For an initial plane velocity of 81m/s and a plane
mass of 2.25 × 103 kg, determine how far the plane will travel after
being hooked. Answer: 15 Help: [S-19]

19. What horsepower engine would be required if you wish to pull a 54 kg
woman water skier up from the water in 2.0 s with a final velocity of
13m/s? The mass of the boat plus driver is 206 kg and that of the
engine is 45.0 kg. During this period the average drag energy of the
skier and boat is 5.0× 104 J. Answer: 6 Help: [S-20]

20. A constant horizontal force ~F pushes
an object of mass M up a frictionless
incline which makes an angle θ with
the horizontal.

F
`

q

M

a. Starting with the object midway up the incline, moving the speed
of v0 directed up along the incline, use the work-kinetic energy
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relation to find the velocity of the object when it’s at a point a
distance D further up the incline. Answer: 31 ) Help: [S-21]

b. If at this same starting point as in part (a) the object started with
the speed v0 directed down along the incline (same forces acting
as before), use the work-kinetic energy relation to find the velocity
of the object when it’s at the point a distance D further up the
incline. Answer: 33 Help: [S-21]

c. Explain the relation between your answers to parts (a) and (b).
What is the difference in the overall motion between the two cases?
Answer: 35 Help: [S-21]

21. The gravitational force on an object of mass m which is at or above
the surface of the earth, say at a total distance r from the center of
the earth, has a magnitude Km/r2 and is directed toward the center
of the earth. Here K is a constant equal to 3.99× 1014m3/s2. Hence
the force is not constant but diminishes the farther the object is from
the earth’s center.

a. At the surface of the earth, recall from previous knowledge that
this force is mg. With this knowledge of the force at the surface
of the earth and with K given above, determine the radius of the
earth. Answer: 32 Help: [S-22]

b. What is the minimum amount of work that you must do (energy
you must expend) in order to move an object of mass m radially
outward from the surface of the earth to a distance r from the
center of the earth (r > Re)? Help: [S-22] (HINT: What’s the
minimum force you must exert? That determines the minimum
work). Answer: 30 Help: [S-22]

c. From this result, calculate how much energy it takes to move a
person of mass 65 kilograms from the surface of the earth to an
infinite distance away (disregard gravity forces other than from
the earth). Answer: 36 Help: [S-22]

22. Suppose a car engine is delivering 1.60× 102 hp at a continuous rate,
keeping the car at 25m/s (56mph). Determine the force the engine
is overcoming. Answer: 34 Help: [S-23]
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Brief Answers:

1. mg`(1− cosφ)

2. 253 hp

3. 85 J

4. 48 J

5. 7.4× 102 J

6. 51 hp.

7. 3.0m/s

8. 8.6× 102m

9. 88m/s

11. −11.8 J

12. 1.47× 106 J

13. 3.1× 107m/s

14. [F cos θ/(mg − F sin θ)] = 0.25

15. 57m

16. 25 J

17. 9.1× 10−2m

18. 2.5× 103 J

19. 18 J

20. 2.0× 101m/s

21. 4.9× 10−2m

22. 95m

23. 4.6× 103Wor6.1 hp

24. 5.8 x̂m/s
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26. 2.0× 101m

27. 0.17 km

29. 5.3× 10−2N

30. Km

[

1

Re
−
1

r

]

.

31.

[

2D

M
(F cos θ −Mg sin θ) + v2

0

]1/2

.

32. 6.38× 106m

33. Same answer as (BM).

34. 1.1× 103 lb

35. In the second case the object moves down, slowing, stops, turns
around and when it gets to original point it has v0 upward speed,
and so on up to point distance D upward.

36. 4.06× 109 J.
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SPECIAL ASSISTANCE SUPPLEMENT

PURPOSE. If you have trouble with the Problem Supplement, carry
out the activities in this Supplement.

CONTENTS.

1. Introduction

2. Understanding the Definitions

3. Advice and Problems With Hints Available

4. Answers for the Assistance Supplement

5. Hints for the Problem and Assistance Supplements

Sect. 1. Introduction. We apply these general relationships:

WA→B =

∫ B

A

~F · d~s = ∆Ek

and

P =
dW

dt
= ~F · ~v .

You should fully understand those relationships so you can recognize their
applications to special cases.

Sect. 2. Understanding the Definitions.

a. Complete the following table, which summarizes the basic characteris-
tics of the quantities in the first column:

Vector Possible SI SI Unit in
or Sign Unit Symbol MKS

Scalar +, 0, or−
Force
Displacement
Work
Power

Answer: 49
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b. Symbol Recognition: write out in words the meaning of each of the
following symbols:

(a) WA→B (d) d~s (g) ∆Ek

(b) WT (e) Ek (h) Pav

(c) ~FR (f) dW (i) ~F (s)

Answer: 50

c. Describe under what conditions each of the following is a valid expres-

sion for
∫ B

A
~F (s) · d~s:

(a) = ~F · ~s (d) = F cos θ
∫

ds
(b) = Fs (e) =

∫

F cos θ ds
(c) = F

∫

ds

Answer: 51

d. Indicate whether each of the following expressions is either correctly
or incorrectly written:

(a)
∫

dW =
∫

F cos θ ds (f) W =
∫

~F d~s
(b) W =

∫

Fs (g) W = Fs

(c)
∫

dW =
∫

~F · d~s (h)
∫

~F · d~s = ~F · ~s

(d) dW = ~F · ~s (i) W =
∫

Pdt

(e) W = Fds (j) P = ~F~v

Answer: 52

e. How is it possible for an object which is moving to have:
∫

d~s = 0?
Answer: 53

f. State the three cases for which: W =
∫

~F · d~s = 0. Answer: 54

g. Show that: (Fxx̂+ Fy ŷ + Fz ẑ) · (dxx̂+ dyŷ + dzẑ) reduces to Fx dx+
Fy dy + Fz dz. Answer: 55

h. A 90 kg ice hockey player skating during warmup has a kinetic energy
of 400 J. (a) If during the game he skates at three times his warmup
speed what is his new kinetic energy? (b) If during the game he collides
with another player, of the same mass, velocity, and slide along the ice
together, what is their combined kinetic energy? Answer: 56
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i. Compute the average kinetic energy of a 70 kg sprinter who covers
100m in 9.8 seconds. Answer: 57

j. When we are moving at a constant velocity what can we say about
∆Ek? Answer: 58

k. If an object with forces acting on it is moving with a velocity v and
∆Ek = 0, then why does W =

∫

~F · d~s = 0? Answer: 59

l. What do we mean by: (a) “+” work? (b) “−” work? (c) “+” power?
(d) “−” power? Answer: 60

m. Why is kinetic energy either 0 or + (that is, it is never negative)?
Answer: 61

n. Calculate both analytically and graphically the work done by the force
shown below in moving a particle from x = 0 to x = 6meters.

F
o

rc
e

(N
)

Displacement(m)

2 4 6

5

4

3

2

1

Answer: 62

o. If a force ~F = (2x+ 3x3)x̂N acts on an object, what is the work done
by this force for a displacement from x = 2 to x = 5meters? Answer:
63

p. Starting with W =
∫ B

A
~F · d~s, derive the expression:

W =

∫ t2

t1

P dt.

q. Show that:
∫ vf

vi
~v · d~v =

1

2
(v2

f − v2
i ).

Hint – write the vectors in component form.

r. (a) What power is developed by a 70 kg man when climbing, in
20 seconds, a flight of stairs that rises 12 meters?
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(b) What power must be provided to move a 10 kg block horizontally
on a surface with friction, if a force of 1.0 × 102N gives it a constant
velocity of 2.0× 101m/s? Answer: 64

s. Why is the definition of work a valuable concept? Answer: 65

t. Why is the work-energy principle a useful relationship? Answer: 66

Sect. 3. Advice and Problems With Hints Available.

In working out the solution to a problem:

a. List the properties or data given.

b. Clearly indicate which quantities are to be found.

c. Determine which conceptual relationship(s) is to be applied.

d. Simplify the general relationship for the specific case.

Attempt to work these problems without assistance before consulting the
answers or hints provided in Sections 5 and 6.

1. An object which has a mass of 20 kg sits on a horizontal
surface. It is found that the frictional force between the
object and the surface when the object moves across the
surface is a constant 15N. Suppose that you move this
object with a horizontal force a distance of 50m at a
constant speed of 3m/s.

M

How much work is done by the resultant of all the forces acting on this
object? How much work do you do? Answer: 39

2. A quarterback throws a long pass and the football ( mass = 4.0 ×
102 gm) leaves his hand at an angle of 4.0×101 degrees to the horizontal
ground. The ball hits the tight end, who lets it slip through his hands
so that it falls to the ground.

a. What was the work done on the ball during the first 0.10m of travel
just after it left the quarterback’s hand? This displacement may be
considered infinitesimal compared to the total trajectory. Answer:
43
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b. What is the work done on the ball during an 0.10m displacement
at the peak of its trajectory? Answer: 38

c. What is the increment of work done on the ball during an 0.10m
displacement as it falls vertically to the ground just after hitting
the tight end? Answer: 41

3. A 1.00× 102 kg fullback has a velocity of 9.0m/s as he hits the line. If
he is to be held to a 2.0m gain, what average resultant force must be
exerted on him by the opposing team? Answer: 44

4. A baseball (mass = 0.15 kg) has a kinetic energy of 5.0 × 101 J at
the peak of its trajectory, which is 34m above ground. What was the
velocity of the ball just after it was hit by the bat? Answer: 37

5. A 1.00 × 103 kg elevator starts from rest and experiences a constant
upward acceleration of 2.0m/s2. Determine the power required to
maintain this acceleration for 4.0 s. Answer: 38
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Answers for the Assistance Supplement.

37. 36.5m/s. The work done by gravity is mgh = ∆Ek.

38. Zero, since mg ŷ ⊥ d~s.

39. When you draw your one-body force diagram you should have four
forces acting on this object: gravity, the normal force upward exerted
by the surface, the force you apply, and the frictional force in the
opposite direction. The key phrase in this problem description is
“constant speed,” which implies ~a = 0 so ~FR = 0, hence WR = 0.

What force do you exert? (J) How much work do you do? (K)

40. 8000W. Use s = vt+at2/2 to find the distance travelled and evaluate

W =
∫

~F · d~s = mas, then solve for power.

41. +0.39 J. W =
∫

mg(+1) ds.

42. It does not change. This is consistent with W = ∆Ek = 0, since the
speed is constant.

43. −0.25 J, W =
∫

mg(cos 130◦) ds. Help: [S-39]

44. 2025N. Use the work-kinetic energy relation, assuming the opposing
force starts acting at the line of scrimmage.

45. 6 meters. What is the kinetic energy of this object? (See L). Now
apply the work-kinetic energy principle, where the only force acting
on the block is the resistive frictional force.

46. Constant v so ~F = 0 so you exert 15N.

47. given v and d, t = d/v so W = Pt = (Fv) × (d/v) = 750 J. Also:
W = F × d = 750 J.

48. 90 J.

49.
Vector Possible SI SI Unit in
or Sign Unit Symbol MKS

Scalar
Force Vector +, 0,− newton N kgm/s2

Displacement Vector +, 0,− meter m m
Work Scalar +, 0,− joule J kgm2/s2

Power Scalar +, 0,− watt W kgm2/s3
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50. (a) Work done on a particle undergoing a displacement from position
A to position B.

(b) The scalar summation of the work done by each force acting on a
particle - superposition of work principle.

(c) The resultant force which acts upon a particle. It is the same as
∑

i
~Fi.

(d) An infinitesimal displacement of a particle. It is a vector. Contrast
it to ~s, which is a finite displacement.

(e) The kinetic energy of a particle. For a particle of mass m moving
with a velocity v, the kinetic energy is mv2/2.

(f) An element of work done on a particle by a force during an in-
finitesimal displacement d~s.

(g) The change in kinetic energy of a particle; mv2
f/2−mv

2
i /2, where

vf is the velocity at the final position (f) and vi is the velocity at the
initial position (i).

(h) The average power, (W/t) exerted during a time interval t, where
the total work done during this interval is W .

(i) A force that varies in magnitude and direction as a function of
position.

51. (a) Constant force, not necessarily parallel to finite displacement.

(b) Constant force, parallel to finite displacement. Although W = Fs
may be the easiest form of the work definition to recall, remember
that it is just a special case of a more general relationship.

(c) Constant force, parallel to an infinitesimal displacement.

(d) Constant force, not parallel to an infinitesimal displacement.

(e) Variable force which depends on position.

52. (a) ok

(b) NO - must have a ds under integral sign.

(c) ok

(d) No - left side implies increment, right side a finite amount.
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(e) No - must have integral sign on right side.

(f) No, must have vector multiplication sign (dot) between ~F and d~s.

(g) ok

(h) ok

(i) ok

(j) No, just have vector multiplication sign (dot) between ~F and ~v.

53. Consider the work done by gravity on a round trip, when you throw
a ball up into the air vertically and it returns to your hand.

W =
∫

~F · d~s

W = Wup +Wdown =
∫

mg(−1) ds +
∫

mg(+1) ds = 0 because net
~s =

∫

d~s = 0.

For any round trip displacement net ~s = 0.

54. ~F = 0, d~s = 0 and ~F ⊥ d~s.

If a constant force ~F acts perpendicular to the
displacement ~s of a particle then θ = 90◦ so
thatW = 0 and no work is done by this force.
Note that work may not always be done on a
particle which is undergoing a displacement
even though a force is applied.

F
`

ds
`

Here are three forces doing zero work (see figures below):

(a) the force of gravity (mgŷ) on a particle moving horizontally.

(b) the normal force ( ~N) as the particle moves along the surface.

(c) the tension (~T ) in the cord of a simple pendulum, since this force
is always ⊥ to the displacement.
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ds
`ds

`
ds
`

(a) (b) (c)

mg
`

N
`

T
`

55. Remember that x̂ · x̂ = 1, x̂ · ŷ = x̂ · ẑ = 0, etc.

56. a) 3600 J

b) 7200 J

57. 3.6× 103 J. Hint: ~v = d~s/dt.

58. ∆Ek = 0, since ∆Ek = m∆(v2)/2 = m[(v+∆v)2−v2]/2, and ∆v = 0.

59. ~FR = 0, that is there is no net force parallel to the displacement.

60. (a) The resultant force acts on the particle in the direction of the
displacement, so particle increases in energy (kinetic).

(b) The resultant force acting on the particle is opposite to the direc-
tion of the displacement, so that there is a decrease in kinetic energy.

(c) An increase in the energy of the system.

(d) A decrease in the energy of the system.

61. 4Ek = mv2/2, since v2 is always positive the kinetic energy is positive.
You can never have less than zero kinetic energy. Zero kinetic energy
corresponds to an object at rest. Since kinetic energy is a scalar it
does not tell you anything about the direction of the velocity of a
particle.

62. 19 J

63. 480 J

64. a) 412W; b) 2000W Help: [S-38]
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65. It provides a method for calculating the change in energy of a particle
when the force acting on it is not constant but is a function of the
position of the particle.

66. Work can be found from the ∆Ek without having to know anything
about the nature of the forces involved.

Sect. 6: Hints for the Problem Supplement .

S-1 (from PS-problem 1)

(a) At constant magnitude of the frictional force will equal the magni-
tude applied force. Resolve the applied force in its vertical and horizon-
tal components. Remember that N = mg − F sin θ.
(b) The coefficient of friction is the frictional force divided by the normal
force, so that µ = F cos θ/(mg − F sin θ).

S-2 (from PS-problem 2)

Determine ~F · d~s, applying the fact that x̂ · x̂ = 1 and x̂ · ŷ = x̂ · ẑ = 0.

S-3 (from PS-problem 3)

The kinetic energy is given, so use mv2/2 = Ek and solve to find that

v = (2Ek/m)
1/2

.

S-4 (from PS-problem 4)

Recall that |~v|2 = v2 = v2
x + v2

y.

S-5 (from PS-problem 5)

(a) Calculate the work done by the escalator against gravity by resolving
the force it exerts into vertical and horizontal components. Only the
vertical component will do any work. Why?
(b) Use the definition of power involving work and time.

S-6 (from PS-problem 6)

Use the definition of power involving force and velocity.
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S-7 (from PS-problem 7)

Draw a one-body diagram for the car. Resolve the forces into their
components parallel and perpendicular to the street. Here we write the
street-to-horizontal angle as φ, the cable-to-street angle as θ, the mass
of the car as m, the tension in the cable as T , the distance along the
street as s, the coefficient of friction as µ, and the work done by the
truck on the car as W . Then for the work done by the truck (via the
cable) on the car-earth system we get:
W = sT cos θ = mgs cos θ(sinφ+ µ cosφ)/(cos θ + µ sin θ).
If you still have trouble, see Help: [S-24] .

S-8 (from PS-problem 8)

Since the particle is in equilibrium the sum of the horizontal components
of force are zero, as is the sum of the vertical components. You should be
able to show for the horizontal components that: F − T sinφ = 0, and
for the vertical components, T cosφ − mg = 0. Eliminate T between
these two equations to obtain F in terms of φ. Since φ = s/`, then

ds = ` dφ. Now evaluate
∫

~F · d~s, remembering that there is an angle

between ~F and d~s.

S-9 (from PS-problem 9)

Apply the definitions of ~v = d~s/dt and Ek.

S-10 (from PS-problem 10)

Show that the work done is equal to
∫

(mgẑ) · (d~s) where ~s turns out to
be the net vertical displacement.

S-11 (from PS-problem 11)

For your analytical solution write the equation for the straight line
shown which will represent the effective force. This is F = 10− 2x.
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S-13 (from PS-problem 13)

Apply the work-kinetic energy relation, assuming that the retarding
force is constant during the displacement, to find the distance the
bumper moves from knowing the total work done using ∆Ek.

S-14 (from PS-problem 14)

Apply the work-kinetic energy relation for motion in a vertical direction:
vf = [2gh + v2

0 ]
1/2. This method and the laws of linear motion should

lead you to the same results.

S-15 (from PS-problem 15)

First apply the work-kinetic energy relation to find the average retarding
force per unit thickness of metal plate, since the ∆Ek is known. Then
apply the principle a second time with the new ∆Ek to find the distance
required. Note that vf = 0 for the second case.

S-16 (from PS-problem 16)

Use the work-kinetic energy relation, with Ffriction = µN = µmg so
that s = v2

0/(2µg).

S-17 (from PS-problem 17)

(a) Since F = kx, find k from the given values of F and x. Then

integrate ~F · d~s from 0 to 0.3m to find the work done. Note that only
80% of this work is converted into Ek.
(b) h = v2

i /(2g)
(c) F = [(mv2

i /2)− (mgh
′)]/h′ where h′ = 0.9h.

S-18 (from PS-problem 18)

Here x = y so that dx = dy. Use
∫

Fx dx+
∫

Fy dy and simplify before
integrating.

S-19 (from PS-problem 19)

Use
∫

~F · d~s with ~F = −kx2x̂ and d~s = dxx̂.
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S-20 (from PS-problem 20)

Use the work-kinetic energy relation, including the drag energy in the
W expression, so that the power will equal [Wdrag + (Mv2

f/2)]/t where
M is the total mass.

S-21 (from PS-problem 21)

In the expression W =
∫ f

i
~F · d~s:

(1) What is d~s? Help: [S-26]

(2) What is ~F · d~s? Help: [S-32]

(3) Use a given property of ~F to simplify the integral before integrating.
Help: [S-28]

Part (a): The other forces besides ~F acting of the subject are the force
due to the earth’s gravity, and the force exerted on the object by the
surface of the incline. Draw your vector diagram of the forces and resolve
them into their components parallel and perpendicular to the inclined
surface.
(4) Repeat questions (1) and (2) above for the force due to gravity.
Help: [S-27] and Help: [S-35]
(5) Repeat questions (1) and (2) above for the force exerted by the
surface. Help: [S-29] and Help: [S-1]
(6) What are the resulting force components parallel to the displace-
ment? Help: [S-36]
Part (b): Now your initial velocity vector is down the incline, but d~s is
still up the incline. Why? Help: [S-34]

S-22 (from PS-problem 22)

(a) You should find r = (K/g)1/2.
(b) This is a variable force: it depends upon position ~s. So:

WRe→r =
∫ r

Re

~F · d~s

Why must ~F · d~s be evaluated under the integral sign? Help: [S-33]
(c) Here r → ∞ so that the work done becomes Km/Re. Why?
Help: [S-37]
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S-23 (from PS-problem 23)

F =
1.60× 102 × 550 ft lb/s

(56mi/hr)( hr/3600 s)(5280 ft/mi)

S-24 (from [S-7])

The work done by the cable is done against car-earth frictional (contact)

and gravitational (non-contact) forces. Wcable = ~T · ~s = Ts cos θ and
T = mg(µ cosφ+ sinφ)/(µ sin θ + cos θ).
Only for those interested: The work done against the car-earth grav-
itational force is mgs sinφ = 1.24 × 106 J. The work done against the
car-earth frictional force is µNs = 0.23× 106 J where:
N = mg(cos θ cosφ− sin θ sinφ)/(µ sin θ + cos θ).

S-26 (from [S-21])

An infinitesimal displacement vector whose magnitude is the element
of path length along the incline and whose direction is up the incline
parallel to its surface.

S-27 (from [S-21])

Same as [S-26].

S-28 (from [S-21])
∫

~F · d~s = ~F ·
∫

d~s because F is constant.
∫

d~s is just a vector along
the incline whose magnitude is the total distance between the starting
point and the ending point.

S-29 (from [S-21])

Same as [S-26].

S-31 (from [S-21])

Zero (be sure you know why).
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S-32 (from [S-21])

(F cos θ)ds where ds is element of path length up the incline.

S-33 (from [S-22])

The unit vector r̂ is radially outward, by definition from mathematics.
The force you exert is in the same direction so:

~F =
Km

r2
(r̂) .

The displacement was described as being in the direction away from the
center of the earth so: d~s = r̂dr . Recall that the scalar product of any
unit vector with itself is unity so:

~F · d~s =
Km

r2
dr .

S-34 (from [S-21])

Since it is only the final displacement D which is of interest.

S-35 (from [S-21])

−(Mg sin θ)ds, where ds is element of path length up the incline.

S-36 (from [S-21])

(F cos θ −mg sin θ).

S-37 (from [S-22])

As r →∞,
1

r
→ 0.

S-38 (from AS-problem (r))

velocity of block was said to be constant, so acceleration of block is zero,
so net force on block is zero.
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S-39 (from AS-Answer (43))

During this short time interval, the angle between the path of the foot-
ball and the force of gravity is . . .
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MODEL EXAM

1. See Output Skills K1-K5 in this module’s ID Sheet. One or more, or
none, of these skills may be on the actual exam.

2.
F
`

q

M

A constant horizontal force ~F pushes an object of mass M up a fric-
tionless incline which makes an angle θ with the horizontal.

a. Starting with the object midway up the incline, moving the speed of
v0 directed up along the incline, use the work-kinetic energy relation
to find the velocity of the object when it’s at a point a distance D
further up the incline.

b. If at this same starting point as in part (a) the object started with
the speed v0 directed down along the incline (same forces acting as
before), use the work-kinetic energy relation to find the velocity of
the object when it’s at the point a distance D further up the incline.

c. Explain the relation between your answers to parts (a) and (b).
What is the difference in the overall motion between the two cases?

3. The gravitational force on an object of mass m which is at or above
the surface of the earth, say at a total distance r from the center of
the earth, has a magnitude Km/r2 and is directed toward the center
of the earth. Here K is a constant equal to 3.99 × 1014m3/s2. Hence
the force is not constant but diminishes the farther the object is from
the earth’s center.

a. At the surface of the earth, recall from previous knowledge that this
force is mg. With this knowledge of the force at the surface of the
earth and with K given above, determine the radius of the earth.

b. What is the minimum amount of work that you must do (energy
you must expend) in order to move an object of mass m radially
outward from the surface of the earth to a distance r from the center
of the earth (r > Re)? (HINT: What’s the minimum force you must
exert? That determines the minimum work).
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c. From this result, calculate how much energy it takes to move a
person of mass 65 kilograms from the surface of the earth to an
infinite distance away (disregard gravity forces other than from the
earth).

4. Suppose a car engine is delivering 1.60 × 102hp at a continuous rate,
keeping the car at 25m/s (56mph). Determine the force the engine is
overcoming.

Brief Answers:

1. See this module’s Text.

2. See this module’s Problem Supplement, problem 21.

3. See this module’s Problem Supplement, problem 22.

4. See this module’s Problem Supplement, problem 23.
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