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Abstract

Among the successful approaches for treating multiphase problems involving an interface, the contin-

uous-interface method often handles the surface force via a locally integrated body force formulation. On

the other hand, the sharp-interface method treats each phase separately while coordinating them via an

explicit interface treatment. The sharp interface method computationally more demanding, but the con-

tinuous interface method can create spurious velocity in the interface region, which compromises the so-

lution accuracy. Furthermore, the large property jumps often observed between liquid and vapor phases

can influence the numerical accuracy, and needs to be investigated. In order to quantitatively demonstrate

the relative performance of the sharp- and continuous-interface methods, we have considered a spherical
drop in static equilibrium to highlight the role of the interface treatment. It is shown that the sharp-in-

terface method is second-order accurate while the continuous-interface method is first-order. Furthermore,

the sharp interface method is insensitive to the property jumps.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous techniques have been developed for tracking interfaces between separating mate-
rials, phases and properties. Categorically, there are moving grid (Lagrangian) [1–3] and fixed grid
(Eulerian) approaches [4–6]. In the fixed grid approach, one can resort to the purely Eulerian
approach such as the volume of fluid method [5] for free surface flows, or the enthalpy formu-
lation [6,7] when phase change is involved. In these methods, the interface is constructed after the
field solution is obtained. In the purely Eulerian approach, the interface construction is decoupled
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from the field equation solver, which can cause difficulties such as uniqueness of the shape in-
terpretation, and continuity and smoothness of the interface.

Alternatively, one can also explicitly track the interface utilizing the fixed grid but with addi-
tional procedures. The continuous interface method (CIM), such as the immersed boundary
technique [8] or the level set method [9], has been popular. CIM defines the interface as part of the
solution and can be conveniently coupled with the field equations. With this approach, the
interface is of finite thickness, which reduces the order of accuracy of the overall solution to first-
order [10,11], or even lower. For example, the spurious velocity field can result from such com-
putations.

In addition to these techniques, the sharp interface method (SIM) has been developed in the last
several years [12–15]. In SIM, the interface is considered to be a discontinuity separating two
materials, with the field equations handled by the fixed grid, while directly accounting for the
presence of the interface by forming irregularly shaped computational cells. At the modeling level,
SIM is consistent with the concept of continuum mechanics because there is no smearing at the
interface. As demonstrated in [16] for the fixed geometry problems, and in [14] for one-dimen-
sional moving boundary problems, such approach exhibits higher order of accuracy than CIM.
However, for cases involving curved free boundaries, no rigorous investigation of the perfor-
mance of the sharp interface method has been performed.

In this report, we assess the performance of the sharp interface method recently developed by
Ye et al. [15], using the spherical drop under static equilibrium as the test problem. This test
problem has an analytical solution, and has been studied in detail for CIM [11,10]. It should be
pointed out numerous studies have been published in the literature in regard to interfacial dy-
namics and multiphase flows involving complex physics, e.g., [14,15,17,18] and references cited
therein. These problems include drop and bubble dynamics under various Webber, Reynolds and
capillary numbers, and exhibit rich physical patterns according to the interplay between these
parameters. However, because of the convection, buoyancy, viscous and unsteady effects, the
accuracy of the treatment of the interfacial dynamics is often difficult to assess. As documented in
detail by Kothe et al. [18] and by L€orstad et al. [17], substantial spurious velocity can arise in the
interfacial region. Such spurious velocities can be masked in situations involving other mecha-
nisms, making it difficult to trace the source of numerical inaccuracy for multiphase flow com-
putations. It is with this background that we focus on a seemingly simple problem, which has been
demonstrated to be difficult to handle computationally.
2. Governing equations and numerical procedure

The present sharp-interface method employs a combined Eulerian–Lagrangian strategy. As
discussed in details in Ref. [15], the present SIM has the following distinguishing features:

(1) The finite-volume method is adopted to ensure the conservation of mass, momentum and en-
ergy transport in each phase/material.

(2) Specific governing equations are constructed for each phases/materials, instead of using the
single set of governing equations for the entire domain of all phases/materials. This enables
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the method to handle large property (such as density) ratios across the interface with relative
ease.

(3) Sharp-interface with no numerical smearing.
(4) Interfacial constraints are imposed as the distinct boundary conditions, instead of being incor-

porated through source terms in the governing equations.
(5) The C2 cubic B-spline curve fitting method is employed to represent the interface. A fair-

ing algorithm for curvature calculation makes it possible to use the current SIM to com-
pute problems in which accurate curvature estimation is critical for simulating interfacial
dynamics.

In addition, the present method also has the capability to treat the phase change at the in-
terface. An illustration of the cell and interface intersection treated in the sharp interface method
[14–16] is depicted in Fig. 1. It is noted that the small fragments of cut-cells are absorbed into the
neighboring cells in the same phase to form larger, trapezoid cells. In the present approach, the
interface, represented by suitable geometric representations based on massless markers, intersects
with the underlying, fixed Cartesian grid. A compact interpolation method near the interface is
adopted to retain second-order accuracy and conservation property. The smoothness of the in-
terfacial curve, especially in regard to the curvature, is handled with the aid of a curve-fairing
algorithm [19].

For the equilibrium drop problem, two sets of equations are solved separately in the two
phases. Assuming constant properties, the mass and momentum equations in liquid and gas
phases are as follows:

Liquid-phase equations (the drop)
Fig. 1
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. Illustration of the cell-interface intersection in the sharp interface method. Trapezoidal cells are formed near the
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Gas-phase equations (surrounding fluid)
r � uv ¼ 0

qv

ouv
ot

�
þr � ðuvuvÞ

�
¼ �rpv þr � ðlvruvÞ

ð2Þ
where subscript �l�, �v� denotes the liquid and gas phase, respectively; q is density, l is viscosity. The
variable property as well as additional transport mechanisms, such as energy equation, can be
directly incorporated. These conditions are not considered here.

On the interface, several conditions need to be satisfied; they are met via an iterative process
coupled with the flow field solutions.

Mass flux continuity on interface
_m ¼ qlðuint � ulÞ � n ¼ qvðuint � uvÞ � n ð3Þ

Here, _m is the interfacial mass flux; ql, qv present the density in liquid and vapor phase; n is the
unit normal vector at interface; uint, ul, uv are the velocity of interface, liquid phase and vapor
phase, respectively.

Force balance on interface
qv½ðunÞv � ðunÞint� � uv þ pv � n� sv � n ¼ ql½ðunÞl � ðunÞint� � ul þ pl � n� sl � nþ rjn ð4Þ
where, sl, sv presents the viscous stress tensor in liquid and vapor phase; r is the surface tension
coefficient; j is the curvature of the interface; pl, pv are the pressure in liquid and vapor phase;
ðunÞv, ðunÞl, ðunÞint mean the velocity of vapor phase, liquid phase at the interface in normal di-
rection and the interface velocity in the normal direction.
3. Results and discussion

For the present test problem, the density ratio ql=qv between the liquid drop and surrounding
gas varies from 1 to 1000. The largest ratio corresponds to the circumstance between water and air
under the standard atmospheric condition. With a spherical drop in static equilibrium, there are
two uniform pressure fields inside and outside of the drop boundary, namely, the pressure inside is
p0 þ 2r

R and outside is p0. The difference balances the surface tension effect, according to the
Young–Laplace condition [7].
Dpexact ¼
2r
R

ð5Þ
where r is the surface tension and R is the radius of the droplet. In the present study, r is set to 1.0
N/m and R equals to 0.25 m; the exact pressure difference Dpexact, therefore, should be equal to 8.0
N/m2. The numerical result of the pressure difference is compared against this exact value.

In the present study, the drop is located at the center of a circular cylinder. Both the height and
the diameter of the cylinder are twice the drop diameter. Given axi-symmetric nature of the
problem, only half of the computational domain is considered, with the bottom boundary being
the symmetric axis. On other boundaries of the domain, zero viscous stress conditions are
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specified for velocity field and the zero gradient condition is adopted for pressure. A fixed,
uniform Cartesian grid is employed. The initial condition consists of constant pressure in the
entire domain, with different density values assigned inside and outside of the drop. The solutions
are obtained by solving the mass continuity and momentum equations, Eqs. (1) and (2), along
with the interfacial conditions, Eqs. (3) and (4). A numerical procedure for simultaneously solving
flow fields, and satisfying momentum jump at the interface and mass conservation in each phase is
carefully designed.

The case with a density ratio of 1000 is considered first. Unless noted otherwise, the ratio of the
drop radius to the grid size, R=Dx, is 50, namely, with 100 · 200 grid (along radial and longitudinal
directions, respectively) covering the entire computational domain. Fig. 2 shows the pressure
distribution and velocity vectors (with all vectors set to be of the unit magnitude) in the domain.
Detailed profiles along both horizontal and vertical directions are shown in Fig. 3. Figs. 2 and 3
demonstrate that the sharp interface method with the cut-cell treatment can capture the crisp
pressure distribution across the interface. Fig. 4 depicts the profiles of the velocity components in
Fig. 2. The overall pressure and velocity distributions for a drop in static equilibrium (a) pressure, (b) velocity vectors.

The maximum values of the u- and v-component of the spurious velocity are 4.687 · 10�10 and 4.279 · 10�10, respec-

tively.
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Fig. 3. Pressure profiles along the horizontal and vertical center lines.
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both x and y directions. In contrast to CIM (see, e.g. [18]), which typically yields substantial
spurious velocity, SIM produces errors virtually at the round-off level.

The curvature computation is a key in many interfacial transport problems; they are also very
difficult to compute accurately because of the non-linear combination of first and second deriv-
atives. To assess the performance of SIM, Fig. 5 presents the computed curvature, plotted along
the entire circumference of the drop boundary. Accurate estimation has been obtained with little
noise associated with the result.

Next, we assess the order of accuracy of the SIM solution. The assessment is based on the
overall pressure difference, defined as:
Dpnum ¼ 1

Nin

XNin

n¼1

Pn �
1

Nout

XNout

n¼1

Pn ð6Þ
where, Nin is the number of cells inside the bubble and Nout is the cells outside; pn is the pressure in
each cell. In Fig. 6 and Table 1, the solutions of SIM and CIM (using the immersed boundary
method) are compared with varying grid size, Dx. The relative error between the theoretical and
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Fig. 4. Velocity profiles along the horizontal and vertical center lines. (a) horizontal-velocity component, (b) vertical-

velocity component.
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numerical pressure difference can be expressed in terms of L2-norm. L2-norm of the error was
defined as:
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Fig. 6. Comparison between the sharp and continuous interface methods based on the error norms defined in Eq. (7).

Table 1

Effect of the grid size for a spherical drop in static equilibrium

R=Dx ql=qv Dpnum=Dpexact Pressure error norm L2B

5 1000.0 0.9988 1.509E)03
10 1000.0 0.9998 2.452E)04
50 1000.0 1.000 1.612E)05
100 1000.0 1.000 6.632E)06
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L2B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nin

XNin

n¼1

ðPnum � PexactÞ2

P 2
exact

vuut ð7Þ
Fig. 6 and Table 1 confirm that SIM offers noticeably lower error with approximately overall
second-order accuracy. For comparison purpose, representative results based on the CIM [18] are
also depicted in Fig. 6; it yields first-order accuracy and the errors are several orders of magnitude
larger for all grid resolutions.

Finally, we assess the effect of the density ratio, between drop and surrounding gas, on the
computational accuracy. Table 2 presents the pressure error norm, defined by Eq. (7), for density
ratios of 1, 10, 100 and 1000, with the same spatial resolution. There is little sensitivity of the SIM
performance with respect to the density effect, which, again, is not the case for CIM.
2

of the density ratio on the spurious velocity and pressure fields for a spherical drop in static equilibrium

x ql=qv umax vmax Pressure error norm L2B

1.0 4.816E)10 4.612E)10 1.607E)005
10.0 4.686E)10 4.277E)10 1.607E)005
100.0 4.686E)10 4.279E)10 1.608E)005
1000.0 4.687E)10 4.279E)10 1.612E)005
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In conclusion, the SIM is effective and accurate in resolving interfacial characteristics, including
hydrodynamic variables and geometric information. It is more demanding computationally be-
cause the field equations in each phase need to be coupled between different materials/phases, and
explicitly linked with the interfacial conditions. For detailed information related to the CIM,
including the number of iteration, the coordination between phases and the interface, and the
CPU time, we refer to our previous work [15,16]. In return, second-order accuracy is achieved as
compared to the first-order accuracy in CIM, indicating that the SIM can handle more compli-
cated problems requiring higher accuracy.
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