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Abstract: Felix Candela designed and built many thin-shelled concrete roof structures, most during the 
1950s and 60s in Mexico. His most sophisticated structures, and those that are pertinent to our analysis, are 
of the hyperbolic paraboloid (hypar) form.  Using a finite element method that solves for large-scale 
optimization problems, one of Candela’s structures (Chapel Lomas de Cuernavaca) is modeled, meshed, and 
analyzed.  The structure is optimized for thickness distribution and structure shape. In each optimization an 
attempt is made to reduce overall tensile stress and deflection to the system while stretching the limits of the 
structure’s physical shape.  The computerized analysis shows that a distributed concrete thickness reduces 
shell stress and deflections and the span of the structure could have been larger without compromising its 
structural integrity. 
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1. INTRODUCTION 

Felix Candela (1910-1997) is known as one of the world’s leading designers and builders of thin-shell 
concrete structures.  Although he was trained as an architect in Spain, he considered himself foremost a 
builder and engineer of structures.  In 1939, Candela was exiled to Mexico, where he was self-educated in the 
theory and design of thin-shell concrete structures.  To gain experience with such construction, he built 
several experimental shell structures in Mexico. Working with his brother, he founded Cubiertas ALA, a 
company dedicated to the construction of thin-shell concrete structures in Mexico.  A detailed description of 
this background can be found in Faber (1963) and Garlock and Billington (2008). 

While Candela at first experimented with more traditional thin-shell forms such as barrels and funicular 
vaults, the geometric shape that he used in the 
vast majority of his works was the hyperbolic 
paraboloid (‘hypar’).  Such a form adds strength 
to the structure through double curvature and has 
the advantage of generating curved surfaces with 
straight lines, thus leading to economy of 
construction through the elimination of curved 
forms.  A more thorough discussion of the hypar 
is provided later.  The first hypar structure built 
by Candela was The Cosmic Rays Pavilion, built 
on the campus of the Universidad Nacional 
Autónoma de Mexico (UNAM) in 1951. This was 
one of the thinnest structures ever built, at only 
1.5 centimeters (5/8 inch).  The Pavilion was well 
received by the general public as well as the 
architectural and engineering profession, and it Figure 1: Chapel Lomas de Cuernavaca 



 

was widely published.   
This structure was the beginning of Candela’s explosive career as a designer and builder of thin-shell 

concrete hypar structures, which were typically 4 centimeters (1.5 inches) thick.  Following the construction 
of the Cosmic Rays Pavilion, Cubiertas ALA received several commissions for works.  A progression in 
maturity and style is seen as one traces Candela’s structures chronologically (Holzer 2007).  Like the leading 
structural engineers that came before him, he went from imitation (of sketches and structures he had read 
about in articles or books), to innovation (using the hyperbolic paraboloid in ways that had not been 
attempted before), to inspiration.  Towards the end of his life, when asked what his favorite structures were, 
he replied Iglesia de la Virgen Milagrosa (1955), Restaurant Los Manantiales (1958), Chapel Lomas de 
Cuernavaca (1958) (Figure 1), and Bacardi Rum Factory (1960).  These structures represent his inspiration 
following many years of dedicated study and experience with construction of thin shells. 

Candela did not use computers to analyze or design these structures, but instead used membrane theory, 
which he found compared well to structural analysis methods for determinate structures (using simplifying 
assumptions for determinate conditions).  Candela optimized his designs through his experience of building 
them, not through sophisticated computerized structural analyses of the indeterminate structure as we would 
do today.  The objective of this paper is to (1) review Candela’s approach to structural optimization, and (2) 
examine one structure in particular, the Chapel Lomas de Cuernavaca, and optimize the shape and thickness 
using the most sophisticated structural optimization techniques available today.  By comparison to Candela’s 
as-built design, we evaluate whether computerized structural optimization would have led to a more efficient 
design of the Chapel and whether such a tool is useful for designing thin shell concrete structures today. 

2. CANDELA’S OPTIMIZATION OF FORM 

Candela did not use structural optimization techniques, as defined today, to develop the form and 
dimensions of his thin shell designs; however, we find evidence that he did optimize his forms for efficiency 
of construction, for deflection control, for consideration of energy costs, and for fluidity of the form.  
Candela’s reputation came not only from the aesthetic quality of his work, but also from his ability to 
construct his structures economically.  Since the quantity of both concrete and steel material is minimal in 
shells, their economy lies in reducing the cost of forming.  To understand this process of forming a 
hyperbolic paraboloid structure in construction, one must first understand the inherent geometric attributes of 
this geometric form, which we will examine next.  
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Figure 2: The hyperbolic paraboloid (hypar) 

2.1 The Hyperbolic Paraboloid (Hypar) 
Candela stated that “of all the shapes we can give to the shell, the easiest and most practical to build is 

the hyperbolic paraboloid.”   We can understand this shape best as a saddle (Figure 2a) in which there are a 
set of arches in one direction, and a set of cables, or inverted arches, in the other.  The shape is defined by 
straight lines.  The boundaries, or edges, of the hyperbolic paraboloid can be straight as shown in (Figure 2b), 
or curved as shown in Figure 2a.  The edges in the latter case are developed by planes ‘cutting through’ the 
hypar surface.  Candela used both straight edges and curved edges to create his designs.   



 

Figure 2b shows that the hypar surface is formed by two systems of straight line generators: lines hn, and 
in.  Line hn is parallel to the director plane xOz, and line in is parallel to the director plane yOz.  xOy can be 
any angle, ω.  xOz and yOz must both be at right angles.  In this case, the surface of the hypar can be defined 
by the simple equation z = kxy sin ω.  k is the warping of the hypar defined by the distance AA′ divided by 
the multiplication of distances OB and OH. 

2.2 Optimization Through Building 
Candela’s ‘bread-and-butter’ structures, that is, the ones that kept his company in business and were 

repeated quite often, were “umbrella” types, which have straight edges.  One quadrant (called tympan) of an 
umbrella structure is shaded in Figure 2b.  By placing together four tympans, an umbrella structure is formed, 
as shown in Figure 3.  Candela created large roof coverings by placing these umbrellas in sequence.  Candela 
optimized the dimensions of the umbrellas using his experience with full-scale experiments.   His first 
experimental umbrella was built around 1952, and in 1953 Candela constructed a second experimental 
umbrella (Figure 3).  The corner deflection of the second umbrella reached several centimeters under its own 
weight after a few weeks.  Several men standing on the umbrella did not increase the deflections, so Candela 
assumed that those deflections were due to the rise of the umbrella being too small. 

Candela refers to these experiments “as a lesson to find the optimum rise, which depends on the area 
covered by the umbrellas.  Of this simple proportion depends the success in the design of these structures, 
since the necessary calculations are elementary.”  He considered that since the rise is proportional to the area, 
if the area becomes larger, the height of the umbrella becomes larger, thus leading to a larger volume (space), 
which requires more heating or air conditioning.  In addition, deflections in larger umbrellas may be difficult 
to control.   

With the Bacardi Rum Factory, Candela pushed the limit of scale to create an aesthetically sensitive 
solution to the problem of covering industrial space.  When Candela was asked what he learned from the 
Bacardí project he responded “I learned what is the limit from these types of structures… if one increases the 
scale, the size increases and the volume gets larger, for example in the site where one has to place air 
conditioning.  This constitutes a serious limitation… Since in Mexico we do not have that problem, well that 
did not affect us much, but, on the other hand, the forms, they were more expensive every time.  And the 
problems of deformation and of other things that can also occur also became more critical in larger scale… 
That is to say there is always a limit beyond which one should not pass.” 

In addition to consideration of safety and energy, Candela ‘optimized’ his forms for visual appeal.  On 
site visits to Candela’s structures reveal a forward progression, i.e., a developing maturity, of his forms.  As 
his works progress, fluidity in form, for example through the elimination of visually disrupting stiffening 
beams, is observed (Holzer 2007).  One of his more mature forms is that of Chapel Lomas de Cuernavaca, 
which is what we examine in detail next. 

3. CHAPEL LOMAS DE CUERNAVACA 

Chapel Lomas de Cuernavaca was built in 1958 in the town of Cuernavaca, Mexico.  Only one 
‘exaggerated’ hypar was used to generate the form for this Chapel (Figure 1).  By cutting the front of a hypar 
surface with an oblique plane, the form of the ‘mouth’ of Cuernavaca was formed.  Another plane, parallel to 
the ground formed the hyperbolic sides of the church.  Figure 4 shows Candela’s drawing of the Chapel 
where one can see the straight line generators forming the curved surface.  Figure 5 shows the straight line 

forms used to build the saddle-shaped Chapel 
Lomas de Cuernavaca, which clearly reflect the 
straight line generators of the hypar shown in 
Figure 4(b). 

Candela was able to construct most of the 
structure out of concrete that is only four 
centimeters (one and one-half inches) thick 
(Basterra 2001).  At the side foundations, 
Candela recognized that the structure would need 
to be strengthened, and sufficiently thickened 

 
Figure 3: Experimental Umbrella 



 

these sides to reduce stresses.  The exact gradation of thickness is not documented but an onsite visit reveals 
a thickness of about 52 cm (20 inches) at the base of the front mouth (Draper et al 2007).  Candela reinforced 
the chapel with a large beam on the shorter back mouth of the structure, a small compression lip on the front 
mouth and buttresses on the front and back edges of the chapel. In addition, he added extra reinforcement at 
the base of the front mouth where analyses show the highest compressive stresses and the largest 
susceptibility to buckling.  
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Figure 4: Generation and dimensions of original design for Chapel Lomas de Cuernavaca. 

 
The first design of the Chapel had a height at the mouth of 24 meters (79 feet), which collapsed during 

decentering.  The proposed redesign of the Chapel had a rise of the mouth of 18 meters (59 feet).  Design 
drawings for both the 24 meter and 18 meter designs are in the Candela archive in the Avery Library of 
Columbia University.  In the end, the structure was built with a height of approximately 21 meters (based on 
Faber (1963) and another set of drawings in Avery).   Instead of using a stiffening arch at the mouth, as 
proposed in the 18 meter redesign, the Chapel was built with a thickening at the edge.  The back opening of 
the shell has a deep beam, which analyses show is unnecessary and perhaps more harmful than helpful to the 
structure since it creates tensile forces (Basterra 2001, Holzer 2007).  

Recent visits to the site indicate that the current structure is still in excellent shape, 50 years later, and 
displays no threat of failure.  The analyses that follow are of the 24 meter original design.  These analyses 
will demonstrate whether the stresses in this shell were large enough to have caused failure, or whether the 
failure was due to other factors, such as flawed construction.  Furthermore, optimization of this design will 
show if Candela’s design could have been improved for reduced material and improved safety. 

4. STRUCTURAL OPTIMIZATION OF THE CHAPEL 

Our optimization studies on the chapel at Cuernavaca fall into two categories: (1) A thickness 
optimization study that compares a shell with uniform thickness to one in which the thickness is optimally 
distributed over the area and (2) a shape optimization study that examines the height of the front rise.  The 
maximum deflections and tensile stresses are evaluated.  The maximum compressive stresses are not 
discussed but shown to be well within the limits of concrete strength (Draper et al. 2008). 

The concrete material properties assume a unit weight of 23,520 N/m3, a Young’s Modulus of 21.5 GPa, 
and a Poisson’s ratio of 0.2.  The reinforcing steel is conservatively neglected.  The load on the structure is its 
self weight.  While Candela considered wind in his design (Faber 1963), no such calculations are found.  An 
analysis of the Chapel using wind loads (assuming wind on half of a bluff semi-circular shell (a quarter-
circular shell) shows that wind would not have controlled the design shown in Figure 4 (Holzer 2007).   



 

4.1 Mesh, Programs, and Optimization  
The bounding curves and straight line 

generators of the Chapel are shown in Figure 4. 
The grid of straight line generators is formed 
with one set of parallel lines perpendicular to 
another (ω = 90º).  The straight line generators 
are used to create the mesh for the Chapel, 
which was refined to an optimum level.  The 
center spine, which runs along the Y-axis, 
divides the structure into two symmetrical 
parts.  Due to this shell symmetry, our mesh 
only considers the right half of the structure 
with appropriate symmetry boundary 
conditions placed at the line of symmetry (i.e., 
the center spine). In addition, the mesh does 

not consider the buttress elements at the front and back of the structure as they are not part of the shell, but 
are essentially heavy beam elements.   

The Chapel boundaries, boundary restraints, straight line generators, and number of divisions in the 
generators (which affects the coarseness of the mesh) are defined using a program written in Matlab®.  This 
data is then read by FEMGEN, a component of FEMGV, which is a general purpose pre-processing tool for 
model building and mesh generation. (Femsys 2007).  FEMGEN creates the mesh and outputs files for 
coordinates, connectivity and boundary conditions, which are read by Dynaflow, a nonlinear transient finite 
element program (Prevost 2006). 

The optimization solution uses as an objective function, the energy E, which must be minimized with 
respect to displacement to satisfy equilibrium, and maximized with respect to thickness to stiffen the 
structure where needed. The total energy is the strain energy minus the potential energy and therefore: 
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where ρ  is the thickness coefficient vector, d  is the displacement vector, f  is the applied load vector, and 

K is the global stiffness matrix, which is a function of the thickness cubed.   
A constraint of minimum and maximum thickness is imposed through a minimum and maximum 

thickness coefficient, ρmin and ρmax, respectively.  When the thickness coefficients are multiplied by a 
reference thickness, t0, the minimum and maximum thickness, tmin and tmax, respectively, are defined, which 
bound the thickness of any given element.  Furthermore, an overall volume constraint is imposed, which is 
defined through a mean thickness coefficient, ρmean, and t0 so that the mean thickness of all the elements, 
tmean, cannot exceed ρmean times t0.   

Picard iterations (Picard 1891) are used to solve the optimization equation. These are called fixed-point 
iterations (also known as successive substitutions) that fix one set of variables while varying the other. The 
fixed set of variables is then updated based on the changes made to the other set of variables, and the process 
is repeated until the problem converges to an answer.  This method is appropriate because K , d  and f  are 

all functions of ρ .  The input file contains a value of the maximum number of steps so that the solution 
converges without using too many steps (this value was studied and confirmed through experimentation).  An 
outline of the optimization steps is as follows: 
• Step 1 – Initial Assumptions: assume an initial thickness coefficient, ρ, for each element (typically ρ = 

ρmean). 
• Step 2 – Minimization Problem: fix ρ  and compute d  by solving the equilibrium equation fdK =  

using Dynaflow. 
• Step 3 – Maximization Problem: fix d  and maximize E over ρ  (where E is the equation inside the 

brackets of Eqn (1)) using SNOPT. 
• Step 4 – Iteration: repeat steps 2 and 3 until results converge. 

 
Figure 5: Form boards for construction of the Chapel 



 

 
The SNOPT optimization software (Gill et al. 2006) is used to solve step 3. In this step, the use of fixed 

point iterations is not sufficient to solve the problem. Because of the cubic non-linearity of the maximization 
problem we must use a method called ‘move limits’. To be able to solve the maximization problem we 
cannot vary ρ  too much; that is ρ cannot be allowed to move freely between ρmin and ρmax. Move limits 

restricts the variation of ρ  in each iteration, and thus allows SNOPT to arrive at a solution.  

4.2 Thickness Optimization 
For the thickness optimization, a reference thickness, t0, equal to 40 cm is selected and tmin and tmax  are 

set equal to 4 cm and 40 cm, respectively.  It is assumed that each element has the same initial thickness 
(Step 1) equal to ρmean.  The selection of ρmean requires careful consideration because it is proportional to the 
volume constraint, which determines how much material will be distributed throughout the structure. If the 
constraint is too high, there will be too much material and it will not distribute to the correct areas (the areas 
with the greatest stress) but rather will be forced to distribute over portions of the shell which should be left 
with the minimum amount of material. On the other hand, if the volume constraint is too low, there will not 
be enough material to distribute to areas with higher stresses.   

A range of ρmean values (from 0.20 to 0.70) was studied and a ρmean value of 0.375 (tmean = 15 cm) was 
selected.  Figure 6 shows the thickness optimization solutions for ρmean equal to 0.20, 0.375, and 0.70.  It is 
seen that ρmean = 0.20 (tmean = 8 cm) is too low since there is not enough material to distribute over the 
support.  On the other hand, ρmean = 0.70 (tmean = 28 cm) is too high and provides too much material in 
unnecessary areas.  The analysis with ρmean = 0.375, however, shows a clear distribution of larger thickness 
around the support and a nice gradation of thickness towards the center. 
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Figure 6: Thickness optimization results. 

 
The results of the optimization study described above were verified by comparison to another analysis 

that assigned a random thickness to each element as the initial condition (Step 1).  Both analyses had 
essentially the same optimized thickness distribution result, thus verifying the optimization solution. 

The deflections and maximum tensile stresses of the shell with an optimized thickness distribution (tmean 
= 15 cm) are compared to the same shell with a uniform thickness of 4 cm (typical of Candela structures) and 
another shell with a uniform thickness of 15 cm (thus having the same volume of concrete as the distributed 
thickness).   

The deflections of the shell reflect stiffness and safety.  Heinz Isler, another respected designer of thin 
shell concrete structures, set a maximum accepted deflection to span ratio (Δ/L) equal to 1/300 for his shells 
(Billington 2003).  We can use this value as a reference for examining the maximum downward deflection in 
our shell, which occurs at the high point of the front mouth.  The span, L, in this case is the cantilevered 
portion of the shell.  The Δ/L values are equal to 1/1626, 1/1799, and 1/3012 for the 4 cm shell, 15 cm shell, 
and distributed thickness shell, respectively.  These ratios are significantly smaller than that imposed by Isler.  
In addition, it is seen that the deflection for the distributed thickness shell is much smaller than the uniform 



 

thickness shells.  Examination of the contours of maximum downward displacement show that the uniform 
thickness of 4 cm shell has not only a larger maximum, but that maximum extends over a greater area than 
the other two shells.  The contours of the distributed thickness shell show smaller overall deflections and the 
larger deflections contained in a smaller area. 

The maximum tensile (principal) stresses are equal to 12 kPa, 56 kPa, and 54 kPa for the 4 cm shell, 15 
cm shell, and distributed thickness shell, respectively.  However, a direct comparison of these stresses is not 
appropriate since the 4 cm shell has a smaller volume and thus smaller load (self weight).  The tensile 
stresses are all well within the tensile capacity of even the weakest concrete.  Candela did not document the 
concrete strength that he used, but we can conservatively assume a compressive strength of 13,800 kPa 
(2,000 psi), which will lead to a conservative tensile strength estimate of 1,500 kPa (220 psi). 

For a comparison of stresses between the three shell designs, we examine the amount of tensile area in 
each shell with an understanding that tension is undesirable in thin shells concrete structures.  Figure 7 shows 
the areas of tension and compression maximum principal stresses for the three shell designs.  The figures 
clearly show that the distributed thickness shell develops less tensile area, and thus is a more efficient design. 

(a) 4 cm shell

tension

(b) 15 cm shell

tension

(c) distributed thickness
shell (t  = 15 cm)mean

ten
sio

n

ten
sio

n

 
Figure 7: Areas of tension (based on principal stress) in the shell. 

4.2 Shape Optimization 
While the distribution of thickness was obtained via computerized optimization, the effects of the shell 

rise is obtained via free optimization.  Rise refers to the peak elevation of the front mouth of the shell (hf in 
Figure 4(b)).  Free optimization refers to creating the shape of the shell free hand, that is, without a computer 
algorithm.  The values for t0, tmin, tmax, and ρmean are the same as in the thickness optimization study described 
previously, and are kept constant in the shape optimization designs.  The only variable that is changed is d1 
(Figure 4(a)), which affects the rise of the shell as shown in Figure 8.  d1 ranges from 15 to 25 meters in this 
study.   
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Figure 8: Variation in rise with changing d1.  Figure 9: Effect of d1 on maximum deflection. 



 

Figure 9 shows the effects of d1 on the maximum downward deflection for a shell with a uniform 
thickness of 4 cm and for a shell with an optimized distributed thickness.  It is seen that the maximum 
deflection increases at a greater rate with d1 if the shell has a uniform thickness.  Increasing the rise by 25% 
increases the deflections by a factor of about 2.   

The shell with d1 = 25 meters has Δ/L values are equal to 1/1677, 1/1106, and 1/1757 for the 4 cm shell, 
15 cm shell, and distributed thickness shell, respectively.  These are still within the limits used by Isler, but, 
as expected, larger than in the design with d1 = 20 discussed previously.  The maximum tensile (principal) 
stresses are equal to 32 kPa, 137 kPa, and 86 kPa for the 4 cm shell, 15 cm shell, and distributed thickness 
shell, respectively, well within the conservative estimate of tensile strength discussed previously.  An 
examination of maximum principal stresses of the d1 = 25 meter shell reveals that the distribution of tension 
and compression is about the same as that discussed for the d1 = 20 meter design (Figure 7).   

5. SUMMARY AND CONCLUSIONS 

This study examined specifically one structure designed and built by Felix Candela in 1958: Chapel 
Lomas de Cuernavaca.  Without the aid of a computer, Candela understood where the forces would be 
greatest and ‘optimized’ his designs by increasing the thickness in these locations, i.e., the supports.  A 
detailed finite element structural optimization study shows that varying the thickness of the shell, with the 
largest thickness at the support, leads to the most effective design in terms of reduced deflections, reduced 
tensile stresses, and most efficient use of material.  Since Candela did not document the variation of thickness 
in his design, we cannot make a direct comparison of the built structure and our analyses. We can conclude, 
however, that a distributed thickness is appropriate for this design. 

Our results also indicate that the shell could have been designed with an even larger rise than the 24 
meter original design that collapsed during decentering of the forms.  Since in all of our studies the stresses 
are well below a conservative estimate of the concrete strength, collapse during decentering is attributed to a 
problem related to construction; for example the concrete may not have reached an appropriate strength 
before decentering, or the decentering was not done properly so that the forces in the shell did not distribute 
evenly as the temporary supports (scaffolding) were removed.  Note that the effects of wind load were not 
considered other than in the 24 meter design.  Wind will have a larger effect on the designs with a larger rise, 
and a distributed thickness will thus lead to the most efficient design.  
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