Failure Analysis for Composition of Web
Services Represented as Labeled Transition
Systems*

Dinanath Nadkarni, Samik Basu, Vasant Honavar, and Robyn Lutz

Department of Computer Science, lowa State University, Ames, TA 50011, USA
{yogesh, sbasu, honavar, rlutz}@cs.iastate.edu

Abstract. The Web service composition problem involves the creation
of a choreographer that provides the interaction between a set of com-
ponent services to realize a goal service. Several methods have been pro-
posed and developed to address this problem. In this paper, we consider
those scenarios where the composition process may fail due to incom-
plete specification of goal service requirements or due to the fact that
the user is unaware of the functionality provided by the existing com-
ponent services. In such cases, it is desirable to have a composition al-
gorithm that can provide feedback to the user regarding the cause of
failure in the composition process. Such feedback will help guide the
user to re-formulate the goal service and iterate the composition pro-
cess. We propose a failure analysis technique for composition algorithms
that views Web service behavior as multiple sequences of input/output
events. Our technique identifies possible cause of composition failure and
suggests possible recovery options to the user. We discuss our technique
using a simple e-Library Web service in the context of the MoSCoE Web
service composition framework.

1 Introduction

A number of formal approaches [DS05,HS04,tBBGO07] have been developed in the
recent years to address the problem of service composition. These approaches
take as input the specification of existing service functionalities and the desired
functionality (also referred to as the goal) in a specific formalism, and auto-
matically generate a choreographer that mediates the communication between
a subset of existing services to realize the goal (if possible). In addition to au-
tomation, these approaches also provide formal guarantees of the correctness of
the composition.

Typically, the existing approaches can be viewed as a single-step process,
where the result is either a feasible composite service or no result at all when
the composition process fails to generate a composite service that conforms to
the goal functionality. We claim that such failures may be due to the fact that

* This work is supported in part by NSF grant CCF0702758.

the developer may not be aware of all the details of existing services’ functionali-
ties and as a result s/he may specify certain goal functionality that is impossible
to realize using any of the existing services. However, if the developer were pro-
vided with some feedback and/or suggestions regarding the cause of composition
failure, then the developer would be able to reformulate the goal functionality
without violating the overall desired requirements such that the new goal would
become realizable from the composition of existing services. Such a process may
be iterative resulting from multiple composition failures, failure analysis and
re-formulations.

In this context, we propose methods to analyze the cause of composition
failures and to provide feedback to the developers based on the analysis. We
consider the problem in the MoSCoE service composition framework [PBLHO6],
where services and the goal functionalities are described as labeled transition
systems. States in the transition system represent the configurations of the ser-
vice/goal and transitions labeled with input/output events represent how the
service evolves from one configuration to another. The composition algorithm in
MoSCoE aims to identify the communication pattern between existing services
via a choreographer such that the resulting transition system describing the com-
posite service mimics every behavior of the goal service. Failure to generate a
composite service in MoSCoE, therefore, is due to the existence of transitions in
the goal that cannot be replicated by any composition of the existing services.
This, in turn, implies that the given input sequence as specified by the goal
functionality is not sufficient to produce the required output sequences. Once
our method identifies the cause of the failure, it suggests possible changes to
the goal transition system that can address the failure and lead to a successful
composition. The developer can then choose to incorporate the suggestions and
re-run the composition process.

The rest of the paper is organized as follows. Section 2 presents an illustrative
example that will be used in the rest of the paper to explain the salient aspects
of our work. Section 3 provides a brief overview of the MoSCoE composition
algorithm. Section 4 discusses the various scenarios that can cause the failure of
the composition followed by our method to identify them. Section 5 discusses the
application of our method on the illustrative example. Section 6 gives a summary
of our work and describes future avenues of research.

2 Illustrative Example

Consider a library book reservation service (eLibrary) that requires three main
functionalities: book searches, book delivery requests and book reservations. The
goal of the service is to allow a library member to search through the library
catalog for a book based on parameters such as book title and the author. If
the library has copies of the book, the service checks if a copy is available to be
checked out. If it is, the service places a request for delivery of the book to the
member’s home address, which is stored in the member’s account information. If
all copies of the book have been checked out, the service places a hold request on

81
?getRequestDetails(title, author, memberld)

S2

findBook(title, author; isPresent)

S3

[isPresent=1]

[isPresent=0] =11)
checkAvailability(title, author; avail)

lapp(“fail”)

S,
! @ [avail=1]

requestDelivery(title, author, date,
addr, memberld; delStatus)

[avail=0]
recallBookFor(title, author,
memberld; resStatus)

S7

S6

[delStatus=1]
lapp(“success”

[delStatus=0] [resStatus=0] [resStatus=1]
lapp(“fail”) lapp(“fail”) lapp(“‘success”)

S3 (@ $9(® S10(® Si1(®

Fig. 1. Specification of goal service eLibrary as labeled transition system.

the book. The Web service developer is assigned the task of generating the above
service. The developer prepares the transition system (Figure 1) representing the
goal behavior. There are three types of transitions: input, denoted by 7, output,
denoted by ! and function invocation. For instance s; — so is an input tran-
sition, s3 — s4 is an output transition and s — s3 is a function invocation.
Input/output transitions contain a message header and a message body, e.g.,
getRequestDetails is the message header and its parameters denote the mes-
sage body. Transitions denoting function invocation contain the function name,
the input parameters and the output of the function. For instance, findBook is
the function name, title and author are input parameters and isPresent is
the output. Transitions may also contain a guard (enclosed in [-]) denoting the
condition under which the transition is enabled; transitions with no guards are
always enabled.

The repository that will be used to generate the composite service contains
the following services: Availability, BookReservation, DeliveryRequest,
MemberAddress and SearchBook. The Availability service accepts as input
the title of a book and checks if a copy of the book can be checked out. The
BookReservation service accepts as input the book title and the member ID, and
places a recall request for a copy of the book for that member. DeliveryRequest
places a request for delivery of a book to the address specified in the member’s
account on a particular date. MemberAddress accesses the member’s account
details and returns the member’s home address. Finally, the SearchBook ser-
vice searches the library catalog for a book given the title and the name of the

to

?details(title, author) 2reserveDetails(title, author, memberld)

t ts
searchCatalog(title, author;isPresent) recallBookFor(title, author, memberld;

resStatus)

t) te
!details(isPresent) IreserveDetails(resStatus)

(@ ty®
(a) SearchBook (b) BookReservation
tg t

9bookDetails(title, author) ?deliveryDetails(title, author,

date, addr, memberld)

requestDelivery(title, author, date, addr,

checkAvailability(title, author; avail) berld: delStatus)
memberld; delStatus

tI(l t14
bookDetails(avail) !deliveryDetails(delStatus)
t @ tis (@
(c) Availability (d) DeliveryRequest
e
?memberDetails(memberld)
47
getMemberAddress(memberld; addr)
tig
!memberAddress(addr)
@

(e) MemberAddress

Fig. 2. Component services

author. The labeled transition system specification of each of these services are
shown in Figure 2. The objective of the composition algorithm is to generate
a choreographer that will mediate the communication between the component
services such that the behavior of the component services and the choreographer
replicates the behavior of the goal service. Note that the choreographer cannot
generate any messages and cannot provide any functions.

We consider this simple example scenario to explain the salient aspects of
the proposed method. It is worth mentioning that though the existing services
in the example do not contain any loops and branching-behavior, the composi-
tion algorithm we considered (MoSCoE see Section 3) and the proposed failure
analysis based on MoSCoE (see Section 4) are capable of handling services with
loops and branches.

3 MoSCoE Composition Algorithm

3.1 Web services as Transition Systems

Definition 1 (Service Transition System (STS)). A Web service transition
system is a tuple W = (S, s, F,T) where S is the set of states, so € S is the
start state, F' C S is the set of final states and T is the set of transitions between
pairs of states. A transition is of the form s 2% ' where s € S and s' € S are
source and destination states of the transition, g is the guard on the transition
and a is the event that is executed by the tramsition. There are four types of
events:

input events denoted by ?msgHeader (msgBody),

output events denoted by !msgHeader(msgBody), and

function invocation denoted by functionName (InputParameters; Output).
internal event denoted by T.

Transitions are referred to as input, output, function, or internal based on their
labels. Internal event denotes computation or communication performed by a
(composite) service that is not observable to the client.

Ezxample 1. Figures 1 and 2 illustrate STS-representations of goal and existing
services. The state states are represented by e and the final states are represented
by a (@ . In Figure 1, the transition s; — so is an input transition with true
guard; the transition ss — s3 is a function invocation with the name of the
function findBook and with true guard; the transition s3 — s4 is an output
transition with a guard on isPresent.

Definition 2 (Parallel Composition of STS [PBLHO06]). Given two STSs
W1 = (51, so1, F1,T1) and Wo = (Sa, sp2, Fa, Ta), their parallel composition un-
der the restriction set L, denoted by (W1||Wa)\L, is a tuple (S, so, F,T) where
S C 51 x Sa, so = (S01,802), F C Fy x Fy and T is the transition relation
described as follows: for (i,7) € {(1,2),(2,1)}

L% P e Aty e A me L= (s,t) ST (s,) eT

2.5 %5 s €T, A header(e) ¢ L= (s,t) &5 s/(s',t) € T

where
m if e € {?m(x),!m(x)}
1L otherwise

header(e) = {

The parallel composition describes the rules by which two or more services can
communicate with each other. The first rule in the transition relation describes
a synchronous move where one services provides an output that is consumed as
input by the other service. The result is an internal transition in the composite
service. The second rule, on the other hand, is an autonomous move by the
individual services. These rules are derived from CCS-style synchronization in
process algebra [Mil82].

3.2 The Service Composition Problem

Given the transition system of a goal, Wy, and the set of available components
W = {Wy, Wy, ..., W,}, the problem of service composition entails identifying
a choreographer transition system W, such that

(Wi [[Wiz| .. [[Wig) [We) \L = W, (1)

where L is the set of actions that are not present in W, and =~ is the largest
relation describing weak bisimilarity [Mil82] between pairs of states. The above
ensures that the composite service containing Wiy, ..., Wy and W,, and the
goal W, exhibit observable behaviors that are temporally indistinguishable (i.e.,
no temporal logic can differentiate between the behaviors). Note that, the weak
bisimulation is only concerned with the observable events, i.e, all internal and
unobservable behaviors (events involving 7) are ignored. The choreographer gen-
erated by the composition algorithm can be viewed as a new service with the
restriction that it cannot have any function invocation or internal event; the role
of the choreographer is to buffer and relay messages between existing services.

The composition algorithm takes as input the start states of the existing
component service transition systems and that of the goal transition system and
iteratively performs the following computations:

0. a transition in the goal is enabled only when the variables in the correspond-
ing transition-guard are available at the current state of the choreographer;

1. if the transition in the goal is an input, then generate the corresponding
input transition in the choreographer, and move the goal transition system
to the next state;

2. if the transition in the goal is an output and the output messages are available
to the choreographer, then generate the corresponding output transition in
the choreographer, and move the goal transition system to the next state;

3. if the transition in the goal is a function and there exists a service W; that
can supply the function transition from its current state, then move W; and
the goal transition state to their corresponding next states;

4. if the transition in the goal is a function and there exists a service that
can supply the function transition from some future state, then identify any
service that can make a move on some input available to the current state
of the choreographer and move the choreographer and the corresponding
service to their next states.

Consider the illustrative example in Figures 1 and 2 (Section 2). The transi-
tion in the goal s; — so is an input transition—this indicates that the goal
service expects input from the client (who will use the service) to move from
s1 to so. Therefore, following Rule 1 above, the transition is replicated in the
choreographer, which will act as the interface between the client and the existing
services. A pair of new states ¢; and ¢ are created for the choreographer such
that ¢y — c¢o is labeled by the input event that labels s; — s5. At state co,
the messages title, author and memberId are available to the choreographer as
these are supplied by the client. If the goal is at state s3, for the choreographer
to replicate any of the transitions s3 — s4 and s3 — s5, the choreographer
needs to be at a state where isPresent is available to the choreographer (see
Rule 0 above).

If after repeated applications of the rules described above, the goal moves
to the final state, then the parallel composition of the generated choreographer
and the existing services is weakly bisimilar (see Equation 1 in Section 3.2) to
the given goal (soundness). On the other hand, if none of the above rules for
choreographer generation are applicable, then the composition process fails and
there exists no choreographer that can realize the given goal (completeness). For
details of the described method, and the proof of its soundness and completeness
refer to [PBLHO6].

The above method is described in the context of the MoSCoE service com-
position framework. Similar methods based in transition system representation
of services and goal are developed by [BCD™05,CDL*08,HB03].

4 Failure Analysis for MoSCoE Composition

In this paper, we focus on the cases where the service composition process fails,
i.e., during the iterative choreographer generation process described in Section 3
the goal, the generated choreographer and the existing services move to states
from which none of the rules can be applied. We augment the composition al-
gorithm with a method which identifies the cause of the failure of composition
process and provides feedbacks/suggestions (to avoid failure) to the developer.
The feedback given to the developer is of utmost importance as it allows
for progressive service composition. The feedback provides information not only
regarding the cause of the composition failure but also as to how such failure
can be resolved. Two problems need to be addressed for developing a feedback

process that can be effectively used in practice: (a) what is to be given as feedback
and (b) how that feedback is to be presented to the developer.

4.1 Tree of Recovery Options

When failure occurs during composition, the cause of the failure is identified.
Failures occur mostly due to missing messages that are required as input to
functions or input transitions to some service, or due to functions required by the
goal and not provided by any of the existing services. Such failures are resolved
by finding alternate paths in the component services, or by calling on components
that provide the missing message sets, or by identifying a semantically equivalent
function in the existing services. In short, multiple resolutions are possible for
each failure.

The failure analysis approach presented in this work explores each such recov-
ery option. Upon failure, we identify all possible recovery options and a choice
point is created in the composition computation. For each recovery option, a
new branch in computation is explored using the corresponding option. In every
branch, the goal service is modified based on the recovery solution corresponding
to that branch. Once the goal service has been modified, the composition process
continues using the modified goal service. If one or more branches (at each choice
point), leading to a different modification to the original goal service, eventually
terminate successfully, the developer is provided with the information regarding
the various goal service modifications. The developer can decide to either select
one of these modifications or to discard all modifications and reformulate the
goal from scratch. We refer to the above computation process as the recovery
tree.

A sample computation tree is illustrated in Figure 3. The composition process
starts and fails for the first time at node n;. Three branches are created from
this node with each branch representing one solution to the failure at node n;.
Two of these solutions fail during the simulation, but node ns indicates that
the modified goal service corresponding to the second solution is successfully
composed. There are two possible solutions to the failure at node ny and both of
them are explored, as shown. Node ng indicates that the goal service modified
at node ng results in failure. This branch is marked as failed; for the purpose of
efficiency we do not consider exploring any paths that contain more than three
choice points. This is because the modifications deployed to the goal service in
multiple choice points are likely to make the modified goal service excessively
different from the original developer-specified goal service and as such are likely
to be discarded by the developer.

4.2 Identifying Recovery Options
The following cases would result in failures during the composition process:

1. A guard condition cannot be examined as variables required for the condition
are not available

Begin Composition Process

[First failure]

[Recovery option from

[Recovery option from -
failure at n1]

failure at n1]

n;@

[Recovery option from
failure at nl]

[Completed composite
service]

[Completed composite
service]

[3™ Failure, this node is
ng Q not explored]

Fig. 3. Recovery Tree

2. Messages for an output transition are not available to the choreographer

3. Messages for an input transition to an existing service are not available to
the choreographer

4. A required function cannot be invoked, that is, none of the existing services
provide a function specified in the goal service

In the following, we discuss the recovery options identified for each of the above
failure scenarios.

I: Failure due to guard conditions. This can happen when a variable (either
provided via input from the client or output from some existing service) has not
yet been available to the generated choreographer, and the composition process
encounters a guard on such a variable in the goal transition. There are two
possible recovery options from this failure based on the following;:

— There exists a service that has an output containing the missing variable(s)
in the output message body. The recovery option is to identify the input that
must be provided at the current state of this service such that eventually
the required output can be obtained.

— If no such service exists, the goal service is modified to include an input
transition requesting the client to provide the message that is required for
the guard condition.

1I: Failure due to unavailability of output message. In this scenario, the com-
posite service has to provide an output message to the client but is unable to
do so as it does not have the output message set. This happens when the algo-
rithm encounters an output transition in the goal service and the choreographer

store does not have the output message for such a transition. Recovery from this
failure is based on:

— There exists a service that performs the required output action as specified by
the goal. The recovery option is to identify the input that must be provided
at the current state of this service such that eventually the required output
can be obtained.

III: Failure due to unavailability of input message. In this scenario, the chore-
ographer has to provide an input message to the component, which might fail
if the choreographer does not have the required message set. This scenario also
includes the case where a function is to be called and the message set required
to call the function is not available. The recovery option in this case is the same
as scenario I above.

1V: Fuilure due to unavailability of required function. In this case, the goal
service has a function invocation that is not provided by any of the existing
services. To recover from this failure, we search for a semantically equivalent
function with the same input and output messages as the required function. The
transition on the missing function in the goal is then replaced by a transition on
this semantically equivalent function.

5 Case Study

We discuss the application of the failure identification and recovery options using
the illustrative example introduced in Section 2. The objective is to solve the
following problem

W, : (SearchBook||BookReservation||Availability||DeliveryRequest
|[MemberAddress)||W,)\L ~ eLibrary

and identify a W, (choreographer, if one exists). In the above the restriction set
L = {m | m = header(e) A e € existing services}, i.e., L contains the header
of events on which the existing services can communicate with the generated
choreographer (see Section 3.2).

The composition algorithm takes as input the goal as specified by the devel-
oper and the set of component services, and attempts to create a choreographer
for the eLibrary system. The input action ?getRequestDetail (title, author,
memberId) in the goal corresponds to the receipt of a message from the client,
meaning that the client has entered data in the system. The choreographer mim-
ics this input action and stores the message body in the choreographer message
store.

The next step in the composition is to create a transition that realizes the
function invocation findBook (see Figure 1). The composition process fails as
none of the component services can provide the required invocation (see scenario
IV in Section 4.2). The failure analysis method identifies the searchCatalog

S1
?getRequestDetails(title, author, memberld)
)

searchCatalog(title, author; isPresent)

[isPresent=1]

[isPresent=0] =1 .
checkAvailability(title, author; avail)

lapp(“fail”)

Sy S5
@ [avail=1]

getMemberAddress(memberID; addr)

[avail=0]
recallBookFor(title, author,
memberld; resStatus)

S6
?getDeliveryDate(date) S7
[resStatus=0] [resStatus=1]
Sg lapp(“fail”) lapp(“success”™)
requestDelivery(title, author, date, @ @

addr, memberld; delStatus) S12 S13
S9

[delStatus=1]
lapp(“success”)

[delStatus=0]
lapp(“fail”)

S10 S11
Fig. 4. Suggested Goal; modifications suggested as part of recovery from composition
failure are shown in bold.

function provided by the searchBook service as a possible replacement to the
findBook function, based on matching input parameters and output. The re-
placement function should be compared with the original for semantic equiva-
lence. Checking a function for semantic equivalence! can be done based on the
type of the inputs and outputs associated with the function (see for example,
[Bur04,BHS03,DMD™03]). Based on this recovery option, a choice point and a
branch are created in the recovery tree. The branch considers a modified version
of the goal service where the function findBook is replaced by searchCatalog
(see Figure 4). All the computation along this branch uses this modified goal as
input.

Note that the searchBook service is at state tp. In order to replicate the
function invocation searchCatalog in the modified goal service, it is necessary
to move the searchBook service to state t;. In order to realize this, the chore-
ographer is required to provide the input to searchBook service at state to.
Therefore, a transition on the input action 'details(title, author) (to be
consumed by the searchBook service with the same message header) is cre-
ated in the choreographer (see Figure 5); all the elements in the message body

! Methods for identifying semantically equivalent functions is beyond the scope of this
work.

¢

?getRequestDetails(title, author, memberld)
c From the client
2

ldetails(title, author)
To the SearchBook service

C3

?details(isPresent)
From the SearchBook service

[isPresent=0]
lapp(“fail”)
To the client

[isPresent=1]
bookDetails(title, author)
To the Availability service

?bookDetails(avail)
From the Availability service

C7
[avail=1] [avail=0]
!memberDetails(memberld) IreserveDetails(title, author, memberld)
To the MemberAddress service To the BookReservation service
Cy
?memberAddress(addr) ?
From the MemberAddress serwce ZreserveStatus(resStatus)
From the BookReservation service
[resStatus=1]

lapp(“success™)
To the client

? getDehveryDate(date)

From the client [resStatus= 0]

(f lapp(“fail”)

To the client ® cu@®
€13

!deliveryDetails(title, author,

date, addr, memberld)
To the Del:veryRequest service

Cis
?deliveryDetails(delStatus)
From the DeliveryRequest service

[delStatus=0]
lapp(“fail”)

To the client
Cig

[delStatus=1]
lapp(“success”)
To the client
C17

Fig. 5. Generated Choreographer for the modified Goal (Figure 4); transitions of the
choreographer are annotated with the service or client (in bold) which participates in
communication via the event on the transition.

(i.e., title and author) are available to the choreographer (i.e., present in the
choreographer store).

Composition proceeds without any failure and the choreographer is gener-
ated to communicate with the Availability service such that the invocation
of the function checkAvailability(title, author; avail), as prescribed in
the goal, can be realized. However, when the goal-state s5 is reached, the com-
position process fails. It fails to replicate the transition s; — sg. This is be-
cause the choreographer is not capable of providing addr information as re-
quired by the input to the function requestDelivery(title, author, addr,
memberId; delStatus). This corresponds to scenario IIT described in Section 4.2.
To recover from this failure, our method searches for an existing service that has
an output transition with message body containing addr. Such a service is iden-
tified to be memberAddress. A choice point and the corresponding branch of
computation are created and it is given a copy of the goal service, the chore-
ographer and the component services. The input variables required to initiate

?getRequestDetails(title, author, memberld)
P2
T

T
<fsearchCatalog(tltle author; isPresent)

[isPresent=0 [isPresent=1] T
'app(“fall
checkAvailability(title, author; avail)
Ps@

[avail=1]T [avail=0] T

getMemberAddress(memberld; addr) recallBookFor(title, author, memberld;
resStatus)

(fpn Plz(f
T T

i Pis Pus B
?getDeliveryDate(date) [resStatus=0] ‘ [res%tatus—l]
Pis lapp(“fail”) lapp(“‘success”)
T ? © ®

p
requestDelivery(title, author, date, addr,?pl8 Pre 7

memberld; delStatus)

P19
T

P20 [delStatus=1]
lapp(“success”)

[delStatus=0]
lapp(“fail”)

P2 P22

Fig. 6. Composition of generated choreographer (Figure 5) and existing services (Fig-
ure 2); composite service is weakly bisimilar to suggested goal (Figure 4).

the memberAddress service are available to the choreographer, so the recovery
method simply inserts a transition on the getMemberAddress in the goal service
for the new branch.

To support this function invocation in the modified goal service, two new
transitions on the output and input actions, !'memberDetails(memberId) and
7?memberAddress(addr), are created in the choreographer. At this point, the
choreographer store has all the required inputs of requestDelivery function,
except date. As a result, the composition process fails again.

The failure analyzer searches for any service that can provide an output date.
As no such service exists, the only recovery option is to insert an input operation
in the goal that requests the client to provide the date.

Since the entire message set for the requestDelivery function is now avail-
able, this function can now be invoked. The algorithm supports this invocation by
creating actions !deliveryDetails(date, addr, memberId) and
?deliveryDetails(delStatus) in the suggested choreographer. This means

that an output message !deliveryDetails(date, addr, memberId) was sent
to the memberAddress service, the function getMemberAddress was invoked and
the output of the function call was then sent back to the choreographer. The
composition process, finally, considers the behavior of the goal as specified by
transitions from s5; — sy — The composition process successfully com-
pletes generating the choreographer without failure.

Figure 4 shows the suggested goal following the recovery options described
above; the modifications are shown in bold. Figure 5 illustrates the corresponding
choreographer generated by composition process. Figure 6 shows the composite
service that will be realized when the generated choreographer is composed with
the existing service. It can be shown that the composite service is (weak) bisim-
ulation equivalent to the suggested goal-transition system.

6 Conclusion

The failure analysis and the recovery techniques proposed in this work help in
identifying the cause of failure in composition process and provide appropriate
feedback to the developer. The feedback is described as possible modifications to
the goal service for every possible recovery from the failure. Though the technique
is described in the context of MoSCoE service composition framework [PBLHO6],
it can be applied with minimal modification for analysis of failures of composition
process, where the composition is defined over different variations of labeled
transition systems.

As part of future work, we plan to investigate the efficiency and applicability
of the proposed method in practical settings using real-world and benchmark
service composition problems. We will also work to develop failure analysis tech-
niques where the goal is specified in the language of temporal logic (e.g., EA-
GLE [PTBO5]), description logic ([BCGT03]), etc., and the composition prob-
lem is reduced to the satisfaction problem (instead of the equivalence problem
as described in MoSCoE).

References

[BCD*05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Massimo Mecella. Automatic Service Composition based on Be-
havioral Descriptions. Intl. Journal on Cooperative Information Systems,
14(4):333-376, 2005.

[BCG103] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Massimo Mecella. e-service composition by description logics
based reasoning. In Diego Calvanese, Giuseppe De Giacomo, and Enrico
Franconi, editors, Description Logics, volume 81 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2003.

[BHS03] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology lan-
guages for the semantic web. In Festschrift in honor of Jorg Siekmann,
Lecture Notes in Artificial Intelligence. Springer, 2003.

[Bur04]

[CDL*08]

M. Burstein. Dynamic Invocation of Semantic Web Services that use Un-
famil iar Ontologies. IEEE Intelligent Systems, 19(4):67-73, 2004.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Me-
cella, and Fabio Patrizi. Automatic service composition and synthesis: the
roman model. IEEE Data Eng. Bull., 31(3):18-22, 2008.

[DMD™03] A.Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learn-

[DSO05]

[HBO3]

[HS04]

[Mil82]

[PBLHOG6]

[PTBO5]

[tBBGO7]

ing to Match Ontologies on the Semantic Web. VLDB Journal, 12(4):303—
319, 2003.

Schahram Dustdar and Wolfgang Schreiner. A Survey on Web Services
Composition. International Journal on Web and Grid Services, 1(1):1-30,
2005.

Rachid Hamadi and Boualem Benatallah. A Petri Net-based Model for Web
Service Composition. In 14th Australasian Database Conference, pages 191—
200. Australian Computer Society, Inc., 2003.

Richard Hull and Jianwen Su. Tools for Design of Composite Web Services.
In ACM SIGMOD Intl. Conference on Management of Data, pages 958-961,
2004.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., 1982.

Jyotishman Pathak, Samik Basu, Robyn Lutz, and Vasant Honavar. Parallel
Web Service Composition in MoSCoE: A Choreography-Based Approach.
In 4th IEEE FEuropean Conference on Web Services, pages 3—12. IEEE CS
Press, 2006.

Marco Pistore, Paolo Traverso, and Piergiorgio Bertoli. Automated Com-
position of Web Services by Planning in Asynchronous Domains. In 15th
Intl. Conference on Automated Planning and Scheduling, pages 2—11, 2005.
Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Web service
composition approaches: From industrial standards to formal methods. In
ICIW, page 15. IEEE Computer Society, 2007.

