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Abstract. We consider constitutive models of viscoelastic behaviour which predict
a

shear

stress which is a nonmonotonic function of the shear rate. It is known that
a

homogeneous shear

flow is unstable when the shear stress decreases with shear rate. We use a
novel simulation

technique (the Lagrangian-Eulerian method for the fluid dynamics combined with Ottinger's
stochastic method for the constitutive equation) to solve one- and two-dimensional models of

plane Couette flow for
an

integral constitutive equation describing entangled wormlike micelles.

The results
are

compared with those of
a

'toy' model (with
a

differential constitutive equation).
We show that the steady state actually consists of bands of different shear rate. Such

a
flow

is strongly inhomogeneous, and our preliminary results indicate that the constitutive equation

must be modified to allow for spatial variations in the viscoelastic stress.

1. Introduction

Several important models of viscoelastic behaviour, in polymers and other materials, predict
that the steady shear stress decreases with shear rate ~, when ~ is large enough. For instance,
Doi and Edwards' theory Ill shows this behaviour; in their model, at high shear rate, the poly-

mers become aligned along the flow direction, and can no longer generate a shear stress. Some

phenomenological models have this property too, such as the corotational Maxwell (CAM)
model [2]. On physical grounds, we do not expect this behaviour to persist to indefinitely

high shear rate. For example, if a Newtonian solvent is present, the Newtonian viscosity might
eventually dominate. Alternatively, the models may fail, as short relaxation-time processes in

the polymer itself become important [3], causing the stress to increase. However, these effects

are comparatively weak, so that there may still be a range of shear rates where the shear
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Fig. I. Schematic nonmonotonic steady shear stress/shear rate curve

stress is decreasing, Figure I. This is significant, because a steady flow is unstable under these

conditions [4].
Is this behaviour shown by real materials? The most important experimental indication

comes from the 'spurt effect', which is shown by many linear polymers in pipe flow. On

increasing the driving pressure gradient P' beyond a critical value, the volume throughput
is seen to increase discontinuously. When P' is reduced, the throughput decreases gradually~
showing hysteresis. For reviews, see [5,6].

This behaviour has been explained in terms of a nonmonotonic shear stress [7-9]. The spurt
effect seems to be a transition from a classical Poiseuille-like flow, to a 'plug'flow, in which a

gently sheared central cylinder (the plug) is surrounded by an outer layer of strongly sheared

material. An alternative explanation, in terms of wall slip, is possible, but in this paper we

will assume that the no-slip boundary condition is valid.

Rheometrical experiments are often done in cone-and-plate or cylindrical Couette apparatus.
In these geometries, one expects the flow to have the same shear rate everywhere, but this is

impossible if the applied shear rate ~~ppiied lies in the region of decreasing stress [4]. What is

the analogy of plug flow here, or is a stable, steady flow possible at all? Cates, McLeish and

Marrucci (CMM) [lo] noted that, in simple shear, the shear stress is a constant throughout
the material, so that tyTo shear rates, ~A and ~B, can coexist if they correspond to the same

steady shear stress: S(~A)
"

S(~B). They suggested that the flow takes a banded form,
containing regions with shear rate ~A~ and regions with ~B, with volume fractions xA and zB

such that their average shear rate equals whatever rate is applied: ~~ppjied " XAKA + XBKB

(with xA + xB =
I). If ~~ppiied lies between ~o and ~3 (see Fig. I), then a banded flo~v" is

possible (although
a

uniform flow is forbidden only if ~~ppiied lies between ~i and ~2).
If a banded flow is present, the shear stress is not def.ermined by ~~ppiied, but can lie between

Smjn and Smax. CMM argued that the stress is determined by the flow history, and that if

~~ppiied is increased from zero, the entire flow remains on the low-shear stable branch of the

curve for as long as possible. Then, when ~i is reached, a small amount of material begins to

shear at K3 l'top-jumping'). As ~appiied is increased further, the proportion of ~3 increases~

until the whole of the sample is being sheared at this rate. The flow is now uniform again,
and remains so if ~~ppiied is increased still more. In short, it is assumed that ~A " ~i and

KB " ~3. The hallmark of this behaviour is that, in the shear-banded regime, the shear stress

is independent of ~~ppiied land equals Sm~x). Once the flow is in the uniform high shear rate

regime, then, on decreasing ~~ppjied, the homogeneous shear flow may persist until ~2 is reached,
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and only then are the shear bands reformed l'bottom-jumping'). In this case, we
would expect

to observe hysteresis in the stress.

Such behaviour appears not to have been observed for ordinary polymers. Typically, some

shear-thinning occurs at higher shear rates, but the shear stress continues to rise gently. How-

ever, a surfactant solution (cetylpyridinium chloride and sodium salicylate in water) shows

the constant stress plateau predicted by CMM Ill]. This surfactant forms highly elongated
wormlike micelles, which can entangle, and appear to share many of the rheological features of

polymers (for
a review, see [12]). Cates has formulated a constitutive equation [13] for them,

based on that of Doi and Edwards. Using this equation, together with the shear-banding ideas

of reference [lo], Spenley, Cates and McLeish were able to predict, with good accuracy, the

observed shear stress in the cetylpyridinium system [14]. Direct evidence for shear-banding
(birefringence experiments) has recently been found [15] in another entangled micellar system

(aqueous cetyltrimethylammonium chloride). Shear-banding has also been reported in refer-

ences [16,17], although here the behaviour is complicated by the fact that the high-shear band

is a shear-induced (metastable) nematic phase [18-20].
The aim of this paper is to test theoretically the shear-banding conjecture, by modelling the

start-up of shear flow in a viscometric experiment. In Section 2, we set up the mathematical

model, and in Section 3 we try to predict some of its properties. Section 4 analyses linear

perturbations on a uniform shear flow. Preliminary numerical calculations are presented in

Section 5 for a one-dimensional, and in Section 6 for a two-dimensional model. In Section 7,

a
modification of the constitutive model is suggested to describe the interface between bands

more accurately.

2. Mathematical Formulation

The problem can be modelled at several levels of sophistication. A 3-dimensional model would

include the whole experimental geometry (e.g. cone-and-plate), with free fluid surfaces if

appropriate. A '(2+1)-dimensional' model would be essentially the same, except that axial

symmetry is assumed, so the stress and velocity fields are functions of two variables only. The

2-dimensional model is planar Couette (extending to infinity, so there are no free surfaces).
The '(I+I)-dimensional' model is the same as the 2-dimensional, except that symmetry along
the shear direction is assumed (so the fields are functions of one variable). For simplicity, we

will consider only the (I+I)-dimensional and 2-dimensional models.

We begin with the generalised Navier-Stokes equation for a viscoelastic material in a Newto-

nian solvent (or with some very short relaxation time modes that can adequately be modelled

as
Newtonian)

P

It
+ v ?v) =

? i« + n?v Pi
,

ii

where v(r) is the velocity field, ~r(r) is the viscoelastic part of the stress, p is the hydrostatic

pressure, q is the viscosity of the solvent and p is its density. Later, we will hat,e to specify a

constitutive equation, but at first we will consider a completely general constitutive behaviour.

We have two rheometer plates parallel to the x-axis, separated by distance L. We distinguish

two cases. If the stress is the control parameter, then the boundary condition is that the total

shear stress S
= a~~ + qbv~ lay is fixed, thus

?~y + ~/b~~ lay
"

sapplied for y #
o, L. (2j
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On the other hand, if the shear rate is the control parameter, then the boundary condition

is on the velocity

v(x, y =
o, z)

=
0 (3)

v(x, y =
L, z)

=
U&. (4)

This gives an average shear rate of
~ =

U/L.
The (I+I )-dimensional condition is that v(r)

=
~(y)& (so that all the streamlines are straight

and parallel, the flow everywhere is in the x-direction, and the velocity can change across the

flow, but not along it). Equation (I) reduces to

Pll
=

) a~v
+
n() (5)

The normal stresses have been eliminated and play no role in the dynamics, nor can we obtain

any information about the normal force exerted on the plates. In a real experiment, this can

be measured by the rheometer and used to calculate the first normal stress difference.

A very similar problem to pipe flow, that of flow down a slit channel, was studied by Malkus~

Pego and others at the University of Wisconsin [9, 21-23]. They used a
(I+I)-dimensional ap-

proach, with an equation identical to equation (5) apart from a driving pressure term (and
different boundary conditions). Their constitutive relation was the corotational ~/laxwell equa-

tion (in fact, they began with the Johnson-Segalman model [24] with a single relaxation time,
but were able to show that, for their problem, this can be replaced by the CAM equation
without loss of generality). They found that the final steady state is a plug flow.

In a two-component system, such as an aqueous solution of micelles, there may be some

coupling between the mechanical properties and the local composition. This is discussed in

reference [25]. We neglect this effect in the present work. In any case, it does not arise in a

one-component system such a polymer melt.

3. A Toy Constitutive Model

We introduce a simple constitutive model to help elucidate the behaviour of equation (5)

~'
+

~
=

Gg
T

~~) (6)
~t

7
~9

This is the simplest possible constitutive equation that can show both viscoelasticity (I.e. a

finite relaxation time) and nonlinear response. Here a is the viscoelastic shear stress (denoted

a~y in the previous section, but we drop the subscript here for simplicity), while
T is the

viscoelastic relaxation time and G is the elastic modulus. The function g is the viscoelastic

shear stress as a function of the shear rate in steady shear flow, and may be chosen freely.
This toy model is deficient in that it is not written in tensor form, but for the purposes of

(I+I )-dimensional modelling, this is irrelevant.

Equation (6) has already been studied in the context of slit flow [23]. Following reference [23],

we will use this form for g:

§~~~
i j2' ~~~

The total stress S
= a + i~b~ lay is then nonmonotonic, provided i~/GT < 1/8, which we will

always assume to be true.
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Fig. 2. Schematic phase diagram for the viscoelastic stress a, with the total stress S as the control

parameter. The solid and dashed lines indicate stable and unstable equilibria respectively. Li, L2 and

L3
are

lines of constant shear rate.

We begin with the stress-controlled regime. Assuming creeping flow (I.e. the fluid density

p =
o), equations (2) and (5) give

~ +
~)

=
SaPPied. (8)

This allows us to eliminate b~ lay from equation (6), leaving an equation in the single variable

a, with Sappiied as a parameter. Notice that the spatial derivative b lay has disappeared. This

means that the stresses at different positions evolve independently, or (in other words) that

the streamlines have been decoupled from one another. The behaviour of the system is now

trivial. Equation (6) may be written in the form

where Via) is

Via)
=

ja~ +
~~

ln
l

+ IS a)~) (lo)
2 ~l

V has two minima if Smin < Sappiied < Smax land i~/GT < 1/8), otherwise it has one.

It follows that for S~ppjjed < Smin and Sappjied > Sm~x, a has one equilibrium point. For

Smin < S~ppjied < Sm~x, there are two stable equilibria and one unstable. This is summarised

in Figure 2. Branch A corresponds to low shear rates, where most of the stress is due to the

viscoelastic material, and branch B to high shear rates, where the polymer (or whatever the

material is has been strongly aligned and can no longer generate a stress, so most of the stress

is Newtonian.

We are dealing with a macroscopic system, and
a is in principle a function of the y-coordinate

(in the (I+I)-dimensional approximation). Normally,
a

would be constant with respect to

position in the stress-controlled regime, but this is not necessarily the case. It is possible for

different parts of the flow different streamlines to be on different stable branches of the

phase diagram, Figure 2. By a suitable control of S~ppiied, the system may be taken to a point

on the unstable branch. Fluctuations will then carry some streamlines into one of the basins

of attraction, and the rest into the other, and subsequent evolution will yield a 'banded' flow.

We now take the shear rate as the control parameter. Again with creeping flow, equation (5)
becomes

~ ~~
~

by ' ~ ~ by ~~ ~~
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The total shear stress S
=

a+ qb~/by is therefore again constant in space. Using the boundary
conditions (3)-(4),

a(Y) +
°j)~~

=
(a) + il~, i12)

where (a) is defined to be (I IL) j/ a(y)dy. Again, this equation may be used to eliminate

b~(y) lay, but now the streamlines are not quite independent; they are coupled to one another

via the average value of the viscoelastic stress (a). The total shear stress S now varies with

time. As long as the flow remains homogeneous, so that a at ei>ery point is equal to la), the

state of the system is represented by a point on the line S
= a + i~~. In Figure 2, Li, L2 and

L3 are such lines for, respectively, ~ < ~i, ~i < ~ < ~2 and ~ > ~2. If the applied shear rate

is on one of the stable branches, then the system evolves in time, always remaining on the line

(Li
or L3), and moving along it until it reaches the equilibrium manifold and attains a final

stable (homogeneous) state. If the applied shear rate is in the unstable regime, then the system

cannot. simply evolve along the line L2. Instead, the fluctuations grow, and the streamlines

diverge from each other and from L2. (A more precise discussion of this is given in the next

section. A steady state is now reached only when every streamline is on one or other of the

two stable branches A or B, so that the flow is banded.

Couette-like flow with controlled stress is closely related to flow through a pipe. The dif-

ference is that each point on the radius of the pipe has a different stress (determined by the

driving pressure gradient), whereas in Couette flow, the stress is constant throughout the flow.

Since, in creeping flow, the streamlines may be decoupled, this is not of fundamental impor-

tance. In Couette geometry, the flow will normally be homogeneuus (unless the applied stress

is deliberately manipulated in a very careful way), and in the pipe, the flow will be either

Poiseuille-like or take a simple plug form.

By contrast, in the shear-rate controlled regime, the streamlines can never be fully decoupled,
and the distribution of a across the streamlines must be explicitly taken into account. With

a banded flow, the final steady stress is not determined by the applied shear rate. To create

the bands, a translational symmetry must be broken, but (unlike the pipe) each streamline

is in principle equivalent. The symmetry must be broken by fluctuations, implying that the

pattern of the bands (I.e. how many bands there are, and what thickness they have) is not

determined by the shear rate, but rather by thermal fluctuations or other perturbations. In the

next section, we will discuss these issues at the level of linear perturbations on a homogeneous
flow.

4. Linear Analysis

In this section, we ask whether linear stability analysis provides any insights into band forma-

tion, with shear rate as the control parameter. The question of linear stability of uniform shear

flow was considered by Yerushalmi et al. [4]. Here we are interested in the subsequent evolution

of an unstable shear flow. In particular, we would like to discover the volume fractions of the

two types of band, xA and xB, which is equivalent to knowing the stress S. It is possible that

certain wavelengths of
an initial perturbation grow preferentially in the linear regime, and that

this is how bands begin to form. We will take the constitutive law to be completely general,
and the fluid density p to be small, but non-zero.

Consider a uniform shear flow, with a steady shear rate of
~ =

U/L, producing a viscoelastic

shear stress a~~(~), where 'ss' stands for 'steady shear'. The fluid velocity ~ is given by

~lv)
= ~Y (13)
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whilst the total stress, independent of position, is a~~(~) +i~~. Now consider (I+I )-dimensional
perturbations Aa(y, t) and A~(y,t). Linearise the constitutive equation around steady shear

rate ~ and write it as

Aa(t)
=

G
/~ dt'K(t'IT; ~)

~~~~~'~ ~'~

,

(14)
o

~l/

where G is the characteristic modulus of the material, and
T is its (terminal) relaxation

time. The memory kernel K must depend on the shear rate K. Note that da~s(~)/d~
=

G jf Kit /T)dt. Using equation (5) to eliminate the stress leaves this equation for A~:

p ~j~
= i~

~
~~ +

)G /~ dt'K(t'IT; ~) ~~~~l'
~'~ (15)

t y y o y

Write /h~ as a Fourier series;

cz

/h~(j,t)
=

~j ~n(t) sin (")~) (16)

_~

Here we have assumed non-slip boundary conditions, /h~(o)
=

/h~(L)
=

o, but the calculation

could be done with any other linear boundary condition, and the final conclusion would be the

same. In terms of the Fourier components, equation (15) becomes

p~~"
= -q (~°~)~ ~n(t) (~°~)~ G /~ dt'K((t t') IT; K)~n(§, t'). (17)

dt L L
o

Taking vno to be the initial it
=

o) value of ~n it), and Laplace transforming in t:

s~n(s) ~no =

-j iii ~
~n(s) [~ iii ~

K(sT; K)~~(s) i18)

Now, the problem contains three dimensionless parameters, the Weissenberg number We
= ~T,

the Reynolds number Re
=

pLU/GT, and the ratio of viscosities q~
=

~/GT. It is useful to

define p[
=

Re/We(nor)~
=

(p/GT~)(L/nor)~, which measures the inertia of the nth mode

relative to the viscoelastic forces. After a rearrangement,

~"~~~
8Tp( +~~~~(8T( ~) ~~~~

The perturbation is unstable if sTp[ + i1~ + K (ST; ~) has a zero in the right-hand half of the

complex plane, for any value of n. The formalism above is equivalent to that of reference [4j,
where it was shown that a sufficient condition for instability is that ~* + K(s

=
o) < o, I-e-

that (d/d~)(a~~(~) + ~~) < o the steady shear stress is a decreasing function of the shear

rate. Here, we need to know, given the presence of an instability, which wavelengths of the

perturbation grow most rapidly. The growth rate of any given Fourier component is the real

part of the position on the complex plane of the rightmost zero of sTp[ + q* + K(sT; ~), and

we must find out how this varies as a function of n. Assume that K(t IT) can be written as the

sum of a finite number of exponentials

Q

Klt/T)
=

~j Kq exPl-cat/T) 120)

q=1
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so that
~

K(sT)
=

~j ~~
(21)

ST + Cq
q=I

This is not a serious restriction. Differential constitutive equations are likely to satisfy it

naturally. For example, the corotational Maxwell model has only two variables in the present
flow geometry, the shear stress and the first normal stress difference, so

(after linearising) the

relaxation spectrum can have only two decay rates. By contrast, an integral equation, like

the Doi-Edwards equation, has, in effect, an infinite number of variables, because to define

the state of the system at any given time, we must specify an entire probability distribution

(that of tube segment orientations). This implies an infinite number of relaxation times.

However, it is possible to reduce the distribution function to a finite number of variables (e.g.
by discretising it, or by expanding it in basis functions to finite order), and this should not

change the qualitative behaviour; such a change would be unphysical. We infer that, to an

arbitrary degree of accuracy, the relaxation spectrum can be replaced by a finite number of

discrete relaxation times.

We are thus interested in the roots of the equation

8Tp( + q* +

ij ~~
=

0. (22)
ST + Cq

q"1

The p[ are extremely small. For example, the density of water is p =

lo~ kg m~~, and for

the cetylpyridinium system studied in reference ill], the modulus G and relaxation time T

are of order 30 Pa and 10 s respectively. The separation of the plates L may be 5 x
lo~~

m.

Therefore, p[
=

(p/GT~)(L/nor)~
=

lo~s/n~, and it is enough to consider the limit p[
-

o.

Rearranging,

Q Q-i

p~(8T)~~~ + P~(8T)~ ~
Cq + ~*(8T)~ +

~ (8T)~(P~ap + Q*bp + fp)
=

0 (23)

q=i p=0

where the ap and bp are functions of the cq and the fp are functions of the cq and Kq. This is a

singular perturbation problem. In the limit p[
-

o, there is one singular root s~~"~T
=

-~~ /p[
and Q further roots which do not depend on p[. s~~"~ is necessarily negative, and therefore

corresponds to a decaying solution. None of the other roots depends on n. We conclude

that, when a uniform shear flow is unstable, perturbations of that uniform flow grow at the

same rate, irrespective of length-scale, as long they remain in a linear regime. If a banded

flow emerges, this implies that it must have structure at all length-scales, or in other words,
that there are bands of indefinitely narrow width. This is presumably unphysical. There are

three alternatives: either a characteristic band width emerges only after the perturbations have

already become large; or the I-dimensional model here is inadequate, and the essential phe-

nomena take place in 2 (or 3) dimensions; or the underlying constitutive model is deficient, and

must be modified so as to intrinsically define a characteristic length-scale. These hypotheses

are discussed in Sections 5, 6, and 7 respectively.

5. Numerical Analysis of the (I+I )-Dimensional Model

In this section, we will calculate the flow without making the assumption that it is nearly
uniform. This must be done numerically, so we will use the toy constitutive equation (6).
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Fig. 3. The start-up of steady shear flow, using the toy constitutive model, equations (6), (7), and

different values of the fluid density.

Figure 3 shows solutions of equation (5) the stress felt by the plates, as a function of

time, after start-up of steady shear flow with several values of p. We take G
= T =

L
=

I

(without loss of generality), the shear rate ~ =
U/L

=
5 (well inside the regime of decreasing

stress), and the Newtonian solvent viscosity ~ =
o.ol. In the cetylpyridinium system, p has a

dimensionless value of the order of lo~~ Here we use some larger values, and also the case of

creeping flow, p =
o.

Velocity and stress are defined on separate grids (offset by one half lattice spacing), and the

parabolic equation (5) is solved by a fully-implicit method. The lattice spacings are /hj
=

o.02

and /ht
=

o.ol. The initial condition is ~ = ~j everywhere (this is only relevant for nonzero

p), while a, at each value of y, is initially an independent Gaussian random variable, with

mean 0 and standard deviation 10~~ (if the initial condition does not contain some noise,
the simulation is liable to predict a homogeneous shear flow, which we know to be physically
unstable). For creeping flow, there is no need to solve a partial differential equation. Equation
(12) is used in place of (5).

As can be seen from Figure 3, the results are virtually independent of the presence or absence

of a small inertial term. Notice the overshoot. This arises directly from the development
of a banded flow, because the toy equation can only ever describe monotonic (exponential)

relaxation onto the steady state.

The viscoelastic part of the stress is shown as a function of both position and time in

Figures 4 (p
=

o.ool) and 5 (p
=

o). This is related to the local shear rate by equation (12),

so a larger viscoelastic stress corresponds to a lower shear rate. In both figures, by time 2, the

fluctuations have started to become significant (of course, in the linear regime, their actual size

is proportional to the initial values), and by time 5, two distinct phases have developed. At

time lo, the relaxation toward the steady state has begun, and by time 20, it has essentially
been reached. The presence of a small amount of inertia makes no difference; in any case, the

bands have a thickness of the order of the numerical grid spacing.
This apparently unphysical result is not a failing of the numerical technique, but seenls to

be inherent in the model. Equation (5) is a diffusion equation, with diffusion coefficient ~/p.
When p is very small, the time taken to diffuse across the space between the plates becomes

arbitrarily small. Therefore, each streamline is as strongly coupled to distant streamlines as it
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Fig. 5. As Figure 4, but with
no inertia.

is to its neighbours. (a(j)
can change only on the time-scale of the viscoelastic relaxation time,

so, on the diffusive time-scale, it is effectively fixed.) This is why equation (12) gives 0~/0j in

terms of the average a.
It also implies that macroscopic bands cannot be produced, because

that would require neighbouring streamlines to be correlated, when in fact each streamline

each value of j is a separate dynamical system, coupled to the others only tin equation (12).
Of course, the same result was obtained in the previous section by linear analysis, where it ~vas

found that there was no preferred length scale for bands. The numerical calculations have an

extra length scale, the grid spacing, and select this as the band width.

It appears that it is not possible to obtain a realistic flow pattern even when the full nonlinear

dynamics are accounted for, at the (I+I)-dimensional level of analysis. Leaving aside this

difficulty for the moment, we will ask what behaviour the model does have. An important
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Fig. 6. The final steady shear stress in the simulated banded flow (using the toy constitutive

equation) (points). The circles are for the unmodified toy equation, equation (6), and the triangles for

the model with
a stress diffusion constant, equation (26). The solid line is the steady stress assuming

homogeneous flow. The Newtonian viscosity ~ is o.01 in each case.

question is the final steady stress in the material after the banded flow has developed. The

final stress from band simulations is shown in Figure 6 (for a range of shear rates, with p =
0,

and other parameter values and initial conditions as for Fig. 3).

Similar calculations have been done by Espafiol et al. for a different constitutive model (that
of Johnson and Segalman, with a single relaxation time), with a very similar result [26j. Clearly,
the stress associated with banding is near the minimum in the underlying constitutive curve,

whereas, in [10], the assumption was made that the stress would be near the maximum of the

curve. These simulations were done by starting from zero stress, and applying a constant shear

rate. It may be that the final stress is dependent on the previous shear-rate history, so that a

maximum-stress banded state, as postulated in [loj, could be created by using an appropriate

sequence of shear rates. It is plausible that this can be done by slowly increasing the shear

rate from zero. This would mean that, by the time the unstable shear-rate regime is entered,
the material is already in a state in which the stress has the desired value. This also simulates

viscometric experiments in which the shear rate is slowly increased, with a measurement being
made at each shear rate.

To test this idea, we show in Figure 7 the effect of a slowly increasing shear rate on the

toy equation, without inertia. Shortly after the critical shear rate is passed, the stress drops
dramatically as a banded flow develops near the minimum stress. As the shear rate is further

increased, the band-structure remains invariant the proportion of each type of band remains

the same, but the shear rates and stresses increase. Eventually the maximum stress is reached

again, the stress drops, and a new band-structure is created with a higher proportion of the

high-shear phase. This happens several times. A similar result is obtained if the fluid is given

some inertia by setting p =
0.001.

This behaviour can be understood as follows. It is easier to make a small change in the

shear rate and stress of a whole band, than it is to change the size of the band. To do that

requires the boundary between bands to be moved, so that the material on the boundary has

to be subjected to a different shear rate (for a period of several relaxation times) to bring it

into a new steady state. McLeish and Ball argued that this cannot be achieved by a small
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perturbation, because part of the material would change its stress by a finite (as opposed to

infinitesimal) amount [7j. Instead, the stress changes throughout the material. When the low

shear-rate phase has reached the maximum stress, it becomes unstable against fluctuations,
which therefore grow until parts of the low shear bands have changed into the high-shear phase.

As the shear rate is increased, this happens several times, giving rise to the sawtooth pattern.
A 'cure' for this physically implausible behaviour is proposed in Section 7.

5.I. THE MICELLE REPTATION-BREAKING EQUATION. An integral constitutive equation
should be tested, to see whether it behaves in the same way as the differential models considered

above. Since shear-banding has been claimed for a wormlike micelle system, we will use the

constitutive equation proposed for these materials.

Entangled polymers are described using the tube model, in which each chain is assumed to

be confined to a tube by the surrounding molecules. Doi and Edwards devised a constitutive

equation using this idea Iii. Wormlike micelles can entangle in the same way as polymers, the

most important difference being that they can break and reform reversibly. Cates adapted the

model of Doi and Edwards to include the effect of these breaking reactions [13,27j. The resulting
constitutive equation is very similar to that of Doi and Edwards, and a brief description of it

is given in the Appendix.

We have done simulations of banded flow, similar to those with the toy equation, in which

we solve the micelle reptation-breaking model using the stochastic method of 0ttinger [28] (see
Appendix).

5.2. BAND SIMULATIONS USING THE MICELLE EQUATION. Figure 8 shows the startup of

shear flow (from equilibrium) with the micelle equation and a range of shear rates (without
inertia). A Newtonian viscosity of 0.001 is now used, since the viscoelastic stress falls away

more slowly at high shear rate than for the toy model, equation (6). Bands are present at

the higher shear rates. The distribution of the viscoelastic stress (I.e. the band structure) is

similar to that of Figures 4, 5, but rather noisy because of the stochastic algorithm. The final

steady stress is shown in Figure 9.
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Fig. 9. Final steady stress after start-up of steady shear flow, for the micelle model. The filled and

open circles
are for (1+1)- and 2-dimensional calculations respectively.

With the toy model, the formation of bands causes an overshoot in the shear stress, which

could not be present otherwise. In contrast, the direct solution of the micelle constitutive

equation for homogeneous shear flow (Fig. 8, dashed lines) already shows an overshoot, so

we might expect this to be enhanced by the banding. In fact, this does not happen, and the

overshoot is no larger than in the direct solution.

If we use a slowly increasing shear rate, a result similar to Figure 7 is obtained.
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6. The 2-Dimensional Model

We have performed numerical calculations on the 2-dimensional model for micelles using a

novel Lagrangian-Eulerian method. This uses a mesh which moves and deforms with the fluid,
and has been used for shearing and extrusion flows [29, 30j. It enables fairly high Weissenberg
numbers to be reached, but, at present, is restricted to creeping flows (no inertia).

The method works as follows. The program stores the coordinates of some material points,
about 300 in this work. The stress is defined at each of these points. At every time-step,
the pressure and velocity fields are solved for, in Eulerian fashion. Then the positions of the

points are updated by convecting them with the fluid flow. This is the Lagrangian part of the

method. The velocity gradient at each point is also known, and used to update the stress.

This procedure is repeated for each time-step, Figure 10.

To solve for the pressure and velocity, a grid must be laid over the material points. The

Voronoi mesh is suitable, and it is defined as follows. Each material point is associated with

one element of the mesh, and that element contains all of the space closer to that material

point than to any other. Thus, the material point is at the centre of an element, and, for the

purpose of finding the pressure, is deemed to be connected to the material points associated

with all of the neighbouring elements. If any element of the grid becomes too distorted as the

material points move, the Voronoi mesh is reconnected. More details are given in reference [29j.
The pressure and velocity must be found subject to the boundary conditions, the requirement

of incompressible flow, V v =
0, and the creeping flow condition, V («~~~~° +«~~~~ Vp

=
0.

«~~~~° is the viscoelastic contribution to the stress, and «~~~~
=

~(Vv+VVT is the Newtonian.

The solution is found by iterating

~~~
~) ~ ~~ (~ («~"~° + «Newt ~

" ~ + ~~ i~/ v)
~

jjjj

until the solutions have converged to within the required tolerance. pi and fl2 are relaxation

parameters.

To calculate the stress, a constitutive relation is required. Both differential and integral
equations have been used in previous work [29j. Here we use the micelle reptation-breaking
model described above, and solve it using the stochastic method. For each material point,
1000 vectors are stored, and updated every time-step. Ours is the first work to combine the

Voronoi finite element procedure with this efficient method [28j of implementing an integral
constitutive equation.

Our calculation was a simulation of planar Couette flow. The plate separation was L, with

boundary conditions specified by equations (3)-(4). The simulation space extended distance

L/2 in the longitudinal (~-) direction, with periodic boundary conditions. The time-step used

was 0.01 (with the viscoelastic relaxation time taken as the unit of time), and the Newtonian

solvent had viscosity o.ool. The initial condition was equilibrium, and a constant shear rate

was instantaneously switched on.

6.I. RESULTS. The final steady state was a banded flow for shear rates in the unstable,
decreasing stress regime, as in the (I+I )-dimensional problem. A typical band profile is given
in Figure II. This shows the local shear rate as a function of the transverse coordinate j,

in the steady state. The points are averages over time and the longitudinal coordinate
z.

The errors arise from the numerical noise. Notice that the band is broad and macroscopic,
unlike the (I+I)-dimensional calculation. The position of the band is random, but its width

(or, equivalently, the shear stress) appears to be determined by the shear rate. The edges of
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Fig. 10. Flowchart for the Lagrangian-Eulerian method used for the two-dimensional calculations.

the band are blurred, and because of the noise, it is unclear whether this is due to physical
undulations in the interface (implying

a somewhat unsteady flow) or to numerical effects. The
final shear stress is shown in Figure 9, and this is almost unchanged from the (1+1)-dimensional

case.

Our calculations in the 2-dimensional model have given a more realistic band pattern than

the (I+I )-dimensional. The final steady stress, as a function of shear rate, is not nluch changed.
We note that equivalent calculations have been carried out by Espafiol et al. for the Johnson-
Segalman fluid [26j, with results similar to those here.
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The local shear rate in the steady state is given as a function of lateral coordinate y. The points are an

average in time and along the shear flow (~-) direction, and the bars are the corresponding standard

deviation.

7. Interface Effects

We now focus our attention on the interface between shear bands. We expect that, like every

other interface found in nature, this must have some non-zero (though possibly quite small)
width. Our discussion is motivated by our calculations with the (I+I )-dimensional model, in

which we found structure at indefinitely short length-scales. Presumably, this structure is cut

off at some microscopic length, which would then be the interface width.

To take account of these effects requires the constitutive model to be altered. Again consider

the toy model, equation (6), and now suppose that interfacial effects have an energy cost of

E;r~terface c~
J/ dj(0a/0j)~. Recall that

a is the viscoelastic contribution to the total stress. It

is an average over the microscopic configuration of the viscoelastic material and therefore has

something of the character of an order parameter. Expansions of the free energy in powers of

an order parameter usually include a gradient-squared term [31j, and it is just this term that

we use as our expression for E;r~terface.
Now include in equation (6) a term of the form ~f0E;r~terface/0a, giving

This is similar to the usual approach to linear non-equilibrium thermodynamics, which is not

rigorously justified here, because the system is far removed from equilibrium. Our derivation

should therefore be regarded as phenomenological. (Ref. [32] obtains a similar result from a

microscopic model. Notice that ~f has the dimensions of a diffusion coefficient, so the interface

will have thickness of order (~fT)~/~. Equation (26) has already been studied by Brunovskf
and (evtovit in the context of slit channel flow [33].

As in Section 3, we may eliminate 0~/0j and replace the 'force' g with the 'potential' V.

With the new term, equation (9) becomes
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In the steady state, 0a/0t
=

0, and we have

~fT~i =
~) 128)

a is therefore equivalent to the position of a particle moving in a potential -V (with g as

the time variable and ~fT as the mass). Assume that we have controlled stress, and that

Sn~;r~ < S < Sr~~ax. Therefore, -V has two maxima.

Now, a banded flow has
a constant through the first band, followed by a rapid transition

as we pass through the interface, followed by a different constant in the second band. This

corresponds to the particle sitting on top of one of the maxima (for an extended period of

time), then rolling down through the minimum, coming to rest on top of the other maximum,
and remaining there. Of course, because of energy conservation, this is only possible if the

maxima have the same height, and this will only be true for one particular applied stress. We

deduce that only for this one stress can shear bands coexist. For the toy model, with potential
V given by equation (10) and G

= T =
I and ~ =

o.ol, this value is S
=

0.251. This is

in contrast to the case without the interfacial term, discussed in Section 3, where a banded

flow could exist, at least in principle, for any stress between Sn~;r~ and Sn~ax. Of course, what

we have shown in each case is that a banded flow is a stationary solution of the equations of

motion for our model system. To actually create a banded flow in the controlled-stress regime,

as already discussed in Section 3, would require careful and deliberate manipulation of the

stress, and might even be impossible in practice.
What if the stress does not have the coexistence value? Postulate a time-varying solution of

the form
a =

f(j ut). This gives us

'~Q ~ ~~$ of "
°. ~~~~

This equation describes our particle, moving in the same potential, but with a friction constant

UT. The particle can now begin on the higher of the two maxima, travel through the valley
and come to rest on the other maximum, exactly as before, even though the maxima have

different heights. The surplus energy is dissipated during the journey. This means that the

function f has the same qualitative form as the stress profile in the coexistence case, albeit

now with non-zero u. Thus, a transient band structure is possible. The interface travels at a

speed u, determined by the height difference between the maxima, and therefore by the applied

stress. Eventually, the interface will reach one of the rheometer plates and disappear, leaving

a homogeneous flow as the final steady state.

Olmsted and Goldbart studied similar phenomena in the context of the shear-induced isotro-

pic-to-nematic transition [34]. Their equations included surface energy terms which arise nat-

urally from the model of a nematogen used, but are similar in essence to the one here. They
studied the propagation of the interface between two non-equilibrium phases, and located the

coexistence point by finding the stress for which the interface no longer moves. A similar

technique has been used for the driven diffusive lattice gas by Ilrug et al. [35].
With shear rate as the control parameter, we anticipate that the interface moves in the same

way. Now the stress adjusts, according to S
=

(a) + i1~, as the proportion of each type of band

changes. The final steady state would then be a banded flow at the coexistence stress.

The results of simulated start-up experiments (in (1+1)-dimensions)
are shown in Figure 6.

The density p =
o (creeping flow), the stress diffusion constant ~f is lo~~, the numerical grid

size /hj
=

o.ool, and other parameters have the same values as previously. As expected, in the

decreasing stress regime, the coexistence stress, S
=

o.25, is selected. (Recall that this is the
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Fig. 12. The heavy line shows the effect of
a steadily increasing shear rate, as for Figure 7, on

the toy constitutive model with
a

diffusion term (Eq. (26)). The thin line is the stress corresponding

to homogeneous flow at the same shear rate. The dotted line corresponds to a decreasing shear rate,

starting at 30v~~ at the right hand side and reaching zero at the left.

value of S for which V(aA)
=

V(aB), where aA and aB are the viscoelastic stresses in the low

and high shear rate bands respectively. The corresponding flow pattern (not shown) contains

one or two broad bands at each shear rate.

If the shear rate is swept continuously, the stress behaves as in Figure 12 (heavy line). The

corresponding calculation without the diffusive (interfacial energy) term is given in Figure 7.

In each case, when the shear rate is increased past the threshold of instability ~i, a banded

flow develops. However, with the new model, the stress remains constant as the shear rate

is further increased. The proportion of the two types of band is changing, which is possible
because the modified model allows the interface between them to move. Eventually, all of the

low-shear material is eliminated, and a uniform flow is recovered at the high shear-rate branch.

The dashed line shows the effect of decreasing the shear rate (so the time axis now reads from

o at the right hand side to 3000 at the left). Hysteresis is observed; the uniform flow persists
until the upper stability threshold ~2 is met.

The behaviour in Figure 12 seems to be much more realistic than that in Figure 7, although
it does not quite reproduce the experimental rheological measurements of references [11,15].
The experiments show a stress which initially increases with shear rate and then goes smoothly
into a plateau, whilst the birefringence of the low~shear phase shows a kink but is continuous

(in the mathematical sense). Thus, the stress and optical properties of the homogeneous phase
immediately prior to band formation are the same as those of the low-shear band immediately
after. This is in contrast to the behaviour shown in Figure 12, where the stress immediately
before is Sn~ax (as defined in Fig. I) and the stress afterwards is the coexistence stress. This

suggests two possible explanations. Firstly, the bands could be forming as soon as the coexis-

tence stress is reached, even though the system is not yet mechanically unstable, by nucleation

of a high shear-rate band. (For a discussion of nucleation in the context of shear-induced

nematic phases, see Ref. [17]). Alternatively, the coexistence stress might happen to be very
close to the stress at which the mechanical instability occurs (I.e. Sn~ax), so that the stress

overshoot in Figure 12 is present but too small to detect.

We have not attempted to calculate the properties of a two-dimensional model with the new

interfacial term. However, it is clear that this term will create a surface tension in the interface
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between bands, which will suppress fluctuations in the interface, and therefore presumably
tend to increase the stability of the banded flow.

8. Conclusions

We have shown that a nonmonotonic constitutive relation produces a banded flow in steady
shear at the (I+I )-dimensional level of analysis. However, the bands have indefinitely narrow

width. Numerical calculations in two dimensions produce broad bands, but it not yet clear

whether this is a real steady-state property of the 2-dimensional model, or simply an artefact

of the numerical algorithm. The final steady shear stress after start-up of shearing at a given
rate is unaltered from the (I+I )-dimensional problem, which may be an indication that no

new physics is involved.

Even at the (I+I )-dimensional level, the unphysical narrow bands are avoided if a term is

added into the constitutive model to allow for the inhomogeneity in the material. Even if the

coefficient associated with this term is very small, the behaviour of the system is qualitatively
changed. The modification produces broad, macroscopic bands, and the final stress after start-

up is also different. The new constitutive model allows the position of the interface between

bands to move, and the stress is therefore selected by a coexistence criterion between the two

phases (low and high shear rate). Although we have considered only systems in states far

removed from equilibrium, there is a close analogy with equilibrium phase coexistence.
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Appendix A

Here we give a short description of the reptation-breaking model for wormlike micelles and its

stochastic implementation. For details, see references [13, 27, 28j.
The micelle is contained inside a tube, which we imagine to be divided into segments. Now,

every time a breaking or recombination reaction takes place, the length of the micelle changes.
Therefore, a segment does not have a well-defined position within the tube. Every segment
has belonged to chains of a whole range of lengths, and been at a range of different positions
within those chains. Every segment is statistically equivalent, and we need not distinguish
segments by position in the tube. This is in contrast to unbreakable polymers, where every
tube position has a different distribution of segment orientations.

The micelle moves along the contour of the tube in a one-dimensional curvilinear Brownian

motion l'reptation'). The breaking reactions couple to reptation in such a way that tube

segments are supposed to be continually destroyed at a rate D, and new ones created to replace
them at rate B. The new segments have random orientations with an isotropic distribution.

The stress is related to the segment orientations u by

« =
G~ juuj (A.ij
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~vhere the average (. .) is taken over every segment in the material. In the presence of a flow,
each tube segment is deformed affinely. The following constitutive equation results:

t t

«(t)
=

Ge Bit') exp dt"D(t") Q(Et,t) dt'. (A.2)~cz

This is an integral over all past times t'. The integrand is the contribution to the stress from

segments created at t'. This contribution is equal to the stress per segnlent, Q, multiplied
by the number of segments created at t', Bit'), multiplied by the probability that a segment

survives from t' to t (the exponential). Also, Ge
=

3(c/Ne)kBT, where c is the concentration

of monomers, and N~ is the degree of polymerisation per entanglement (so c/Ne is the number

of entanglements per unit volume). Et,t is the deformation tensor from time t' to time t. ij is

given in terms of it, by

QiEtt)
-

~~°~'iillli'~.~~
l~ iA.3)

where the average is taken over the isotropic distribution.

B and D have yet to be found. In the absence of a flow, they are both equal to I IT, where T is

the viscoelastic relaxation time. In the presence of a flow, this is no longer true. In particular,
the affine deformation of the segments tends to increase the total tube length, so D increases

to compensate. Assuming, as an approximation, that B is unchanged, we have

B
=

(All

D
= + (Vv)T (uu) (A.5)

where
u is the orientation of a tube segment, and the average (. is taken over all segments

in the material.

Following 0ttinger [28j, this model may be solved stochastically. We maintain an ensemble

of N vectors, each of which represents one tube segment. The total length of the vectors

is arbitrary, so we take it to be unity. On each time-step, every vector is deformed ailinely,
according to this equation

r ~ r + /ht(Vv)~
r.

(A.6)

A fraction /ht/T of the vectors are eliminated, and replaced by new vectors with random

orientation and length I/N; this simulates the reptation-breaking relaxation process occurring

at rate I/T. All the remaining vectors are then scaled by a constant factor, chosen so as to

restore the total length to I, and this takes account of the enhanced segment destruction rate

in the presence of a flow. This procedure gives the same results as the model described above.

The stress tensor is given by

« =
Ge ~jrr (A.7)

where the sum is taken over all the vectors in the ensemble. A separate ensemble is required
for every numerical grid element in a simulation. For all the calculations presented here, N

was loco vectors per element.
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