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Abstract .  A perturbational method for improving calculated energy levels of atomic 

elements ( Z  5 30) at different ionization stages is presented. The method uses as a starting 

point the SUPERSTRUCTURE code developed at the University College London and 

uses scaled Thomas-Fermi potentials. The perturbation theory is applied up to the second 

order energy correction and introduces the contribution of the complete basis, including 

continuum states of the unperturbed hamiltonian. As an illustration the method is applied 

to the determination of some energy terms of the He-like oxygen ion. 

The increasing resolution of the crystal and grating spectrometers which are used to 

detect the XUV emission in laboratory and astrophysical hot plasmas allows to obtain 

very complex spectra with numerous, less or more intense, blended or isolated lines. To 

carry out a refined analysis of a particular interesting wavelength range, it is necessary to 

have high accuracy calculations of atomic energy levels of the different emissive elements. 

Then, the building of a synthetic spectrum can be used for diagnostic purposes from a 

fitting with the observed spectrum (1,2,3,4). 

Many numerical atomic codes were developed in order to obtain atomic energy levels 

with increasing precision (5,6,7,8,9,10). In particular, the SUPERSTRUCTURE code(5,6) 

developed at University College of London calculates, in a very reasonable computing time, 

a lot of atomic physic parameters with a good precision, owing to a good minimisation 

procedure. However, if the wavelength data obtained from this program are good enough to 

localise and interpret intense lines, usually well identified from experiments or observations, 

the precision is sometimes not sufficient to identify blended lines or less intense isolated 

lines. 
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In order to increase the precision of the calculated atomic energy levels, we propose a 

perturbational method which uses the Superstructure code as a starting point.This method 

offers the advantage to take account of the contribution of the continuum levels of the cen- 

tral hamiltonian used in Superstructure in the calculation of the atomic energy levels of 

the total hamiltonian. The importance of this contribution will be shown in the determi- 

nation, in LS coupling, of the ground atomic energy term 1s2 IS of the He-like oxygen 

ion. 

2. Theory. 

2.1 The SUPERSTRUCTURE code. 

SUPERSTRUCTURE is a code which gives with a good accuracy, large quantities 

of atomic parameters like non relativistic energy terms, relativistic corrections to energy 

levels, transition probabilities (permitted and forbidden),etc.. . The bode uses a method 

based upon an expansion of the wavefunctions in terms of Slater states(5). In this method 

the hamiltonian H of the system is separated in a central hamiltonian H,, depending of 

the configurations and an interacting part Hint. 

H = Hc + Hint (1) 

H, includes different scaled Thomas-Fermi-Dirac potentials V(XI, T) for different electron 

angular momenta 1, which simulate the average effect of the N electrons as well as the 

nucleus of electric charge Z, these scaling parameters being obtained by a variationnal 

procedure upon the energy . The expression of this central hamiltonian is given by, in 

atomic units : 

where : 

TV(A~,T) + Z for T ---+ 0 (3) 

TV(A~,T) --+ (2 - N + 1) for r + oo (4) 

The interaction hamiltonian can be divided in two parts, a non relativistic part and a 

relativistic part.In this work, we consider only the non relativistic part which is given by : 



In the SUPERSTRUCTURE program a truncated basis (finite dimension n) of H, 
, which includes the terms issued from the the most important bound configurations, is 

defined. In order to obtain non relativistic wavefunctions the hamiltonian ( H, + HrZ* ) 
is diagonalized in this truncated basis . 

2.2 Present method. 

In order to increase the accuracy of the results of the SUPERSTRUCTURE program, 

a possibility is to increase, in the limit of the computer capacity , the number n of config- 

urations of the truncated basis. Unfortunately, this technique does not allow to include all 

the fine electronic correlation effects: all the bound states and the continuum eigenstates of 

H, must be included in order to have a complete basis. These effects can be introduced by 

a perturbation theory treatment which takes the SUPERSTRUCTURE code as a starting 

point. 

A complete basis of N electrons slater determinants I cp > can be defined from the 

central hamiltonian H, of the expression (2). 

Hc(cpi >= eilcpi > for the bound states 

Hclcp. >= ~lcp. > for the continuum states 

The states I cp > satisfy to the following orthogonality conditions: 

< ~ i l ~ i l  >= for the bound states 

< cpEIpE) >= S(E - E ' )  for the continuum states 

The radial part of these functions satisfies the radial equation : 

where for the bound wavefunctions 

Pnt(r) --t 0 for r --t O 

Pnl(r) ---1 0 for r --t oo 
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and for the free wavefunctions k2 = e 

F,~(T) + 0 for T + 0 

2 
F,,(T) -+ ( - ) i s in(k~ + 6) for T + oo 

7rk 

where 

r is the Gamma EULER function 

z =Z - N is the ionic charge 

~ k l  is the phase shift introduced by the central potential 

The orthogonality relation for the continuum wavefunctions is given by: 

In order to have orthogonality relations (13d) and (14e) the scaling parameters Xl are 

the same for all radial functions with the same 1, on the other hand the free and bound 

functions are also orthogonal between them. 

Then this space of N electrons slater determinants is divided in two subspaces P 

and &. The subspace P is similar to the space of dimension n of SUPERSTRUCTURE 

which corresponds to the truncated basis defined above. The subspace & includes all the 

other states, bound states (infinite basis), and continuum states. Two projection operators 

associated with the two subspaces are defined. 

since the two subspaces are complementary subspaces, these operators satisfy to the rela- 

tions: 



Then a zero order hamiltonian Ho and a perturbation hamiltonian W can be defined : 

The asymmetry of the development (18) is related to the fact that it is possible to 

diagonalize the total hamiltonian H in the subspace P. On the contrary, the central 

hamiltonian H, is a diagonal operator in the subspace Q( also in the subspace P ). 

If we note I O > the complete basis for the hamiltonian Ho : 

Holgi >= > for >E P (20) 

where the eigenvalues Zi correspond to those obtained in SUPERSTRUCTURE from the 

truncated basis, and 

Hol@;>=eilOi> for I@i>E& 

HolQ, >= el@, > for I @ ,  >E & 

I @i > and ( @, > are identical to I pi > and I (a, > the eigenfunctions of H, with the 

same eigenvalues ei and e . 
We are interested by the determination of the energy levels of the states of the subspace 

P ( in other words we are interessed by the improvement of the results of the SUPER- 

STRUCTURE code ). The perturbation theory applied to the state I Oi > of P at the 

second order gives: 

where : 
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The summation C * in the expression of E2 includes all the bound and continuum 
I.P>EQ 

states of Q.( c = C + S 
I*>EQ bound states E & continuum states E Q 

de) 

In fact there is no interaction between the states of the subspace P and all t h e  s ta tes  

of the subspace & . When the number of electrons N of the system increases, the number 

of states giving a contribution, is very small in comparison with the number of the states 

of the subspace Q. The size of the calculation increases like Na ( 1 5 a 5 2 ). If all the 

states of & had to be taken into account the size of calculation would increase like N~ . 
This property is due to the fact that the interaction hamiltonian Hint includes one  

body  a n d  two bodies operators.  So the summation in the expression (26) can be 

reduced to a summation on the states of & which differ from the states of the subspace 'P 
by one or two electrons only. 

For the calculation of energy levels it is possible to limit the states of Q at the states 

belonging to a subspace { Mc = 0, M, = 0 ou 8 ) in the non relativistic case. 

3. Numerical  example. 

In order to illustrate the method, a simple example, in LS coupling, related to the de- 

termination of the ground atomic energy term 1s2 'S of the He-like oxygen ion is presented. 

In the present calculations, the subspace P is restricted to the term corresponding to the 

considered configuration. Contributions to the second order perturbation are separated in 

three parts : 

(i) contribution due to bound states. 

(ii) contribution due to continuum states with one continuum electron. 

(iii) contribution due to continuum states with two continuum electrons. 

As mentioned above the interaction hamiltonian includes one- and two-body operators, 

so there is no contribution from free states with more than two continuum electrons. For 

this He-like ion, bound states corresponding to the configurations nln'l' were included in 

the program for n and n' < 7 , l  and 1' < 5. For continuum states, the configurations nlt.1 

and EEE'I' were included with the same values for n, 1 and 1' and for 40 values between 

0 and 100Z2 Rydberg of each continuum electron energy.Table 1 lists the corresponding 

configurations which are taken account for this simple case. Contribution from all states 

with n > 7 was estimated using an asymptotic behaviour of the radial functions. 



Table 1 : List of the configurations which are taken into account for the determination 

of the ground energy term 1s' 'S . 

(a)  : Bound configurations 

(b) : Configurations with one continuum electron 

1 lses 2 2ses 3 2pep 4 3ses 5 3pep 
6 3ded 7 4ses 8 4pep 9 4ded 10 4fd 

11 5ses 12 5pep 13 5ded 14 5fd 15 5geg 
16 6ses 17 6pep 18 6ded 19 6fd 20 6geg 
21 7srs 227 7pep 23 7ded 24 7fd 25 7geg 

( c )  : Configurations with two continuum electrons 

1 ese's 2 epe'p 3 ede'd 4 de'f 5 ege'g 

Table 2 shows the different contributions to the ground energy term 1s2 'S of 0 VII 

which are obtained by application of this method. The detailed calculations of the second 

order perturbation show the relative importance of the interaction with free configurations, 
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Table 2. Contributions of each perturbation order to the total energy term of the 

ground state 1s2 'S of 0 VII. Units are in Rydberg. Contributions to the second order Ez 
are separated in three parts: 

(i) contribution due to bound states, 

(ii) contribution due to free states with one continuum electron, 

(iii) contribution due to free states with two continuum electrons. 

E Eo E2 

-118.3121 -118.22167 -0.09043 (i) -0.00540 

(ii) -0.02221 

(iii) -0.06232 

particularly with those having two continuum electrons. This contribution is relatively 

important to obtain good energy terms, principally for this ion since it is of the order of 

7.10-4 . 

Table 3. Comparison of the energies (in Rydb.) between the present results (a) and 

the SUPERSTRUCTURE results (b) for the first terms of the He-like oxygen ion. 

ls2 ls l s 2 s  3 S  l s 2 p  3P l s2s  ls l s 2 p  lP 

(a) -118.3121 -77.0802 -76.5032 -76.5230 -76.1382 
(b) -118.2264 -77.0119 -76.4759 -76.4512 -76.0644 

Table 3 gives the energy terms obtained in the LS scheme and corresponding to the 

first configurations of 0 VII. The present results (row a) are compared with those obtained 

in the same LS scheme by the SUPERSTRUCTURE program (row b). These results 
were obtained with scaling paramaters all equal to 1 and the following configurations 

were introduced in SUPERSTRUCTURE : lsnl, 2sn1, 2pnl with n=2, ..., 5 and 1 5 4. The 

comparison shows a difference which is comparable to the contribution of the continuum 

states and shows the importance to include them for the determination of the energy terms. 



4. Conclusion This preliminary work was considered in LS coupling in order to give 

a simple example of the method . These results are now extended to other ions of this He- 

like sequence and to those of the Li-like sequence.In an other step, they will be compared 

with those obtained from other methods which are very suitable for these cases as the 

MZ method(8). In a next step, the relativistic effects will be included in the interaction 

hamiltonian and finally, the method will be extented to more complex atoms. 
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