

VLSI Research Group

University of Windsor

Comments on “An Arithmetic
Free Parallel Mixed-Radix

Conversion Algorithm”

Submitted to IEEE Trans. Circuits and Systems

Antonio García,

Student Member

,

IEEE

, and
Graham A. Jullien,

Senior Member

,

IEEE

Comments on “An Arithmetic Free Parallel Mixed-Radix Conversion Algorithm” 2

Comments on “An Arithmetic Free Parallel Mixed-

Radix Conversion Algorithm”

Antonio García, Student Member, IEEE, and Graham A.
Jullien, Senior Member, IEEE

Abstract

In a recently published paper “An Arithmetic Free Parallel Mixed-Radix Conversion

Algorithm”, two algorithms based on look-up tables for mixed-radix conversion are pre-

sented. Here we show that one of the algorithms had been prior published in 1978, and we

also take this opportunity to speak to the use of look-up tables for RNS with present and

future technologies.

Keywords: Residue Number System; Look-up Table Arrays; Mixed Radix Conversion

VLSI Research Group University of Windsor

Comments on “An Arithmetic Free Parallel Mixed-Radix Conversion Algorithm” 3

1.0 INTRODUCTION

Look-up table based systems for the development of RNS applications is a well-know

solution, but the efficiency of such an approach is very technology dependent. About 20

years ago, one of the authors wrote a paper on the use of ROM Arrays for RNS operations

[2]. At that time individually packaged ROMs were an efficient counterpart to LSI arith-

metic chips, but in the intervening years, with the advent of VLSI and complete systems

on a single chip, binary arithmetic arrays have appeared more efficient than ROM arrays.

It was interesting to us, therefore, to read the recently published paper, “An arithmetic free

parallel mixed-radix conversion algorithm,” by D. F. Miller and W. S. McCormick, in

which the idea of only using arrays of look-up tables has again been proposed for RNS

implementations. Perhaps technology has come full-circle and small ROMs are now an

efficient counterpart to logic gates. Evidence from the SIA Roadmap [3] shows that the

exponent for the projected exponential increase in SRAM density is greater than that for

packed logic (see Figure 1) and one can therefore probably project the same comparison

for ROM density versus packed logic.

Our own evidence also shows that the ratio of ROM area to the area of arithmetic blocks

using logic gates is decreasing as we implement with deeper sub-micron technologies.

1

10

100

1000

19
95

19
98

20
01

20
04

20
07

20
10

SRAM Bits/cm

Logic Trans. /cm

2

2

Figure 1. Density projections from the SIA Roadmap

VLSI Research Group University of Windsor

Comments on “An Arithmetic Free Parallel Mixed-Radix Conversion Algorithm” 4

Two separate algorithms were published in [1] and in the following section we show that

one of the algorithms for MRC (Mixed Radix Conversion) [4] is essentially the same as a

conversion algorithm published in [2].

2.0 MATHEMATICAL COMPARISON

We will show in this section that Algorithm I in [1] is introduced as part of the base exten-

sion needed for the scaling scheme presented in [2]. Algorithm I assumes a set of moduli

 with . Thus, each non-negative integer,

x

, has a

unique RNS representation . In the same way, the

mixed radix

 representation

of

x

 is unique and is given by eqn. (1).

(1)

Algorithm I in [1] is simply derived from the fact that

a

1

=

x

1

, which can be deduced

directly from the definition of the mixed radix representation of

x

. On the other hand, it is

clear that the integer

can be expressed as follows in the

RNS defined by :

 = (2)

where and

m

1,

j

+1

 is the multiplicative inverse of

m

1

 modulo

m

j

+1

. It

can be easily shown that = , where is the

solution for the Linear Diophantine Equation [1]; in this way, = . It can also

be deduced from the fact that the mixed radix representation of is just:

= (3)

In general, at the end of stage

i

, it is shown inductively that the algorithm outputs

, i.e., the RNS representation of eqn. (4):

m1 … mN, ,{ } 1 m< 1 m2 … mN< < <

x1 … xN, ,()

x a1 a+ 2m1 a3m2m1 … + aNm1m2…mN 1–+ +=

y
1() x x1–()

m1
------------------- m2m3…mN <=

m2 m3 … mN, , ,{ }

y j 1+
1() x x1–

m1
-------------- mod m j 1+= m1 j 1+, x j 1+ x1–() mod m j 1+

j 1 2 … N 1–,, ,=

k j
1()

m1 j 1+, x j 1+ x1–() mod m j 1+= y j 1+
1()

k j
1()

k1
1()

y2
1()

= a2

y
1()

y 1()
x x1–

m1
--------------= a2 a3m2 … + aNm2…mN 1–+ +

k1
i()

k2
i() … kN i–

i(), , ,[]

VLSI Research Group University of Windsor

Comments on “An Arithmetic Free Parallel Mixed-Radix Conversion Algorithm” 5

 = (4)

in the set of moduli ; as in previous stages, = .

Eqn. (4) corrects an error found in the denominator of equation (10) in reference [1].

We are now going to show that the procedure presented in reference [1] corresponds to the

technique described in [2]. Firstly, we must remember that mixed radix conversion appears

in the base extension process that is inherent to the data scaling procedure in [2]. If Y is the

result of scaling X, defined in the set of moduli , by the scaling con-

stant K, defined as (S<N), it is obvious that , and so Y is com-

pletely defined by the subset of moduli . In this way, we can compute the

residues and then perform a base extension process for obtaining

. A mixed radix conversion will be part of this process of base extension,

thus we can obtain the mixed radix representation of Y from , and then per-

form a mixed radix to RNS conversion to obtain .

It is not our intention to describe here the complete scaling and base extension process, so

we are only going to recall the fundamental equations for mixed radix conversion in [2]

(for clarity we will use the notation found in [2]). Thus, we can now define the mixed radix

representation of Y as follows:

(5)

since . If we define , we can solve eqn. (5) with the recur-

sive equation:

y
i()

x a1– arm1m2…mr 1–
r 2=

i

∑–

m1m2…mi
---= ai 1+ ai 2+ mi 2+ …+ aNmi 2+ …mN 1–+ +

mi 1+ … mN, ,{ } k1
i()

yi 1+
i()

= ai 1+

m0 m1 … mN 1–, , ,{ }

K mi
i 0=

S 1–

∏= 0 Y mi
i S=

N 1–

∏<≤

mS … mN 1–, ,{ }

yS … yN 1–, ,()

y0 … yS 1–, ,()

yS … yN 1–, ,()

y0 … yS 1–, ,()

Y r0 ri m j S+
j 0=

i 1–

∏
i 1=

N S– 1–

∑+=

0 Y mi
i S=

N 1–

∏<≤ r j R
j()

m j S+=

VLSI Research Group University of Windsor

Comments on “An Arithmetic Free Parallel Mixed-Radix Conversion Algorithm” 6

(6)

where is defined as the multiplicative inverse of modulo mi (

using the above notation) and .

We now show that the recursive procedure in eqn. (6) is the same algorithm as described in

reference [1]; this is immediate, since it is clear that in eqn. (6) is equivalent to

in eqn. (4), taking account the differences in the indexing of the equations. In this way, the

algorithm described in reference [2] starts with the RNS representation of the data to be

mixed radix converted, i.e., Y in this case, and the first mixed radix digit is simply

, in the same way that a1=x1 in Algorithm I of reference [1].

At this point, let us show the expressions for r1 and r2:

(7)

(8)

these can be easily extended, by inductive reasoning, for the higher index mixed radix dig-

its. Thus it is clear that eqn. (7) and (8) reproduce the same computation procedure that is

described in reference [1] (eqn. (3) and (4)). Thus, the mixed radix conversion proposed in

[2] requires the computation of the residues of with respect to the set of moduli

 during the k-th stage; this computation requires, for each modulus,

the correspondent residue and the previously computed

mixed radix digit in order to calculate eqn. (6). In this way, resi-

dues are passed to the next stage, and a new mixed radix

R
k 1+()

mi R
k()

rk– mi

1
mk S+

mi

⋅
mi

=

1
mk S+

mi

mk S+ mk S+ i,

R
0()

Y=

R
k()

y
k()

r0 R
0()

mS Y mS
yS= = =

r1 R
1()

mS 1+ R
0()

r0– mS 1+

1
mS

mS 1+

⋅
mS 1+

R
0()

r0–

mS

mS 1+

= = =

r2 R
2()

mS 2+ R
1()

r1– mS 2+

1
mS 1+

mS 2+

⋅
mS 2+

R
1()

r1–

mS 1+

mS 2+

= = =

R

0()
r0– r1mS–

mSmS 1+

mS 2+

=

R
k()

mS k+ … mN 1–, ,{ }

R
k 1–()

mi S k i N 1–≤ ≤+()

rk 1– R
k 1–()

mS k 1–+=

R
k()

mi S k 1+ i N 1–≤ ≤+()

VLSI Research Group University of Windsor

Comments on “An Arithmetic Free Parallel Mixed-Radix Conversion Algorithm” 7

digit is obtained. This is obviously, the same procedure as described in

[1], and the structure shown in Figures 3 and 4 (with T3 functions) in [2] for mixed radix

conversion is completely analogous to that shown in Figures 1 and 2 in [1]. In this way, the

subtraction and multiplication by a constant factor (the corresponding multiplicative

inverse) performed by these two algorithms through eqn. (4) and eqn. (6), respectively, can

be stored in a double input look-up table, so the complete mixed radix conversion process

can be performed entirely with tables. As a final note, in addition to a table-based mixed

radix conversion technique, two table-based scaling algorithms were also presented in ref-

erence [2].

3.0 REFERENCES

[1] D. F. Miller and W. S. McCormick, “An arithmetic free parallel mixed-radix conver-
sion algorithm,” IEEE Trans. Circuits Syst. II Analog and Digital Signal Processing,
vol. 45, pp. 158-162, Jan. 1998.

[2] G. A. Jullien, “Residue number scaling and other operations using ROM arrays,”
IEEE Trans. Comput., vol. C-27, pp. 325-336, Apr. 1978.

[3] “The National Technology Roadmap for Semiconductors”, Semiconductor Industry
Association, 1994.

[4] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and its Applications to Computer
Technology. New York: McGraw-Hill, 1967.

4.0 Affiliation of authors:

Antonio García is with the Departamento de Electrónica y Tecnología de Computadores,

University of Granada, 18071 Granada, Spain. He is supported by the Dirección General

de Enseñanza Superior under project PB96-1397.

Graham A. Jullien is with the VLSI Research Group, University of Windsor, Ontario, Can-

ada N9B 3P4.

rk R
k()

mS k+=

