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Abstract

In a recently published paper “ An Arithmetic Free Parallel Mixed-Radix Conversion
Algorithm” , two algorithms based on |ook-up tables for mixed-radix conversion are pre-
sented. Here we show that one of the algorithms had been prior published in 1978, and we
also take this opportunity to speak to the use of look-up tables for RNSwith present and

future technol ogies.
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1.0 INTRODUCTION

L ook-up table based systems for the development of RNS applicationsis a well-know
solution, but the efficiency of such an approach is very technology dependent. About 20
years ago, one of the authors wrote a paper on the use of ROM Arrays for RNS operations
[2]. At that time individually packaged ROMs were an efficient counterpart to LS| arith-
metic chips, but in the intervening years, with the advent of VLSI and complete systems
on asingle chip, binary arithmetic arrays have appeared more efficient than ROM arrays.
It was interesting to us, therefore, to read the recently published paper, “An arithmetic free
parallel mixed-radix conversion algorithm,” by D. F. Miller and W. S. McCormick, in
which the idea of only using arrays of look-up tables has again been proposed for RNS
implementations. Perhaps technology has come full-circle and small ROMs are now an
efficient counterpart to logic gates. Evidence from the SIA Roadmap [3] shows that the
exponent for the projected exponential increase in SRAM density is greater than that for

packed logic (see Figure 1) and one can therefore probably project the same comparison
for ROM density versus packed logic.
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Figure 1. Density projections from the SIA Roadmap

Our own evidence also shows that the ratio of ROM areato the area of arithmetic blocks
using logic gates is decreasing as we implement with deeper sub-micron technologies.
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Two separate algorithms were published in [1] and in the following section we show that
one of the algorithms for MRC (Mixed Radix Conversion) [4] is essentially the same asa
conversion algorithm published in [2].

20 MATHEMATICAL COMPARISON

We will show in this section that Algorithm I in [1] isintroduced as part of the base exten-
sion needed for the scaling scheme presented in [2]. Algorithm | assumes a set of moduli

{my,...,mg¢ withl<m; <m, <... <my. Thus, each non-negative integer, x, has a
unique RNS representation (X, ..., Xy) . In the same way, the mixed radix representation

of x isunique and is given by egn. (1).
X = agta,m +agm,m; +... +aymm,...my_; (1)

Algorithm I in [1] is simply derived from the fact that a;=x,, which can be deduced
directly from the definition of the mixed radix representation of x. On the other hand, it is
v _ (x=Xq)

1

clear that the integer y <m,ms...my can be expressed as followsin the

RNS defined by {m,, ms, ..., my} :

1 X—X
y§+)1 =

1 _
mod m;, 1 =My j,q(Xj41—%) mod m;, (2)

wherej = 1,2,...,N—1and my j41 isthe multiplicative inverse of my modulo m, . It

can be easily shown that kgl) = my . 1(Xj4+1—X%) mod mj+1:y§1+)1, where kﬁl) isthe
solution for the Linear Diophantine Equation [1]; in thisway, k(ll) = y(zl) =a,. |tcanaso

be deduced from the fact that the mixed radix representation of y(l) ISjust:

yo = 228

) =a, +agm, + ... + aym,...My_q (3

In general, at the end of stagei, it is shown inductively that the algorithm outputs
[k(li), k(zi), s k,(\il)_i] , I.e., the RNS representation of egn. (4):
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i
o X=gg - z amm,..m _,;
(i _ r=2

m;m,...m

y =@t oM ot aMi, ..My (4)

in the set of moduli {m; , 4, ..., My} ; asin previous stages, k(li) = yi(iz 1784 1.
Eqgn. (4) corrects an error found in the denominator of equation (10) in reference [1].

We are now going to show that the procedure presented in reference [1] correspondsto the
technique described in [2]. Firstly, we must remember that mixed radix conversion appears
in the base extension process that isinherent to the data scaling procedurein [2]. If Yisthe

result of scaling X, defined in the set of moduli { my, my, ..., my_4} , by the scaling con-

S-1 N-1
stant K, defined as K = |‘| m. (5<N), itisobviousthat 0<Y < |_| m,, and so 'Y is com-
i=0 i=S

pletely defined by the subset of moduli { mg, ..., my _4} . Inthisway, we can compute the
residues (yg ..., YN _1) ad then perform abase extension process for obtaining

(Yor ---» Ys_1) - A mixed radix conversion will be part of this process of base extension,
thus we can obtain the mixed radix representation of Y from (yg, ..., Yy _1) » @d then per-

form amixed radix to RNS conversion to obtain (y, ..., Yg_1) -

It is not our intention to describe here the compl ete scaling and base extension process, so
we are only going to recall the fundamental equations for mixed radix conversion in [2]
(for clarity we will use the notation found in[2]). Thus, we can now define the mixed radix
representation of Y as follows:

N-S-1 i-1
Y =15+ Z ri|_|mj+S (5)
i=1  j=0
N-1 _
since0<Y< |‘| m; . If wedefiner; = |R(J)|mj+s,wecan solve egn. (5) with the recur-
i=S
sive equation:
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(6)

0o
k + S

;| m

1
M+ g

where

is defined as the multiplicative inverse of m, , g modulo my; (my ., g ;
m;

using the above notation) and RO = v,

We now show that the recursive procedure in egn. (6) isthe same algorithm as described in

reference [1]; thisisimmediate, sinceit is clear that R in egn. (6) is equivalent to y(k)

in eqgn. (4), taking account the differencesin the indexing of the equations. In this way, the
algorithm described in reference [2] starts with the RNS representation of the datato be
mixed radix converted, i.e., Y in this case, and the first mixed radix digit is simply

ro = |R(O)|mS = |Y|ms =Yg, inthe same way that a;=x, in Algorithm | of reference [1].

At this point, let us show the expressionsfor ry and r:

(0)
_ @ _ |0 _ IR =r
ry = |R |ms+1 - UR —Io Mg, 1 E‘misl - m 0 (7)
Mgy 1| Mgy S Mg, ¢
1
Mg 1|ms, o/ ms. » Msy1 |mg,, ®
_ R(O)—ro—rlms{
MsMs 1 |me.,

these can be easily extended, by inductive reasoning, for the higher index mixed radix dig-
its. Thusit is clear that egn. (7) and (8) reproduce the same computation procedure that is
described in reference [1] (egn. (3) and (4)). Thus, the mixed radix conversion proposed in

requw&ct ecomputatlono theresidues o wit respect to the set of modull
[2] requires th ion of the residues of R™ with he set of moduli

{mg, s ...,my_4} during the k-th stage; this computation requires, for each modulus,
the correspondent residue |R(k_ 1)| m (S+k<i<N-1) and the previously computed
mixed radix digit r,,_; = |R(k_l)|ms+k_1 in order to calculate egn. (6). In thisway, resi-

dues |R(k)|mi (St+k+1<i<N-1) arepassed to the next stage, and a new mixed radix
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digitr, = |R(k)| ms. . 1S Obtained. Thisis obviously, the same procedure as described in
[1], and the structure shown in Figures 3 and 4 (with T functions) in [2] for mixed radix
conversion is completely analogousto that shown in Figures 1 and 2in[1]. In thisway, the
subtraction and multiplication by a constant factor (the corresponding multiplicative
inverse) performed by these two algorithms through egn. (4) and egn. (6), respectively, can
be stored in a double input look-up table, so the complete mixed radix conversion process
can be performed entirely with tables. As afina note, in addition to atable-based mixed
radix conversion technique, two table-based scaling algorithms were also presented in ref-
erence[2].
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