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Abstract

 

In a recently published paper “An Arithmetic Free Parallel Mixed-Radix Conversion 

Algorithm”, two algorithms based on look-up tables for mixed-radix conversion are pre-

sented. Here we show that one of the algorithms had been prior published in 1978, and we 

also take this opportunity to speak to the use of look-up tables for RNS with present and 

future technologies.
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1.0  INTRODUCTION

 

Look-up table based systems for the development of RNS applications is a well-know 

solution, but the efficiency of such an approach is very technology dependent. About 20 

years ago, one of the authors wrote a paper on the use of ROM Arrays for RNS operations 

[2]. At that time individually packaged ROMs were an efficient counterpart to LSI arith-

metic chips, but in the intervening years, with the advent of VLSI and complete systems 

on a single chip, binary arithmetic arrays have appeared more efficient than ROM arrays. 

It was interesting to us, therefore, to read the recently published paper, “An arithmetic free 

parallel mixed-radix conversion algorithm,” by D. F. Miller and W. S. McCormick, in 

which the idea of only using arrays of look-up tables has again been proposed for RNS 

implementations. Perhaps technology has come full-circle and small ROMs are now an 

efficient counterpart to logic gates. Evidence from the SIA Roadmap [3] shows that the 

exponent for the projected exponential increase in SRAM density is greater than that for 

packed logic (see Figure 1) and one can therefore probably project the same comparison 

for ROM density versus packed logic. 

Our own evidence also shows that the ratio of ROM area to the area of arithmetic blocks 

using logic gates is decreasing as we implement with deeper sub-micron technologies.
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Figure 1. Density projections from the SIA Roadmap
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Two separate algorithms were published in [1] and in the following section we show that 

one of the algorithms for MRC (Mixed Radix Conversion) [4] is essentially the same as a 

conversion algorithm published in [2].

 

2.0  MATHEMATICAL COMPARISON

 

We will show in this section that Algorithm I in [1] is introduced as part of the base exten-

sion needed for the scaling scheme presented in [2]. Algorithm I assumes a set of moduli 

 with . Thus, each non-negative integer, 

 

x

 

, has a 

unique RNS representation . In the same way, the 

 

mixed radix

 

 representation 

of 

 

x

 

 is unique and is given by eqn. (1).

(1)

Algorithm I in [1] is simply derived from the fact that 

 

a

 

1

 

=

 

x

 

1

 

, which can be deduced 

directly from the definition of the mixed radix representation of 

 

x

 

. On the other hand, it is 

clear that the integer 

 

 

 

can be expressed as follows in the 

RNS defined by :

 = (2)

where  and 

 

m

 

1, 

 

j

 

+1

 

 is the multiplicative inverse of 

 

m

 

1

 

 modulo 

 

m

 

j

 

+1

 

. It 

can be easily shown that = , where  is the 

solution for the Linear Diophantine Equation [1]; in this way, = . It can also 

be deduced from the fact that the mixed radix representation of  is just:

= (3)

In general, at the end of stage 

 

i

 

, it is shown inductively that the algorithm outputs 

, i.e., the RNS representation of eqn. (4):
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 = (4)

in the set of moduli ; as in previous stages, = .

Eqn. (4) corrects an error found in the denominator of equation (10) in reference [1]. 

We are now going to show that the procedure presented in reference [1] corresponds to the 

technique described in [2]. Firstly, we must remember that mixed radix conversion appears 

in the base extension process that is inherent to the data scaling procedure in [2]. If Y is the 

result of scaling X, defined in the set of moduli , by the scaling con-

stant K, defined as  (S<N), it is obvious that , and so Y is com-

pletely defined by the subset of moduli . In this way, we can compute the 

residues  and then perform a base extension process for obtaining 

. A mixed radix conversion will be part of this process of base extension, 

thus we can obtain the mixed radix representation of Y from , and then per-

form a mixed radix to RNS conversion to obtain .

It is not our intention to describe here the complete scaling and base extension process, so 

we are only going to recall the fundamental equations for mixed radix conversion in [2] 

(for clarity we will use the notation found in [2]). Thus, we can now define the mixed radix 

representation of Y as follows:

(5)

since . If we define , we can solve eqn. (5) with the recur-

sive equation:
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(6)

where  is defined as the multiplicative inverse of  modulo mi (  

using the above notation) and . 

We now show that the recursive procedure in eqn. (6) is the same algorithm as described in 

reference [1]; this is immediate, since it is clear that  in eqn. (6) is equivalent to  

in eqn. (4), taking account the differences in the indexing of the equations. In this way, the 

algorithm described in reference [2] starts with the RNS representation of the data to be 

mixed radix converted, i.e., Y in this case, and the first mixed radix digit is simply 

, in the same way that a1=x1 in Algorithm I of reference [1]. 

At this point, let us show the expressions for r1 and r2:

(7)

(8)

these can be easily extended, by inductive reasoning, for the higher index mixed radix dig-

its. Thus it is clear that eqn. (7) and (8) reproduce the same computation procedure that is 

described in reference [1] (eqn. (3) and (4)). Thus, the mixed radix conversion proposed in 

[2] requires the computation of the residues of  with respect to the set of moduli 

 during the k-th stage; this computation requires, for each modulus, 

the correspondent residue  and the previously computed 

mixed radix digit  in order to calculate eqn. (6). In this way, resi-

dues  are passed to the next stage, and a new mixed radix 
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digit  is obtained. This is obviously, the same procedure as described in 

[1], and the structure shown in Figures 3 and 4 (with T3 functions) in [2] for mixed radix 

conversion is completely analogous to that shown in Figures 1 and 2 in [1]. In this way, the 

subtraction and multiplication by a constant factor (the corresponding multiplicative 

inverse) performed by these two algorithms through eqn. (4) and eqn. (6), respectively, can 

be stored in a double input look-up table, so the complete mixed radix conversion process 

can be performed entirely with tables. As a final note, in addition to a table-based mixed 

radix conversion technique, two table-based scaling algorithms were also presented in ref-

erence [2].
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