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Abstract
Domain modeling promotes the description of various facets of
information systems by a coordinated set of domain-specific lan-
guages (DSL). Some of them have visual/graphical and other may
have textual concrete syntaxes. Model Driven Engineering (MDE)
helps defining the concepts and relations of the domain by the way
of metamodel elements. For visual languages, it is necessary to es-
tablish links between these concepts and relations on one side and
visual symbols on the other side. Similarly, with textual languages
it is necessary to establish links between metamodel elements and
syntactic structures of the textual DSL. To successfully apply MDE
in a wide range of domains we need tools for fast implementation of
the expected growing number of DSLs. Regarding the textual syn-
tax of DSLs, we believe that most current proposals for bridging
the world of models (MDE) and the world of grammars (Gram-
marware) are not completely adapted to this need. We propose a
generative solution based on a DSL called TCS (Textual Concrete
Syntax). Specifications expressed in TCS are used to automatically
generate tools for model-to-text and text-to-model transformations.
The proposed approach is illustrated by a case study in the defini-
tion of a telephony language.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Specialized application languages; D.3.4 [Processors]:
Code Generation

General Terms Languages

Keywords Model Driven Engineering, DSL, Concrete Syntax

1. Introduction
Domain Specific Languages (DSLs) have some properties that
General Purpose Languages (GPLs) like C++, Java, C#, and UML
do not have. For instance, with DSLs, domain concepts are di-
rectly represented by syntactic constucts. This often enables more
concise and precise specifications, which even non-programmer
domain experts can understand. Moreover, a sentence expressed
in a DSL usually makes use of higher-level constructs (e.g. rules)
than an equivalent sentence in a GPL. A DSL may also be designed
to enable reasonning about (e.g. proving properties) or optimizing
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sentences by restricting what the user can do. This is typically not
possible with a GPL.

There are, however, issues limiting the usage of DSLs. A major
one is the reduced availability of tools for DSLs compared to GPLs.
This is emphasized by the fact that several DSLs are typically
required where one GPL is enough. A single GPL may indeed be
used to build even the most complex systems. But numerous DSLs
are necessary to represent the different facets of most systems.

There are several ways to implement DSLs, for example using
XML engineering, Model Driven Engineering (MDE), or Gram-
marware (i.e. grammar-based systems [1]). There is a growing in-
terest in using MDE for this purpose [2, 3, 4]. The different aspects
of a DSL are captured by different models: the domain concepts are
represented in a metamodel that we call a Domain Definition Meta-
Model (DDMM); languages like OCL [5] enable the specification
of additional well-formedness constraints [6]; model transforma-
tion is a possible solution for DSL-to-DSL and even DSL-to-GPL
translations; etc. AMMA [7, 4] (ATLAS Model Management Archi-
tecture) is an MDE framework, which provides such possibilities in
order to build tools for DSLs.

In this work, we consider the concrete syntax facet of DSLs,
when it is textual. The objective is to enable translation from text-
based DSL sentences to their equivalent model representation, and
vice-versa. Such a feature is essential to the development of tools
for text-based DSLs.

The text-to-model problem is classically solved by defining a
grammar, and then using one of the many available parser gener-
ators (e.g. yacc, ANTLR [8]). Model-to-text is generally handled
separately by implementing a visitor that serializes its source model
into an equivalent textual representation. This requires two separate
encodings of the same syntax: grammar and visitor. For model-
based DSLs a third non-syntactic specification (i.e. the metamodel)
is also required. However, there is a significant redundancy between
these elements. For instance, information already available in the
metamodel needs to be duplicated in the grammar (e.g. multiplicity
of elements). Parse trees then need to be converted into models ei-
ther by tree walkers (i.e. visitors) or using annotations in the gram-
mar. These are not only tedious to specify but also depend on the
chosen parser generator.

Implementing tools for a single GPL in this way is generally not
problematic: many GPL tools do not even use parser generators but
human-written parsers. It is, however, not always possible to spend
that much resources on each DSL. To find a solution to these issues,
we explore generative approaches.

We propose in this work to extend AMMA with support for
the specification of textual concrete syntaxes. TCS (Textual Con-
crete Syntax) is a DSL designed for this purpose. It works by pro-
viding means to associate syntactic elements (e.g. keywords like
if, special symbols like +) to metamodel elements with little re-
dundancy. Both model-to-text and text-to-model translations can



be performed using a single specification. A grammar can thus be
generated from both the metamodel and the TCS model to per-
form text-to-model translation. Grammar annotations that build the
model while parsing can be automatically generated. Model-to-
text translation can also be performed with the same information.
To this end, a generic interpreter has been defined to traverse the
model following the syntactical path specified in TCS. Keywords
and symbols are written alongside model information.

TCS contributes a significant capability to AMMA: bridging
the modeling and syntax worlds. The concrete syntax of AMMA
core languages like KM3 [9] (Kernel MetaMetaModel), ATL [10,
11] (ATLAS Transformation Language), and TCS itself can be
implemented with TCS. The concrete syntax of other DSLs can
also be specified with TCS. An example of such a DSL is SPL [12]
(Session Processing Language), which we use as a case study in
this work.

The paper is organized as follows. Section 2 details the prob-
lem domain of TCS. Section 3 presents the main concepts of the
Textual Concrete Syntax DSL illustrated on SPL. Implementation
issues are discussed in Section 4. Section 5 gives related work, and
Section 6 concludes.

2. Background
Before presenting the details of the TCS language we give a short
overview of the concepts required to understand the rationale be-
hind it. TCS is a DSL that operates in the context of the AMMA
framework. It facilitates the conversion between models defined
in the AMMA space and their textual representations found in
the Grammarware technical space. The concepts of DSL, techni-
cal space, and the AMMA architecture are explained below.

2.1 Domain Specific Languages
A DSL is a language designed to solve a delimited set of problems.
This contrasts with GPLs that are supposed to be useful for much
more generic tasks, crossing multiple application domains. A given
DSL provides means for expressing concepts derived from a well-
defined and well-scoped domain of interest.

Similarly to GPLs, DSLs have the following properties:

• They usually have a concrete syntax;
• They may also have an abstract syntax;
• They have a semantics, implicitly or explicitly defined.

There are several ways to define these syntaxes and seman-
tics. The most commonly used way for defining the syntax is via
grammar-based systems. In contrast, there are multiple semantic
specification frameworks but none has been widely established as a
standard yet. In the context of MDE we consider a DSL as a set of
coordinated models. This is aligned to one of the main principles of
MDE: to consider models as unification concept. In the following
paragraphs we elaborate on this vision by describing the types of
models found in a DSL and their purpose.

Domain Definition Metamodel. As we mentioned, the basic
distinction between DSLs and GPLs is based on the relation to a
given domain. Programs (sentences) in a DSL represent concrete
states of affairs in this domain, i.e. they are models. A conceptu-
alization of the domain is an abstract entity that captures the com-
monalities among the possible state of affairs. It introduces the ba-
sic abstractions of the domain and their mutual relations. Once such
an abstract entity is explicitly represented as a model it becomes a
metamodel for the models expressed in the DSL. We refer to this
metamodel as a Domain Definition MetaModel (DDMM). Since
the DDMM is a specification of the domain’s conceptualization we
may regard it as an ontology [13]. This base ontology plays a cen-
tral role in the definition of the DSL. For example, a DSL for di-

Figure 1. AMMA core DSLs

rected graph manipulation will contain the concepts of nodes and
edges, and state that an edge may connect a source node to a tar-
get node. Such a DDMM plays the role of the abstract syntax for a
DSL.

Concrete Syntax. A DSL may have different concrete syntaxes.
A concrete syntax may be defined by a transformation model that
maps the DDMM onto a “display surface” metamodel. Examples
of display surface metamodels may be SVG [14] or GraphViz [15],
but also XML. An example of such a transformation for a Petri
net DSL is the mapping from places into circles, from transitions
into rectangles, and from place to transition or transition to place
relations into arrows. The display surface metamodel will then have
the concepts of Circle, Rectangle and Arrow.

Semantics. A DSL may have an execution semantics definition.
This semantics definition may also be defined by a transformation
model that maps the DDMM onto another DSL having by itself a
precise execution semantics or even to a GPL. The firing rules of a
Petri net may, for example, be mapped into a Java code model.

In addition to canonical execution, there are plenty of other
possible operations on programs based on a given DSL. Each may
be defined by a mapping represented as a transformation model. For
example, if one wishes to query DSL programs, a standard mapping
of the DDMM onto Prolog may be useful.

In the context of MDE there is a need for efficient tools for
specification of DSLs. In this paper we use and extend the AMMA
modeling architecture that provides tools for defining DSLs. The
next section briefly describes the main components of AMMA.

2.2 The AMMA Framework
Similarly to the vision explained in the previous section, DSLs in
AMMA are perceived as sets of models. AMMA provides several
DSLs that are used to define the components of other DSLs. They
form the core of the framework. This core includes a language for
describing metamodels called KM3 and a model transformation
language called ATL. In this work, we extend the already proposed
AMMA structure with TCS in order to specify the textual concrete
syntax of DSLs. Figure 1 shows the components of AMMA (in-
cluding TCS) and how they may be used to define DSLs.

It can be seen that these three DSLs contain models that are
expressed in some other DSL from the core. For example, the
DDMM of KM3 is defined in KM3. The concrete syntax of KM3
is defined in TCS. Furthermore, KM3 is mapped to the elements of
Ecore [16] by using an ATL transformation (the box KM32Ecore).
The semantics of ATL is defined as a transformation to the language



of the ATL virtual machine (ATL2VM) described in [11]. This
transformation is itself expressed in ATL.

We can define other DSLs by using the core DSLs of AMMA.
For example, the SPL language contains two models. Its DDMM is
defined in KM3 and its concrete syntax in TCS. The semantics of
the language is not defined since we assumed that it is implemented
by already existing tools.

An arbitrary language (denoted as DSLx in Figure 1) can be
defined in a similar manner. In the context of DSLx, the box
Mapping denotes a possible mapping to another DSL or a GPL
such as Java.

Currently, AMMA does not provide means for defining seman-
tics of DSLs. The problems of semantics definition of DSLs go
beyond the scope of this paper.

We can clearly identify that there already exist technologies that
provide the required functionality for specifying various forms of
concrete syntaxes. For example, Grammarware provides means for
definition of grammars and tools for language manipulation such
as parsers and parser generators. Another form of concrete syntax
may be based on XML and therefore the tools available in the XML
technology should be used.

It is generally more efficient to reuse existing tools for syntax
definition instead of inventing/reinventing new ones. This reuse is
an example of integration between various technologies: MDE and
Grammarware, MDE and XML, etc. A global vision on treating
various technologies and their integration in a uniform way is based
on the concepts of Technical Space (TS) and projectors between
spaces [17]. Before describing the role of TCS as a bridge between
MDE and EBNF/Grammarware technical spaces we briefly present
the notions of technical space and projector in the next section.

2.3 Technical Spaces and Projections
Technical spaces were introduced in [18], in the discussion on prob-
lems of bridging different technologies. This concept was further
elaborated in [17] where technical spaces are defined as model
management frameworks. The notion of technical space is another
important unification concept along with the concept of model. The
intention behind it is to denote technologies at a more abstract level
in order to allow reasoning about their similarities and differences
and possibilities for integration. In this paper we consider two tech-
nical spaces: the MDE technical space that allows creation and ma-
nipulation of models and the Grammarware technical space that
allows definition of language grammars.

An important benefit of treating technical spaces as explicit
entities is the recognition of the various capabilities offered by
technical spaces and their combination aimed to solve a given
problem. To achieve an effective integration towards a certain goal,
however, various technologies should interact with each other. An
important requirement for such an interaction is the possibility for
transferring an artifact from one space to another space and vice
versa. This inter-space transfer is called bridging.

Bridging is implemented by transformation utilities called tech-
nical projectors. The responsibility to build projectors lies in one
reference space. The rationale to define them is quite simple: when
one facility is already available in a given space and building it in
another space is economically too costly, then the decision may be
taken to build a projector that enables the reuse of the facility. There
are two kinds of projectors according to the direction of the trans-
formation relative to the chosen reference space: injectors transfer
artefacts to the reference space and extractors in the opposite direc-
tion.

2.4 Basic KM3 Concepts
TCS works by associating syntactical elements to metamodel el-
ements. All the metamodel examples given in Section 3 are ex-

Figure 2. Simplified class diagram of KM3

pressed in KM3. TCS semantics is also defined in relation to KM3.
We give a brief description of KM3 here that should help under-
standing the rest of the paper. A more detailed description including
formal semantics is given in [9].

KM3 is a metametamodel that has concepts similar to those
found in MOF [19] but is simpler than MOF. A simplified class
diagram illustrating the basic KM3 constructs is shown in Figure 2.

The class Classifier denotes concepts that may have instances.
It is specialized into DataType and Class. Datatypes have instances
that are literal values. Class instances have structure that consists of
a set of StructuralFeatures. By instances of a Class we mean here
model elements conforming to this class (see [9]). There are two
kinds of structural features: attribute and reference. Structural fea-
tures are typed and have multiplicity. The multiplicity of a feature
is encoded by a pair of values called lower and upper. Classes may
extend zero or more other classes and may be abstract. An abstract
class cannot have direct instances.

3. TCS: Bridging Metamodels and Grammars
Many of the problems related to textual concrete syntaxes are
already solved in the Grammarware technical space. There is no
reason to rebuild such facilities in the MDE technical space. What
we need is a projector between these spaces. TCS is a language
that allows specification and automatic generation of projectors
between the Grammarware TS and the MDE TS per given DSL.

This section presents the syntactical constructs of TCS and their
semantics based on examples. We start with an overview of the
usage of the language and gradually present the syntax going from
simpler to more complex features.

3.1 Overview
The overview of the usage of the TCS language is shown in Figure
3. Assume we want to build a DSL called L. In MDE TS we
provide a metamodel of L named MML expressed in KM3. The
definition of the concrete syntax is expressed in TCS and is denoted
as CSL. The required bridge between the two technical spaces
consists of an injector and an extractor. The injector takes a model
in L expressed in the textual concrete syntax of L and generates a
model conforming to MML in the MDE TS. An example model is
denoted as SML and it conforms to the grammar of L denoted as
GL. GL is expressed in ANTLR. The extractor generates textual
representation of models in the MDE TS conforming to MML.
Figure 3 shows an example in which a model ML is extracted to
SML.

The approach we take starts with the metamodel and the con-
crete textual syntax description of a given language L. Our goal is
to obtain three entities for L: its annotated grammar GL expressed



Figure 3. Overview of TCS usage

in ANTLR, and the couple of injector and extractor. GL is gen-
erated by an ATL transformation named TCS2ANTLR.atl. It takes
MML and CSL as input (shown with dashed lines) and generates
the rules and the annotations in GL. This grammar is used to gen-
erate the injector. The injector is a parser generated by the tools
provided by the ANTLR technology. The generation is done by the
ANTLR parser generator (denoted as ANTLR GEN).

The extractor works on the internal representation of models
expressed in L and creates their textual representation. It is possible
to generate an extractor per every language L. However, we take
another approach in which a single extractor is implemented as
an interpreter that works for every language. The extractor takes a
model ML written in L, its metamodel MML, and its TCS syntax
description CSL and generates the textual representation SML of
ML.

Using TCS is typically simpler than developing ad-hoc injec-
tors and extractors. One specification is enough for both directions.
Moreover, redundancy between a TCS model and its corresponding
metamodel is reduced (e.g. property multiplicity and type are omit-
ted in TCS). With an ideal tool, both the abstract and concrete syn-
taxes should be specified separately without impacting each other’s
structure. However, TCS simplification power comes at a certain
price: the structural gap between a metamodel and a TCS model is
limited. This means that compromises have to be made: either the
syntax is adapted to be within TCS possibilities, or the metamodel
is simplified.

An important constraint imposed by TCS on metamodels is that
they must have a root element. This is roughly equivalent to a start
symbol in the corresponding grammar. Other limitations will be
presented in Section 4.

3.2 Running Example: SPL
SPL is used as a running example throughout this paper. We start
by showing how SPL concrete syntax looks like. Listing 1 shows
a simple SPL program that forwards incoming calls to address
sip:phoenix@barbade.enseirb.fr. The SimpleForward ser-
vice (lines 1-11) declares the target address (line 3) and a registra-
tion session (lines 6-10). This session contains an INVITE method
(lines 6-8) which forwards incoming calls to the declared address
(line 7).

Listing 1. Simple SPL program
1 s e r v i c e SimpleForward {
2 p r o c e s s i n g {

3 u r i us = ’sip:phoenix@barbade.enseirb.fr’ ;
4

5 r e g i s t r a t i o n {
6 r e s p o n s e incoming INVITE ( ) {
7 re turn forward us ;
8 }
9 }

10 }
11 }

Explanations of how TCS works are illustrated by showing how
it can be used to specify the SPL concrete syntax. We give excerpts
from the SPL metamodel in KM3, and the corresponding excerpts
from the concrete syntax specification in TCS. The metamodel ex-
cerpts are necessary because TCS works by annotating this abstract
syntax. Only a subset of SPL metamodel and syntax will be given
here. The full SPL metamodel and TCS model can be found on the
GMT website [20] in the CPL2SPL example, which is described in
[21].

Let us consider the first metamodel excerpt given in Listing
2. It starts with the declaration of the String data type. Then it
specifies that an SPL Program (lines 3-5) contains (line 4) exactly
one Service (lines 7-11). The latter has a name of type String (line
8), declarations of type Declaration (line 9), and sessions of type
Session (line 10).

Listing 2. SPL metamodel excerpt in KM3: Program and Service
1 data type S t r i n g ;
2

3 c l a s s Program ex tends LocatedElement {
4 r e f e r e n c e service c o n t a i n e r : Service ;
5 }
6

7 c l a s s Service ex tends LocatedElement {
8 a t t r i b u t e name : S t r i n g ;
9 r e f e r e n c e declarations [∗ ] ordered c o n t a i n e r :

↪→Declaration ;
10 r e f e r e n c e sessions [∗ ] ordered c o n t a i n e r : Session ;
11 }

Listing 3 gives a TCS model excerpt specifying the concrete
syntax of these elements according to Listing 1. Here is an informal
description:

• String. Data type String is represented as an identifier corre-
sponding to lexer non-terminal NAME (line 1).

• Program. Class Program is represented as its contained service
(lines 3-5).

• Service. Class Service is represented as: keyword service, the
name of the service, symbol {, keyword processing, symbol
{, the declarations of the service, its sessions, and two
symbols } (lines 7-14).

TCS elements are associated to their corresponding metamodel
elements by their names. For instance, TCS template Program
corresponds to KM3 class Program and TCS property service to
KM3 feature service. This example shows that it is straightforward
to encode such a simple syntax in TCS: syntactic elements are
specified in syntax order.

Listing 3. SPL TCS model excerpt: Program and Service
1 pr imi t iveTempla te identifier f o r String d e f a u l t us ing

↪→NAME ;
2

3 t empla te Program main
4 : service
5 ;
6

7 t empla te Service -- context: put this here?
8 : "service" name "{"
9 "processing" "{"

10 declarations

sip:phoenix@barbade.enseirb.fr


11 sessions
12 "}"
13 "}"
14 ;

A detailed description of the basic TCS constructs used here and
of their semantics is given in Section 3.3. Section 3.4 details how a
grammar can be derived from these basic constructs. Sections 3.5,
3.6, and 3.7 present more complex TCS constructs.

3.3 Basic Constructs
This section presents the basic TCS constructs. Most of them are
illustrated in Listing 3. By default, line number references given in
this section refer to this listing.

Each metamodel Classifier is associated to a TCS Template,
which specifies how to textually represent model elements typed
by this Classifier. There are two main kinds of TCS Templates:

• PrimitiveTemplates specify the lexer token corresponding to a
given metamodel DataType, identified by its name. More than
one primitive template may be defined for a single data type.
This is typically the case for strings: one template represents
them as identifiers, whereas a second one represents them as
string literals. Exactly one primitive template may be declared
as default for each data type. Line 1 specifies default prim-
itive template identifier for data type String, which corre-
sponds to lexer token NAME.

• ClassTemplates specify how classes are represented. This
specification consists of a sequence of syntactic elements that
are: keywords, special symbols, etc. More information on syn-
tactic elements is given below. A ClassTemplate has the same
name as its corresponding Class. Exactly one class template
must be declared as main (e.g. line 3 for template Program).
It corresponds to the root of the model. In contrast to primitive
templates, only one class template can be defined for each class
in the metamodel. This design choice is aimed at simplifying
the TCS specifications. Our experiments have not shown that it
is too restrictive.

Syntactic elements are used to represent the contents of a Class.
They can be of the following kinds:

• Keywords. A keyword is a reserved word with specific mean-
ing. In SPL, service (line 8) and processing (line 9) are
keywords. A keyword is specified between double quotes.

• Special Symbols. A special symbol is a sequence of characters
used as separator or operator (e.g. { line 8 and 9). It is specified
between double quotes. Each symbol must additionally be listed
in the symbols section of the TCS model (not shown here due
to space limitations).

• Properties. A property corresponds to a metamodel structural
feature (i.e. attribute or reference) of the class associated to the
contextual template or one of its super classes. It is specified as
an identifier, which value is the name of its associated feature.
The textual representation of a property depends on its associ-
ated feature, especially its type and multiplicity. For simplifi-
cation we will later directly refer to these as a property’s type
and multiplicity. Optional property arguments can be specified
between curly braces ({ and }). This is detailed below. Identi-
fier service at line 4 is a property corresponding to reference
service of class Program (line 2, Listing 2).

As mentioned above, the textual representation of a property
depends on its type T . There are two possibilities corresponding to
the two main kinds of templates presented above:

• DataType. When T is a DataType, a primitive template is used.
This primitive template is chosen among those associated to

T . A specific template may be specified by its name using the
as = <name> property argument. If no explicit primitive tem-
plate is specified a default primitive template must be defined
for the type and will be used. Property name at line 8 is asso-
ciated to the String DataType. Primitive template identifier
specified at line 1 is therefore used to represent its value.

• Class. When T is a Class, the class template corresponding to
class T is used. Class template Service defined at lines 7-14
is thus used to represent property service at line 4.

The multiplicity of the property is used to know the number
of times the template must be used. A separator to be placed
between each use of the template may be specified using the
separator = <separator> property argument.

3.4 Grammar Generation from Basic Constructs
Following the informal semantics of each TCS construct pre-
sented above, a grammar can be generated from a KM3 meta-
model and a TCS model. We implemented this translation as the
TCS2ANTLR.atl ATL transformation, which will be made avail-
able on the GMT website [20]. Listing 4 gives the grammar excerpt
corresponding to KM3 and TCS excerpts of Listings 2 and 3. It
is written using ANTLR [8] version 2 (ANTLRv2) syntax and
stripped of the auto-generated annotations. These annotations build
the model while parsing but make the grammar less readable. A
lexical analyzer (or lexer) is also required. However, we only focus
on the parser, and therefore on the grammar here.

Listing 4. Annotation-free SPL grammar excerpt: Program and
Service (ANTLRv2 syntax with highlighted terminals)

1 identifier
2 : NAME
3 ;
4

5 program
6 : service
7 ;
8

9 service
10 : "service" identifier LCURLY
11 "processing" LCURLY
12 ( declaration ( declaration ) ∗) ?
13 ( session ( session ) ∗) ?
14 RCURLY
15 RCURLY
16 ;

The TCS2ANTLR.atl transformation implements a set of declar-
ative translation rules. A full description of these rules is out of the
scope of this work. Here is a brief description of the rules used for
the generation of Listing 4:

• PrimitiveTemplate to ProductionRule. Each primitive tem-
plate is translated into a production rule containing the corre-
sponding terminal (e.g. lines 1-3). This indirection is used to
ease annotation generation. Value conversions (e.g. string to in-
teger) can this way be centralized.

• ClassTemplate to ProductionRule. A production rule is cre-
ated for each class template (e.g. lines 5-7 and 9-16). The name
of the rule is the name of the template with a lowercase first
letter (ANTLR requirement for non-terminals). The content of
the rule is derived from the content of the template: translations
of syntactic elements (see the rules below) appear in the same
order.

• Keyword and Special Symbol to Terminal. Keywords are
translated into literal terminals (e.g. "service" line 10) and
special symbols into non-literal terminals (e.g. LCURLY line
10). The non-literal terminals must be defined in the lexer (e.g.
LCURLY: "{";).



Property kind Multiplicity Handling
lower upper

Mono-valued 0 1 Exactly one
1 1 occurrence

Multi-valued 0 ≤ n ≤ m m > 1 As if m = ∗
(see below)

0 * Zero or more
1 * One or more

1 < n * As if n = 1

Table 1. Handling of multiplicities by TCS

Properties are handled differently depending on their multiplicity.
Table 1 summarizes how multiplicities are handled by TCS. When
the upper bound equals to one we call the property mono-valued.
When it is greater than one we call the property multi-valued. Here
are the rules corresponding to both cases:

• Mono-valued Property to NonTerminal. A mono-valued
property is simply translated into a non-terminal, even when
it is optional (i.e. lower bound equals zero) in the metamodel.
This design choice is motivated by our belief that optionality
should be explicit. Therefore, a mono-valued property can only
be made optional by placing it within a conditional constructs
(see next section). The non-terminal symbol derived from the
property has the name of the non-terminal used for the property
type (either clas or a data type).

• Multi-valued Property to NonTerminals. Each multi-valued
property is translated into a sequence consisting of two non-
terminals with the same name. The name of the non-terminals
is the same as the non-terminal derived from the property type.
The second non-terminal is followed by a repetition construct
(i.e. * in ANTLRv2). Properties with fixed upper bound (de-
noted as m in the table, m > 1) are handled as unbounded.
This is a simplification, which could be tediously eliminated by
using m-times repetition of the same non-terminal plus appro-
priate grammar constructs. On the base of the experiments we
did this simplification does not lead to drawbacks. Separators
between elements, when any, are placed just before the non-
terminal and inside the repeated block. When the lower bound
(denoted as n in the table) is one nothing more is necessary.
When it is greater than one, we handle it as if it was one. This
second simplification could also be eliminated by expanding
as many non-terminals as necessary before the repeated block.
When the lower bound is zero an additional optionality con-
struct is appended (i.e. ? in ANTLRv2). This is the case for
declaration and session at lines 12 and 13. Special cases
such as in Listing 4 could be simplified (e.g. (declaration)*
instead of (declaration (declaration)*)?) because no
separator is specified. However, this is not necessary in prac-
tice so we decided not to introduce additional complexity in the
transformation rule.

3.5 Additional Constructs
In the previous sections we saw how basic TCS constructs can be
used to specify a simple syntax. These basic constructs are, how-
ever, not always powerful or convenient enough to handle more
complex syntaxes. We describe here some relatively simple TCS
constructs, which help overcoming some of basic constructs limi-
tations. Their semantics is briefly outlined. The rules to generate
grammar from these constructs are not detailed here because of
space constraints:

• Abstract ClassTemplates enable the navigation of inheritance
hierarchy. For each abstract class template a production rule is
generated. It has the form of an alternative of non-terminals
corresponding to the subclasses of its associated class. This
feature is typically used with abstract classes.

• Conditionals are used when the presence of a sequence of syn-
tactic elements in the concrete syntax depends on a condition.
A conditional construct specifies a condition, a sequence S1 of
syntactic elements to use when the condition is true, and an op-
tional sequence S2 to use otherwise. It is always possible to
evaluate the condition while serializing a model to text. The
condition is moreover specified so that it is reversible: it can be
used to set appropriate values in properties while parsing. The
condition is a conjunction of simple expressions. These expres-
sions can be:

A boolean property, which is set to true if S1 is recognized,
and to false if it is S2.

A comparison between an integer property and a literal
value, which can be used to set the property to this value
if S1 is recognized. If S2 is recognized, it must specify a
value for the property.

Non-emptiness test for a multi-valued property (syntax:
isDefined(<property>), which must be initialized in
S1 and not used in S2.

A conditional construct is used in Listing 10 at line 2. A variable
declaration is represented by its type, followed by its name,
then an optional initExp after an equals symbol (i.e. =), and
ends with a semi colon. The initExp is optional and the equals
symbol should only be there if there is an initExp. A condi-
tional construct is used to test if there is an initExp and only
represent the equals symbol and the initExp if it is the case.
We can see that the design decision described in Section 3.4 to
require explicit optionality of properties does not change any-
thing here. Because initExp is preceded by an equals symbol
it must be in a conditional.

• Operators can be specified with their priority, associativity
(left or right), symbol (e.g. ”+”), etc. OperatorTemplates may
then refer to these operators. An appropriate structure is created
in the target grammar. For instance, one rule is created per pri-
ority using the rule of higher priority. This works for LL(k) and
LALR(1) grammar generators. For LALR(1) grammar genera-
tors, operators may also be simply defined with their priorities.
The LALR(1) generated parser will then use this information
upon shift-reduce conflicts. It is not possible to give more de-
tails on this rather complex feature here. OperatorTemplates are
used in the SPL syntax for arithmetic expressions.

There are other constructs in TCS that are not essential. For
instance, there is a construct that enables reusing portions of a TCS
specification.

3.6 Symbol Table
The TCS syntactical constructs presented so far enable relatively
complex syntax specifications. For instance, the concrete syntax
of SPL, KM3, and TCS could mostly be specified in TCS with
these constructs only. There is, however, one major limitation: we
have only seen how composition references can be represented.
With composition references only, models are limited to trees.
By using references that cross the nesting/aggregation hierarchy
models become graphs. In the remaining part of this section we
call this type of references cross-references.

A TCS construct called symbol table makes the usage of cross-
references in models possible. The term “symbol table” is borrowed



from the similar concept of symbol table in compilation theory.
This feature will be illustrated on SPL variable declaration and us-
age. We first describe a problem related to cross-references in Sec-
tion 3.6.1. Then we give two different solutions. We show in Sec-
tion 3.6.2 how to overcome the problem by making a compromise
in the metamodel. Finally, we show in Section 3.6.3 how TCS sym-
bol table handling can be used to provide a better alternative.

3.6.1 Description of the Problem
Let us first consider the SPL metamodel excerpt given in Listing 5.
It corresponds to SPL variable declaration and usage. A Declara-
tion (lines 1-3) has a name (line 2). A VariableDeclaration (lines
5-8) is a Declaration with a type (line 6) and an initialization ex-
pression (initExp, line 7). A Variable (lines 10-12) refers to its
VariableDeclaration via reference source (line 11). This reference
is not a composition: its definition in KM3 does not include the
container keyword.

Listing 5. SPL metamodel excerpt: variable declaration and usage
1 a b s t r a c t c l a s s Declaration {
2 a t t r i b u t e name : S t r i n g ;
3 }
4

5 c l a s s VariableDeclaration ex tends Declaration {
6 r e f e r e n c e type c o n t a i n e r : TypeExpression ;
7 r e f e r e n c e initExp [0−1] c o n t a i n e r : Expression ;
8 }
9

10 c l a s s Variable {
11 r e f e r e n c e source : Declaration ;
12 }

Listing 6 gives a first naive encoding of the corresponding
concrete syntax. Property source (line 6) is specified as if it was a
composition reference (i.e. like type and initExp at line 2). This
does not work. The generated grammar illustrates the problem.

Listing 6. Erroneous SPL TCS model excerpt: variable declaration
and usage

1 t empla te VariableDeclaration
2 : type name ( i s D e f i n e d ( initExp ) ? "=" initExp ) ";"
3 ;
4

5 t empla te Variable
6 : source
7 ;

Listing 7 gives the excerpt of the SPL grammar generated from
the erroneous specification given in Listing 6. Property source
has been transformed into a non-terminal corresponding to Vari-
ableDeclaration. With such a grammar, line 7 of Listing 1 would
look like: return forward uri us = ’sip:phoenix@barbade.enseirb.fr’;.
This is incorrect since it should look like: return forward us;.

Listing 7. Erroneous ANTLR grammar excerpt for Variable
1 variable
2 : variableDeclaration
3 ;

Actually, the textual representation of a variable is not its dec-
laration but simply an identifier. Listing 8 gives an excerpt of
the correct grammar. Property source is now represented by the
identifier non-terminal. This new grammar is a correct repre-
sentation of the syntax used in Listing 1.

Listing 8. Correct ANTLR grammar excerpt for Variable
1 variable
2 : identifier
3 ;

Figure 4. Simplified model corresponding to SPL example

There are two main possibilities to get this result. The first one
is to make a compromise in the metamodel by forbidding the use of
cross-references. The second one is to use TCS symbol table. We
consider both approaches below.

3.6.2 Making a Compromise on the Metamodel
Since cross-references are a problem, let us first try to not use them.
Therefore, we replace the source cross-reference from Variable
to VariableDeclaration by a simpler name-based reference. Listing
9 gives the corresponding excerpt of SPL metamodel. The only
change with respect to Listing 5 is that a Variable now simply refer
to its Declaration by name (attribute referredVariableName
line 11). This kind of reference does not directly attach a variable
to its declaration and is typical in Abstract Syntax Trees (ASTs).

Listing 9. SPL metamodel excerpt: VariableDeclaration, tree ver-
sion

1 a b s t r a c t c l a s s Declaration {
2 a t t r i b u t e name : S t r i n g ;
3 }
4

5 c l a s s VariableDeclaration ex tends Declaration {
6 r e f e r e n c e type c o n t a i n e r : TypeExpression ;
7 r e f e r e n c e initExp [0−1] c o n t a i n e r : Expression ;
8 }
9

10 c l a s s Variable {
11 a t t r i b u t e referredVariableName : S t r i n g ;
12 }

The corresponding TCS excerpt is given in Listing 10. It only
uses constructs presented in previous sections. The corresponding
grammar is the correct one, which was given in Listing 8. Property
referredVariableName is indeed transformed into non-terminal
identifier because its type is data type String.

Listing 10. SPL TCS model excerpt: VariableDeclaration, tree
version

1 t empla te VariableDeclaration
2 : type name ( i s D e f i n e d ( initExp ) ? "=" initExp ) ";"
3 ;
4

5 t empla te Variable
6 : referredVariableName
7 ;

Figure 4 gives a simplified representation of the model corre-
sponding to Listing 1. We do not specify the type of the Vari-
ableDeclaration and of the Method, the direction of the Method,
and other details not relevant here. However, with the solution that
we have just considered the dashed arrow does not exist. The model
is limited to a tree.



3.6.3 Using TCS Symbol Table Handling
We show how TCS symbol table handling can be used to represent
cross-references. The objective is, on one hand, to generate the
same grammar as with the previous solution (i.e. Listing 8). On
the other hand, the model should be a graph with cross-references
instead of simply a tree. The dashed arrow of Figure 4 should be
directly represented in the model.

We are going to use the metamodel given in Listing 5, in which
a variable points to its declaration via cross-reference source
(line 11). Listing 11 gives the corresponding TCS model excerpt.
Firstly, VariableDeclaration has to be put in the current sym-
bol table (addToContext keyword on line 1). This means that
each time a variable declaration is encountered it is added to the
symbol table. Secondly, the representation of property source is
changed from the naive approach by adding property argument
refersTo = name (line 6). This means that each time a variable is
encountered, its source property will be set to the VariableDecla-
ration (type known from the metamodel) having the corresponding
name. This VariableDeclaration will be looked up in the symbol
table. The target property of refersTo (e.g. name here) must be of
type String.

Listing 11. SPL TCS model excerpt: improved VariableDeclara-
tion, graph version

1 t empla te VariableDeclaration addToContext
2 : type name ( i s D e f i n e d ( initExp ) ? "=" initExp ) ";"
3 ;
4

5 t empla te Variable
6 : source{ r e f e r s T o = name}
7 ;

The grammars generated from Listings 10 and 11 are identical
with the exception of their annotations. This is expected because in
both case we have the correct SPL grammar. The difference is in
the structure defined by the metamodel: a tree for Listing 10, and
a graph for Listing 11. Appropriate annotations get generated from
the TCS model of Listing 11 for:

• VariableDeclaration template (line 1): a piece of code putting
the declaration in the symbol table is added to the generated
production rule.

• Source property (line 6): a piece of code looking up a declara-
tion is added after the non-terminal corresponding to property
source. Look up is performed by searching for a declaration,
which name corresponds to the identifier of the variable.

The generated parser resolves symbol table references only after
having parsed the whole source string. This means that forward
references are allowed. References that cannot be resolved (e.g.
usage of an undefined variable) or can be resolved to multiple
targets (e.g. duplicate declaration of a variable) are reported as
errors. Some DSLs may require forward references to be reported
as errors too. In this case, an appropriate check should be performed
on the model after injecting it.

Actual symbol table handling in TCS is actually a bit more
complex but space limitation prevents us to fully describe it here.
We only mention an additional feature: there may be several nested
symbol tables. Each class template can specify the creation of a
new symbol table. This is declared using the context keyword in
the declaration of a template. Such a feature is used, for instance,
to prevent a variable declared in a given method from being used in
another. To this aim, template Method is declared with the context
keyword.

3.7 Specific Constructs for Model to Text
A TCS model specifies a concrete syntax for a DSL that can be
applied in both text-to-model and model-to-text directions. There
are, however, concerns that are specific to the model-to-text direc-
tion: coding style concerns and indentations. They also need to be
taken into account by TCS models. Coding style does not impact
the grammar, only the serialization of blanks (or any other ignored
tokens). Additional syntactic elements are provided for serializa-
tion support:

• Block. TCS blocks provide indentation information. They are
delimited by square brackets (i.e. [ and ]). By default, each
element contained in a block is on a separate line with proper
indentation. Each block may additionally have specific argu-
ments. Here are some of them:

nbNL is used to specify the number of new lines between
each element (nbNL = 1 by default).

indentIncr is used to specify the number of indenta-
tion level that are added to the current level by the block
(indentIncr = 1 by default).

Listing 12 shows how indentation information can be added to
the Service class template (originally defined in Listing 3). The
block around declarations and sessions at lines 3-6 spec-
ifies that the content of "processing""{""}" must be indented.
Moreover, two new lines should be inserted between each el-
ement. The outer block at lines 2-7 specifies that the content
of "service"name "{""}" should be indented. The inner block at
these same lines specifies that its content should be handled as
a single element (i.e. no new line between each of them and no
indentation increment). This is to make sure processing and
{ are not serialized on two separate lines. With this additional
information, proper indentation like in Listing 1 is achieved.

• Special Symbol Spacing Each special symbol definition can
declare how spaces should be written around it. By default,
symbols are neither prefixed nor suffixed with spaces be-
cause it is usually not necessary to disambiguate the grammar.
leftSpace (resp. rightSpace) declares that the symbol must
be prefixed (resp. suffixed) with a whitespace. leftNone (resp.
rightNone) declares that the symbol must not be prefixed
(resp. suffixed) with a whitespace even if the previous (resp.
following) symbol declared rightSpace (resp. leftSpace).

• Custom Separator. When none of the above constructs is
enough, custom separators may be used. For instance: <space>
to force the serialization of a space, and <newline> to force a
line feed.

Listing 12. SPL TCS model excerpt: Service with indentation
1 t empla te Service c o n t e x t
2 : "service" name "{" [ [
3 "processing" "{" [
4 declarations
5 sessions
6 ] {nbNL = 2} "}"
7 ] {nbNL = 0 , i n d e n t I n c r = 0} ] "}"
8 ;

Although no experiment has been conducted in this direction
yet, we believe that indentation information specified in TCS could
also be used by a text editor to provide automatic indentation.

4. Implementation Issues
First, we briefly mention two features of TCS that are not directly
related to the TCS language constructs:



• Traceability. The current implementation of TCS provides
text-to-model traceability by keeping line and column infor-
mation in models.

• Generic Editor. Textual Generic Editor (TGE) is a tool that
partly builds on TCS services. It is available as part of the AM3
project [20]. TGE provides a text editor which is parameterized
by information gathered from TCS models. An outline (i.e. tree
representation of a program) is generated using TCS text-to-
model ability. Hyperlinks and hovers (i.e. automatic display of
the target of a link) are provided using text-to-model traceabil-
ity.

Second, although the TCS tools already enable complex syntax
specification, they still have some limitations. We list here some of
them and try to provide some hints towards solutions:

• Error reporting ranges over two levels. Firstly, errors in TCS
and KM3 source models may prevent the correct generation of
the target grammar. These errors can typically be expressed as
OCL constraints over these source models. Consequently, error
checking is implemented in ATL using the solution presented
in [6]. Secondly, even when the target grammar is syntactically
correct, it may be ambiguous. Non-determinisms reported by
the parser generator (ANTLRv2 in our case) are not traced
back to corresponding TCS elements. A possible solution to
this problem would be to implement traceability between TCS
and KM3 models on one hand and the grammar on the other
hand. The discussion about grammar class below presents a
complementary solution: reducing the number of ambiguities
by using a more powerful parser generator.

• Grammar class depends on the parser generator that is used.
For instance, with ANTLRv2 it is a linear approximation of
LL(k). The new version of ANTLR (version 3, or ANTLRv3)
is LL(*) [22]. Porting TCS to ANTLRv3 requires to adapt the
generated grammar to ANTLRv3 syntax and API, which is
used by the generated annotations. This would provide a more
powerful tool: fewer grammars are ambiguous in LL(*) than
in LL(k). Similarly, TCS could also be ported to other parser
generators such as yacc, which is LALR(1).

• Lexical Analysis issues are not detailed in this work. Although
TCS provides some preliminary support to specify lexers, they
still need to be partially specified in ANTLRv2 syntax. Study-
ing common lexer usage should help extend TCS with appro-
priate constructs.

• Case insensitive languages are currently not correctly sup-
ported. Two aspects have to be taken into account: keywords
and identifiers. Preliminary experiments suggest that this issue
should not be difficult to solve

• Blanks delimited languages are yet another challenge since
they require a close cooperation between lexer and parser. The
TCS block construct, which is only used for pretty printing at
the moment, could probably be extended for this purpose. Spe-
cial literals could also be used to represent mandatory blanks.
However, we do not anticipate this issue to be easy to solve in
the general case.

• Complex References between model elements. The current
version of TCS only supports simple string-based references
such as the variable to variable declaration example presented
here. There are more complex scenarios, such as attaching a
method call to its corresponding method declaration (e.g. in
Java). These cannot be handled by TCS in its present version as
they require much more than simple string-based references. A
possible solution would be to have a pivot metamodel between
the grammar and the desired metamodel. In this pivot (i.e. a

syntactical metamodel) all necessary compromises are done.
Then, model transformations between both metamodels can be
written to resolve complex references. This pivot technique may
also be used to overcome other limitations of TCS.

5. Related Work
There exist various solutions to give concrete syntaxes to DSLs. In
this section, we focus on DSLs whose abstract syntax is defined as a
metamodel and a textual syntax is supplied. Below we comment on
some approaches for giving concrete syntax to modeling languages
in the context of MDE:

• XMI. The Object Management Group (OMG) default model
serialization standard is XML Model Interchange [23] (XMI).
It is based on XML, which may be considered as a special kind
of textual syntax. One of XML advantages is that it can be
parsed efficiently without knowing about the DTD or Schema
(i.e. metamodel). Another advantage of XMI compared to TCS
is that it does not need anything more than the metamodel.
This standard specifies rules to automatically derive the corre-
sponding Schema from the metamodel. However, XMI syntax
is rather verbose. It is intended for serialization and exchange
of models between modeling tools. It is difficult for humans to
directly use the XMI syntax for expressing models.

• HUTN. The OMG has also specified a standard for serializ-
ing models with a non-XML textual syntax. Similarly to TCS,
an implementation of Human Usable Textual Notation [24]
(HUTN) typically requires a parser generator, which is not the
case for XMI. In contrast to TCS, the grammar is automati-
cally generated. An obvious advantage of this approach is that
any model can be represented in textual notation at a very low
cost. However, HUTN imposes very strict constraints on the no-
tation. Users cannot provide their own syntax customizations.
TCS enables user-specified syntax with a greater flexibility than
HUTN and therefore the specification of more user-friendly
syntaxes.

• Code generation templates. Tools like EMF JET [16] (Java
Emitter Templates) enable flexible generation of code. This so-
lution is mostly unidirectional (model-to-text) but offers almost
total independance between the source metamodel and the tar-
get grammar. There need not even be a grammar at all. It is also
common to see code generators writen with templates, which
also perform a model transformation. For instance, UML to
Java code may be performed in one step with this solution. This
may be interesting in some cases, but we believe that splitting
the model transformation phase and code generation phase is
better. For UML to Java code generation we may have an ex-
plicit Java metamodel. An UML model is translated to a model
conforming to the Java metamodel and then the model is se-
rialized into code. We see at least two advantages of this ap-
proach. Firstly, the target language metamodel (e.g. Java) may
be reused to compute metrics, refactor code, transform to or
from other languages, etc. Secondly, the conceptual mapping
between source and target languages (UML and Java) is ex-
plicit while in the direct code generation it is hidden in syntax-
oriented code.

• MOF Model to Text. XMI and HUTN are not suitable for code
generation because there is no control on the target syntax.
Another OMG standard is consequently being worked on to
deal with this issue: Model to Text [25]. The requirements are
for unidirectional translation of models to text. The comments
and example given above about code generation templates are
also true for this solution. Moreover, we also expect that there
will soon be another MOF Text to Model standard.



• Defining a visual concrete syntax. The work presented in [26]
proposes an approach for defining visual syntaxes for modeling
languages. It is based on defining a set of mediator classes that
relate language metamodel elements and the classes for visual
elements (boxes, arrows, etc.). TCS differs from this approach
in two major points. TCS aims at textual syntax definition.
Instead of using a framework for defining mediator classes we
use a DSL for specifying the relations between the metamodel
and the grammar.

6. Conclusion
In this paper we presented TCS: a DSL for providing concrete syn-
taxes to DSLs defined in or with the AMMA framework. The con-
structs in TCS allows the software engineer to establish correspon-
dences between elements in the language metamodel and their syn-
tactic representation.

Our approach has several benefits. First, the developer is freed
from the need to specify a grammar and its annotation in order
to generate a parser. Instead she may focus on the syntax tem-
plates for language constructs and obtain the annotated grammar
automatically. Second, the usage of a language such as TCS leads
to a better separation of concerns. The details of the underlying
parser generator are hidden from the language designer. This fa-
cilitates the replacement of one parser generator system with an-
other. In the current implementation we rely on ANTLR version
2, which uses LL(k) grammars. Switching to another technology
should only require a new ATL transformation that generates an
annotated grammar for the new tool. TCS could this way bene-
fit from more powerful parser generators such as ANTLR version
3, which uses LL(*) grammars, or other tools e.g. using LALR(1)
grammars. Third, TCS specifications enable automatic generation
of bidirectional bridges that perform the tasks for text-to-model and
model-to-text conversion.

The automation that we pursue comes with paying the price of
certain compromises in the abstract and concrete syntaxes. The us-
age of TCS leads to less freedom in syntax customization com-
pared to an approach in which the grammar is specified by hand
and a dedicated parser is developed just for one specific language.
However, our goal is to provide a solution for rapid development
of concrete syntaxes for DSLs. If the problem at hand is to develop
a single, eventually general purpose language then the efforts for
developing a dedicated parser are worthwhile. If, however, a large
number of DSLs are to be developed quickly then an automated
generative solution is a better option.

Apart from the example presented throughout the paper (i.e.
SPL) we performed other experiments by applying TCS to the
languages found in AMMA: KM3, ATL, and TCS itself. We were
able to specify the syntaxes of these languages by using TCS. The
result of this experiment is encouraging since it shows that TCS can
handle non-trivial concrete syntaxes, such as the syntax of ATL,
which uses OCL, without making any critical compromise.
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[7] Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the
Large and Modeling in the Small. In Uwe Amann, Mehmet Aksit,
A.R., ed.: Proceedings of the European MDA Workshops: Founda-
tions and Applications, MDAFA 2003 and MDAFA 2004, LNCS
3599, Springer-Verlag GmbH (2005) 33–46

[8] Parr, T., Quong, R.: ANTLR: A Predicated LL(k) Parser Generator.
Software — Practice and Experience 25(7) (1995) 789–810
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