
Fit-sphere unwrapping and performance analysis of 3D fingerprints

Yongchang Wang, Daniel L. Lau∗, and Laurence G. Hassebrook

1 Quality St Suite 800, University of Kentucky, Lexington, KY, 40507, USA

∗Corresponding author: dllau@engr.uky.edu

Compiled July 26, 2010

In order to solve problems associated with conventional 2D fingerprint acquisition processes including skin
deformations and print smearing, we developed a non-contact 3D fingerprint scanner employing structured
light illumination that, in order to be backwards compatible with existing 2D fingerprint recognition systems,
requires a method of unwrapping the 3D scans into 2D equivalent prints. For the later purpose of virtually
flattening a 3D print, this paper introduces a fit-sphere unwrapping algorithm. Taking advantage of detailed
3D information, the proposed method defuses the unwrapping distortion by controlling the distances between
neighboring points. And experimental results will demonstrate high quality and recognition performance of
the 3D unwrapped prints versus traditionally collected 2D prints. Furthermore by classifying the 3D database
into high and low quality data sets, we demonstrate that the relationship between quality and recognition
performance held by the conventional 2D prints is achieved for 3D unwrapped fingerprints. c© 2010 Optical
Society of America

OCIS codes: 100.5010, 100.2960, 100.6890, 070.6110, 110.6880.

1. Introduction

Fingerprints are the friction ridge and furrow patterns
on the finger that have been extensively applied in both
forensic law enforcement and security applications [1–4].
But the acquisition, analysis, and recognition of fin-
gerprints are still considered by many experts to be
an active area of research [5–10]. Traditional finger-
print images are acquired by pressing or rolling a finger
against a hard surface (e.g., prism, silicon, polymer, in-
dex card) [7,11,12]; however, these contact-based appli-
cations often result in low quality prints [8, 13–17] due,
mainly, to the uncontrollability and non-uniformity of
finger pressure as well as from residues from the previ-
ous fingerprint.

In order to eliminate these drawbacks of traditional
2D scanning, non-contact fingerprint scanners have been
developed that include a broad set of 3D scanners [8,
14, 18–21]. Since the direct contact between sensor and
finger skin is avoided, these non-contact sensors con-
sistently preserve the fingerprints “ground-truth” and
achieve higher recognition performance. Among these
scanners, the TBS multi-camera touchless fingerprint
system developed in [19] acquires different finger views
that are subsequently merged to form a wrap-around 3D
fingerprint. In this system, the shape of finger is acquired
using the shape-from-silhouette technique without con-
tact between the elastic skin of the finger and any rigid
surface. Thus, the deformation of prints is greatly re-
duced.

Ridge information, in the TBS system, is extracted
from the finger surface reflection variation (albedo)
where, to be compatible with the legacy rolled finger-
print images used in Automated Fingerprint Identifica-
tion Systems (AFIS), the 3D touchless prints are un-
wrapped into 2D ones [22]. The unwrapping algorithm
tries to unfold the 3D prints in such a way that it

resembles the effect of virtually rolling the 3D on a
2D plane [22]. The drawback of using the shape-from-
silhouette technique is that only the shape of the finger
is obtained without the detailed 3D ridge information.
Thus, the distortion caused by the unwrapping algorithm
is difficult to control, and since the ridge information is
extracted from texture data, the obtained prints could
be affected by surface color, surface reflectance, and ge-
ometric factors as well as other imaging effects.

In [23], we presented an alternative approach to 3D
fingerprint scanning using structured light illumination
(SLI). Different from the system in [19], our system ac-
quires the detailed 3D information such that the ridge
information can be obtained from the surface geome-
try instead of the albedo. Many degrading factors from
the non-uniform surface conditions have been overcome,
and to be compatible with the conventional 2D prints,
a springs inspired algorithm was developed [24] for un-
wrapping the 3D scans. This algorithm was based upon
a web of virtual springs spanning the fingerprint surface
where, first, ridges were extracted from the surface. The
remaining 3D points were then treated as a mechani-
cal system in which points had mass, and these points
of mass were inter-connected by means of mechanical
springs. The mesh was then pressed down onto a flat
plane. As a non-parametric method, the computational
cost of the springs algorithm was high.

To reduce the computational cost and the distortion
caused by the springs unwrapping process, this paper
introduces a fit-sphere algorithm that is based on best
fitting a sphere to the 3D surface and then mapping the
original 3D points clouds, stored in Cartesian coordi-
nates, to spherical coordinate (θ, φ, ρ). Since the detailed
3D information is available for each point (pixel), the ini-
tial linear unwrapping mesh (θ, φ) will be re-sampled to
be non-linear such that the distance among neighboring
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Fig. 1. Non-contact 3-D fingerprint acquisition using
PMP technique.

pixels matches the required resolution (500 ppi) of 2D
prints. Finally after mapping to spherical coordinates,
fingerprint ridges will be extracted from depth by ap-
plying a band-pass filter to the ρ dimension where the
low-frequency, smooth contours of the finger surface as
well as the high-frequency, noise fluctuations will be re-
moved. Since this algorithm is developed from paramet-
ric unwrapping methods, the computational cost is re-
duced compared to the springs algorithm, and by taking
advantage of detailed 3D information, the unwrapping
based on the non-linear mesh achieves less deformation.

In order to evaluate the quality of the resulting 2D
equivalent prints, this paper will make use of the qual-
ity analysis metrics originally tested in [23] that will be
applied to the 3D unwrapped fingerprints. For compar-
ison, we will apply the same metrics to the equivalent
prints produced using the recognition algorithm devel-
oped by National Institute of Standards and Technol-
ogy (NIST). Experimental results will show that the
unwrapped prints, produced by our technique, achieve
high recognition performance. Furthermore by classify-
ing the 3D scans into either high and low quality data
sets and performing matching within and between the
two sets, we will show that high quality 3D unwrapped
prints achieve a higher recognition performance than the
low quality ones. Thus, we will demonstrate the relation-
ship between quality and recognition performance, held
by 2D prints, is also true for the 3D unwrapped ones
– lending credence to the theory that the NIST image
quality metrics are indicators of matching performance
when one lacks large scale databased by which matching
performance is adequately evaluated.

This paper is divided into sections such that we
present a brief description of the 3D data acquisition
procedures in Sec. (2). Section (3) introduces the fit-
sphere algorithm, while in Sec. (4), we perform both ana-
lyze scan quality and recognition/matching performance,
demonstrating that the relationship between quality and
recognition performance for conventional 2D prints also
applies to 3D unwrapped prints. The conclusions and
future work is presented in Sec. (5).

2. 3D Fingerprint Acquisition

The 3D fingerprint prototype was developed by Flash-
scan3D LLC and the University of Kentucky using multi-
pattern, phase-measuring profilometry (PMP), shown in
Fig. 1 and described in [25–27]. Compared to other meth-
ods of 3D range sensing such as stereo vision and laser
scanning, multi-pattern SLI has the advantage of being
low cost, having fast data acquisition and processing,
and achieving high accuracy with dense surface recon-
structions [25]. PMP or the sinusoidal fringe pattern, in
particular, is employed because of its high efficiency and
robustness to de-focus [26,28].

In PMP, the series of N sinusoidal light patterns, pro-
jected onto the target surface, is expressed as [29]

Ip
n(xp, yp) = Ap + Bpcos[ε(xp, yp) +

2πn

N
], (1)

where xp and yp are two constants of the projector, and
2πn
N is the shifted phase of the N patterns. The term

ε(xp, yp) is the phase of the current pixel assigned as

ε(xp, yp) =
2πfyp

L
, (2)

where L is the length of the pattern, and f is the fre-
quency of the sinusoidal signal. From the viewpoint of
the camera, the received image is distorted by the target
surface topology and is expressed as [26]

Ic
n(xc, yc) = Ac(xc, yc) + Bc(xc, yc)cos[ε(xc, yc) +

2πn

N
].

(3)
The term ε(xc, yc) represents the phase of the signal at
point (xc, yc) and can be obtained, if N ≥ 3, as

ε(xc, yc) = atan

[
U(xc, yc)
V (xc, yc)

]

= atan

{
sin[ε(xp, yp)]
cos[ε(xp, yp)]

}
, (4)

where

U(xc, yc) =
N∑

n=1

[Ic
n(xc, yc)sin(

2πn

N
)], (5)

and

V (xc, yc) =
N∑

n=1

[Ic
n(xc, yc)cos(

2πn

N
)]. (6)

For high frequency PMP patterns, the phase ε(xc, yc)
obtained from Eq. (4) is unwrapped into [0, 2πf) [30].
Thus from Eq. (2), the projector coordinate yp can be
recovered as

yp(xc, yc) =
ε(xc, yc)L

2πf
. (7)

The 3D information is computed from the pre-calibrated
triangulation [27].
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(a) (b) (c) (d)

Fig. 2. (a) Front view of a 3D fingerprint. (b) Side view of the 3D print. (c)-(d) A cropped and rotated piece of the
3D print. The 3D data is shown with depth rendering. The full fingerprint area approximately spans 21 by 27 mm
with point spacing between 20 to 25 µm.

Further, the term Bc(xc, yc) in Eq. (3) is computed as

Bc(xc, yc) =
2
N

[U2(xc, yc) + V 2(xc, yc)]
1
2 , (8)

such that Bc(xc, yc) can be thought of as the amplitude
of the sinusoid reflecting off of a point on the target
surface. So, it is used to remove the shadow noise and
extract the fingerprint from the background. In prac-
tice, our system projects 10 high frequency PMP pat-
terns to acquire 3D data. The resolution of the camera
is 1392 pixels × 1040 pixels (H ×W ). An example 3D
fingerprint is shown in Fig 2 which displays several dif-
ferent views of the obtained 3D print. The width of the
3D print is about 850 points and the height is about
1170 points. Depending on the depth, the lateral spac-
ing between points varies from 20 to 25 µm. Most of the
camera’s field of view was occupied by the finger surface.
Currently the system takes 0.7 second to scan a finger.
So, to minimize the effects of finger movement and depth
of focus, the finger nail rests against a support.

3. 3D Fingerprint Unwrapping

Creating a flattened print from the 3D scan requires the
processing steps of: (1) fitting a sphere to the scanned
point cloud; (2) creating linear unwrapping maps; (3)
correcting for distortion, and (4) extracting ridges.

A. Sphere Fitting

A sphere can be defined by specifying a center point
(xc, yc, zc) and radius r. The distance between a point
on the print surface and a point on the sphere surface is
obtained as

d = [(xk − xc)2 + (yk − yc)2 + (zk − zc)2]
1
2 − r, (9)

where (xk, yk, zk) is a point on the 3D print. For a 3D
print with a total K points (K > 4), Eq. (9) can be
solved by the least square fitting algorithm [31]. The
sphere center point (xc, yc, zc) and radius r are then ob-
tained.

Now in order to ensure that the unwrapping process is
started from the center of the print, we choose to adjust
the coordinates such that the north pole of the sphere (z
axis) is coming out from the center of the scanned print.
To do so, the coordinates of the points on the prints are
changed to

xk = xk − xc −
∑g=K

g=1 (xg − xc)
K

, (10)

yk = yk − yc −
∑g=K

g=1 (yg − yc)
K

, (11)

and
zk = zk − zc. (12)

The point cloud is then translated in Cartesian space
such that the center of the sphere is mapped to (0, 0, 0).
The Cartesian coordinates (xk, yk, zk) are then converted
to spherical coordinates (θk, φk, ρk) where the θk and φk

are in unit of radians, and ρk is the distance from the
center of the sphere to the kth point on the print surface.

B. Linear Unwrapping Maps

The unwrapping mesh consists of a theta and phi map,
where the two linear theta and phi maps are created
according to

θlinear
l1 = (l1 − 1)tθ + θmin, (13)

and
φlinear

l2 = (l2 − 1)tφ + φmin, (14)

where l1 = 1, 2, ..., L1 and l2 = 1, 2, ..., L2. The terms L1

and L2 are the height and width of the maps in pixels.
The term θmin is the minimum value in {θk}, φmin is
the minimum value in {φk}, and tθ and tφ are the step
values assigned as

tθ = min(|θmean
w−1 − θmean

w |), (15)

and
tφ = min(|φmean

h−1 − φmean
h |), (16)
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Fig. 3. (a) The linear theta map. (b) The linear phi map.
The linear maps’ width (pixels), L1 = 1200; and the
height (pixels), L2 = 960.

where θmean
w is the mean of θ values in the same row of

the fingerprint scan, and φmean
h is the mean of φ values

in the same column. Thus,

L1 =
max(θk)−min(θk)

tθ
(17)

and

L2 =
max(φk)−min(φk)

tφ
(18)

with the points in the same column of the theta map hav-
ing the same value. And the points in the same row of the
phi map having the same value. An example of the linear
theta and phi maps are shown in Fig. 3 where L1 = 1200
and L2 = 960. The print is up-sampled during linear un-
wrapping to preserve information. For each point (l1, l2)
on the two maps, the mesh value is (θlinear

l1 , φlinear
l2 ). The

corresponding value of ρl1,l2 is obtained from bi-linear
interpolation to the 3D fingerprint (θk, φk, ρk).

After obtaining the linear theta, linear phi, and rho
maps, we define the distance between two horizontal
(along L1 direction) neighboring points as

dtheta
l1 = |θl1+1 − θl1|ρl1+1 + ρl1

2
, (19)

and the distance between two vertical (along L2 direc-
tion) neighboring points as

dphi
l2

= |φl1+1 − φl1|ρl1+1 + ρl1

2
. (20)

The distances along a horizontal line is plotted in Fig. 4
where the high frequency wave is due to the ridges, while
the lower frequency curve of the cross section indicates
that distortion exists in the rho map.

C. Distortion Correction and Ridge Extraction

In order to defuse the distortion and scale the image
to the required resolution, we create non-linear theta
and phi maps to achieve our desired resolution of 500
ppi where the distance between two neighboring points
should be around D = 0.0508 mm. To reduce the noise
in the rho map, we first apply a low pass filtering by
means of a 15 × 15 Gaussian filter kernel with σ = 5.
Then, we resize the linear theta map along the horizon-
tal direction. The map is scaled from L1×L2 to J1×L2.
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Fig. 4. The distance cross section of the up-sampled print
along the horizontal (theta) direction; linear unwrap-
ping.

The middle line of the linear map is filled into the center
of the scaled map such that θJ1/2 = θL1/2. For the points
in the left part of the non-linear map, the neighboring
two points have

D = (θj1−1 − θj1)
ρlp

j1 + ρlp
j1−1

2
, (21)

where ρlp
j1 and ρlp

j1−1 denote the low pass filtered rho map.
To reduce the computational cost, we take ρlp

j1−1 ≈ ρlp
j1.

Thus, the values of ρlp are further low pass filtered, and

θj1−1 = θj1 +
D

ρlp
j1

. (22)

For the points in the right part of the non-linear map,
the theta values “spread” from middle to right such that

θj1+1 = θj1 − D

ρlp
j1

. (23)

With the resized theta map, the phi map is correspond-
ingly resized to J1×L2 by linear interpolation. Similarly,
we resize the phi map to J1 × J2, with φJ2/2 = φL2/2,
such that





φj2−1 = φj2 + D

ρlp
j2

if j2 < J2
2

φj2+1 = φj2 − D

ρlp
j2

if j2 > J2
2





(24)

So through the above procedures, the linear theta and
phi maps in Fig. 3 will be no longer linear where the
non-linear maps are shown in Fig. 5. Based on the non-
linear maps, the 3D fingerprint is unwrapped from the
3D scan (θk, φk, ρk) by bi-linear interpolation.

So while the non-linear maps distort the theta and
phi values, they also minimize distortion during un-
wrapping of the 3D fingerprints where the distance be-
tween two neighboring points (Eqs. (19) and (20)), either
along the horizontal or vertical direction, will be close to

4



100 200 300 400 500 600

100

200

300

400

500

600
100 200 300 400 500 600

100

200

300

400

500

600

(a) (b)

Fig. 5. (a) The non-linear theta map. (b) The non-linear
phi map. The non-linear maps’ width (pixels), J1 = 600;
and the height (pixels), J2 = 600.
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Fig. 6. (a) The distance cross section of the down-
sampled print along the horizontal (theta) direction;
non-linear unwrapping. (b) The distance cross section
of the down-sampled print along the vertical (phi) direc-
tion; non-linear unwrapping.

0.0508 mm. The print is down-sampled during the non-
linear unwrapping to achieve the required resolution 500
ppi. As seen from Fig. 6, the distortion in Fig 4 is re-
duced, and the ridge information is preserved (the high
frequency wave). Further, we implement band-pass filter-
ing by means of a 12× 12 Gaussian low pass filter with
σlp = 4 followed by a 6×6 Gaussian high pass filter with
σhp = 2. The filtered image is histogram equalized for
final result. The unwrapped result is shown in Fig. 7.
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Fig. 7. The final 3D unwrapped fingerprint down-
sampled to 500 ppi. The width of the resulting image
is 450 pixels and the height is 510 pixels.

4. Experimental Results and Discussion

For the purpose of quality and recognition performance
analysis, a 3D fingerprint database was created using the
3D fingerprint prototype at University of Kentucky, and
a 2D traditional ink rolled fingerprint database was col-
lected by a trained operator at the University of Ken-
tucky’s campus police department. The 3D database
consists of 450 prints from 30 index fingers where each
finger was scanned 15 times. All fingers were scanned
using the 3D fingerprint scanner described in Sec. 2.
The camera resolution of the scanner was 1392 pixels×
1040 pixels (H × W ), where depending on the depth,
the lateral spacing between points typically varies from
20 to 25 µm. The obtained 3D fingerprints were fur-
ther unwrapped by the fit-sphere algorithm, which un-
wrapped and down-sampled the 3D prints to the un-
wrapped prints with resolution of 500 ppi. The 2D print
database has 150 prints from 15 different subjects (per-
son) with each of their 10 fingers rolled once. The reso-
lution of 2D prints is also 500 ppi.

A. Quality Analysis

In order to assess quality, we rely on the NIST Finger-
print Image Software (NFIS) [32]. As we shown in [23],
out of the 11 identified metrics, 4 were found to be most
suitable for evaluating quality: (1) local image quality,
(2) minutiae quality, (3) classification confidence num-
ber, and (4) overall image quality number. In particu-
lar, a superior scanning technology should generate more
blocks with high local quality (zone4 representing the
highest local quality), a higher number of reliable minu-
tiae (greater than 20), a higher confidence number on
classification, and a lower overall image quality number
(1 representing the highest overall quality).

With regards to local image quality scores, NFIS di-
vides the input images into blocks with 8 × 8 pixels in
each block and assign a local quality number to the block
with quality zone4 representing the highest local qual-
ity [32]. Figure 8 (a) shows that both 3D and 2D follow
a similar trend decreasing in the percentage of quality
zone4 blocks with increasing overall quality number. For
prints with the same overall quality numbers, the 3D
unwrapped prints achieve higher percentage of quality
zone4 than that of 2D ink rolled prints. The 3D prints
outperform the 2D ones in local quality analysis.

As for minutiae points, these features are widely used
for fingerprint verification [9,16]. The NFIS system takes
a fingerprint image and locates all the minutiae in the im-
age, assigning to each minutiae point its location, orien-
tation, and type. NFIS also calculates the quality and re-
liability of the detected minutiae with a confidence score
that ranges from 0.0 to 1.0. The minutiae with quality
greater than 0.75 are regarded as high quality. Tabassi et
al [32] observed that, generally, if a fingerprint has more
than 20 of these high quality minutiae, it would be more
likely to be identified correctly by fingerprint recognition
systems. From Fig. 8 (b), it can be seen that, again, the
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Fig. 8. (a) Percentage of blocks in quality zone 4 which is highest local quality zone, with respect to different overall
quality numbers. (b) Number of minutiae with quality greater than 0.75, with respect to different overall quality
numbers. (c) Classification confidence number, with respect to different overall quality numbers.

trends of high quality minutiae are similar for both data
sets from quality number 1 to 5. For the same quality
number prints, more high quality (> 75%) minutiae are
detected in the 3D set than the 2D set.

Our third metric, classification of the fingerprint pat-
tern is important for improving recognition speed. The
NFIS system classifies the prints into basic pattern-level
classes of (1) arch; (2) left loop; (3) right loop; (4) scar;
(5) tented arch; or (6) whorl, along with a confidence
number ranging from 0.0 to 1.0 where 1.0 represents
the highest confidence of classification. Figure 8 (c) in-
dicates that in quality number 1 and 3, the 2D and 3D
achieve the same or close performance in classification
confidence, while in quality number 2 and 4, the 2D per-
forms better than the 3D. 3D outperforms 2D in quality
number 5. However as shown in Fig. 8 (c), either 3D or
2D is stably increasing or decreasing with the increasing
of overall quality number. Thus, 3D unwrapped finger-
prints achieve a higher quality than 2D ink rolled finger-
prints in local quality and minutiae detection. Compared
to the springs algorithm [24], the quality of the 3D un-
wrapped prints is improved.

B. Recognition Performance

In this section, recognition performance of 3D prints is
studied. While many matching algorithms have been de-
veloped [10,33,34], we will focus on the BOZORTH3 sys-
tem included in the NFIS package. It employs features to
minutiae of the fingerprints, and produces a real valued
similarity score. The higher the score is, the more likeli-
hood that the two fingers are from the same finger of the
same subject. If the input two fingerprints are actually
from the same finger, then we refer to the score as a gen-
uine score [6]; otherwise, it is noted as impostor score [6],
if the two fingerprints are from the same finger but of dif-
ferent subjects. For each pair of two fingerprints that are
from the same finger of the same subject, we obtain one
genuine score with our database producing 3,150 gen-
uine scores. Correspondingly, each fingerprint is matched
with non-matching fingerprints (the same finger of differ-
ent subjects) where the other fingerprints are randomly
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Fig. 9. The distributions of genuine and impostor scores
for 3D unwrapped fingerprints.

selected. For this study, we will match the number of
genuine scores with 3,150 impostor scores.

Looking at the histograms of genuine and impos-
tor scores, there should, ideally, be no overlap between
the two histograms with genuine scores having higher
value than impostor; however in practice, overlap ex-
ists. As seen in Fig. 9, there is some amount of overlap
between the genuine and impostor scores; furthermore
based on the distributions, we derive the receiver oper-
ating characteristic (ROC) in Fig. 10, which is a state-
ment of the performance of the fingerprint verification
system [6, 16, 35–37]. The false accept rate (FAR) and
true accept rate (TAR) values are computed at each op-
erating threshold. For a generally specific FAR, 0.1, the
TAR for our system achieves 0.988.

C. Relationship between Quality and Recognition Per-
formance

For 2D fingerprints, the higher quality the print is, the
higher recognition performance the print is expected to
achieve. In order to study the relationship between qual-
ity and recognition performance for 3D unwrapped fin-
gerprints, we divide the 3D database into two groups:

6



0 0.05 0.1 0.15 0.2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FAR

T
A

R

Fig. 10. The ROC of 3D unwrapped fingerprints, TAR
versus FAR.

high (if the overall quality number is 1 or 2) and low (if
the overall quality number is 3, 4 or 5) quality groups.
The recognition is regarded as high quality matching if
the two matched prints are both high quality, regarded
as mixed quality matching if one print is high quality
and the other is low quality, and regarded as low quality
matching if both prints are low quality. Totally, we have
910 high quality matchings, 1,260 mixed quality match-
ings, and 980 low quality matchings.
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Fig. 11. (a) The distributions of genuine scores for
the high, mixed and low quality matchings for 3D un-
wrapped fingerprints. (b) The distributions of impostor
scores for the high, mixed and low quality matchings for
3D unwrapped fingerprints.

Figure 11 (a) shows the genuine scores for high, mixed,
and low quality matchings. For the data set with higher
genuine scores, the superior recognition performance is
expected. The mean value of the high quality match-
ings is 122.43, whereas that of the mixed matchings is
75.73, and that of the low quality matchings is 52.31.
Thus, the data set with higher overall quality performs
the best when two prints from the same finger, of the
same subject, are matched. Correspondingly, the impos-
tor scores are shown in Fig. 11 (b), where a superior data
set is expected to have lower impostor scores. The mean
value of high quality matchings is 9.29, whereas that of
the mixed matchings is 10.74, and that of the low qual-
ity matchings is 13.39. Again, the set with higher overall
quality achieves the better performance when two prints
from the same finger but of two different subjects are

matched.
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Fig. 12. The ROC of the high, mixed and low quality
matchings for 3D unwrapped fingerprints, TAR versus
FAR. fig12.eps.

Based on the distributions of genuine and impostor
scores, the ROC curves for high, mixed, and low quality
matchings are shown in Fig. 12. For high quality match-
ings when the FAR is 0.01, the TAR is 0.986 while, for
mixed quality matchings, the TAR is 0.975. For low qual-
ity matchings, the TAR is 0.71. Hence, the higher qual-
ity data set achieves the better recognition performance.
Thus, the relationship between overall quality and recog-
nition performance held by the conventional 2D prints is
also true for 3D unwrapped fingerprints.

5. Conclusion and Future Work

In this paper, a fit-sphere unwrapping algorithm was in-
troduced for depth-detailed 3D fingerprints. By finding
the best fit sphere, the algorithm unwraps the 3D prints
where, since the detailed 3D information is known, the
distortion caused by unwrapping is reduced by control-
ling the local distances between neighboring points. De-
tailed experimental analysis of the 3D unwrapped finger-
prints were given and discussed in Sec. 4, which indicated
a higher quality in local quality zone and minutiae detec-
tion of the 3D unwrapped prints versus traditional 2D
ink rolled prints. The 3D unwrapped prints also achieved
good recognition performance. Further by classifying the
3D database into high and low quality sets, we demon-
strated that the relationship between overall image qual-
ity and recognition performance of 3D unwrapped prints
is the same as the conventional 2D prints. Future work
will include testing with a larger database, interoperabil-
ity [35] between 3D and 2D fingerprints, and employment
of multiple cameras [27, 28], to obtain rolled-equivalent
scans and higher depth precision.

This work is partially funded by Flashscan3D, LLC,
Richardson, TX and National Institute of Hometown Se-
curity, Somerset, KY.
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