
OverSim: A Flexible Overlay Network Simulation
Framework

Ingmar Baumgart, Bernhard Heep, Stephan Krause
Institute of Telematics

Universität Karlsruhe (TH)
Zirkel 2, D–76128 Karlsruhe, Germany

Email: {baumgart, heep, stkrause}@tm.uka.de

Abstract— A fundamental problem in studying peer-to-
peer networks is the evaluation of new protocols. This
paper presents OverSim, a flexible overlay network simu-
lation framework based on OMNeT++. It was designed to
fulfill a number of requirements that have been partially
neglected by existing simulation frameworks. OverSim
includes several structured and unstructured peer-to-peer
protocols like Chord, Kademlia and Gia. These protocol
implementations can be used for both simulation as well
as real world networks. To facilitate the implementation of
additional protocols and to make them more comparable
OverSim provides several common functions like a generic
lookup mechanism for structured peer-to-peer networks
and an RPC interface. Several exchangeable underlay
network models allow to simulate complex heterogeneous
underlay networks as well as simplified networks for large-
scale simulations. We show that with OverSim simulations
of overlay networks with up to 100,000 nodes are feasible.

I. INTRODUCTION

Nowadays the analysis of overlay protocols is an
important task, because peer-to-peer applications are
widely used and deployed. In the ScaleNet [1] project
several academic research groups and industry partners
are working on next generation networks focusing on
fixed-mobile convergence and fast service deployment.
Our goal in ScaleNet is to study how overlay networks
can support such fast and cost efficient deployment of
new services.

Next generation networks comprise heterogeneous ac-
cess networks and a high mobility rate of user terminals.
A foreseen feature of these networks could be the support
of overlay networks by dedicated devices in the access
networks to alleviate user terminals from overlay traffic.
Existing peer-to-peer simulators do not support simula-
tion of networks with these special properties. They also
exhibit several major drawbacks described below. There-
fore, we decided to develop a more flexible simulation

framework called OverSim based on the discrete event
simulation system OMNeT++ [2].

The rest of the paper is organized as follows: In
section II we take a closer look at existing peer-to-peer
simulators to avoid their shortcomings in our simulator.
In section III we compile a list of requirements that
we think are essential for a new approach. The detailed
design of our simulation framework is described in
section IV. In section V we evaluate the performance
of OverSim.

A validation of the first simulation results is shown
in section VI. Finally we present our ideas for enhance-
ments and possible next steps for discussion in section
VII followed by the conclusion in section VIII.

II. RELATED WORK

There are several peer-to-peer simulators available:
P2PSim [3] is a discrete event simulator for structured

overlay networks written in C++. It comes with seven
peer-to-peer protocols implemented including the more
recent protocols Koorde [4] and Kademlia [5]. There is
a number of different underlaying network models, all
of them, however, on a rather abstract level of detail,
making it hard to simulate the dedicated overlay devices
in the access networks mentioned above. P2PSim is
largely undocumented and therefore hard to extend.

OverlayWeaver [6] is a peer-to-peer overlay construc-
tion toolkit written in Java which can be used for easy
development and testing of new overlay protocols and
applications. The toolkit contains a so-called Distributed
Environment Emulator which invokes and hosts multiple
instances of Java applications on a single computer.
This allows the simulation of up to 4,000 nodes. Since
simulations have to be run in real-time and there is no
statistical output, its use as an overlay network simulator
is very limited.



PlanetSim [7] is an object-oriented simulation frame-
work for overlay networks and services written in Java.
It has a well-structured and modular architecture and
makes use of the Common API [8]. In addition to the
overlay protocols Chord [9] and Symphony [10] there
are several services like CAST and DHT available on
application layer. PlanetSim offers only limited support
to collect statistics and has a very simplified underlying
network layer without consideration of bandwidth and
latency costs. This makes it difficult to simulate het-
erogeneous access networks and terminal mobility. It is
possible to visualize the overlay topology at the end of
a simulation run, but there is no interactive GUI.

A more comprehensive survey of peer-to-peer network
simulators can be found in [11], where the authors
show that most available peer-to-peer network simulators
have several major drawbacks limiting them in use for
research projects.

III. REQUIREMENTS

Our objective is to develop a novel overlay network
simulation framework that is able to fulfill all the needs
for a complete analysis of overlay networks with focus
on large scale.

The requirements for such a simulation framework can
be summarized as follows:

• Scalability: The simulator should be able to run
simulations with a large number of nodes in a
reasonable amount of time.

• Flexibility: The simulator should facilitate the sim-
ulation of both structured and unstructured overlay
networks. The user should be able to specify all
relevant simulation parameters in a human readable
configuration file. The simulator should also be able
to provide node mobility and node failure, as well
as malicious behavior of nodes.

• Underlying Network Modeling: The underlying
network model should be exchangeable. On the
one hand a fully configurable network topology
with realistic bandwidths, packet delays and packet
losses should be provided. On the other hand there
should be fast and simple alternative models for
simulations with a large number of nodes.

• Reuse of simulation code: The provided imple-
mentations of overlay protocols should be reusable
for real network applications enabling researchers to
validate the simulator framework results by com-
paring them to the results from real-world test
networks like PlanetLab. Therefore, the simulation
framework should be able to handle and assemble

Fig. 1. Modular architecture of OverSim

real network packets and to communicate with other
implementations of the same overlay protocol.

• Statistics: The simulator should be able to collect
statistical data such as sent, received or forwarded
network traffic per node, successful or unsuccessful
packet delivery, and packet hop count. The output
needs to be in a format that is easy to postprocess
e.g. for generating gnuplot output.

• Documentation: For using and extending the sim-
ulator with e.g. new overlay protocols there should
be a comprehensive user manual. The source code
and the API have to be well documented.

• Interactive Visualizer: In order to validate and de-
bug new or existing overlay protocols there should
be a GUI, which visualizes both the topology of the
underlying network and the overlay topology in a
customizable way.

IV. DESIGN

OverSim was designed as a modular simulation frame-
work. An overview of its architecture is illustrated in Fig.
1. In the following we describe the contained modules
in detail.

A. Simulation framework OMNeT++

OverSim uses discrete event simulation (DES) to
simulate exchange and processing of network messages.
We make use of the open source simulation framework
OMNeT++ [2], which is free for non-profit use.

OMNeT++ is highly modular. Modules are defined
in a simple definition language called NED. They are
either compound modules, which are composed from



other modules, or simple modules, which are directly
implemented in C++. These modules communicate by
exchanging messages via gate connections.

To facilitate the implementation of new protocols
OMNeT++ includes a message generator that generates
C++ code from compact message definitions. If desired,
the generated classes can be extended by the user.

OMNeT++ implements many features needed for vi-
sualization. The built-in GUI displays networks topolo-
gies, nodes and messages. Its debug features allow for
deeper inspection of message contents and node vari-
ables. The GUI can be disabled for faster simulation
runs.

B. Underlying network model

As postulated in section III, an overlay simulator
should support different kinds of underlying network
models. We implemented three network models for Over-
Sim: Simple, SingleHost, and INET.

The most scalable is the Simple underlay. In this model
data packets are sent directly from one overlay node to
another by using a global routing table. Packets between
overlay nodes get delayed either by a constant period
of time or—for more realistic scenarios—by a delay
calculated from the nodes’ distance. For this, each node
is placed into a two-dimensional Euclidean space. In
addition the node is assigned to a logical access network
characterized by bandwidth bn, access delay dn and
packet loss, so that heterogeneous access networks can
be simulated. The end-to-end packet delay de of packet
P with length lP between overlay nodes A and B is then
calculated as follows

de = d1 +
lP
b1

+ c · ‖A − B‖2 + d2 +
lP
b2

where c is constant.
This way, all relevant influences of the underlying

network can be simulated with one single simulation
event. Even node mobility can be achieved by changing
coordinates, access network characteristics and the IP
address of a node. Due to the low simulation overhead
of these techniques, the Simple model leads to a high
level of accuracy and the ability to simulate networks
with a large number of nodes.

For reusing overlay protocol implementations without
code modifications in real networks like PlanetLab, we
developed the SingleHost underlay model. Here, each
OverSim instance only emulates a single host, which can
be connected to other instances over existing networks
like the Internet.

To enable the emulated host to communicate over real
networks, we implemented a new event scheduler for
OMNeT++. In contrast to the default scheduler, which
aims for fastest possible simulation, this scheduler slows
the simulation speed down to real time. If no simulation
events have to be processed, it reads data from a Linux
TUN networking device that provides packet reception
and transmission for user space programs. The received
data packets are converted to OMNeT++ packets and
then passed to the “interface card” of the simulated single
node.

The INET underlay model is derived from the INET
framework of OMNeT++, which includes simulation
models of all network layers from the MAC layer on-
wards. It is useful for simulations of complete backbone
structures, if required. Since the INET framework is not
optimized for large scale networks, we had to profile the
code and added hash table based routing and interface
caches for faster forwarding of data packets.

With this complex underlay model we are able to
analyse the benefits that can be gained by placing overlay
devices into the access networks that can lead to opti-
mization of overlay topologies and reduction of packet
delay. As the INET framework contains also a model to
simulate the physical layer of IEEE 802.11 networks, it
can also be used to evaluate overlay protocols for ad hoc
networks.

Additionally, we extended the INET model with sim-
ilar techniques used in the SingleHost underlay model
described above. A special “router” module can be added
to the simulation scenario which acts as a gateway to a
real network. This can be used to demonstrate overlay
protocols with a limited number of physical devices by
connecting them to a large number of overlay nodes
emulated by OverSim.

All of the underlaying network models have a consis-
tent UDP/IP interface to the overlay protocols. Hence,
using a different underlaying network model is fully
transparent to the overlay layer.

C. Overlay protocols

Several overlay protocols have been implemented.
Most of them are structured peer-to-peer protocols like
Chord [9], Kademlia [5], Koorde [4], and Broose [12],
but unstructured peer-to-peer protocols like GIA [13] are
available as well. In addition to these typical overlay
protocols OverSim contains more specialized overlays
for exchanging event messages in peer-to-peer based
massively multiplayer online games like VAST [14] or
the publish/subscribe-based overlay described in [15].



Fig. 2. OverSim showing the overlay topology of Chord

To facilitate the implementation of new overlay pro-
tocols we identified several functions that many overlay
protocol implementations have in common and inte-
grated them into our simulation framework:

• Overlay message handling (RPC and statistical data)
• Generic lookup function
• Support for visualization of the overlay topology
• Bootstrapping support
The overlay message handler provides an RPC in-

terface to facilitate dealing with timeouts and packet
retransmission due to packet losses. It also collects
message related statistical data like the number of sent,
received, forwarded and dropped packets per node, as
well as the ratio of data to signaling traffic.

The lookup function separates the common func-
tionality of lookup mechanisms in structured overlay
networks and provides a generic iterative and recursive
lookup interface. This way, for each overlay protocol
only a method to query the local routing table has
to be implemented, which returns the closest node in
the overlay topology. The lookup function also includes
basic support to simulate malicious node behaviour.
The resilience of an overlay structure against attacks
of malicious nodes largely depends on the number of
disjoint overlay paths that exist between two arbitrary
nodes. Therefore, the lookup function makes use of these
redundant paths and can be used to measure the effects
of some attacks on lookup success.

The graphical user interface of OMNeT++ supports
debugging of new overlay protocols by showing trans-
ferred messages in detail. It is also possible to watch and
even change overlay specific routing tables and other in-

ternal states during run-time. OverSim gives developers
the ability to draw arrows between corresponding overlay
nodes to visualize the overlay topology in addition to the
underlay topology drawn by OMNeT++. This allows us
to demonstrate the effects of topology adaptation mech-
anisms. Fig. 2 shows the visualization of the overlay
topology for a Chord network.

A generic module called Global Observer has a global
view on the overlay network in every simulation. It
can fulfill several user-defined functions, but for now is
mainly used as a Bootstrap Oracle, providing the address
of a random node already in the overlay network to nodes
that want to join the overlay. The module can also be
used as a global statistics collector.

Sharing these mentioned common functions—which
are optional to use—among different overlay protocol
implementations avoids a time-consuming and error-
prone rewrite of code. Besides, this helps to make over-
lay implementations more comparable. An example for
this is that overlay protocols show the same behaviour if
lookup messages have to be retransmitted due to packet
loss.

The communication between overlay and application
makes use of the Common API [8]. Every overlay
protocol which wants to use this API has to provide
at least a key-based routing interface (KBR) to the ap-
plication. Overlay protocols that implement a distributed
hash table (DHT) can offer this service to the application
using the same interface. For protocols without such a
functionality a module which suplies a common DHT
can be placed between overlay and application layer
using the KBR interface.

D. Applications
With the Common API design a wide range of dif-

ferent applications that rely on key-based routing can be
evaluated with exchangeable overlays. Currently there is
a KBR test application implemented, that—depending
on parameter values—periodically sends test messages
to random overlay keys or nodeIDs and records message
delay and hop-count. More complex applications can be
composed of several logical tiers.

Applications we are working on at the moment are
the application layer multicast protocol Scribe [16] and
the communication abstraction Internet Indirection In-
frastructure [17].

V. PERFORMANCE

One important requirement is the scalability of the
simulator with regard to the number of nodes. We evalu-
ated the performance by running comparable simulations



100,000

10,000

1,000

100

10

1

0.1
100,00010,0001,000100

P
ro

ce
ss

in
g 

tim
e 

[s
ec

]

Number of nodes

0.
43

3.
7

0.
84

18
.2

88
.8

23
.9

14
6

1,
68

0
2,

98
5

2,
85

0

18,355

P
2P

S
im

 c
ra

sh
ed

OverSim (Simple underlay)
OverSim (INET underlay)
P2PSim

Fig. 3. Processing time as function of network size

with P2PSim and OverSim and measured computation
time and memory footprint. All experiments used the
Chord protocol with recursive routing on an Opteron 1.8
GHz machine with 8 GB memory. After joining a fixed
number of nodes we started to send messages to random
destination keys.

Two different underlying network models were used
for simulation runs with OverSim: Simple and INET. The
INET model contains detailed simulations of IP queueing
effects in intermediate routers on the overlay path. In
our experiments we used a small, randomly connected
backbone network with 10 Gbit/s links consisting of 20
backbone and 20 access routers. In contrast, the Simple
model only added a constant delay of 50 msec between
overlay nodes. The same constant delay model was also
used with P2PSim.

Fig. 3 plots the processing time needed to simulate
a time period of 1,000 sec dependent on the number
of nodes with a logarithmic scale. In our experiments
Chord’s stabilize messages were sent every 20 sec, the
finger table was updated every 120 sec and every 10 sec
each node started a lookup for a random key.

Both simulators can be used to simulate networks of
1,000 nodes in a couple of seconds. However, when
simulating a network of 10,000 nodes, P2PSim needs
45 min for a single simulation run and thus is about 20
times slower than OverSim. Our attempts to simulate a
network of 100,000 nodes with P2PSim lead to a crash
after running for several hours probably due to buffer
overflows. In contrast, with OverSim and the Simple
model we were able to simulate a similar run in less
than an hour.

The figure also shows the effect of the level of detail
of the underlaying network model on the simulator’s

 0

 2

 4

 6

 8

 10

 12

 14

100,00010,0001,00010010

P
at

h 
le

ng
th

Number of nodes

P
2P

S
im

 c
ra

sh
ed

OverSim
P2PSim

 0

 2

 4

 6

 8

 10

 12

 14

100,00010,0001,00010010

P
at

h 
le

ng
th

Number of nodes

P
2P

S
im

 c
ra

sh
ed

OverSim
P2PSim

Fig. 4. Path length as function of network size

performance. Due to the large number of events that
are generated when packets travel through the network
stacks of the intermediate routers, simulations with the
INET model are about 10 times slower than simulations
with the Simple model.

The memory consumption increases proportionally
with the number of nodes. Both P2PSim and OverSim
with the Simple model have a memory footprint of
about 35 kB per node. The more complex INET model
consumes about twice as much memory. These results
show that in the investigated scenarios simulations with
100,000 nodes are very feasible with OverSim.

VI. VALIDATION

A major problem when developing a new simulator is
the validation of the implemented protocols. As a first
step to validate the chord implementation we checked
the correctness of the stabilization protocol by constantly
performing lookups of existing nodeIDs under steady
churn. The lookup results showed that a consistent ring
topology was maintained on overlay layer and that the
overlay correctly recovered from node failures. This was
also visualized by the GUI. Furthermore, we measured
the path lengths dependent on the number of nodes
and compared them to the output of P2PSim. Fig. 4
shows that both simulators produce similar results. The
bandwidth consumption per node for routing table main-
tenance and lookup traffic calculated by both simulators
was also in the same order of magnitude.

VII. FUTURE WORK

At the moment we are working on the integration
of several new overlay protocols and applications into
the simulator. Additionally, existing implementations of



overlay protocols have to be verified by comparing
their simulation results with those produced by other
simulators.

While our underlay models allow us to configure a
number of parameters in the underlying network, there
is currently no support to import models of topology
generators. In order to achieve more realistic network
latencies in the Simple model, we are planing to extend
the basic synthetic coordinate model to be able to import
datasets from internet latency measurements.

Although the performance evaluation showed that
OverSim is quite scalable, we futher want to improve
ressource usage and compare it to a broader range of
simulators including PlanetSim.

VIII. CONCLUSION

In this paper we presented OverSim, a new overlay
network simulation framework. The framework was de-
veloped to overcome several drawbacks of existing peer-
to-peer simulators.

OverSim facilitates the implementation of new overlay
protocols by providing several functions many overlay
protocols have in common like overlay message han-
dling, visualization and a generic lookup mechanism.
We implemented different underlay network models to
support a broad range of simulation scenarios. The
SingleHost model e.g. allows to reuse protocol imple-
mentations in real-world networks like PlanetLab. As
OverSim is based on OMNeT++, OverSim benefits from
features like an efficient event scheduler and strong GUI
support.

Through scalable design we have easily achieved
to simulate a chord network with 100,000 nodes in
a reasonable amount of time. The large number of
implemented overlay protocols and the availability to
collect various statistical data make OverSim a powerful
tool for the peer-to-peer research community. OverSim
is being actively developed as an open source project on
http://www.oversim.org/ and is open to contri-
butions.

ACKNOWLEDGMENT

This research was supported by the German Federal
Ministry of Education and Research as part of the
ScaleNet project 01BU567.

REFERENCES

[1] M. Siebert, B. Xu, T. Banniza, R. Keller, A. Dekorsy,
J. Eichinger, R. Bless, I. Baumgart, and S. Stefanov, “ScaleNet
- Converged Networks of the Future,” it - Information Tech-
nology, Themenheft “IP basierte mobile Systeme”, vol. 5, pp.
253–263, Oct. 2006.

[2] A. Varga. Omnet++ community site. [Online]. Available:
http://www.omnetpp.org/

[3] J. Li, J. Stribling, R. Morris, M. Kaashoek, and T. Gil, “A
performance vs. cost framework for evaluating DHT design
tradeoffs under churn,” in INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties. Proceedings IEEE, vol. 1, Mar. 2005, pp. 225–236.

[4] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-
optimal distributed hash table,” in Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS ’03),
vol. Volume 2735/2003, 2003, pp. 98–107.

[5] P. Maymounkov and D. Mazires, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Peer-to-Peer
Systems: First InternationalWorkshop, IPTPS 2002 Cambridge,
MA, USA, March 7-8, 2002. Revised Papers, vol. Volume
2429/2002, 2002, pp. 53–65.

[6] K. Shudo. Overlay weaver. [Online]. Available: http://
overlayweaver.sourceforge.net/

[7] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, and
R. Rallo, “Planetsim: A new overlay network simulation frame-
work,” in Software Engineering and Middleware, vol. Volume
3437/2005, 2005, pp. 123–136.

[8] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica,
“Towards a common api for structured peer-to-peer overlays,”
in Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS ’03), vol. Volume 2735/2003, 2003, pp.
33–44.

[9] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-
peer lookup protocol for internet applications,” IEEE/ACM
Transactions on Networking, vol. 11, no. 1, pp. 17–32, Feb.
2003.

[10] G. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
hashing in a small world,” in 4th USENIX Symposium on
Internet Technologies and Systems, 2003, pp. 127–140.

[11] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai, “A
Survey of Peer-to-Peer Network Simulators,” Proceedings of
The Seventh Annual Postgraduate Symposium, Liverpool, UK,
2006.

[12] A.-T. Gai and L. Viennot, “Broose: a practical distributed
hashtable based on the de-bruijn topology,” in Fourth Inter-
national Conference on Peer-to-Peer Computing, 2004, Aug.
2004, pp. 167–174.

[13] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker, “Making gnutella-like P2P systems scalable,” in
SIGCOMM ’03. ACM Press, 2003, pp. 407–418.

[14] S.-Y. Hu and G.-M. Liao, “Scalable peer-to-peer networked
virtual environment,” in NetGames ’04: Proceedings of 3rd
ACM SIGCOMM workshop on Network and system support for
games. New York, NY, USA: ACM Press, 2004, pp. 129–133.

[15] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito, “A
distributed event delivery method with load balancing for
mmorpg,” in NetGames ’05: Proceedings of 4th ACM SIG-
COMM workshop on Network and system support for games.
New York, NY, USA: ACM Press, 2005, pp. 1–8.

[16] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
“Scribe: a large-scale and decentralized application-level mul-
ticast infrastructure,” IEEE Journal on Selected Areas in Com-
munications, vol. 20, no. 8, pp. 1489–1499, Oct. 2002.

[17] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
“Internet indirection infrastructure,” IEEE/ACM Trans. Netw.,
vol. 12, no. 2, pp. 205–218, 2004.


