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Abstract

This paper presents an eigenvalue algorithm for accurately comput-
ing the Hausdorff dimension of limit sets of Kleinian groups and Julia
sets of rational maps. The algorithm is applied to Schottky groups,
quadratic polynomials and Blaschke products, yielding both numerical
and theoretical results.

Dimension graphs are presented for

(a) the family of Fuchsian groups generated by reflections
in 3 symmetric geodesics;
(b) the family of polynomials fc(z) = z2 + c, c ∈ [−1, 1/2];
and
(c) the family of rational maps ft(z) = z/t+ 1/z, t ∈ (0, 1].

We also calculate H. dim(Λ) ≈ 1.305688 for the Apollonian gasket,
and H. dim(J(f)) ≈ 1.3934 for Douady’s rabbit, where f(z) = z2 + c
satisfies f3(0) = 0.
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1 Introduction

Conformal dynamical systems such as Kleinian groups and rational maps
are a rich source of compact sets in the sphere with fractional Hausdorff
dimension. The limit sets and Julia sets of these dynamical systems have
been much studied, although few concrete values for their dimensions have
been determined.

In this paper we present an eigenvalue algorithm for accurately com-
puting the Hausdorff dimension of limit sets and Julia sets in the case of
expanding dynamics. We apply the algorithm to Schottky groups, quadratic
polynomials and Blaschke products, obtaining both numerical and theoret-
ical results.

In more detail, we consider the following examples.

1. Schottky groups. Our first examples (§3) are Kleinian groups generated
by reflections in circles.

Let Γθ be the Fuchsian group generated by reflections in three disjoint
symmetric circles, each orthogonal to S1 and meeting S1 in an arc of
length 0 < θ ≤ 2π/3. Since the limit set of this group is contained in
S1, we have 0 < H.dim(Λ(Γθ)) ≤ 1. Using the eigenvalue algorithm,
we graph the dimension of the limit set as θ varies. We also obtain
results on the asymptotic behavior of the dimension:

H.dim(Λ(Γθ)) ∼
log 2

12 − 2 log θ
≍ 1

| log θ|
as θ → 0, while

1 − H.dim(Λ(Γθ)) ≍
√

2π/3 − θ

as θ → 2π/3.

2. Hecke groups. For the Fuchsian group Γr generated by reflections in
the lines Re z = ±1 and the circle |z| = r, 0 < r ≤ 1, the limit set
satisfies 1/2 < H.dim(Λ(Γr)) ≤ 1 because of the rank 1 cusp at z = ∞.
We find

H.dim(Λ(Γr)) =
1 + r

2
+ O(r2)

as r → 0, while
1 − H.dim(Λ(Γr)) ≍

√
1 − r

as r → 1. The group Γr is commensurable to the Hecke group

HR = 〈z 7→ z + R, z 7→ −1/z〉, R = 2/r,
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so the limit sets of Γr and HR have the same dimension. Note that
H2 has index 3 in SL2(Z).

3. The Apollonian gasket. For a more complex example, consider the
group Γ generated by reflections in 4 mutually tangent circles. Its
limit set is the Apollonian gasket. The gasket can also be obtained
by starting with 3 tangent circles, repeatedly packing new circles into
the complementary interstices, and taking the closure. The eigenvalue
algorithm yields the estimate

H.dim(Λ(Γ)) ≈ 1.305688,

compatible with the bounds 1.300 < H.dim(Λ) < 1.315 obtained by
Boyd [5].

4. Quadratic polynomials. In §5 we consider the quadratic polynomials
fc(z) = z2 + c. We present a graph of H.dim J(fc) for c ∈ [−1, 1/2],
displaying Ruelle’s formula

H.dim(J(fc)) = 1 +
|c|2

4 log 2
+ O(|c|3)

for c small, and exhibiting the discontinuity at c = 1/4 studied by
Douady, Sentenac and Zinsmeister [9].

5. Douady’s rabbit. For an example with c 6∈ R, we take c ≈ −0.122561+
0.744861i such that f3

c (0) = 0. The Julia set of this map is known as
Douady’s rabbit, and we calculate

H.dim J(fc) ≈ 1.3934.

6. Blaschke products. Any proper holomorphic map f(z) of the unit disk
to itself can be expressed as a Blaschke product. Like a Fuchsian group,
the Julia set of such an f is contained in the unit circle.

In §6 we conclude with two families of such mappings, reminiscent of
the Fuchsian examples (1) and (2) above. For convenience we replace
the unit disk with the upper half-plane.

In the first family,

ft(z) =
z

t
− 1

z
,

0 < t ≤ 1, the dynamics on the Julia set is highly expanding for t near
0, while z = ∞ becomes a parabolic fixed-point for ft when t = 1. A
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similar transition occurs in the family Γθ, when the generating circles
become tangent at θ = 2π/3. We present a graph of H.dim(J(ft)),
and show

H.dim J(ft) ∼
log 2

log
(

2
t − 1

) ≍ 1

| log t|
as t → 0, while H.dim J(ft) → 1 as t → 1.

The second family,

fr(z) = z + 1 − r

z
,

0 < r < ∞, behaves like a combination of the two generators of the
Hecke group HR above. It has a parabolic point at z = ∞ for all r,
and thus 1/2 < H.dim J(fr) < 1. We find

H.dim J(fr) =
1 +

√
r

2
+ O(r)

as r → 0, while H.dim J(fr) → 1 as r → ∞.

Dimensions for these examples are tabulated in the Appendix.

Spectrum of the Laplacian. For the Fuchsian groups Γ considered in
families (1) and (2) above, the least eigenvalue of the Laplacian on the
hyperbolic surface is related to D = H.dim Λ(Γ) by

λ0(H
2/Γ) = D(1 − D)

(see [25], [17, Thm. 2.1]). Thus our dimension calculations also yield infor-
mation on the bottom of the spectrum of the Laplacian. Similarly for the
Apollonian 3-manifold of example (3) we obtain

λ0(H
3/Γ) = D(2 − D) ≈ 0.399133.

Markov partitions. The eigenvalue algorithm we use to compute Haus-
dorff dimensions applies to general expanding conformal dynamical systems
(§2). It requires a Markov partition P = 〈(Pi, fi)〉 such that

⋃
Pi contains

the support of the Hausdorff measure µ, and the conformal maps fi gener-
ating the dynamics satisfy

µ(fi(Pi)) =
∑

i7→j

µ(Pj).

(Here i 7→ j means µ(fi(Pi) ∩ Pj) > 0.) From this combinatorial data the
algorithm determines a transition matrix

Tij = |f ′
i(yij)|−1
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with yij ∈ Pi ∩ f−1
i (Pj). An estimate α(P) for the dimension of µ is then

found by setting the spectral radius

λ(Tα) = 1,

and solving for α. This estimate is improved by refining the partition; at
most O(N) refinements are required to obtain N digits of accuracy.

For a Schottky group, a Markov partition is given simply by the disjoint
disks bounded by the generating circles.

For a polynomial f(z) of degree d, a Markov partition P = 〈(Pi, f)〉 can
be defined using the boundary values

φ : S1 → J(fc)

of the Riemann mapping conjugating zd to fc(z) on the basin of infinity. This
φ exists whenever f is expanding and the Julia set is connected. Although
φ is often many-to-one, we show in §4 that

µ(φ(I) ∩ φ(I ′)) = 0

for disjoint intervals I, I ′ ⊂ S1 (except when f is a Chebyshev polynomial).
Then the partition can be defined by Pi = φ(Ii), where 〈Ii〉 gives a Markov
partition for z 7→ zd on S1.

Notes and references. The present paper evolved from the preprint [19]
written in 1984; many of the results of that preprint appear in §2 and §3
below.

Bowen applied the machinery of symbolic dynamics, Markov partitions
and Gibbs states to study the Hausdorff dimension of limit sets in [4]. Bodart
and Zinsmeister studied H.dim J(z2 + c) using a Monte-Carlo algorithm [3].
See also [28] and [23] for calculations for quadratic polynomials.

This paper belongs to a three-part series. Parts I and II study the con-
tinuity of Hausdorff dimension in families of Kleinian groups and rational
maps [17], [18]. The bibliographies to parts I and II provide further refer-
ences.

Notation. A ≍ B means A/C < B < CB for some implicit constant C;
A ∼ B means A/B → 1.

2 Markov partitions and the eigenvalue algorithm

In this section we define Markov partitions for conformal dynamical systems
equipped with invariant densities. We then describe an algorithm for com-
puting the dimension of the invariant density in the expanding case. For
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rational maps and Kleinian groups, this computation gives the Hausdorff
dimension of the Julia set or the limit set.

Definitions. A conformal dynamical system F on Sn = R
n ∪ {∞} is a

collection of conformal maps

f : U(f) → Sn

where the domain U(f) is an open set in Sn.
An F-invariant density of dimension δ is a finite positive measure µ on

Sn such that

µ(f(E)) =

∫

E
|f ′(x)|δ dµ (2.1)

whenever f |E is injective, E ⊂ U(f) is a Borel set and f ∈ F . Here the
derivative is measured in the spherical metric, given by σ = 2|dx|/(1 + |x|2)
on R

n.
More formally, a density of dimension δ is a map from conformal metrics

to measures such that
dµ(ρ1)

dµ(ρ2)
=

(
ρ1

ρ2

)δ

·

We have implicitly identified µ with µ(σ); however (2.1) holds with respect
to any conformal metric ρ, so long as we use the measure µ(ρ) and take
derivatives in the ρ-metric.

A Markov partition for (F , µ) is a nonempty collection P = 〈(Pi, fi)〉 of
connected compact blocks Pi ⊂ Sn, and maps fi ∈ F defined on Pi, such
that:

1. fi(Pi) ⊃
⋃

i7→j Pj , where the relation i 7→ j means µ(f(Pi) ∩ Pj) > 0;

2. fi is a homeomorphism on a neighborhood of Pi∩f−1
i (Pj), when i 7→ j;

3. µ(Pi) > 0;

4. µ(Pi ∩ Pj) = 0 if i 6= j; and

5. µ(f(Pi)) = µ(
⋃

i7→j Pj) =
∑

i7→j µ(Pj) .

Our Markov partitions will always be finite.
A Markov partition is expanding if there is a smooth conformal metric ρ

on Sn and a constant ξ such that

|f ′
i(x)|ρ > ξ > 1
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whenever x ∈ Pi and fi(x) ∈ Pj for some j.
The refinement

R(P) = 〈(Rij , fi) : i 7→ j〉
is the new Markov partition defined by

Rij = f−1
i (Pj) ∩ Pi.

In other words, each block is subdivided by the pullback of P; the maps
remain the same on the subdivided blocks.

Proposition 2.1 If P is an expanding Markov partition, then the blocks of
Rn(P) have diameter O(ξ−n), ξ > 1.

Proof. Since each block Pj of P is connected, any two points in Pj can be
joined by a smooth path of uniformly bounded length L, contained in the
range of fi whenever i 7→ j. Under f−1

i , this path shrinks by ξ−1 in the
ρ-metric, so points in Rij are at most distance ξ−1L apart. Iterating, we
find the ρ-diameter of the blocks of Rn(P) is at most ξ−nL, and since the ρ
metric and the spherical metric are comparable we are done.

The eigenvalue algorithm. Next we give an algorithm for computing the
dimension δ of the density µ. Suppose we are given a Markov partition P =
〈(Pi, fi)〉, and sample points xi ∈ Pi. The algorithm computes a sequence of
approximations α(Rn(P)) to δ and proceeds as follows:

1. For each i 7→ j, solve for yij ∈ Pi such that fi(yij) = xj.

2. Compute the transition matrix

Tij =

{
|f ′

i(yij)|−1 if i 7→ j,

0 otherwise.

3. Solve for α(P) ≥ 0 such that the spectral radius satisfies

λ(Tα) = 1.

Here (Tα)ij = Tα
ij denotes T with each entry raised to the power α.

4. Output α(P) as an approximation to δ.

5. Replace P with its refinement R(P), define new sample points xij =
yij ∈ Rij, and return to step (1).

6



We expect to have α(P) ≈ δ. In fact the transition law (2.1) implies
mi = µ(Pi) is an approximate eigenvector for T δ

ij with eigenvalue λ = 1.
That is,

mi = µ(Pi) =
∑

i7→j

µ(f−1
i (Pj)) =

∑∫

Pj

|(f−1
i )′(x)|δ dµ

≈
∑

|f ′
i(yij)|−δµ(Pj) =

∑

j

T δ
ijmj .

This argument can be used to prove the algorithm converges in the expand-
ing case.

Theorem 2.2 Let P be an expanding Markov partition for a conformal
dynamical system F with invariant density µ of dimension δ. Then

α(Rn(P)) → δ

as n → ∞. At most O(N) refinements are required to compute δ to N digits
of accuracy.

Proof. First suppose P is expanding in the spherical metric. Let P =
〈(Pi, fi)〉 and Pij = Pi ∩ f−1

i (Pj). Define Sij and Uij as the minimum and
maximum of |f ′

i(x)|−1 over Pij when i 7→ j, and set Sij = Uij = 0 otherwise.
Then by expansion we have

Sij ≤ Tij ≤ Uij < ξ−1 < 1

for some constant ξ. In particular λ(Tα) is a strictly decreasing function of
α, so there is a unique solution to λ(Tα) = 1.

We claim
Sδm ≤ m ≤ U δm

where mi = µ(Pi). In fact

mi = µ(Pi) =
∑

i7→j

∫

Pj

|(f−1
i )′(x)|δ dµ ≥

∑

j

Sδ
ijµ(Pj) = (Sδm)i,

and similarly for U . Thus

λ(Sδ
ij) ≤ 1 ≤ λ(U δ

ij)

by the theory of non-negative matrices [12, Ch. XIII].
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Since f is C2, we also have

Uij/Sij = 1 + O(max diam Pi).

Choose β = O(max diam Pi) such that ξβSδ ≥ U δ. Then T δ−β ≥ Sδξβ ≥
U δ, so

λ(T δ−β) ≥ λ(U δ) ≥ 1.

Similarly λ(T δ+β) ≤ 1. By continuity, the solution to λ(Tα) = 1 lies between
these two exponents, so

|α(P) − δ| ≤ 2β = O(max diam Pi).

By Proposition 2.1, the blocks of Rn(P) have diameter O(ξ−n), and thus
|α(Rn(P)) − δ| = O(ξ−n). In particular O(N) refinements suffice to insure
an error of less than 10−N .

For the general case, in which we have expansion for a metric ρ 6= σ,
note that the above argument works if we replace T by

T̃ij = |f ′
i(yij)|−1

ρ =
ρ(yij)

σ(yij)

σ(xj)

ρ(xj)
Tij.

But for a fine partition, yij ≈ xi and thus T̃ ≈ MTM−1 for the diagonal

matrix with Mii = ρ(xi)/σ(xi). Since λ(T̃ ) = λ(MTM−1), we obtain expo-
nential fast convergence to δ in the general case as well.

Practical considerations. To conclude this section we make some remarks
on the practical implementation of the eigenvalue algorithm.

1. The algorithm only requires the combinatorics of the initial partition,
the sample points xi, and the ability to compute f−1

i and f ′
i . It does

not keep track of the blocks of the partition P.

2. In most applications the dynamics is eventually surjective, so the ma-
trix T is primitive (T ◦n > 0 for some power n). In this case the Perron-
Frobenius theory shows the spectral radius λ(Tα) and its unique as-
sociated eigenvector can be found by iterating Tα on an arbitrary
positive vector. Then λ(Tα) = 1 can be solved by Newton’s method.

3. As in the proof above, the same algorithm yields rigorous upper and
lower bounds for the dimension δ by replacing Tij with upper and
lower bounds for |f ′

i |−1 on Pij.
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These bounds are sometimes quite conservative. The accuracy of the
calculations presented below was estimated by observing the change
in α(P) under refinement. These calculations should therefore be re-
garded as empirical results, at least to the full accuracy given.

4. In practice the algorithm is modified to adaptively refine only those
blocks of the partition that exceed a critical diameter r. The reason
is that best results are obtained if all the blocks are nearly the same
size; otherwise, accurate calculations with small blocks are destroyed
by the errors larger blocks introduce.

5. The number of nonzero entries per row of the transition matrix T
remains constant as P is refined, so using sparse matrix methods T
requires storage O(|P|) instead of |P|2.

6. In practice
⋃

Pi ⊂ R
n and we compute |f ′

i | in the Euclidean metric.

3 Schottky groups

In this section we consider Kleinian groups Γ ⊂ Isom(H3) generated by
reflections.

Let S2
∞ denote the boundary of hyperbolic 3-space H

3 in the Poincaré
ball model. The conformal automorphisms of S2

∞ extend to give the full
isometry group of H

3. We identify S2
∞ with the Riemann sphere Ĉ = C ∪

{∞}.
Every circle C ⊂ S2

∞ bounds a plane H(C) ⊂ H
3; this plane is a Eu-

clidean hemisphere normal to S2
∞. The space of all circles forms a manifold,

naturally identified with the Grassmannian H3 of planes in H
3.

Consider a configuration C = 〈Ci〉 of d ≥ 3 circles in S2
∞ bounding disks

D(Ci) ⊂ S2
∞ with disjoint interiors. (The circles can be tangent but they

cannot overlap or nest.) The space of all such configurations forms a closed
set Sd ⊂ (H3)d.

Any circle C ⊂ S2
∞ determines a conformal reflection ρ : S2

∞ → S2
∞

fixing C, whose extension to H
3 is a reflection through the plane H(C). For

C ∈ Sd let Γ(C) be the Schottky group generated by the reflections ρi through
Ci, i = 1, . . . , d.

The region outside the solid hemispheres bounded by 〈H(Ci)〉 gives a
finite-sided fundamental domain for Γ(C), and thus Γ(C) is geometrically
finite. The orientable double-cover of M = H

3/Γ(C) is a handlebody of
genus d − 1. Any cusps of M are rank one and correspond bijectively to
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pairs of tangent circles in C. Thus Γ(C) is convex cocompact iff the circles
in C are pairwise disjoint; equivalently, iff C ∈ intSd.

Theorem 3.1 The function H.dim Λ(Γ(C)) is continuous on Sd and real-
analytic on intSd.

Proof. Let Cn → C in Sd. The generating reflections converge, so Γ(Cn) →
Γ(C) algebraically. By [17, Thm. 1.4], to prove continuity of the dimension
of the limit set it suffices to prove all accidental parabolics converge radially.
This means if γ ∈ Γ(C) is the generator of a maximal parabolic subgroup,
and γ = lim γn ∈ Γ(Cn), then λn → 1 radially, where λn is the derivative of
γn at its attracting or parabolic fixed-point.

Now after conjugation in Γ(C), we can assume γ = ρiρj is a product of
reflections through a pair of tangent circles Ci, Cj ∈ C. Thus γn = ρi,nρj,n,
the product of reflections through circles Ci,n, Cj,n ∈ Cn. If these circles
are disjoint, then γn acts on H

3 by a pure translation along the common
perpendicular to H(Ci,n) and H(Cj,n), and thus λn ∈ R. Otherwise the
circles are tangent and λn = 1. In either case λn → 1 radially as was to be
verified.

The real-analyticity of dimension on the space of convex cocompact
groups is due to Ruelle [22]; see also [1].

To discuss a Markov partition for Γ(C) we first need an invariant density.

Theorem 3.2 (Sullivan) The limit set of a geometrically finite Kleinian
group supports a unique nonatomic Γ-invariant density µ of total mass one.
The dimension of the canonical density µ agrees with the Hausdorff dimen-
sion of the limit set.

See [24], [17, Thm. 3.1].

Proposition 3.3 Let Γ(C) be convex cocompact. Then P = 〈D(Ci), ρi〉 is
an expanding Markov partition for Γ(C) and its canonical density µ.

Proof. Let Pi = D(Ci), the closed disk in S2
∞ bounded by Ci. By our

description of the fundamental domain of Γ(C) it is clear that the limit
set Λ of Γ(C) is contained in

⋃
Pi. By invariance, Λ is actually a Cantor

covered by the successive refinements of P. In particular Λ is disjoint from
the generating circles Ci.

We now verify the axioms for a Markov partition.
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(1) Since µ(Ci) = 0, we have i 7→ j only if i 6= j; and since the circles in
C are disjoint, we have

ρi(Pi) = S2
∞ − int Pi ⊃

⋃

i6=j

Pj .

(2) The map ρi : S2
∞ → S2

∞ is invertible, so it is a homeomorphism near
Pi.

(3) Since Λ ⊂ ⋃Pi, we have µ(Pi) > 0 for some i, and hence µ(Pi) > 0
for all i by (1).

(4,5) By assumption Pi ∩Pj = ∅ if i 6= j, and µ(f(Pi)) =
∑

i7→j µ(Pj) by
(1) and the fact that Λ ⊂ ⋃Pi.

Finally P is expanding because in the Euclidean metric, |ρ′i| > 1 on
int Pi, and ρi(Pj) ⊂ int Pi is compact for each j.

By Theorems 2.2 and 3.2 we have:

Corollary 3.4 For disjoint circles, H.dim Λ(Γ(C)) can be computed by ap-
plying the eigenvalue algorithm to the Markov partition (D(Ci), ρi).

Figure 1. Generators for the Schottky group Γθ.

Example: Symmetric pairs of pants. For 0 < θ < 2π/3, let Cθ be
a symmetric configuration of 3 circles, each orthogonal to the unit circle
S1 ⊂ C and meeting S1 in an arc of length θ (Figure 1). Let Γθ = Γ(Cθ).

Since the circles are orthogonal to S1, we can consider Γθ as a group of
isometries of H

2 ∼= ∆ (the unit disk). The hyperbolic plane is tiled under
this action by translates of a fundamental hexagon with sides alternating
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Figure 2. Tiling of H
2 and Cantor set on S1 of dimension ≈ 0.70055063.

along Cθ and along S1. The tiles accumulate on the limit set Λθ ⊂ S1,
which is the full circle for θ = 2π/3 and a Cantor set otherwise (Figure 2).

The orientable double cover Xθ of H
2/Γθ is a pair of pants with Z/3 sym-

metry. The surface X2π/3 is the triply-punctured sphere, of finite volume;
for θ < 2π/3 the volume of Xθ is infinite.

Figure 3 displays the function H.dim(Λθ), with θ measured in degrees.
This graph was computed with the eigenvalue algorithm of §2, using the
Markov partition coming from the disks bounded by the circles Cθ; the
calculation is justified by Corollary 3.4.

The dotted line in the graph shows an asymptotic formula (3.1) for the
dimension discussed below.

Theorem 3.5 As θ → 0 we have

H.dim(Λθ) ∼
log 2

12 − 2 log θ
≍ 1

| log θ| , (3.1)

while for θ → 2π/3 we have

1 − H.dim(Λθ) ∼ λ0(Xθ) ≍
√

2π/3 − θ. (3.2)

Proof. Let P = 〈(Pi, ρi)〉 with Pi = D(Ci), i = 1, 2, 3. Then ρ1(P1) ⊃
P2 ⊔ P3, and similarly for the other blocks of P.

For θ small the reflections ρi are nearly linear on Pi ∩ ρi(Pj), i 6= j, so
α(P) already provides a good approximation to δ, by the proof of Theorem
2.2. To compute α(P), note the distance d between the centers of any pair
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Figure 3. Dimension of the limit set of Γθ, and asymptotic formula.
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of circles Ci and Cj is
√

3, and the radius of each circle is approximately
r = θ/2. Therefore

|ρ′i| ∼
r2

d2
=

θ2

12

inside Pj , i 6= j, and the transition matrix satisfies

Tα
ij =




0 tα tα

tα 0 tα

tα tα 0




with t ∼ θ2/12. The heighest eigenvalue of Tα is simply 2tα; solving for
λ(Tα) = 1, we obtain (3.1).

To estimate Dθ = H.dim Λθ when the circles are almost tangent, we first
note that Dθ → 1 as θ → 2π/3, by the continuity of Dθ (Theorem 3.1) and
the fact that the limit set is S1 when the circles touch. For Dθ > 1/2 we
have the relation λ0(Xθ) = Dθ(1−Dθ), where λ0(Xθ) is the least eigenvalue
of the L2-Laplacian on the hyperbolic surface Xθ [25], [17, Thm. 2.1], which
shows

1 − Dθ ∼ λ0(Xθ)

as θ → 2π/3.
Now for θ near 2π/3, the convex core of Xθ is bounded by three short

simple geodesics of equal length Lθ. These short geodesics control the least
eigenvalue of the Laplacian; more precisely,

λ0(Xθ) = inf

∫
Xθ

|∇f |2
∫
Xθ

|f |2 ≍ Lθ,

because the quotient above is approximately minimized by a function with
f = 1 in the convex core of Xθ, f = 0 in the infinite volume ends, and ∇f
supported in standard collar neighborhoods of the short geodesics [7, Thm
1.1′]. A calculation with cross-ratios shows, for C1, C2 ∈ Cθ,

Lθ = 2dH2(C1, C2) ≍
√

2π/3 − θ,

and we obtain (3.2).

Example: Hecke groups. As a second 1-parameter family, for 0 < r ≤ 1
let Cr = 〈C1, C2, C3〉 consist of the circle |z| = r and the lines Re z = ±1
(union z = ∞). Let Λr be the limit set of Γr = Γ(Cr).
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Figure 4. Fundamental domain for Γr in H.

In this case Γr preserves the upper half-plane H, and the orientable
double-cover Xr of H/Γr is a pair of pants with one cusp and two infinite-
volume ends. The cusp corresponds to z = ∞ in the fundamental domain
for Γr (Figure 4).

The group Γr is closely related to the Hecke group

HR =

〈
z 7→ −1

z
, z 7→ z + R

〉
,

and the group

GR =

〈
z 7→ z

2Rz + 1
, z 7→ z + 1

〉

studied in [17, §8], where R = 2/r. All three groups are commensurable;
more precisely, there is a single hyperbolic surface Yr that finitely covers
H/Γr, H/GR and H/HR. Thus the limit sets of all three groups have the
same dimension.

Theorem 3.6 As r → 0 we have

H.dim(Λr) =
1 + r

2
+ O(r2), (3.3)

while for r → 1 we have

1 − H.dim(Λr) ∼ λ0(Xr) ≍
√

1 − r. (3.4)

Proof. For r small the limit set Λr is a Cantor set, consisting of {∞} union
isometric pieces Λr(n) concentrated near z = 2n, n ∈ Z. We have

Λr(0) = {0} ∪ ρ



⋃

n 6=0

Λr(n)


 ,
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where ρ ∈ Γr denotes reflection through the circle of radius r. Letting µ
denote the canonical measure for Γr in the Euclidean metric, we find

µ(Λr(0)) =
∑

n 6=0

∫

Λr(n)
|ρ′(x)|δ dµ = 2

∑

n>0

( r

2n
(1 + O(r))

)2δ
µ(Λr(n)).

But µ(Λr(n)) = µ(Λr(0)), so we obtain

2ζ(2δ) = (r/2)−2δ(1 + O(r)),

where ζ is the Riemann zeta-function. From this equation we find H.dim(Λr) →
1/2, and then the more precise estimate (3.3) follows from the expansion

ζ(s) =
1

s − 1
+ O(1)

near s = 1.
Equation (3.4) is proved by the same spectral argument as (3.2).

The proof of (3.3) just given is essentially an application of the eigenvalue
algorithm to an infinite Markov partition.

Example: The Apollonian gasket. The well-known Apollonian gasket Λ
is the limit set of Γ(C) for a configuration of 4 mutually tangent circles. The
gasket can also be constructed by starting with 3 tangent circles, repeatedly
packing new circles into the complementary triangular interstices, and taking
the closure (Figure 5).

The eigenvalue algorithm also serves to compute H.dim Λ ≈ 1.305688.
A sample adaptively refined Markov partition is shown in Figure 5; note
that the blocks vary widely in size, due to the slow expansion near points of
tangency.

Since Γ(C) is geometrically finite but not convex cocompact, some ad-
ditional remarks are needed to justify the algorithm in this case. For con-
creteness we assume the sample points xi are chosen in the center of each
circle Ci. The argument is based on continuity of H.dim Γ(C) and the fact
that the circles become disjoint under a computationally imperceptible per-
turbation. In more detail, one observes that the normalized eigenvector mi

for Tij converges, under refinement of the Markov partition, to an invari-
ant density µ for Γ(C) of dimension δ = lim α(Rn(P)). By analyzing the
behavior near parabolic points, one finds (as in the proof of continuity of
dimension, [17, Thm. 1.4]) that µ has no atoms. Thus µ is the canonical
density and δ = H.dim Λ, by Theorem 3.2.

Notes.
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Figure 5. The Apollonian gasket, dimension ≈ 1.305688, and its Markov

partition.

1. Doyle has shown there is a constant δ0, independent of the number of
circles, such that

H.dim Λ(Γ(C)) ≤ δ0 < 2

for all configurations of circles bounding disjoint disks [10]. A similar
result was proved earlier for reflections through disjoint spheres in Sn

∞,
n ≥ 3, by Phillips and Sarnak [21]. These authors also made numerical
estimates for the dimension of the limit set of Schottky groups acting
on S2 by counting orbits.

We originally developed the eigenvalue algorithm to investigate of the
value of δ0 for H

3 [19].

2. Boyd has rigorously shown that 1.300197 < H.dim(Λ) < 1.314534 for
the Apollonian gasket [5], [11, §8.4].

3. The dimension estimate for Hecke groups can be generalized to higher
dimensions as follows. Let Γr be generated by a lattice of translations
L acting on R

n, together with an inversion in the sphere of radius r.
Then for r → 0, we find

H.dim Λr =
n

2

(
1 +

vol(B(r))

vol(Rn/L)

)
+ O(rn+1).

The proof uses the zeta function
∑

L\0 |ℓ|−s.
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The special case L = Z[i] (the Gaussian integers), r = 1/2, has been
studied by Gardner and Mauldin in connection with complex continued
fractions [13]. They prove the limit set satisfies 1 < H.dim(Λ) < 2.
These bounds also follows from the general theory of geometrically
finite groups with cusps [17, Cors. 2.2, 3.2].

4. A result similar to (3.3) for the Hecke groups appears in [2, Thm. 3].

4 Markov partitions for polynomials

In this section we construct, via external angles, a Markov partition for
expanding polynomials.

The radial Julia set. A point z ∈ Ĉ belongs to the radial Julia set Jrad(f)
if there exists an r > 0 so for all ǫ > 0, there is an n > 0 and a neighborhood
U of x with diam(U) < ǫ such that

fn : U → B(fn(x), r)

is a homeomorphism to a ball of spherical radius r. In other words, z ∈
Jrad(f) iff arbitrarily small neighborhoods of z can be blown up univalently
to balls of definite size. Compare [18, §2].
Geometric finiteness. A rational map is expanding if its Julia set contains
no critical points or parabolic points. More generally, if every critical point
in J(f) is preperiodic, then f is geometrically finite. From [18, Thm. 1.2]
we have:

Theorem 4.1 The Julia set of a geometrically finite map f carries a unique
invariant density µ of dimension δ = H.dim J(f) and total mass one. The
canonical density µ is nonatomic and supported on the radial Julia set.

External angles. For a polynomial f(z), the filled Julia set K(f) is defined
as the set of z ∈ C such that fn(z) does not converge to infinity. When J(f)
is connected, there is a Riemann mapping

Φ : (C − ∆) → (C − K(f))

from the complement of the unit disk to the complement of the filled Julia
set. Composing with a rotation, we can arrange that

Φ(zd) = f(Φ(z)), (4.1)
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and this normalization is unique up to replacing Φ(z) with Φ(αz) where
αd−1 = 1.

When f is geometrically finite, J(f) is locally connected and Φ extends
to a continuous map

φ : S1 → J(f)

also obeying (4.1) [8, Exposé X] (see also [20, §17], [27]). The point φ(z) ∈
J(f) is said to have external angle z; a given point may have many external
angles.

In this section we will show:

Theorem 4.2 (Polynomial partition) Let f(z) be an expanding polyno-
mial with connected Julia set. Then P = (φ(Ii), f) gives an expanding
Markov partition for (f, µ), where

Ii =

[
i − 1

d
,
i

d

]

under the identification S1 = R/Z, and µ is the canonical density for f .

Corollary 4.3 The eigenvalue algorithm applied to P computes H.dim J(f).

Chebyshev polynomials. The Chebyshev polynomial Td(z) is defined
by Td(cos θ) = cos dθ; for example, T2(z) = 2z2 − 1. The map Td(z) is
semiconjugate to z 7→ zd under π(z) = (z + z−1)/2; that is,

Td(π(z)) = π(zd).

Thus the Julia set of Td is π(S1) = [−1, 1].
To show P is a Markov partition, the main point is checking µ(Pi∩Pj) =

0. This point is handled by:

Theorem 4.4 (Essentially disjoint) Let f(z) be a geometrically finite
polynomial with connected Julia set and canonical density µ. Then either:

(a) µ(φ(I) ∩ φ(J)) = 0 for all disjoint intervals I, J ⊂ S1; or

(b) f(z) is conformally conjugate to the Chebyshev polynomial Td(z).

Proof. For any open interval I ⊂ S1 let

D(I) =
µ(φ(I) ∩ φ(S1 − I))

µ(φ(I))
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denote the density of points in φ(I) with external angles outside of I. Clearly
0 ≤ D(I) ≤ 1. If D(I) = 0 for all I then µ(φ(I) ∩ φ(J)) = 0 for all pairs of
disjoint intervals, which is case (a) of the Theorem.

Now suppose D(I) > 0 for some I. We will produce from I an interval
with D(I∞) = 1.

Define E ⊂ F by

E = φ(I) ∩ φ(S1 − I),

F = φ(I);

then µ(E) > 0. By basic results in measure theory, [15, Cor. 2.14], almost
every x ∈ E ⊂ F is a point of density; that is,

lim
r→0

µ(E ∩ B(x, r))

µ(F ∩ B(x, r))
= 1. (4.2)

And since f is geometrically finite, almost every x ∈ E belongs to the radial
Julia set. This means there are infinitely many n > 0 and radii rn → 0 such
that

fn : B(x, rn) → Un

is univalent with bounded distortion, and B(fn(x), r0) ⊂ Un [18, Thm. 1.2].
In other words B(x, rn) can be expanded by the dynamics to a region of
definite size.

Choosing x satisfying both (4.2) and the radial expansion property above,
and define En ⊂ Fn ⊂ Un by

En = fn(E ∩ B(x, rn)),

Fn = fn(F ∩ B(x, rn)).

Since µ transforms by |(fn)′(z)|δ , where δ = H.dim(J(f)), the Koebe dis-
tortion theorem and (4.2) imply

µ(En)/µ(Fn) → 1.

Consider a maximal path φ(Jn) ⊂ φ(I) ∩ B(x, rn) passing through x.
That is, let Jn be a component of I ∩ φ−1(B(x, rn)) with x ∈ φ(Jn). Then
for n large, this path begins and ends in ∂B(x, rn), so diam φ(Jn) ≍ r. Let
In = pn(Jn) where p(z) = zd; then

diam φ(In) ≍ r0 (4.3)

since φ(In) = fn(φ(Jn)) begins and ends in ∂Un.
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We claim D(In) → 1. To see this, note that injectivity of fn|B(x, rn)
implies injectivity of pn|φ−1(B(x, rn)). Thus every point in φ(In) ∩ En has
an external angle outside In, and we conclude that

D(In) ≥ µ(φ(In) ∩ En)

µ(φ(In))
.

But φ(In) ⊂ Fn, and from (4.3) we have µ(φ(In)) > ǫ > 0 for all n. Since
µ(En)/µ(Fn) → 1, we find D(In) → 1 as well.

Since µ has no atoms, D(In) is a continuous function of the endpoints
of In. Passing to a subsequence, we can assume In converges to an interval
I∞, nonempty by (4.3) . Then D(I∞) = 1.

Next we claim φ|I∞ is injective. In fact, if the endpoints of [a, b] ⊂ I∞
are identified by φ, then U = φ((a, b)) is disconnected from the rest of J(f)
by φ(a), and hence the external angles of U all lie in (a, b). Since D(I∞) = 1
we conclude µ(U) = 0 which is only possible if a = b.

Now we show f(z) is conjugate to Td(z). Since φ|I∞ is injective and
pn(I∞) = S1 for some n, we see φ = fn ◦ φ ◦ p−n is locally injective outside
a finite subset of S1 (corresponding to critical values of fn). Thus J(f) is
homeomorphic to a finite graph. Any vertex of J(f) of degree 3 or more
would give rise to vertices of degree at least 3 along an entire inverse orbit, so
there are no such vertices and J(f) is homeomorphic to a circle or an interval.
In the circle case φ is a homeomorphism, contrary to our assumption that
D(I) > 0.

Thus J(f) is an interval with a pair of endpoints E ⊂ C. After an affine
conjugacy we can assume E = {−1, 1}. Let π : C

∗ → C be the degree two
covering, branched over E, given by π(z) = (z +z−1)/2. By total invariance
of J(f), f−1(E) − E consists entirely of critical points of order 2. Thus f
lifts to a rational map g : C

∗ → C
∗ satisfying f(π(z)) = π(g(z)). Any degree

d rational map sending C
∗ to itself has the form g(z) = αz±d, and it follows

easily that f is conjugate to the Chebyshev polynomial Td(z).

Proof of Theorem 4.2 (Polynomial partition). We verify the axioms
for a Markov partition in §2.

(1) Letting Pi = φ(Ii), the semiconjugacy φ(zd) = f(φ(z)) implies
f(Pi) =

⋃
Pi = J(f).

(2) By expansion, f is a local homeomorphism near J(f). We have
Pij = Pi ∩ f−1(Pj) = φ(Iij) for an arc Iij ⊂ S1 of length 2π/d2; since zd is
injective on Iij, f is a homeomorphism on a neighborhood of Pij .

(3,4,5) Clearly µ(Pi) > 0 by (1), and µ(Pi∩Pj) = 0 for i 6= j by Theorem
4.4; thus µ(f(Pi)) = µ(J(f)) =

∑
j µ(Pj).
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Finally expansion of f implies there is a conformal metric such with
|f ′|ρ > 1 on J(f) [16, Thm 3.13], so P is an expanding Markov partition.

Corollary 4.3 follows by Theorem 2.2.

5 Quadratic polynomials

In this section we discuss the dimension of the Julia set for the family of
quadratic polynomials

fc(z) = z2 + c.

The forward orbit fn
c (0) of the critical orbit z = 0 converges to an

attracting or superattracting cycle in C iff

(a) the Julia set J(fc) is connected, and
(b) fc is expanding.

See [6, Ch. VIII], [16, Thm 3.13]. When these two conditions are satisfied,
Theorem 4.2 furnishes a 2-block expanding Markov partition P = 〈(Pi, fc)〉
with P1 = φc([0, 1/2]) and P2 = φc([1/2, 1]), where

φc : S1 ∼= R/Z → J(fc)

satisfies φc(2x) = fc(φc(z)). Thus the dimension of the Julia set can be
computed by the eigenvalue algorithm, according to Corollary 4.3.

For sample points, we take

{x1, x2} = {φc(1/4), φc(3/4)} = f−1
c (−βc),

where βc = φc(0) is the ‘β-fixed point’ of fc. Then f2(xi) = βc, and the
sample points for all refinements of P are also contained in the inverse orbit
of βc.

The same algorithm also serves to compute H.dim J(fc) when the Julia
set is a Cantor set. In this case an expanding Markov partition can be
constructed using equipotentials in the basin of infinity.

Example: z
2

− 1. For c = −1 the critical point of fc is periodic of order
2; its Julia set, with H.dim(J(fc)) ≈ 1.26835, is rendered in Figure 6.

Example: Douady’s rabbit. For c ≈ −0.122561 + 0.744861i, the crit-
ical point of fc has period 3. Its Julia set, rendered in Figure 7, satisfies
H.dim(J(fc)) ≈ 1.3934.

Example: the real quadratic family. For c ∈ R, J(fc) is connected iff
c ∈ [−2, 1/4]. Outside this interval J(fc) is a Cantor set, and fc is expanding.
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Figure 6. The Julia set for z2 − 1, of dimension ≈ 1.26835.
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Figure 7. Douady’s rabbit: dimension ≈ 1.3934.
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Figure 8. Dimension of quadratic Julia sets and Ruelle’s formula.
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The point c = 1/4 is parabolic; that is, fc has a parabolic cycle (z = 1/2),
so it is geometrically finite but not expanding.

As c decreases from 1/4 along the real axis, the map fc undergoes a
sequence of period-doubling bifurcations at parabolic points cn converging
to the Feigenbaum point cFeig ≈ −1.401155. The map fc is expanding for all
c ∈ (cFeig, 1/4] outside this sequence cn. In [18] we show:

Theorem 5.1 The function H.dim J(fc) is continuous on the interval
(cFeig, 1/4].

The graph of dimJ(fc) for c ∈ [−1, 1/2], as determined by the eigenvalue
algorithm, is plotted in Figure 8. One striking feature is the discontinuity
at the parabolic point c = 1/4, studied in detail by Douady, Sentenac and
Zinsmeister [9]. This discontinuity is due to the ‘parabolic implosion’ that
results for c = 1/4 + ǫ. The Julia sets for c = 0.25 and c = 0.26 are
compared in Figure 9. As c increases past 1/4, the parabolic point at z = 1/2
bifurcates into a pair of repelling fixed-points, off the real axis. The Julia
set disintegrates discontinuously into a Cantor set as previously bounded
orbits escape to infinity. It is likely at H.dim J(fc) oscillates as c → 1/4
from above; see [9].

The map fc is expanding for c ∈ (−3/4, 1/4). Ruelle showed H.dim J(fc)
is real-analytic at any point c where fc is expanding, and computed the
formula

H.dim(J(fc)) = 1 +
|c|2

4 log 2
+ O(|c|3)

for c near 0 [22]. This quadratic approximation is plotted as a dotted line
in Figure 8.

A second parabolic bifurcation occurs as c decreases past −3/4, but
H.dim J(fc) is continuous there. In this case the parabolic fixed-point gives
rise to an attracting cycle of order two, instead of a pair of repelling points.
It seems likely that the dimension fails to be real-analytic at c = −3/4 or
any other parabolic bifurcation.

Notes.

1. The results of a Monte-Carlo algorithm for computing H.dim J(fc) are
presented in [3].

2. A treatment of the relationship between the thermodynamic formalism
and conformal dynamics, leading up to Ruelle’s formula, is given in
[29].
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Figure 9. Parabolic implosion.

3. Ruelle’s formula is extended in [28], which also includes some numerical
calculations.

6 Quadratic Blaschke products

Let f : Ĉ → Ĉ be a degree d rational map that leaves invariant a round disk
D ⊂ Ĉ (meaning f−1(D) = D). Then up to conjugacy we can assume D is
the unit disk, in which case f can be expressed as a Blaschke product

f(z) = eit
d∏

1

(
z − ai

1 − aiz

)
, |ai| < 1.

A Blaschke product behaves in many ways like a finitely-generated Fuchsian
group; for example, its Julia set is contained in the unit circle, and f is
always geometrically finite.

In this section we consider two 1-parameter families of quadratic Blaschke
products that are reminiscent of the Schottky groups studied in §3. To make
the formulas more convenient, we will normalize so the invariant disk D is the
upper half-plane instead of the unit disk. Then we have J(f) ⊂ R̂ = R∪{∞}.
Example I. For 0 < t ≤ 1 let

ft(z) =
z

t
− 1

z
·

By [18, Thm 1.4], H.dim J(ft) is continuous for t ∈ (0, 1] (and real-analytic
on (0, 1) by [22]).
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Figure 10. Dimension of the Julia set of ft(z) = z/t − 1/z, and asymptotic

formula.
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The Julia set of f1(z) = z−1/z is R̂. Indeed, z = ∞ is a parabolic point
with two petals, repelling along the real directions at z = ∞. Since any
point in the Fatou set of f1 must lie in the basin of z = ∞, no such point
can be real.

For t < 1, z = ∞ is an attracting fixed-point of ft with multiplier t, both
critical points converge to ∞ and ft is expanding. The Julia set is a Cantor
set, on which ft is topologically conjugate to the shift ((Z/2)N, σ).

It is easy to construct an expanding Markov partition for ft, and there-
fore H.dim J(ft) can be computed by the eigenvalue algorithm of §2. The
results are plotted in Figure 10. The dotted line in the graph shows the
asymptotic formula (6.1) below.

The family ft, t ∈ (0, 1] can be compared to the family of Schottky
groups Γθ, θ ∈ (0, 2π/3] studied in §3, with a similar graph plotted in
Figure 3. Both graphs display the variation of dimension as one moves from
a highly expanding regime to a parabolic limit.

We will establish:

Theorem 6.1 As t → 0, we have

H.dim J(ft) ∼
log 2

log
(

2
t − 1

) ≍ 1

| log t| , (6.1)

while H.dim J(ft) → 1 as t → 1.

Proof. For t small the Julia set J(ft) is concentrated near the two repelling
fixed-points {x1, x2} of ft, with |xi| ∼

√
t. Let P be the Markov partition

whose blocks {P1, P2} are intervals of length t centered at {x1, x2}. We
have f(Pi) ⊃ P1 ∪P2, and ft is nearly linear on each block, so α(P) already
provides a good approximation to δ, by the proof of Theorem 2.2. The
highest eigenvalue of the transition matrix

Tα
ij =

(
uα uα

uα uα

)

for P is simply 2uα. Setting u = |f ′(xi)| = 2/t−1, and solving for λ(Tα) = 1,
we obtain (6.1).

Since J(ft) = R̂, the behavior of the dimension as t → 1 is a consequence
of the continuity remarked upon above.
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Example II . For r > 0 let

fr(z) = z + 1 − r

z
·

This map has a parabolic fixed-point with one petal at z = ∞, attracting
both critical points of fr. Thus we have 1/2 < H.dim J(fr) < 1, and the
dimension is a continuous function of r by [18, Thm 1.4]. We will establish:

Theorem 6.2 For r small,

H.dim J(fr) =
1 +

√
r

2
+ O(r),

while H.dim J(fr) → 1 as r → ∞.

Remark. The map fr(z) behaves like a coupling of the two generators of
the Hecke group

Hr = 〈z 7→ z + 1, z 7→ −r/z〉
considered (in a slightly different form) in §3, and we have

H.dim(Λ(Hr)) =
1

2
+

√
r + O(r)

by Theorem 3.6. The estimates for H.dim J(fr) and H.dim(Λ(Hr)) follow
the same line of argument. The difference between the coefficients of

√
r

in the two formulas comes from the fact that Λ(Hr) clusters near Z, while
J(fr) clusters only near the integers n ≤ 0.

Proof of Theorem 6.2. Let µ be the canonical measure for fr in the
Euclidean metric, with dimension δ = H.dim J(fr).

For r small, the points x > 2r are attracted to infinity; since fr acts like
a translation away from x = 0, J(fr) set is a Cantor set consisting of ∞ and
pieces Jn concentrated near

xn = f−n(0) = −n(1 + O(r)),

n ≥ 0. Since

∞∏

1

|f ′(xn)| =
∏

(1 + r/x2
n) =

∏
(1 + O(r/n2)) = 1 + O(r),

we have |(fn)′(x)|δ = 1 + O(r) on Jn, and thus

µ(J0) =

∫

Jn

|(fn)′(x)|δ dµ = µ(Jn)(1 + O(r)).
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Letting g = f−1 denote the inverse branch of f with g(Jn) ⊂ J0, we have
J0 = {0} ∪⋃∞

1 g(Jn), and |g′(x)| = (r + O(r2))/(n + 1)2 on Jn. Therefore

µ(J0) =

∞∑

1

∫

Jn

|g′(x)|δ dµ = µ(J0)(r
δ + O(r1+δ))

∑
(n + 1)2δ .

From this equation we conclude r−δ = ζ(2δ) + O(1), and since ζ(s) =
(s − 1)−1 + O(1) near s = 0, the desired estimate follows.

To treat the case r → ∞, let gs = z + s − 1/z and note that J(g0) = R̂

as in Example I. It follows that

lim
s→0

H.dim J(gs) = H.dim J(g0) = 1.

Indeed, we have J(gs) ⊂ R̂ so lim supH.dim J(gs) ≤ 1, and lim inf H.dim J(gs) ≥
H.dim J(g0) = 1 by [18, Prop. 10.3]. Since gs(z) is conjugate to f1/s2, we
find H.dim J(fr) → 1 as well, as r → +∞.

Remark. It would be interesting to find asymptotic formulas for the case
of Blaschke products with H.dim J(f) near 1, akin to Theorems 3.5 and
3.6. One approach would be to relate the dimension of J(f) to the least
eigenvalue of the Laplacian on the Riemann surface lamination associated
to f . (This lamination is discussed in [26]; see also [14].)
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A Appendix: Dimension data

Markov partitions. Table 11 shows, for certain individual calculations,
the size of the Markov partition |P| used to determine δ. These parti-
tions were constructed by adaptive refinement of a given partition until
max diam Pi < r was achieved; the value of r is in column 3. Often some
blocks of the partition were much smaller than r, especially in the presence
of parabolic dynamics.

Object |P| max diam Pi δ

Apollonian gasket 1,397,616 0.000500 1.305688

Douady’s rabbit 7,200,122 0.000025 1.3934(4)

J(z2 − 1) 5,145,488 0.000012 1.26835

J(z2 + 1/4) 1,209,680 0.000012 1.0812

Table 11. Markov partitions.

Schottky groups. The numerical values used to produce the graph of
H.dim Λθ in Figure 3 are presented in Table 12. The Markov partitions were
refined to achieve max diam Pi < 10−6, and |P| ranged from 6 to 600,000.

Quadratic polynomials. The values used for the graph of H.dim J(fc)
in Figure 8 are shown in Table 13. The Markov partitions were determined
by r = 10−4, and |P| varied in the range 50,000 to 500,000.

Blaschke products. The values used for the graph of H.dim J(ft) in
Figure 10 are shown in Table 13. The Markov partitions were determined
by r = 10−4, and |P| ranged from 4 to 30,000.
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Angle Dimension

1 0.06550651

2 0.07538293

3 0.08267478

4 0.08876751

5 0.09414988

6 0.09905804

7 0.10362620

8 0.10793886

9 0.11205308

10 0.11600945

11 0.11983805

12 0.12356187

13 0.12719898

14 0.13076388

15 0.13426843

16 0.13772248

17 0.14113438

18 0.14451124

19 0.14785921

20 0.15118368

21 0.15448941

22 0.15778064

23 0.16106117

24 0.16433446

25 0.16760366

26 0.17087168

27 0.17414119

28 0.17741472

29 0.18069460

30 0.18398306

Angle Dimension

31 0.18728221

32 0.19059405

33 0.19392052

34 0.19726349

35 0.20062475

36 0.20400606

37 0.20740915

38 0.21083570

39 0.21428737

40 0.21776581

41 0.22127266

42 0.22480954

43 0.22837808

44 0.23197992

45 0.23561668

46 0.23929002

47 0.24300162

48 0.24675315

49 0.25054633

50 0.25438290

51 0.25826464

52 0.26219335

53 0.26617088

54 0.27019914

55 0.27428006

56 0.27841564

57 0.28260792

58 0.28685903

59 0.29117113

60 0.29554648

Angle Dimension

61 0.29998740

62 0.30449628

63 0.30907563

64 0.31372802

65 0.31845614

66 0.32326275

67 0.32815077

68 0.33312320

69 0.33818318

70 0.34333400

71 0.34857906

72 0.35392195

73 0.35936641

74 0.36491635

75 0.37057588

76 0.37634931

77 0.38224116

78 0.38825619

79 0.39439942

80 0.40067613

81 0.40709188

82 0.41365257

83 0.42036442

84 0.42723402

85 0.43426838

86 0.44147493

87 0.44886156

88 0.45643671

89 0.46420936

90 0.47218913

Angle Dimension

91 0.48038631

92 0.48881197

93 0.49747800

94 0.50639724

95 0.51558356

96 0.52505200

97 0.53481894

98 0.54490222

99 0.55532142

100 0.56609805

101 0.57725587

102 0.58882126

103 0.60082369

104 0.61329624

105 0.62627635

106 0.63980676

107 0.65393666

108 0.66872334

109 0.68423436

110 0.70055063

111 0.71777084

112 0.73601807

113 0.75545018

114 0.77627694

115 0.79879030

116 0.82342329

117 0.85087982

118 0.88248407

119 0.92152480

120 1.00000000

Table 12. Dimension data for 3-generator Schottky groups.
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C Dim

-1.000 1.2683

-0.990 1.2671

-0.980 1.2661

-0.970 1.2652

-0.960 1.2643

-0.950 1.2635

-0.940 1.2628

-0.930 1.2621

-0.920 1.2614

-0.910 1.2608

-0.900 1.2603

-0.890 1.2597

-0.880 1.2592

-0.870 1.2586

-0.860 1.2581

-0.850 1.2575

-0.840 1.2568

-0.830 1.2560

-0.820 1.2552

-0.810 1.2541

-0.800 1.2529

-0.790 1.2513

-0.780 1.2494

-0.770 1.2468

-0.760 1.2430

-0.750 1.2342

-0.740 1.2170

-0.730 1.2046

-0.720 1.1939

-0.710 1.1844

C Dim

-0.700 1.1757

-0.690 1.1677

-0.680 1.1602

-0.670 1.1531

-0.660 1.1465

-0.650 1.1402

-0.640 1.1343

-0.630 1.1286

-0.620 1.1232

-0.610 1.1180

-0.600 1.1131

-0.590 1.1084

-0.580 1.1039

-0.570 1.0995

-0.560 1.0954

-0.550 1.0914

-0.540 1.0875

-0.530 1.0838

-0.520 1.0802

-0.510 1.0767

-0.500 1.0734

-0.490 1.0702

-0.480 1.0671

-0.470 1.0641

-0.460 1.0612

-0.450 1.0584

-0.440 1.0557

-0.430 1.0530

-0.420 1.0505

-0.410 1.0481

C Dim

-0.400 1.0457

-0.390 1.0434

-0.380 1.0412

-0.370 1.0390

-0.360 1.0369

-0.350 1.0349

-0.340 1.0330

-0.330 1.0311

-0.320 1.0293

-0.310 1.0275

-0.300 1.0258

-0.290 1.0242

-0.280 1.0226

-0.270 1.0210

-0.260 1.0196

-0.250 1.0182

-0.240 1.0168

-0.230 1.0155

-0.220 1.0142

-0.210 1.0130

-0.200 1.0119

-0.190 1.0108

-0.180 1.0097

-0.170 1.0087

-0.160 1.0078

-0.150 1.0069

-0.140 1.0060

-0.130 1.0052

-0.120 1.0045

-0.110 1.0038

C Dim

-0.100 1.0032

-0.090 1.0026

-0.080 1.0020

-0.070 1.0016

-0.060 1.0012

-0.050 1.0008

-0.040 1.0005

-0.030 1.0003

-0.020 1.0001

-0.010 1.0000

0.000 1.0000

0.010 1.0000

0.020 1.0001

0.030 1.0003

0.040 1.0006

0.050 1.0009

0.060 1.0014

0.070 1.0020

0.080 1.0026

0.090 1.0034

0.100 1.0043

0.110 1.0054

0.120 1.0066

0.130 1.0080

0.140 1.0096

0.150 1.0114

0.160 1.0135

0.170 1.0159

0.180 1.0187

0.190 1.0219

C Dim

0.200 1.0257

0.210 1.0302

0.220 1.0358

0.230 1.0431

0.240 1.0537

0.250 1.0812

0.260 1.3355

0.270 1.3093

0.280 1.2879

0.290 1.2690

0.300 1.2518

0.310 1.2357

0.320 1.2206

0.330 1.2063

0.340 1.1927

0.350 1.1796

0.360 1.1671

0.370 1.1551

0.380 1.1435

0.390 1.1324

0.400 1.1216

0.410 1.1111

0.420 1.1010

0.430 1.0912

0.440 1.0817

0.450 1.0724

0.460 1.0635

0.470 1.0547

0.480 1.0462

0.490 1.0380

0.500 1.0299

Table 13. Dimension data for the Julia set of z2 + c.
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t Dimension

0.01 0.13082375

0.02 0.15051361

0.03 0.16504294

0.04 0.17717636

0.05 0.18788888

0.06 0.19765129

0.07 0.20673100

0.08 0.21529616

0.09 0.22346020

0.10 0.23130367

0.11 0.23888612

0.12 0.24625297

0.13 0.25343977

0.14 0.26047497

0.15 0.26738172

0.16 0.27417918

0.17 0.28088343

0.18 0.28750812

0.19 0.29406496

0.20 0.30056411

0.21 0.30701444

0.22 0.31342379

0.23 0.31979909

0.24 0.32614657

0.25 0.33247183

t Dimension

0.26 0.33877992

0.27 0.34507545

0.28 0.35136268

0.29 0.35764548

0.30 0.36392743

0.31 0.37021191

0.32 0.37650202

0.33 0.38280070

0.34 0.38911070

0.35 0.39543465

0.36 0.40177499

0.37 0.40813411

0.38 0.41451429

0.39 0.42091770

0.40 0.42734640

0.41 0.43380242

0.42 0.44028773

0.43 0.44680428

0.44 0.45335394

0.45 0.45993849

0.46 0.46655981

0.47 0.47321969

0.48 0.47991987

0.49 0.48666212

0.50 0.49344815

t Dimension

0.51 0.50027971

0.52 0.50715853

0.53 0.51408651

0.54 0.52106538

0.55 0.52809698

0.56 0.53518305

0.57 0.54232547

0.58 0.54952609

0.59 0.55678688

0.60 0.56410985

0.61 0.57149710

0.62 0.57895073

0.63 0.58647284

0.64 0.59406594

0.65 0.60173223

0.66 0.60947418

0.67 0.61729440

0.68 0.62519554

0.69 0.63318064

0.70 0.64125285

0.71 0.64941525

0.72 0.65767136

0.73 0.66602497

0.74 0.67448006

0.75 0.68304083

t Dimension

0.76 0.69171216

0.77 0.70049926

0.78 0.70940743

0.79 0.71844298

0.80 0.72761282

0.81 0.73692474

0.82 0.74638718

0.83 0.75601000

0.84 0.76580402

0.85 0.77578241

0.86 0.78595974

0.87 0.79635345

0.88 0.80698440

0.89 0.81787755

0.90 0.82906362

0.91 0.84058100

0.92 0.85247928

0.93 0.86482346

0.94 0.87770228

0.95 0.89124297

0.96 0.90564092

0.97 0.92122117

0.98 0.93861440

0.99 0.95942792

1.00 1.00000000

Table 14. Dimension data for the Julia set of z/t + 1/z.

34



References

[1] J. Anderson and A. Rocha. Analyticity of Hausdorff dimension
of limit sets of Kleinian groups. Ann. Acad. Sci. Fenn. 22(1997),
349–364.

[2] A. Beardon. The exponent of convergence of the Poincaré series.
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