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1 Introduction

In this section, we consider random variables taking values in a continuum,
such as R, or the interval [a, b]. This is in part motivated by many applications,
in which the (random) numerical outcome of the experiment need not be an
integer, or rational number.

Example 1. The following are examples of random experiments which have
numerical outputs that assume values on a continuum.

1. Error in precision engineering. A mechanical component functions
best when it is 153mm in length, and will not function if it is longer
than 154.5mm or shorter than 151.7mm. The length of the component
(in mm) is X, which can be modelled as a random variable taking values
on (0,∞). The event which represents a component being functional is
{ω : 151.7 < X(ω) < 154.5}.

2. Waiting for a bus. The time (in minutes) which elapses between arriving
at a bus stop and a bus arriving can be modelled as a random variable T
taking values in [0,∞). The probability of waiting no more than three
minutes is P[ω : T (ω) ≤ 3}, or, more simply P[T ≤ 3].

3. Share price. The values of one share of a specific stock at some given
future time can be modelled as a random variable S taking values in [0,∞).
If we bought the stock for $21.30, the event that we make a profit by selling
at the future time is given by {ω : S(ω) > 21.30}.
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2 Distribution functions of continuous random variables

How can we calculate the probability of events associated with a random variable
X which takes on values on a continuum, such as those in Example 1 above? For
discrete random variables, we recall that the probability of all such “interesting”
events could be specified either through the probability mass function, or the
distribution function. Hence, we might think it would suffice to give P[X = x]
for all values of x. As we will shortly see, however, this is not so. For this type
of random variable, we should use the (probability) distribution function of
X, defined by FX(x) = P[X ≤ x].

Let us list some properties of the distribution function.

Proposition 1. A function F : R → R is the distribution function of some
random variable if and only if it has the following properties:

(i) F is non-decreasing (i.e., F (x) ≥ F (y) whenever y > x).

(ii) F is right-continuous i.e.,

lim
ε↓0

F (x + ε) = F (x).

(iii) F is normalised i.e.,

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

We omit the proof, but leave one part as an exercise.

Exercise 2.1. Prove part (i) of Proposition 1 above.

Hint: Note that {X ≤ x} ⊂ {X ≤ y} when y > x.

We focus on part (ii) of the definition: remember that the distribution function
of a discrete random variable has “jumps” at each of the values in its range, so
the distribution function is not continuous. By contrast, we will say that the
random variable X is continuous if its distribution function is continuous.

Definition 1. The random variable X is continuous, or has continuous
distribution, if its distribution function FX is a continuous function.

Example 2. Show that F : [0,∞) → R defined by

F (x) =
{

0 for x < 0,
1− 1

1+x2 for x ≥ 0

is the distribution function of a continuous random variable.
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Solution: We check that the properties of Proposition 1 hold. For property (i),
we see that F (x) = 0 = F (y) for 0 ≥ x > y, and for x > y ≥ 0

1− F (x) =
1

1 + x2
<

1
1 + y2

= 1− F (y),

so F (x) ≥ F (y). For property (ii), we see that F is continuous on (0,∞) and
(−∞, 0), and limx→0 F (x) = 0 = F (0). Therefore F is continuous on R. Finally,
limx→−∞ F (x) = 0, and

lim
x→∞

F (x) = lim
x→∞

1− 1
1 + x2

= 1,

so property (iii) holds. The continuity of F ensures that it can be the distribu-
tion function of a continuous random variable.

As for discrete random variables, we can recover the probability of many events
from the distribution function. For example, when a < b, the probability P[a <
X ≤ b] can be obtained from

P[a < X ≤ b] = P[X ≤ b]− P[X ≤ a] = FX(b)− FX(a),

where we exploit the fact that {X ≤ a}∪ {a < X ≤ b}(= {X ≤ b}) is a disjoint
union of events.

We can also see why we cannot determine a continuous random variable via its
“mass function”. This is because

P[X = x] = 0, for all x ∈ R. (2.1)

To prove (2.1), observe for any n ∈ N that

{X = x} ⊂ {x− 1
n

< X ≤ x},

so

P[X = x] ≤ P
[
x− 1

n
< X ≤ x

]
= FX(x)− FX(x− 1

n
).

Now, let n →∞: then the (left) continuity of FX yields limn→∞ FX(x− 1
n ) =

FX(x). Hence

0 ≤ P[X = x] ≤ lim
n→∞

FX(x)− FX(x− 1
n

) = 0,

as required.

This result has an immediate consequence: for a continuous random variable,
the probabilities

P[a < X ≤ b], P[a ≤ X < b], P[a ≤ X ≤ b], P[a < X < b].

are all equal.
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3 The density of a continuous distribution

Continuous distributions can often be described in terms of another function
called the probability density of the distribution.

Definition 2. A continuous distribution function F is said to have a density
f if there exists a function f : R → R which satisfies f(x) ≥ 0 for all x ∈ R
such that

F (x) =
∫ x

−∞
f(u) du.

We say that f is the probability density associated with f .

If F is continuously differentiable at x, we can recover the probability density
at x: it is given by

f(x) = F ′(x),

by the fundamental theorem of calculus.

Exercise 3.1. Consider the distribution function given in Example 2. Show that
the function

f(x) =
{

0 for x < 0,
2x

(1+x2)2 for x ≥ 0,

is a probability density associated with F .

This indicates that we can characterise a continuous random variable through
its probability density function. In fact, we can show the following.

Proposition 2. A function f : R → R is the probability density function of a
continuous random variable if and only if it satisfies the following two conditions:

(i) f(x) ≥ 0, x ∈ R;

(ii) ∫ ∞

−∞
f(u) du = 1.

Proof. We prove that if f satisfies (i), (ii), then f is a probability density of a
continuous random variable, but omit the proof of the converse result. Suppose
that f satisfies (i), (ii). Define

F (x) =
∫ x

−∞
f(u) du.

Then, for x > y, we have F (x)−F (y) =
∫ x

y
f(u) du ≥ 0, using (i). Taking limits

as x → ±∞ yields

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1,
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using property (ii). Since f is bounded on bounded intervals, we get

|F (x)− F (y)| =
∫ x

y

f(u) du ≤ sup
y≤u≤x

f(u)(x− y) → 0, as y → x,

so F is continuous. Therefore F satisfies the conditions of Proposition 1 and is
a continuous function, and is hence a continuous distribution function.

Example 3. Show that f in Exercise 3.1 is the density function of a continuous
random variable.

Solution: Clearly f(x) ≥ 0 for all x ∈ R, and∫ ∞

−∞
f(x) dx =

∫ ∞

0

2x

(1 + x2)2
dx =

∫ ∞

1

1
u2

du = 1,

where we use integration by substitution, with the substitution u = 1 + x2.

We finally remark that f(x) is not a probability, and in particular, is not
the probability that X = x. Indeed, it is possible that f(x) > 1. If we want to
obtain a probability from f we must integrate it:

P[a < X < b] = FX(b)− FX(a) =
∫ b

a

f(x) dx,

and more generally:

P[X ∈ A] =
∫

A

f(x) dx, A ⊂ R.

These equations explain the reason for the name “density” for f .

Example 4. Let X be a continuous random variable with density given in
Exercise 3.1. Compute P[3 ≤ X ≤ 5].

Solution: The required probability is

P[3 ≤ X ≤ 5] =
∫ 5

3

2x

(1 + x2)2
dx.

Integrating by substitution with the change of variable u = 1 + x2 gives

P[3 ≤ X ≤ 5] =
∫ 26

10

1
u2

du

= − 1
u

∣∣∣26
u=10

=
1
10
− 1

26
=

4
65

.
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