
r,

AA

AL-R-99-056 AD-A252 634

A INFORMATION INTEGRATION FOR
R
M CONCURRENT ENGINEERING (IICE)

S IDEF4 OBJECT-ORIENTED DESIGN
T METHOD REPORT
R -DTIC
0 LKLCTE I"E

N JUL09 199211
Richard J. Mayer, PhD '$ 3

Arthur Keen
M. Sue Wells

KNOWLEDGE BASED SYSTEMS, INCORPORATED
2726 LONGMIRE

A COLLEGE STATION, TEXAS 77845

B
0 HUMAN RESOURCES DIRECTORATE

R LOGISTICS RESEARCH DIVISION

A
T MAY 1992

R INTERIM TECHNICAL REPORT FOR PERIOD FEBRUARY 1991 - APRIL 1992 00
Y _-

Approved for public release; distribution is unlimited.

92 7 0 0G8
_ AIR FORCE SYSTEMS COMMAND I

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573

NOTICES

This technical report is published as received and has not been edited by the
technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation, or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This report has been reviewed and is approved for publication.

;M6HAELK. AINTER
Program Manager

BERTRAM W. CREAM, Chief
Logistics Research Division

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this coliection of information is estimated to average 1 hour Der resporse. including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the cOllection of information Send comments regarding this burden estimate or any other aspect of this
collection of information. including suggestions for reducing this ourden to Washington Headquarters Services. Oirectorate for information Operations and Repoirs. 12t5 Jefferson
Dais Highwayv. Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I May 1992 Interim - February 1991 to April 1992
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

IDEF4 Object-Oriented Design Method Manual C F33615-90-C-0012
PE 63106F

6. AUTHOR(S) PR 2940
TA 01

Richard J. Mayer, PhD M. Sue Wells WU 08
Arthur A. Keen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Knowledge Based Systems, Inc. KBSI-IICE-90-STR-
2726 Longmire 01-0592-01
College Station, Texas 77845

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER

Armstrong Laboratory
Human Resources Directorate AL-TR- 1992-0056
Logistics Research Division
Wright-Patterson AFB, OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited A

13. ABSTRACT (Maximum 200 words)

This document provides a method overview, practice and use description, and language reference
for the IDEF4 Object-Oriented Design Method. The name IDEF originates from the Air Force
program for Integrated Computer-Aided Manufacturing (ICAM) from which the first .CAM
Definition, or IDEF, methods emerged. It was in recognition of this foundational work, and in
support of an overall strategy to provide a family of mutually-supportive methods for
enterprise integration, that continued development of IDEF technology was undertaken. More
recently, with their expanded focus and widespread use as part of Concurrent Engineering, Total
Quality Management (TQM), and business re-engineering initiatives, the IDEF acronym has
been re-cast as the name referring to an integrated family of Integration Definition methods.
IDEF4 was developed as a design method to assist in the production of quality designs for object-
oriented implementations. This document is targeted at both object-oriented programmers
looking for a design method and programmers learning an object-oriented programming
language who want to know how to design good object-oriented programs.

14. SUBJECT TERMS 15. NUMBER OF PAGES

object-oriented, IDEF, programminq, method, methodology, information 137
systems, software design, systems engineering 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Presc' b-d b0 AN i Std 13q.'8
14ff 02

Contents

Figures ... vii

Foreword ... xi

Preface ... xvii

Acronyms .. xix

1.0 Executive Summary ... 1

2.0 Introduction .. 2

2.1 Class Submodel .. 5
2.1.1 Inheritance Diagram ... 6
2.1.2 Type Diagrams .. 6
2.1.3 Protocol Diagrams ... 7
2.1.4 Instantiation Diagrams ... 8

2.2 Method Submodel ... 8
2.2.1 Method Taxonomy Diagram ... 8
2.2.2 Client Diagram .. 9

2.3 Data Sheet ... 10
2.3.1 Class-invariant .. 10
2.3.2 Contract Data Sheet ... 10

3.0 IDEF4 Object-oriented Concept ... 11

3.1 Classes ... 12
3.1.1 Classes vs. Object .. 13
3.1.2 Class-inheritance ... 15

3.2 Features ... 18
3.2.1 The Feature Taxonomy .. 2D
3.2.2 Feature Inheritance .. 21
3.2.3 Feature/Class Taxonomy .. 23
3.2.4 Feature Type ... 24

iii

3.2.5 Class Feature .. 25

3.3 Methods .. 26

3.3.1 Methods in Design vs. Methods in Programming 27
3.3.2 Method Sets ... 28

3.4 Constraint ... 29

4.0 Diagrams ... 32

4.1 Class-inheritance Diagram ... 32

4.1.1 Class-inheritance Diagram .. 32

4.1.2 Understanding a Class-inheritance Diagram 38
4.1.3 Class-invariant Data Sheet ... 41

4.2 Method Taxonomy Diagrams ... 46

4.2.1 Contract ... 46
4.2.2 Method Taxonomy Diagrams Symbol Set 50
4.2.3 Understanding a Method Taxonomy Diagram 51

4.3 Type Diagrams ... 59
4.3.1 Type Diagram Symbol Set ... 60
4.3.2 Understanding Type Diagrams 64

4.4 Client Diagram ... 66
4.4.1 Client Diagram .. 67
4.4.2 Understanding a Client Diagram 67

4.5 Protocol Diagrams .. 69
4.5.1 Protocol Diagram Symbol Set 70

4.5.2 Understanding a Protocol Diagram 71

4.6 Dispatch Mapping .. 74

4.7 IDEF4 Instantiation Language ... 77

4.7.1 IDEF4 .. 78
4.7.2 IDEF4 Design Validation ... 80

5.0 IDEF4 Design Development Procedure .. 83

5.1 Object-oriented Decomposition ... 84

5.2 IDEF4 Design Development Activities 85

5.2.1 Analyze Evolving System Requirements 87

iv

5.2.1.1 Identifying Initial Classes and Method Sets 87
5.2.1.2 Using Other IDEF Methods in Analysis 88

5.2.2 Develop Class Hierarchy .. 91
5.2.3 Develop Method Taxonomy .. 92
5.2.4 Develop Class Composition Structure 92
5.2.5 Develop Protocol .. 93
5.2.6 Develop Algorithmic Decomposition 93

5.3 IDEF4 Design Evolution Process ... 93
5.3.1 Partition .. 95
5.3.2 Classify/Specify ... 96
5.3.3 Assemble .. 96
5.3.4 Rearrange .. 97

5.4 Organization of IDEF4 Design Documentation 97

6.0 Tips and Traps in IDEF4 Design Development 102

6.1 Fine-grained vs. Coarse-grained Methods and Classes 102

6.2 Method Taxonomy Diagram ... 102

6.3 Routine .. 103

6.4 Multiple Return Type ... 104

6.5 Characteristics of the Object-oriented Procedure 104

Reference List ... 107

IDEF4 Glossary .. 109

In d ex ... 111

Aooession For

NTIS GRA&I 9"
DTIC TAB 0
Unannounced 0
Justification

By
/ ,L Distribution/

Availability Codes
Avail and/or

Dist speolel

V

vi

Figures

Figure 2-1 Organization of the IDEF4 Model 5

Figure 2-2 Inheritance Diagram .. 6

Figure 2-3 Type Diagram .. 7

Figure 2-4 Protocol Diagram .. 7

Figure 2-5 Method Taxonomy Diagram .. 9

Figure 2-6 Client Diagram .. 9

Figure 3-1 Dimensions of Object-oriented Languages (Gabriel, 1991) 12

Figure 3-2 Class Box in IDEF4 .. 15

Figure 3-3 Class Inheritance .. 16

Figure 3-4 Partial Inheritance Diagram for a Graphics System 19

Figure 3-5 Class Feature Inheritance Lattice 2D

Figure 3-6 Inheritance of Area from Polygon by Triangle and Square 22

Figure 3-7 The Area Feature of Square Shadows that of Polygon 22

Figure 3-8 Feature/Class Taxonomy .. 23

Figure 3-9 Area Feature in Polygon Class Hierarchy 24

Figure 3-10 Feature Types .. 25

Figure 3-11 Class Features .. 26

Figure 3-12 Same Routine in Different Classes 28

Figure 3-13 Method Set Relations .. 30

vii

Figure 3-14 Class Structure with Method Redefinition 31

Figure 4-1 Class Box ... 33

Figure 4-2 Triangle Class Box with Features 34

Figure 4-3 Feature Taxonomy Showing Specialization Symbols 34

Figure 4-4 Polygon Class with Feature Symbols 36

Figure 4-5 Triangle Class a Subclass of Polygon 36

Figure 4-6 Partial Inheritance Diagram for a Polygon Class 39

Figure 4-7 Inheritance Diagram - Network Manager System 40

Figure 4-8 Class-invariant Data Sheet Form 43

Figure 4-9 Network Manager System Lock Class 44

Figure 4-10 Class-invariant Data Sheet for Lock 45

Figure 4-11 Partial Inheritance Diagram with Area Feature 48

Figure 4-12 Method-set Contract ... 49

Figure 4-13 Method Taxonomy Diagram Symbols 50

Figure 4-14 Class Structure with Additional Contract 51

Figure 4-15 Layout for Sort Method Sets in Sequence Structure 52

Figure 4-16 Additional Contract ... 53

Figure 4-17 Area Method Taxonomy Diagram 54

Figure 4-18 Pure Additional Contract .. 55

Figure 4-19 Sort Method Taxonomy Diagram 56

Viii

Figure 4-20 References to Method Taxonomy Diagram 57

Figure 4-21 Polymorphism Evaluation with Method Taxonomy

D iagram s .. 58

Figure 4-22 Class Box in a Type Diagram .. 60

Figure 4-23 Return Type is an Instance of a Class 61

Figure 4-24 Return Type Constructed from Some Class 61

Figure 4-25 Inverse Relationship .. 62

Figure 4-26 Partial Inverses .. 63

Figure 4-27 Return Type Displayed Textually 64

Figure 4-28 Class Box String .. 64

Figure 4-29 Simple Return Types .. 65

Figure 4-30 Return Type Constructed of Other Types 65

Figure 4-31 Type Diagram (Network Manager System) 66

Figure 4-32 Allowable/Not Allowable Type Diagrams 67

Figure 4-33 Client Diagram Symbols ... 68

Figure 4-34 Client Diagram for Simple-Lock Seize 69

Figure 4-35 Protocol Diagram Symbol Set .. 71

Figure 4-36 Class Box with Check-for-mylock Feature 72

Figure 4-37 Check-for-mylock: Simple-Lock Protocol Diagram 73

Figure 4-38 IDEF4 Model Components ... 75

ix

Figure 4-39 Partial Diagrams .. 76

Figure 4-40 Inheritance Diagram with Seize Dispatch Mapping 77

Figure 4-41 Method Taxonomy Diagram .. 78

Figure 4-42 IDEF4 Instance of the Vertex Class 79

Figure 4-43 Type Diagram for Triangle Instantiation Scenario 80

Figure 4-44 Instantiation of Triangle with Vertices 80

Figure 4-45 Type Diagram for Engine and Body 81

Figure 4-46 Type Diagram for Triangle Vertices 81

Figure 4-47 Erroneous Instantiation, Consistent with Design 82

Figure 5-1 Object-oriented Decomposition .. 85

Figure 5-2 Implementation of IDEF4 Design 86

Figure 5-3 Causal Relations Between IDEF4 Elements 87

Figure 5-4 Redraw Client Diagram ... 95

Figure 5-5 IDEF4 Document Organization ... 100

Figure 5-6 Navigating Documentation from the Method Taxonomy

D iagram s .. 101

Figure 5-7 IDEF4 Relationship to IDEF0, IDEF1, and IDEF3 105

Foreword

The Department of Defense (DoD) has long recognized the opportunity for

significant technological, economic, and strategic benefits attainable

through the effective capture, control, and management of information and

knowledge resources. Like manpower, materials, and machines,

information and knowledge assets are recognized as vital resources that

can be leveraged to achieve competitive advantage. The Air Force

Information Integration for Concurrent Engineering (IICE) program,

sponsored by the Armstrong Laboratory's Logistic Research Division, was

established as part of a commitment to further the development of

technologies that will enabl- full exploitation of these resources.

The IICE program was chartered with developing the theoretical

foundations, methods, and tools to successfully implement and evolve

towards an information-integrated enterprise. These technologies are

designed to leverage information and knowledge resources as the key

enablers for high quality systems that achieve better performance in terms

of both life-cycle cost and efficiency. The subject of this report is one of a

family of methods that collectively constitute a technology for leveraging

available information and knowledge assets. The name IDEF originates

from the Air Force program for Integrated Computer-Aided

Manufacturing (ICAM) from which the first ICAM Definition, or IDEF,

methods emerged. It was in recognition of this foundational work, and in

support of an overall strategy to provide a family of mutually-supportive

methods for enterprise integration, that continued development of IDEF

technology was undertaken. More recently, with their expanded focus and

widespread use as part of Concurrent Engineering, Total Quality

Management (TQM), and business re-engineering initiatives, the IDEF

acronym has been re-cast as the name referring to an integrated family of

Integration Definition methods. Btfore discussing the development

strategy for providing an integrated family of IDEF methods, however, the

following paragraphs will briefly introduce what constitutes a method.

xi

Method Anatomy

A method is an organized, single-purpose discipline or practice (Coleman,

1989). A method may have a formal theoretic foundation. However, most

do not (except possibly in the eyes of the developer of the method).

Generally, methods evolve as a distillation of best-practice experience in a

particular domain of cognitive or physical activity. The term methodology

has at least two common usages. The first use is to refer to a class of

similar methods. So, one may hear reference to the function modeling

methodology referring to methods such as IDEF0 1 and LDFD. 2 In an
other sense, the term methodology is used to refer to a collection of methods

and tools, the use of which is governed by a process superimposed on the

whole (Coleman, 1989). Thus, it is common to hear the criticism that a tool

(or method) has no underlying methodology. Such a criticism is often
leveled at a tool (or method) which has a graphical language but for which

no procedure for the appropriate application of the language or use of the

resulting models is provided. For simplicity, the term tool is used to refer to

a software system designed to support the application of a method.

Though a method may be thought of informally as simply a procedure for

performing a task plus perhaps a representational notation, it may be
described more formally as consisting of three components as illustrated in
Figure F-1. Each method has (a) a definition, (b) a discipline, and (c) many

uses. The definition specifies the basic intuitions and motivation behind the

method, the concepts involved, and the theory of its operation. The

discipline includes the procedure by which the method is applied and the

language, or syntax, of the method. The procedure associated with the

method discipline provides the practitioner with a reliable process for

achieving consistently good results. The method syntax is provided to

eliminate ambiguity among those involved in the development of complex

engineering products. Many system analysis and engineering methods

1ICAM Definition method for Function Modeling
2 Logical Data Flow Diagramming method

Xii

use a graphical syntax to provide visualization of collected data in such a

way that key information can be easily extracted. 3 The third element of the

PAeFedure Evo ution

D a atm ofraeo

Assimilato

,ormulation Stand-alone Integrated
Validation Suites Of" h ethods .0

computer- .01

interpretable .

Graphical of System
eat p t Mt hco d Development

Lexicon Granmar b

i tt e infomal Formal
IS emantics

Figure F- I

Anatomy of a Method

method anatomy, the use component, focuses on the context -specific

application of the method.

3Graphical facilities provided by a method language serve not only to document the
analysis or design process undertaken, but more importantly, to highlight important
decisions or relationships that must be considered during method application. The
uniformities to which an expert becomes attuned over many years of experience are thus
formally encoded in visualizations that emulate expert sensitivities.

xiii

Ultimately, methods are designed to facilitate a scientific approach to

problem solving. This goal is accomplished by first, helping one

understand the important objects, relations, and constraints that must be

discovered, considered, or decided on; and second, by guiding the method

practitioner through a disciplined approach, consistent with good-practice

experience, towards the desired result. Formal methods, then, are

specifically designed to raise the performance level (quality and

productivity) of the novice practitioner to something comparable with that of

an expert (Mayer, 1987).

Family of Methods

As Mr. John Zachman, in his seminal work on information systems

architecture observed, "...there is not an architecture, but a ae of

architectural representations. One is not right and another wrong. The

architectures are different. They are additive, complementary. There are

reasons for electing to expend the resources for developing each

architectural representation. And, there are risks associated with not

developing any one of the architectural representations." Consistent,
reliable creation of correct architectural representations, whether they be

artificial approximations of a system (models) or purely descriptive

representations, requires the use of a guiding method. These observations

underscore the need for many "architectural representations," and

correspondingly many methods.

Methods, and their associated architectural representations, focus on a

limited set of system characteristics and explicitly ignore those that are not

directly pertinent to the task at hand. Methods were never intended to

evaluate and represent every possible state or behavioral characteristic of

the system under study. If such a goal were achievable, the exercise would

itself constitute building the actual system, thus negating the benefits to be

gained through method application (e.g., problem simplification, low cost,

rapid evaluation of anticipated performance, etc.).

xiv

The search for a single method, or modeling language, to represent all

relevant system life cycle and behavioral characteristics, therefore, would

necessitate skipping the design process altogether. Similarly, the search

for a single method to facilitate conceptualization, system analysis, and

design continues to frustrate those making the attempt.

Recognizably, the plethora of special-purpose methods which typically
provide few, if any, explicit mechanisms for integration with other
methods, is equally frustrating. The IDEF family of methods is intended to

strike a favorable balance between special-purpose methods whose effective

application is limited to specific problem types, and "super methods" which

attempt to include all that could ever be needed. This balance is maintained
within the IDEF family of methods by providing explicit mechanisms for
integrating the results of individual method application.

Critical method needs identified through previous studies and research
and development activities 4 have given rise to renewed effort in IDEF
method integration and development activities, with an explicit mandate

for compatibility among the family of IDEF methods. Providing for known
method needs with a family of IDEF methods was not, however, the
principal goal of methods engineering activity within the ICE program.
The primary emphasis for these efforts was directed towards establishing

the foundations for an engineering discipline guiding the appropriate

selection, use, extension, and creation of methods that support integrated

systems development in a cost-effective and reliable manner.

New methods development has struck out where known and obvious

method voids existed (rather than re-inventing existing, and often very good

4 0f particular note is the Knowledge-Based Integrated Information Systems Engineering
(KBIISE) Project conducted at the Massachusetts Institute of Technology (MIT) in 1987
where a collection of highly qualified experts from academic and research organizations,
government agencies, computer companies, and other corporations identified method and
tool needs for large-scale, heterogeneous, distributed systems integration. See Defense
Technical Information Center (DTIC) reports A195851 and A195857.

xv

methods) with the explicit mission to forge integration links with and
between existing IDEF methods. When applied in a stand-alone fashion,
IDEF methods serve to embody knowledge of good practice for the targeted
fact collection, analysis, design, or fabrication activity. As with any good
method, the IDEF methods are designed to raise the performance level of
novice practitioners to a level that is comparable to that of an expert by
focusing attention on important decisions while masking out irrelevant
information and unneeded complexity. Viewed collectively as a
complementary toolbox of methods technology, the IDEF family is designed
to promote integration of effort in an environment where global
competitiveness has become increasingly dependent upon the effective
capture, management, and use of enterprise information and knowledge
assets.

xvi

Preface

This document provides a method overview, practice and use description,
and language reference for the IDEF4 Object-oriented Design Method
developed under the Information Integration for Concurrent Engineering
(IICE) project, F33615-90-C-0012, funded by Armstrong Laboratory,
Logistics Research Division, Wright-Patterson Air Force Base, Ohio 45433,
under the technical direction of United States Air Force Capt. Michael K.
Painter. The prime contractor for IICE is Knowledge Based Systems, Inc.
(KBSI), College Station, Texas. Dr. Paula S. deWitte is IICE Project
Manager at KBSI. Dr. Richard J. Mayer is Principal Investigator, and Mr.
Arthur A. Keen is Methods Engineering Thrust Manager.

KBSI acknowledges the technical input (Knowledge Based Systems
Laboratory, 1991) to this document made by previous work under the
Integrated Information Systems Evolutionary Environment (IISEE) project
associated with the Knowledge Based Systems Laboratory, Department of
Industrial Engineering, Texas A&M University.

Xvii

xviii

Acronyms

CDS Contract Data Sheets... 8

CIDS Class-invariant Data Sheets 5

CLOS Common Lisp Object System 2

FORTRAN Formula Translator .. 13

ID Identifier... 46

IICE Information Integration for Concurrent Engineering..xii

KBSI Knowledge Based Systems, Inc xii

LISP List Processing ... 2

ODBMS Object Data Base Management System 65

OOD Object-oriented Design.. 2

OOPL Object-oriented Programming Language xi

OSTN Object-state Transition Network 112

UOB Unit of Behavior...111

xix

xx

1.0 Executive Summary

The purpose of this document is to provide a comprehensive description of

the IDEF4 Object-oriented Design method. Its intention is to guide a person

in becoming proficient in the application of IDEF4 to produce quality object-

oriented designs.

The scope of this document includes 1) a description of the IDEF4 syntax

and the motivation for including each syntax element, 2) a description of

the development procedure for an object-oriented design using IDEF4, and

3) example applications of IDEF4. Within this scope, the IDEF4 Method

Report is designed for the following audience:

1. object-oriented programmers looking for a design
language, and

2. programmers learning an object-oriented programming
language (OOPL) who want to know how to design good
object-oriented programs.

The motivation for developing the IDEF4 method was the potential misuse

of the powerful object-oriented paradigm which could result in poor quality

designs. The object-oriented philosophy and development practice have

demonstrated the ability to produce code that exhibits desirable life-cycle

qualities such as modularity, maintainability, and reusability. In addition,

the object-oriented programming paradigm has demonstrated major

advancements in the ease with which software code can be created,

enabling people to produce and maintain code efficiently. Paradoxically,

the ease with which this type of code can be produced also makes it easier to

create software of poor design. This results in systems that are not

modular, are difficult to maintain, and whose implementations are far

more difficult to reuse. The goal of IDEF4 is to assist in the correct

application of the object-oriented programming technology to ensure more

effective use of that technology.

2.0 Introduction

It is widely recognized that the modularity, maintainability, and code
reusability resulting from the object-oriented programming paradigm can
be realized in traditional data processing applications. The proven ability of
this paradigm to support data-level integration in large, complex,

distributed systems is also a major factor in the widespread interest from
the traditional data processing community. The object-oriented approach
provides the developer with an abstract view of the program as composed of
a set of state-maintaining objects that define the behavior of the program by

the protocol of their interactions.

Languages for object-oriented programming include the Common Lisp
Object System (CLOS) (Keene, 1989), C++ (UNIX System, 1989), Smalltalk
(Goldberg, 1978), Object Pascal (Macintosh Programmer's Workshop, 1989),

and others. IDEF4 is a design method for software designers who use such
object-oriented languages. Since effective use of the object-oriented
paradigm requires a thought process different from that used with
conventional procedural or database languages, standard methodologies
such as structure charts, data flow diagrams, and traditional data design
models (hierarchical, relational, and network) are inappropriate. The
IDEF4 Object-oriented Design (OOD) Method seeks to provide the necessary

facilities to support the object-oriented design decision-making process.
The primary design goals of IDEF4 are:

1. to provide support for creating object-oriented designs
whose implementations will exhibit desirable life-cycle
qualities and reduce total implementation development
time, and

2. to make it easy to evaluate object-oriented code to
determine both c nformation to design and desired life-
cycle qualities.

IDEF4 maintains information about an object-oriented design in a manner

that will preserve many of the conceptuaJ and notational advances made in

2

previous method-development efforts. Such consistency with previous work

should help practicing software engineers learn and effectively use the

IDEF4 modeling techniques. Furthermore, IDEF4 encapsulates the "best
practice" experience of designing for object-oriented databases and

programming environments. As such, IDEF4 is focused on the
identification, manipulation, display, and analysis of the following.

1. Object definitions - including attributes and their types.

2. Object structures - including th6 inheritance hierarchy or
lattice and individual object composition relative to other
objects.

3. Individual object behavior - including method
specifications and constraints (pre-, post-, and during
conditions) governing instantiation, deletion, and other
behaviors required by the object.

4. Protocol of the system routines - including location of
object routines in the object inheritance lattice. The
protocols also include:

* the type, number, and ordering of the arguments;

* an abstract description of the behavior of each
protocol item; and

* the specialization of abstract behavior for
individual object types.

As a design method, IDEF4 is structured to specify the components of an

object-oriented system design that must be managed during the design
phase of a system development process. It employs a unique organizational

mechanism to ensure that design models do not become cumbersome and

difficult to use with increasingly larger projects.

Conceptually, an IDEF4 design model consists of two submodels: the class

submodel and the method submodel (see Figure 2-1). The two submodels
are linked through a dispatch mapping. These two structures capture all

the information represented in a design model. The submodels are a very

broad grouping of a particular type of information. A data sheet displays

3

very localized, often textual information, related to a particular data type or

method set. Except for the protocol and client diagrams, which are usually

small, the diagrams indicated in Figure 2-1 range in size from single boxes

to representations of all the information of a particular kind that is

available from an entire submodel. Diagrams are views of the submodels.

The dispatch mapping connects the two submodels and is expressed by

certain optional annotations on the inheritance diagrams and on the

method taxonomy diagrams. In Figure 2-1, the sharp-cornered 1'oxes

represent the submodel types and dispatch mapping; the round-cornered

boxes represent types of diagrams and data sheets of an IDEF4 model.

In other words, IDEF4 divides the OOD activity into discrete, manageable

chunks. Each subactivity is supported by a graphical syntax that

highlights the design decisions that must be made and their impact on

other perspectives of the design. No single diagram shows all the

information contained in the IDEF4 design model, thus limiting confusion

and allowing rapid inspection of the desired information. Carefully

designed overlap among diagram types serves to ensure compatibility

between the different submodels.

Due to the size of the class and method submodels, the designer never sees

these structures in their entirety. Instead, the designer makes use of the

collection of smaller diagrams that effectively capture the information

represented in the class and method submodels. The diagram types that

make up the class subnodel are 1) inheritance diagrams, 2) protocol

diagrams, 3) type diagrams, and 4) instantiation diagrams. The diagram

types that make up the method submodel are 1) method taxonomy diagrams

and 2) client diagrams. These six diagram types are used in an IDEF4

design to express 1) the compositional structure of the data object classes

using type diagrams, 2) inheritance relations using inheritance diagrams,

3) method contracts using method taxonomy diagrams, 4) protocols of the

object-oriented design using protocol diagrams, and 5) functional

decomposition using client diagrams. The following sections contain an

explanation of the diagrams and a brief description of their purpose.

4

ramType _ Instantiationiaam

Class Protocol
Submodel Diagrams

inheritance dsClass-invariantDiagrams y Data Sheets

SIDEF4

Model Dispatch
Mapping

compositio structure

5

Taxonomy Data Sheets
Diagrams ,

Method
Submodel

Figure 2-1

Organization of the IDEF4 Model

2.1 Clas Submodel

The class submodel consists of protocol diagrams, type diagrams,

inheritance diagrams, instantiation diagrams, and class-invariant data

sheets (CIDS). The class submodel shows class-inheritance and class

composition structure.

2.1.1 Inheritance Diagrams

Inheritance diagrams specify the inheritance relations among classes. For
example, Figure 2-2 shows the class Filled-rectangle inheriting structure
and behavior directly from the classes Rectangle and Filled-object and
indirectly from the class Object.

? Label

Object

? Vertices

$ Area ? Color

Rectangle Filled-object

Filled-rectangle

Fiure 2-2
Inheritance Diagram

2.1.2 Type Diagrams

Type Diagrams specify relations among classes defined through attributes
of one class that has values which are instances of another class, or that

6

are composed of instances of that class. Figure 2-3 shows a type diagram in

which the 2-Wheeled class has features Wheel-1 and Wheel-2. These

features are shown to return instances of the class Wheel that returns a

value of type Real for its feature Diameter.

Wheel- 1 - ---- Diameter -

Wheel-2 - Whee'-I j Real

2-Wheeled I

Figure 2-3
Type Diagram

2.1.3 Protocol Diagrams

Protocol Diagrams specify the class argument types for method invocation.

Figure 2-4 illustrates a protocol diagram for the Fill-closed-object: Polygon

Polygon Color

Self Fill-color

Fill-closed-object

(Result

Polygon

Figure 24

Protol Diagram

7

routine-class pair. From the diagram, it is apparent that Fill-closed-object
will accept an instance of the class Polygon as its primary (self) argument
and an instance of the class Color as a secondary argument, and will
return an instance of a Polygon.

2.1.4 Instantiation Diagrams

Instantiation diagrams are associated with type diagrams in the class
submodel. The instantiation diagrams describe the anticipated situations
of composite links between instantiated objects that are used to validate the

design.

2.2 Method Submodel

The method submodel consists of client diagrams, method taxonomy
diagrams, and contract data sheets (CDSs). An overview of each one of
these components is given in the following sections.

2.2.1 Method Taxonomy Diagrams

Method taxonomy diagrams classify method types by behavioral similarity.
A method taxonomy diagram classifies a specific system behavior type
according to the constraints placed on the method sets represented in the
taxonomy. The arrows indicate additional constraints placed on the
method sets. Figure 2-5 shows a Print method taxonomy diagram. The

8

method sets in the taxonomy are grouped according to the additional
contracts placed on the methods in each set. In the example, the first
method set, Print, has a contract which states that the object must be
printable. The Print-text method-set contract would have constraints such
as "the object to be printed must be text."

Printtext

I Print Print-graphics-object

Figure 2-5
Method Taxonomy Diagram

2.2.2 Client Diagrams

Client diagrams illustrate clients and suppliers of routine-class pairs.
Double-headed arrows point from the routine that is called to the calling
routine. Figure 2-6 shows a client diagram for which the Redisplay routine
attached to the class Redisplayable-object calls the Erase routine of the
Erasable-object class and the Draw routine on the Drawable-object class.

Erasable-object: Drawable-object:
EraseDraw

Redisplayable-object:
Redisplay

Figure 2-6
Client Diagram

9

2.3 Data Sheets
There are also two specialized data sheets that accompany the diagrams,
class-invariant data sheets (CIDS) and contract data sheets (CDS).
Understanding the information conveyed by these diagrams requires a
description of the basic concepts of IDEF4 that is presented in the next
chapter of this document.

2.3.1 Class-invariant Data Sheets

Class-invariant data sheets are associated with inheritance diagrams and
specify constraints that apply to every instance of a particular object class.
There is one CIDS for each class.

2.3.2 Contract Data Sheets

CDSs are associated with the method sets in method taxonomy diagrams
and specify contracts that the implemented methods in a method set must
satisfy. There is one contract data sheet for each method set.

10

3.0 IDEF4 Object-oriented Concepts

IDEF4 is a method for object-oriented design; it is not an object-oriented
programming language. It was developed to be used by designers of object-
oriented systems regardless of the object-oriented language used for
implementation of the system. However, discussion of the components of
an IDEF4 de-ign must be preceded by an understanding of the basic
concepts of object-oriented programming languages. In this section, the
basic object-oriented programming elements and their representation in an
IDEF4 design will be described. In addition, the basic elements of object-
oriented programming (classes, features, and methods) will be introduced
along with an elementary description of how they would appear in an
IDEF4 model.

The object-based tradition is often identified with message passing (i.e., a
message containing the name of an operation and arguments is sent to a
receiver). As with the data-driven tradition, the receiver and the name of
the operation are jointly used to select a method to invoke (Gabriel, 1991).

There are four focuses for object-oriented systems (see Figure 3-1): object-
centric, class-centric, operation-centric, and message-centric. Object-
centric systems provide a minimal amount of data abstraction, i.e., "state"

and "operations" with no special provision for classes. Class-centric
systems give primacy to classes. Classes 1) describe the structure of
objects, 2) contain the methods defining the behavior, 3) provide inheritance
topologies, and 4) specify data sharing between objects. Operation-centric
systems give primacy to operations: the operations themselves contain all
the behavior for objects but they may use classes or objects to describe
inheritance and sharing. Message-centric systems give primacy to
messages: messages are first class, and carry operations and data from
object to object. In class-centric and object-centric systems, the class or
object is highlighted rather than the operations.

11

Dimensions Message-centic Operatfon-centric

Class/type-centric Smalltalk CLOS

C++ virtuals FORTRAN Overloads

C++ Overloads

Object-centric Self Prolog

Actors Data-driven

Figure 3-1

Dimensions of Object-oriented Languages (Gabriel, 1991)

3.1 Classes

Object-oriented programming is a very intuitive style of programming in

that programs are made through the creation and manipulation of objects.

This style of programming, since it is more natural than traditional

programming styles, makes writing code easier for more people.

Paradoxically, the ease provided by this orientation also makes it easier for

more people to produce code that is inefficient, difficult to maintain, and not

reusable. One of the primary goals of IDEF4 is to help take full advantage of

the technology and avoid potential pitfalls.

Programs written in an object-oriented language define classes and

methods for classes. A novice in object-oriented programming will often

confuse the terms type, class, and object.

"Type" has at least five different meanings (Gabriel, 1991) including:

declaration types, representational types, signature types, methodical

types, and value types. Declaration types are used to specify an invariant

for what values may be stored in a particular variable or structure. Value

types refer to sets of objects that may be stored in a particular variable or

structure. A representational type is one that defines the storage layout of

objects (i.e., double in C++). A signature type is defined by the kinds of

12

operations that may be performed on objects. For example, the kinds of
operations that may be performed on a number and a vertex are quite
different. A methodical type is one for which methods can be written.
Classes in most object-oriented languages are examples of methodical
types.

A class is a type (methodical type) and an object is an instance of a type,
therefore an instance of a class. The description of a class is the definition
of a set of local, state-defining attributes and of a set of methods that define
the behavior of instances of that class and their relationship to instances of
other types that make up the system. In other words, a class is a data
structure that includes a set of state-defining attributes and a set of routines
that apply to objects of that class. An IDEF4 design will describe classes
and methods associated with those classes.

3.1.1 Classes vs. Objects

An important concept common to object-oriented and structured design and
programming is encapsulation or information hiding. Encapsulation is
attempting to divide a program into a number of modules to minimize
intermodule interaction or coupling (Yourdon & Constantine, 1979).
Therefore, before a variable or procedure can be exported from a module,
there must be an explicit declaration.

The term class is heavily overloaded in the object-oriented approach. It
refers to:

categories, or types, of objects in the real world (real-world
perspective);

* data types representing categories of objects (data-item
perspective); and

* modules of associated operations that define data types
(module perspective).

The term object is also overloaded. It refers to:

* real-world objects (real-world perspective); and

13

0 data items belonging to one class or another (data-item
perspective).

An object is an instance of a class. It is often convenient to merge the real-
world and data-item perspectives of class, and the real-world and data-item
perspectives of Object. This allows us to think of an object as a real-world
object that has been tagged with a few extra characteristics needed to keep
track of it inside a computer and to think of classes as categories of such
objects. This allows us to think of the class as an object that is tagged with
the information used to manipulate the computer representations of the
instances of the class. In other words, the computer views objects as real-
world objects. The ability to represent these concepts easily is precisely the
advantage that object-oriented languages have over structured
programming languages such as Pascal and C.

The classes in an object-oriented system define the types of objects that exist
within the system. Each class contains a set of feature definitions that
characterize the state and behavior of the instances of that class. The set of
feature definitions consists of attributes and methods. The attribute
definitions are used by the instances of the class to store their state. The
methods characterize the behavior of instances of the class.

Classes are the major syntactic construct in IDEF4, as in all object-oriented
formalisms. In IDEF4, a class is represented by a square-cornered box (see
Figure 3-2) with the name of the class listed below the double line at the
bottom of the box. IDEF4 requires that the first letter of the class name be
capitalized. The features of the class are also displayed in the Class Box
with private features (i.e., those intended for use within instances of the
class only) displayed below the export line and with public features (i.e.,
those to be documented, advertised and supported for external use)
displayed above the export line. The ability to define the public and private
features is supported explicitly by object-oriented languages such as C++,
Eiffel (Meyer, 1988), and Flavors. Various feature symbols, prefixed to the
feature name, may also be used to provide additional information about the
role that the feature plays. For each class defined, IDEF4 allows the

14

attachment of class-invariant constraints using class-invariant data sheets
as discussed in Section 3.1.3. These class-invariant constraints represent
additional information about a class that is true for all objects in the class at
all times. The class-invariants described in a design will provide
constraints on the implementation of the design and serve as part of the
specifications for a class. All the concepts introduced in this section will be
addressed in greater detail later in this document.

Name:
Vertex-i:

Features Vertex-2:
Vertex-3:

Area

Private r Area-internal
Features Area-flag

Class Name Triangle

Figure 3-2
Class Box in IDEF4

3.1.2 Class-inheritance

Perhaps the most distinguishing characteristic of an OOPL is inheritance,
especially multiple inheritance. Multiple inheritance occurs when a class
(a more specific class) inherits features (attributes and methods) from more
than one superclass (more general class or classes). The concept of
inheritance in OOPL provides a means of organizing instances of classes
into related sets and allows for the reuse of methods and class features
within the inheritance hierarchy. From the real-world point of view, the
inheritance phenomenon operates like a specialization relation. That is,
the inheriting class (subclass) is a specialization of the class from which it
inherits (superclass).

15

Figure 3-3 illustrates the approach taken in IDEF4 for modeling a class-

inheritance hierarchy. (In the illustration, the details that are irrelevant to

this discussion are omitted for clarity.) The arrows, in the diagram, point

from superclass to subclass. In this illustration, 3-sided Figure is a

subclass of the class Polygon. From this description, it is indicated that any

object that is a 3-sided Figure is also a specialization of a polygon.

Furthermore, any behavior exhibited by a polygon will also be exhibited by a

3-sided Figure unless the behavior is specialized in the definition of the 3-

sided Figure class. In the illustration, objects of type Rectangle inherit the

characteristics and methods from the Parallel-sides-mixin and the 4-sided

Figure classes. In the example, the class 4-sided Figure is a direct

subclass of Polygon and the class Rectangle is an indirect subclass of class

Polygon. Each subclass inherits the characteristics and methods

associated with its direct and indirect superclass(es).

Feature a Feature b

Inherits the Parallel-sides-
definition of
Feature a from Polygon min

Polygon. j

Feature a Inherits the
(redefined) definition for

-sided-figure Feature a
4-sided-figure from

4-sied-figure
and the
definition of
Feature b
from
Parallel-sides-

Triangle Rectangle

Figure 3-3
Class Inheritance

An important issue is resolving feature name conflicts in the inheritance

lattice. When a feature is activated in a linear inheritance graph (single

16

inheritance), there may be several feature-class pairs with the same

feature name. By convention, the feature class pair chosen for execution is

that from the most specific class; so we speak of a most-specific-first

ordering on feature-class pairs. This is the default assumed in IDEF4.

In the case of multiple inheritance, selection of a feature-class pair for

execution from a set of conflicting feature-class pairs is more troublesome.

In IDEF4, by default, the conflict is resolved by choosing the most specific

feature-class pair in a most-specific-first, topological ordering of the

conflicting feature-class pairs in the inheritance lattice. This conflict

resolution strategy is employed by most OOPLs, such as CLOS, Smalltalk,

Flavors, and C++.

A designer may not always want to use the default strategy employed by

IDEF4 (i.e., the dispatching is to be performed according to a different

prioritizing scheme). The other prioritizing schemes to consider include 1)

a least-specific-first ordering; 2) a depth-first, most-specific ordering as in

KEE (KEE Software Development, 1985); 3) a breadth-first, most-specific

ordering; or 4) the execution of all the applicable feature-routine pairs, etc.

In the last case, the designer may want to specify that the return results

are to be combined in a particular manner; this is called a method-

combination specification in OOPLs and a method-set-combination contract

in IDEF4. If the designer wishes to change the default method-set-

combination contract employed by IDEF4 for a certain feature, this must be

stated in the method-set contract of the method taxonomy based on that

feature. It should be noted that redefinition of the default method-set-

combination contract will rarely occur in practice and should be avoided if

possible since many OOPLs do not allow it.

From the module point of view, inheritance is a macro-like "virtual copy"

operation: all operations and similar features associated with a superclass

are automatically inherited by its subclasses, with the exception of those

features or operations that are redefined in the subclass. For example, in

Figure 3-3, the Polygon class defines a feature named Feature a. This

feature will be inherited in all of its subclasses: 3-sided Figure, Triangle, 4-

17

sided Figure, and Rectangle. The routine for Feature a in both 3-sided
Figure and Triangle is identical to that in Polygon. Because there is an
additional contract on Feature a in 4-sided Figure, it is said to be
"redefined" for that class and its subclasses. Since Rectangle is a subclass
of 4-sided Figure, the definition applied in Rectangle will be the
redefinition.

A subclass can see and use any feature of its superclasses, but not vice
versa. The notion of inheritance conflicts with the traditional notion of
information hiding. This violation, because it is allowed in a controlled and
limited way (and in one direction only), is one of the keys to the power of the
object-oriented paradigm. A properly structured OOD uses inheritance
facilities to minimize duplication of modules. The IDEF4 focus on
structuring methods into logical modules or classes helps ensure that the
resulting OOD achieves this goal.

In IDEF4, provision is made for the display of the inheritance relationships
between classes in the inheritance diagram as shown in Figure 3-4. An
inheritance diagram provides information that describes the classes, their
features, and any redefinition of features. For example, the reader familiar
with IDEF4 syntax can determine that a filled rectangle inherits all
features of the classes Polygon, Rectangle, and Fill-mixin. Furthermore, it
can be seen that the feature Perimeter is an attribute that has been
redefined in Rectangle. The details of inheritance diagrams will be
discussed in Section 4.1.

3.2 Features

A feature is the named representation of a particular characteristic of a
class. Features are used to capture the state and behavior of instances of a
particular class. A feature may be value-returning and/or side-effecting.
For example, the class triangle may have a feature called area that returns
(value-returning) the area of an instance of the class, and a feature called
move that changes the position on the screen space (side - effecting) of

18

? Label
? Num-sides
? Perimeter

Polygon

? Vertex 1 ? Vertex 1
? Vertex 2 ? Color ? Vertex 2
? Vertex 3 ? Vertex 3

& ? Perimeter ? Vertex 4

$ Area Fill-mixin + ? Perimeter

Triangle Rectangle

Filled-triangle Filled-rectangle

Figure 3-4
Partial Inheritance Diagram for a Graphics System

instances of the class triangle. Whether a given value-returning feature is
implemented by storage or by computation is functionally irrelevant. It is
the type of behavior (or state) that the feature named area provides that is of
concern. Whether area is implemented as a slot or whether the value is
computed from other features of the triangle is not necessarily of concern in
the initial design stages.

19

returning Feature Initiating

Figure 3-5

Class Feature Inheritance Lattice

This delayed decision-making capability is supported in IDEF4 by 1)

subdividing the feature category into attributes (value-returning) and

routines (computation-initiating), 2) subdividing the attribute category into

slots (value-returning from storage) and functions (value-returning by

computation), and 3) subdividing the routine category into functions and

procedures (side-effecting). The class-feature inheritance lattice is shown

in Figure 3-5 using the IDEF4 inheritance diagram class-box syntax.

3.2.1 The Feature Taxonomy

The feature taxonomy allows features to be characterized in general terms

initially; then, gradually, to be defined more specifically as the design

evolves. For example, a designer might first specify a characteristic of a

class as a feature. Then, as the design evolves, the designer can specialize

the definition of that feature to an attribute, a routine, a slot, a function, or a

procedure.

Figure 3-5 displays an inheritance lattice of the major types of class

features that are inherited and their properties. The arrows represent the

specialization relation and point from least-specific to most-specific class.

At the least-specific (top) level, all class features are grouped together

20

simply as features. The principal defining characteristic of an attribute is

that it returns a value when queried. A routine is something which, when

appropriately triggered, will initiate computational activity. These are not

mutually exclusive categories. The three most specific sets of features (i.e.,

slots, functions, and procedures) are mutually exclusive. Features

classified as functions have characteristics of both attributes and routines;

they return a value by computing it whenever queried. Features classified

as procedures have characteristics of routines that do not return values.

They are computational activities that have only side effects, though strictly

speaking a no-op (no operation) procedure might be useful in some

contexts. Slots are attributes that are not routines. They are similar to

generalized variables in Common LISP (List Processing). That i-, they can
return values when queried because they have access to some sort of

storage facility, ultimately computer memory, which can hold values for

retrieval. For a generalized variable, the operation of assignment, or

changing the value held for retrieval, makes sense. This is the intention
implied by the IDEF4 slot-type of feature as well. The three most specific

feature-type categories (slots, functions, and procedures) are mutually

exclusive and form a partition of the set of all class features in an OOD.

3.2.2 Feature Inheritance

All features associated with the superclass are automatically associated

with the subclass through class-inheritance mechanisms. A subclass can

see and use any feature of its superclasses, but not vice versa. Figure 3-6,

for example, shows that the class Polygon has a feature called Area.

Subclasses of Polygon such as Square and Triangle inherit the area feature

from Polygon.

If the Area feature is implemented as a calculation, then using the general
area calculation of the polygon for a square would be inefficient. Therefore,

it might be desirable to define an Area feature for Square that uses the more

efficient, specialized calculation for instances of squares. This specialized

calculation would be invoked instead of the more general method. Thus,
the more specialized method "shadows" or redefines the more specific

21

method. Figure 3-7 illustrates a case in which the Area feature of the class
Square shadows or redefines that of the class Polygon. The Triangle class
continues to inherit Area from Polygon.

Subclass/Superclass Relatio

Triangle inherits the area Square inherits the area
feature from Polygon feature from Polygon

Figure 3-6
Inheritance of Area from Polygon by THangle and Square

Suss/SuperclasslatonPoyn

ITriangle inherits the area Squr has its own
feature from Polygon ae etr

'I

qQI -- I-9

Figure 3-7
The Area Feature of Square Shadows that of Polygon

22

3.2.3 Feature/Class Taxonomy

It is important to classify features with respect to each object class in which

they are present. This second classification scheme allows the designer to

indicate the way in which he intends to associate a feature with a class (i.e.,

defined in the class, redefined in the class, or an inherited feature in the

class). The taxonomy for this secondary classification scheme is depicted

in Figure 3-8.

[Present

Directly Inherited
Present net

Defined Redefined Virtual

Figure 3-8

Feature/Class Taxonomy

Using this classification scheme, a feature that is associated in any way

with a class is present in the class. Those features whose names are

displayed in the class box of a class A are said to be directly present in A

(relative to a diagram). Those features present in a superclass B of A are

considered to be present in A as well, and are inherited features of A.

Features of A that are both directly present and inherited in A are redefined

in A. They are directly present because the class box is giving additional or

revised information about them that was not present in the superclasses of

A. Features that are directly present but not inherited in A are said to be

defined in A; those that are inherited but not directly present are said to be

virtual in A.

23

The matrix in Figure 3-9 categorizes the Area feature of the class hierarchy

described in Figure 3-7. Figure 3-9 shows the secondary classification for
the Area feature with respect to each class in the hierarchy as 1) present,

directly present, and defined in the Polygon class; 2) present, inherited, and
virtual in the Triangle class; and 3) present, directly present, inherited,

and redefined in the Square class.

3.2.4 Feature Types

Value-returning features have a type associated with them which specifies

the type of the value returned. The type can be a canonical type such as
integer or real, a class, or structured collections of classes.

In the IDEF4 discipline, all attributes have a return type, defined as the
type of their return value. From a design management point of view,
feature types provide an implicit indication of the relations between classes.
This information is not visible in the inheritance lattice. Experience has

shown, however, that management of these interconnections is critical to
the development of large object-oriented systems. Through the study of the
feature types, the programming team can communicate intended relations.

Class Present Directly Inherited Defined Redefined Virtual

JI Present

Polygon X X X

Triangle X X X

Square X X X X

Figure 3-9
Area Feature in Polygon Class Hierarchy

Figure 3-10 illustrates feature-type relations. It shows four classes 1)
Movable, 2) 2-Wheeled, 3) Real, and 4) Wheel. The Movable class defines

24

two features (X and Y), which return real numbers that indicate the

position of instances of movable objects. The class 2-Wheeled inherits the

features of a movable class through the subclass/superclass relation. The

2-Wheeled class defines features (Wheel-1 and Wheel-2) that return

instances of the class Wheel. The Wheel class has a Diameter feature that

returns values of type Real.

Features
3Real Movable I

Figure 3-11 shows type links and inheritance links of a Shape class-

inheritance lattice. The base class of this inheritance lattice is the Polygon
class, which is inherited by the Convex class, which in turn is inherited by

the Square and Triangle classes. In instances of Polygon and Convex, the

Nr-sides feature returns integer values, whereas in Square and Triangle,

the Nr-sides feature is restricted to returning a fixed value for all instances

of the class. The features that have this restriction are called class

features. This restriction may be expressed as a class-invariant constraint

25

(i.e., a constraint that holds for all instances of a class) or as a constraint on
the contract that the feature fulfills.

I Nr-sides LIn e r

Subclass/ e atu
Superclass
Relation

- Triangle

ISq are ' I

Figure 3-11

Class Features

An example of a class-invariant constraint that satisfies this restriction is:

For-all (x)(triangle x) -> (Nr-sides x) = 3

For-all (x)(square x) -> (Nr-sides x) = 4.

Some object-oriented languages such as CLOS can represent the class
feature directly as a class attribute.

3.3 Methods

As shown in the discussion on class features, a class may have features
that define the behavior of its instances. The behavior of an object is how it
responds to a message or generic function in terms of changing its state,
altering its environment, acting on other objects, and returning values.
The features that define behavior are computation-initiating; thus, by
definition, they are routines. The function and procedure feature classes
are subclasses of the feature class routine; more specifically, they inherit
the computation-initiating property from the feature-class routine. It is
convenient to speak of behavior-defining features as routines. Each routine

26

must be defined in iss so that a routine may be uniquely identified by a
generic routine-class pair. In this document, the term "routine-class pair"

will be used in place of "generic routine-class pair" when it is obvious that
we are referring to a specific behavior defined in a particular class. The
term "routine" will be used instead of "generic routine" when it is obvious
that we are referring to the class of behavior. In case of possible ambiguity,

the unabridged form of the terms will be used.

3.3.1 Methods in Design vs. Methods in Programming

Routines may be attached as features to more than one class and may
behave somewhat differently depending on the class of objects upon which
they perform their computations. In OOPLs these routine-class pairs are
implemented by a single method that provides the required behavior. The
notion of a method in IDEF4 design is not the same as the usual notion of a
method from an object-oriented language point of view. In object-oriented

programming, a method is an executable piece of code which
algorithmically specifies the computation to be performed by means of a set
of instructions. In IDEF4, methods are defined by the contract that they
must fulfill. In fact, in IDEF4 we do not refer to individual methods;
rather, we refer to a set of methods, any of which can fulfill a specified

contract. In other words, we refer to the contract for a programming
language method rather than the code for the method.

In general, more than one method will be associated with a routine, even in
a programming language. The same routine may have different methods
in different classes. In an OOPL however, only one method will be

associated with each pair of a routine and a class. In Figure 3-12, the
routine Area is a member of two routine-class pairs, Area: Polygon and
Area: Triangle. In a programming language, a different method would be

defined for each of these, such as Get-area-of-polygon and Get-area-of-
triangle. In IDEF4, on the other hand, individual methods are not
represented. Thus, in IDEF4, Get-area-of- polygon and Get-area-of-triangle

would refer to method sets and their related contracts illustrated in the
Area method taxonomy. The routine-class pair specifies a method set

27

defined by an associated contract. Any member of this set satisfies, and

would satisfactorily implement, the routine for the class. The idea in

IDEF4 is to describe or design the behavior, not program the behavior.

% Are Routine
% Area

Polygon Subclass/Superclass

Relation

Routine
+ % Area

Triangle

Figure 3-12
Same Routine in Different Classes

&3.2 Method Sets

The method set can be thought of as a characteristic function defined by a
set of constraints that pick out a set of possible correct implementations.
The set of constraints -- the defining characteristics for methods in the
method set, is called a method set contract. IDEF4 treats method sets at the

conceptual level; therefore, in a design, the concern is with the definition of
the contract, rather than individual methods within the set. The

expression method set is often used to refer to the constraints
characterizing a set of methods. These characterizing constraints are
required for any implementation. In IDEF4, the constraints are satisfied by
any method written to implement the behavior of a routine-class pair. This
defined set of constraints is the method set contract discussed in Section

4.2.1.

28


~~~CRT-text-rn

Laser-text-print I

Laser-graphics-print

Graphics-to-plotter

Figure 3-13
Method Set Relations

For example, the class-invariant constraint on the feature Identity-number

of type integer in the class Soldier may be expressed as:

"The Identity-number feature in the Soldier class must be a unique integer

over all instances of the class soldier."

More formally, this might be written as the following constraint that

specifies that no two soldiers may have the same identity number:

For-all(x y) (soldier x)A(soldier y)A(not-equal x y)
A(not-equal(identity-number x)(identity-number y)).

Another example of a class-invariant constraint would be one that applies

to a doubly linked list.

A constraint for the contract of the method Pop in the class List might be

specified as:

"The Pop operation is inappropriate when the list it is being
applied to is empty. When this operation is attempted on an
empty list, the operation should return a nil to indicate an
exception condition."

30



More formally, if the Pop operation is applied to a list and the list is empty,

then the result is nil:

For-all (x y) (invocation pop x)A(list y)A(empty y)

(return x y nil).

% Print [Print-object]

Displayable-object

+ % Print [Print-text] + % Print [Print-graphics-object]

Text-object Graphics-object

+ % Print [CRT-text-print] + % Print [Laser-text-print]

Screen-displayable-text Printer-text-object

Figure 3-14
Class Structure with Method Redefinition

31



4.0 Diagrams

Five types of diagrams and two types of data sheets are used to create an

IDEF4 design model. The diagram types are grouped into the following two

submodels.

1. Class Submodel

* Type Diagrams

• Protocol Diagrams

* Inheritance Diagrams

2. Method Submodel

" Method Taxonomy Diagrams

* Client Diagrams

These submodels are connected via dispatch mapping, which may be

displayed in both inheritance diagrams and method taxonomy diagrams.

The discussion of each diagram type will contain a concise description of all

the symbols that may be used in the diagram.

4.1 Class-inheritance Diagrams

Class-inheritance diagrams are part of the IDEF4 class submodel. They are

used to graphically display the class hierarchies of a system.

4.1.1 Class-inheritance Diagram Symbol Set

In this section, we discuss the symbols that are used to create a class-

inheritance diagram. These consist of the class box, symbols for describing

the features of the classes, and arrows that display the superclass to

subclass relationship.

In the class box, the name of the class itself appears at the bottom of the box

below a double horizontal line with the first letter capitalized as shown in

32



Figure 4-1. The names of the features that are directly present appear
above the double horizontal line. Features may also be divided into two
groups above the double horizontal line by the addition of a single horizontal
line (the export line). The export line separates the directly present, public
features of a class from the directly present, private features of the class.
Public features are those that appear above the line and are said to be
exported from the class. Private features are not exported, that is, they are

only visible to the class and its subclasses. Virtual features are public or
private according to their status as public or private in their source class.

In fact, virtual features have exactly the same characteristics that they
have in the source class. The source classes, if there is more than one,
must agree on the characteristics of a virtual feature.

Public Features

Private Features

Ctass Name

Figure 4-1

Class Box

If a feature is public in a class, then its presence in that class is visible to
and usable by all classes in the IDEF4 model. If a feature is private in a
class A, then its presence in A is visible to all of A's subclasses, but not to
any other classes (unless it is otherwise made visible to them). If no export
line appears, then all directly present features of the class are public. If an
export line appears, but there are no features above it, then all directly
present features of the class are private. (This might happen if the class
were intended solely as a "mixin" to be combined with other classes via

33



multiple inheritance.) It is also permissible for a class not to have any

directly present features; in this case, the export line must not appear. In

the IDEF4 class box for the Triangle class featured in Figure 4-2, Name,

Vertex 1, Vertex 2, Vertex 3, and Area are public features; Area-internal

and Area-flag are private features.

Name
Vertex-1
Vertex 2
Vertex-3
Area

Area-internal
Area-flag

Triangle

Figure 4-2

Triangle Class Box with Features

Feature

Figure 4
Feature Taxonomy Showing Specialization Symbols

34



IDEF4 features may be routines, attributes, functions, procedures, or slots.

Initially, the designers will not make a decision on how the features are
implemented, only that particular features will exist (see Figure 4-2). This
design practice is perfectly acceptable and is likely to be the case in the early
definition of class features. As the development of the design continues, the
designer may choose to specialize the feature classification. (The design
may evolve in such a way as to result in certain features being transformed
from a more specific class to a more general class.) When the designer

wishes to commit to the type of intended feature, a feature symbol may be
added to the left of the feature name (see Figure 4-4). The feature

specialization symbols are shown on the feature class-inheritance diagram

shown in Figure 4-3.

The feature symbols are:

Feature - No symbol to the left of the feature name
indicates that feature is present but its implementation
has not been determined.

% Routine - The % symbol indicates the feature will, when
appropriately triggered, initiate some computational
activity. It is not known or specified whether a value will
be returned. These details may be left to the implementors
of the design.

? Attribute - The ? symbol indicates that the named feature
will return a value when queried. This value may be a
stored value or the return value from some computation.

$ Function - The $ symbol indicates that the named function
will return a value by computing it whenever queried. A
feature that is implemented as a function has the
characteristics of both an attribute and a routine.

# Procedure - The # symbol indicates that the named
feature is a routine that does not return a value. It is
included for the side effect(s).

@ Slot - The @ symbol indicates that the named feature is a
generalized variable. Slots can return values when
queried because they have reading and writing access to
the storage location in which the slot value is stored.
Operations for value retrieval and assignment of the value

35



held for retrieval will be associated with this type of
feature.

? Area

$ Perimeter

@ Name

Polygon

Figure 4-4
Polygon Class with Feature Symbols

? Area

$ Perimeter

@ Name

Polygon

@ Vertex-1
@ Vertex-2
@ Vertex-3

+ ? Area

% Area-internal
@ Area-flag

Triangle

Figure 4-5
Triangle Class a Subclass of Polygon

The feature symbols indicate how the designer expects a particular feature

to be implemented. For example, in Figure 4-4 the Polygon class has three
features: Name, Area, and Perimeter. The Name feature is to be

36



implemented as a slot, the Area feature as an attribute, and the Perimeter

feature as a function.

In Figure 4-5, the superclass/subclass relationship between the Polygon
and Triangle classes is illustrated. This relationship is defined by an
arrow that points from the superclass (Polygon) to the subclass (Triangle).
Subclasses of the Polygon class will inherit all Polygon features and
implementations. This characteristic of inheritance is not always what the
designer intends. For example, the Triangle class (Figure 4-5) is a subclass
of the Polygon class, but the algorithm for calculating the area for a general
polygon is too general for a triangle. For this reason, the designer must
indicate that there is to be a redefinition of the Area feature for an object of
type Triangle.

IDEF4 provides symbols to be used in a subclass if an inherited feature is
redefined. One or more of the following auxiliary feature symbols will
appear to the left of the redefined feature name (and feature symbol, if any)
showing how the feature has been redefined.

& Additional Contract - This symbol indicates that an
additional constraint added to the method contract
associated with the named feature (e.g., a pre-condition or
post-condition).

+ New Method - This symbol indicates that the named
feature represents another routine with the same name
as the one inherited from the superclass (as in the
Triangle type in Figure 4-5). The additional constraints
placed on the routine require that a new contract be stated
in its entirety.

New Taxonomic Specification - This symbol indicates that
a feature is redefined more specifically as a function or
slot in a subclass, and perhaps differently in different
subclasses.

Now Public- This symbol indicates that a previously
private feature has been made public and its presence in
the class (and therefore in all succeeding subclasses) is
visible to and usable by all classes in the IDEF4 model.

37



The name of the feature that is redefined as public should

be placed above the export line.

Now Private - This symbol indicates that a previously
public feature has been made private and its presence in
the class is visible to all subclasses of that class, but not to
any other classes in the IDEF4 model. The name of the
feature redefined as private should be placed below the
export line.

These symbols for class boxes, feature identification/redefinition, and

arrows are combined to form the class-inheritance diagrams.

4.1.2 Understanding a Class-inheritance Diagram

Now that we have discussed the basic symbol set for inheritance diagrams
we will discuss the graphical diagram in which this information is

displayed. The basic IDEF4 language component for this purpose is the
inheritance diagram. The inheritance graph of a particular IDEF4 model
is simply a single, maximal inheritance diagram that shows all the classes

and direct inheritance relationships. An inheritance diagram of this size
would have little practical use if actually drawn, but it is useful to keep in
mind as a way of imagining the full scope of inheritance diagrams. They
differ from the full inheritance graph only by omission. The full
inheritance graph could also be stored in computer memory to allow

automated creation of diagrams for video display.

In IDEF4 inheritance diagrams, classes are displayed using the class box
notation; inheritance is represented by an arrow pointing from one class

box (superclass) to another (subclass). In Figure 4-6, the arrow from
Polygon to Triangle indicates that Triangle is a subclass of Polygon.

Inheritance is also transitive: if Filled-triangle is a subclass of Triangle

and Triangle is a subclass of Polygon, then Filled-triangle is a subclass of
Polygon. With respect to a given IDEF4 diagram, inheritance that is shown

directly by a single arrow from class box Polygon to class box Triangle is
called direct inheritance. (The phrase "with respect to a given IDEF4
diagram" is used because not all IDEF4 diagrams are obliged to show all

38



? Area

$ Perimeter

@ Name

Polygon

I
@ Vertex-2
@ Vertex-2
@ Vertex 3

+ ? Area

% Area-internal

? Color @ Area-flag
Triangle

Polygon-fill-nixin

Filled-triangle

Figure 4.6

Partial Inheritance Diagram for a Polygon Class

connecting links between two classes.) Polygon is said to be a direct
superclass of Triangle, and Triangle a direct subclass of Polygon.

39



? Get-process-locks
? Get-highest-lock
" Delete-process-lock$ aeodr-lc
" Add-process-lock
" Process-wait SMk-ree-ullc

" Without- process- preemption SMk-ipelc

Process Srn

&+ % Describe

* Dequeue-print-request 0Nm aeisac
* Enqueue-print-request
* Requests Lc
* Lock

Print-request-queue

& %Siz D &b Ordere-nur-loe

$Ihc-fritanlce Diga Leetwr Mauage -Syste

(Bse iomtep tnedlc example-oCLO poramig Cate3(eee

&1Se89).)Dscib

& Dscib Odeed u-40;-



If inheritance is not shown by a single arrow and can only be imi - -d from
the presence of a chain of arrows, using transitivity-as in F ig :e 4-7
between Standard-object and Simple-lock-the terms indirect inheritance,
indirect superclass, and indirect subclass are used. ((Keene, 1989) provides
a detailed description of the system modeled in this diagram.)

This graphical approach for describing the class hierarchy structure was
designed to maximize the amount of key information displayed in a
minimum amount of space. The class-inheritance diagram identifies the
features of the classes and subclasses that are displayed in the boxes, and
also reveals details about the implementation of the features and their
visibility within the system. In Figure 4-7, the more specific class,
Standard-object, has only inherited features from the class T. Since these
inherited features are not redefined, they do not appear in the Standard-
object class box. Lock, which is a direct subclass of Standard-object and an
indirect subclass of T, also inherits the features Describe and Print-object.
In Lock, the plus sign (+) preceding Describe and Print-object indicates that
these features have been redefined with constraints that will shadow some
of the constraints in the superclass definition.

If the intent had been to illustrate that the redefinition consisted of the
addition of pre- or post-conditions to the set of constraints for the superclass
routine, an ampersand (&) would have been used. The directly present
features With-lock, Release, and Seize are all defined as routines in the
Lock class and are public. The @ symbol prefixed to the directly present
feature Name is defined as a slot and its appearance below the export line
indicates that it is private.

4.1.3 Class-invariant Data Sheets

In IDEF4, each class has an associated specification of the definition of that
class. This definition is entered into a CIDS because it captures (in
specification language form) the designer's intentions for the property

41



values or object relations that individual instances of that class must
possess. The CIDS allows refinement of the definition of a class beyond the
listing of the class features and relations that are shown on the various
IDEF4 diagram languages. The CIDS can be considered to be attached to
individual class boxes in an inheritance diagram (see Figure 4-8). The
CIDS gives further information about the objects in a class, perhaps
relating various distinct features in textual form. This information taken
as a whole makes up a class-invariant which must be maintained as true of
all objects in the class always. A CIDS for Linked-list might include the
constraint that the list constructed out of the first element and the rest of
the list is identical to the original list.

equal(cons(first(x),rest(x)),x)

The class-invariant constraints are inherited just as features are. The
combining principle is that of logical conjunction. A class invariant is the
logical conjunction of what appears on its own CIDS and what appears on
those of all its superclasses. (The term class-invariant can also be loosely
used for the contents of a single CIDS, or even just for a single constraint
appearing on such a sheet, like the one for Linked-list above.)

A CIDS is more than just a vehicle for listing the constraints on a class.
One purpose of CIDS is to provide documentation for those who will
maintain the installed system as well as those who will implement the
design. IDEF4 design documentation is centered on the classes defined for
the system; therefore, CIDSs include the numerical identifiers for
referencing the inheritance diagrams and type diagrams in which the
class appears. The names of directly present features of a class are
provided to allow access to the routine-class pairs around which the other
design components are organized. The definition of each feature is
included with the feature name. Virtual features are accessed via the
listing of the direct superclasses of the named class. The CIDS for a class
can be more than one 8-1/2 in. by 11 in. page because they contain so much
information. Provision is made for this by including page numbers. CIDS
are not expected to be complete even when the class description has been

42



Class Invariant Data Sheet
(Class Name)

Class Inheritance Diagram(s): [
(ID and Caption)

Type Diagram(s): 
a

(ID an4 Caption)
Owner: I

Name MI Surname
Date Approved: [

Description and Purpose:

Constraints:

Direct Superclasses Direct Subclasses

Features (Name,type, public / private, defined /re-defined)

(Class Name - page 1)

Figure 4-8

Class-invariant Data Sheet Form

43



completed. Some information in a CIDS may not be available until the
system design is near completion. For example, not all the inheritance
diagrams nor type diagrams in which the class appears may be known at
the time the constraints and features are determined. Thus, just as other
components of the design evolve over the design process, these data sheets

will evolve as well.

Figures 4-9 and 4-10 illustrate the use of CIDS. The CIDS illustrated in
Figure 4-10 can be considered to be attached to the Lock class (Figure 4-9)
which appeared in the class-inheritance diagram shown in Figure 4-7.
The information at the top of the sheet identifies the name of the class and
other relevant bookkeeping types of data. The inheritance diagrams in
which the class is drawn will be listed by ID and Caption. This provides a
link to CIDS and allows the implementor access to a visual representation
of the class's place in the system class hierarchy. The description
components allow identification of the types of objects described by the class
and any other information related to its reason for being.

% With-lock
+ % Describe

+ % Print-object
% Release
% Seize

@ Name

Lock

Figure 4-9
Network Manager System Lock Class

The primary component of CIDS is the set of constraints on the
implementation of the class. These can be stated in plain English (see
Figure 4-10), first-order logic, or some other language suitable for
expressing constraints. In the class hierarchy, every class inherits the
class-invariant constraints of its superclass. By providing the list of the

44



Class Invariant Data Sheet 7 Lock
(Claw Name)

Class Inheritance Diagram(s): i1 - Network Manager System
(ID and Caption)

Type Diagram(s): iT - Network Mana er s
(ID and Caption)

Owner: Jack Q. Desier
Name MI Surname

Date Approved: 3/15/91

Description and Purpose:

Lock is the basic lock type. It is used as the superclass for all lock types.

Constraints:

A lock can only be owned by one process.

Each shared resource has only one lock.

A lock can not be released by any process other than its owner.

Direct Superclasses Direct Subclasses

Standard-Object Simple-Lock
Ordered-Lock-mixin
Null-Lock

Features (Name,type, public / private, defined /re-defined)

With-lock. (routine, public, defined) This -.utine is a syntactic extension to
the locking protocol.

Describe: (routine, public, re-defined) This routine specializes the object
print routine for locks and overrides the system-defined describe routine.
Print-object: (routine, public, re-defined) This routine specializes the
object print routine for locks and overrides the system-defined print-object
routine.
Release : (routine, public, defined) When called, this routine will release a
lock that is owned by the process that is attempting the release.
Seize : (routine, public, defined) The generic Seize routine for all locks.

Name: (slot, private, defined) This feature is the name attribute for a lock.

(Lock - page 1)

Figure 4-10
Class-invariant Data Sheet for Lock

45



class's direct superclasses, the implementor can locate inherited

constraints. The listing of the direct subclasses provides a link to those

classes which will inherit the constraints of the class. The listing of the

superclasses and subclasses provides more than constraint traceability. If

class Lock were to be deleted or modified, these two lists would provide those

modifying the system design with a means of quickly tracing which classes

in the system would be affected by the change.

The final part of the CIDS is the list of directly present features of the class.

Inherited features can be found by examining the CIDS for the superclass

of the class Lock. For each directly present feature of Lock, the CIDS will

contain the name, type, etc., that can be found in the class-inheritance

diagram. In addition, the method set whose contract the implementation of

the feature is to satisfy and the definition of the feature are also contained in

CIDSs. This feature definition in a CIDS is the only place in the design that

a textual definition of a feature is provided.

4.2 Method Taxonomy Diagrams

In this section, we will discuss the method taxonomy diagrams and CDSs
that are associated with the method sets in the diagrams. The method sets

into which methods are grouped by contracts form a taxonomy (grouping)

which is at least partially independent of the way in which routines are

grouped by the class-inheritance graph. IDEF4 introduces, as part of an

IDEF4 model method submodel, method taxonomy diagrams to represent

the groups of related method-set contracts within the design. Because an

understanding of method-set contracts is central to the understanding of

method taxonomy diagrams, they will be addressed first.

4.2.1 Contract Data Sheets

Strictly speaking, a method in an OOPL is described by its code; in IDEF4, a
method is any implementation that satisfies the contract in the method set.

In IDEF4 terminology, a method set is completely determined by its

contract, and logically equivalent contracts pick out identical method sets.

46



Although this may sound like a method contract is a specification, it is in
fact much more. A method contract is an abstract description which
defines a class of routines or a method set. It is a declarative statement of
the intended effect of the methods in the method set. For a non-side-
effecting function, the contract would state the relationship between the
function argument list and the corresponding return values. For a
procedure or a side-effecting function, the contract would also define how
the method set changed the entire state of the world when given an
argument list and a prior state of the world. The method contract may in
some situations contain algorithmic restrictions such as, "The move
method will execute an erase method followed by a draw method." A
contract might also give other information about the intended nature of the
method-set (e.g., its time complexity). In addition, one would expect to find
statements of actions that should occur before a method is invoked and
what actions should occur after the method has performed its task.

A method-set contract provides the constraints that are specified to hold for
all the implemented methods that would be members of the set. Just as the
class-invariant holds for all members of a class, the contract for a method
set is an invariant (i.e., it holds for all implementations which are
members of the set). For example, consider the class hierarchy shown in
Figure 4-11. The Area routine in the Polygon class specifies that the
methods for calculating the area would calculate the area for any polygon.
However, when the polygon is a triangle or a rectangle, there are more
efficient methods for calculating the area. The class hierarchy shows that
the Area feature is redefined in each of these subclasses. The method-set
contract for these redefinitions would specify the additional constraints to
which the designers expect the method sets to adhere. In Figure 4-11, the
auxiliary symbol "+" indicates that the additional constraints are such that
an entirely new contract would be written for the Area routine for both the
Triangle and Rectangle classes. Each time a routine is defined or redefined
for a class, the designers must specify the constraints that the methods
which implement that routine are expected to satisfy. This set of
constraints forms a method-set contract.

47



% Area

Polygon

+ % Area + % Area

Triangle Rectangle

Figure 4-11
Partial Inheritance Diagram with Area Feature

Poor communication and coordination is a primary cause of loss of
productivity in software development. All too often, the reason the software
demonstration fails to work as expected is that another programmer has
altered it without record or explanation. The CDS associated with a method
set is one means of ensuring that the code produced by all the programmers
conforms to the same expected .ystem behavior.

In IDEF4, contracts are recorded on CDSs associated with the method set
as shown in Figure 4-12. One aim of using contracts is to facilitat
communication and coordination between designers and implementors in
a large software project. The CDSs in the final documentation are
organized alphabetically by the routine name followed by class name.
Given a CDS, it is easy to reference all other IDEF4 diagrams by using the
routine name and/or class name. The routine name is used for referencing
the method taxonomy diagram. The class name references the CIDS of the
class in which the routine was defined and which also contains a list of all
the type diagrams and inheritance diagrams in which the class appears.
The combination of routine and class names allows one to reference the
protocol diagram and client diagram that apply to the method set. The

18



Contract Data Sheet:
(Routine-Class Pair)

Method Set Name:
(Name)

Method Taxonomy Diagram: I
(Routine Name)

Owner:
Name MI Surname

Date Approved:

Description / Definition

Constraints

Figure 4-12
Method-set Contract

input classes, output description, and the process information may be
included as constraints. The description/definition component in the
contract will be a textual description of the method contract and may
include the method-set rationale.

In a design, the method sets are grouped together by related contracts to
form a method taxonomy for a particular type of system behavior or routine.

49



These groupings represent the contract framework from the least-specific

to the most-specific contract for a specified type of behavior. The method

taxonomy diagrams provide a graphical means for illustrating how groups

of methods are related in the design.

4.2.2 Method Taxonomy Diagrams Symbol Set

The two symbols used in a method taxonomy diagram are boxes and

arrows. The boxes represent method sets and the arrows denote an

additional constraint relationship or a redefinition relationship. The

arrows in the diagram point from the less-specific to the more-specific

method set. A method taxonomy diagram may be laid out either left to right
or top to bottom on a page from the most-general to the most-specific method

set.

Method Set Name

(Additional /
New Contract)

Method SetName Pointer to more

(General Contract) specific method set

Method Set Name

(AdditionalI
New Contract)

Figure 4-13
Method Taxonomy Diagram Symbols

In Figure 4-13, the method set on the left represents the set of methods that

satisfy a less-specific contract. These additional contracts denoted by the

arrow may be conflicting or nonconflicting with respect to the contracts in

the immediately more general methods. This means that the contract for

the method sets at the end of an arrow will have all the constraints placed

on the preceding method sets plus some additional constraints which may

50



in some manner override or shadow those that are inherited. In either

case, the additional contract makes the method sets more specific. The
kind of contract relationship-redefinition or additional contract-will be

specified using a "+" or "&" auxiliary symbol, respectively, in the
inheritance diagram in which the class feature is defined. If the contract

is being shadowed or redefined, its attribute in the class-inheritance
diagram will include a "+" prefix and the method-set contract must be
stated in full if there is no way of defining which contract items in the
more-general contract are being shadowed (i.e., the notion of adding to the

constraints of a more general method set will not apply).

4.2.3 Understanding a Method Taxonomy Diagram

The method taxonomy diagrams of IDEF4 are a way of organizing the

contract structure for a class of behavior. They provide a means for
graphically illustrating the additional or new contracts that are provided
for a routine. By convention, the name of a method taxonomy diagram is
the routine that is being described.

% Sort

Sequence

+ % Sort + % Sort

Array List

Figure 4-14
Class Structure with Additional Contract

Figure 4-14 illustrates a partial class hierarchy. In this hierarchy, a Sort

routine is defined in the root class Sequence and inherited by both

51



subclasses Array and List. In each of these classes, the routine has a new

contract (e.g., additional and/or new constraints). This is illustrated by the

Sort method taxonomy diagram as shown in Figure 4-15.

Sort method with additional
contract (i.e., constraints)

for Array.

Sort-method contract
for Sequence.

< Sort method with another
set of additional constraints

for List.

Figure 4-15
Layout for Sort Method Sets in Sequence Structure

It is important to note that every method taxonomy diagram is associated

with a generic activity. In Figure 4-15, the generic activity is sorting. Every

method set in the diagram will relate to the operation of sorting or to a sort

contract for some routine-class pair. For readability, it is desirable to name

the method sets as a concatenation of 1) an activity qualifier; 2) the

operation, procedure, or function that the methods in the set would

perform; and 3) the class name. The reason for the activity qualifier is to

enable one to distinguish between method sets that have the same routine-

class pair. An example of this situation would occur if the designer defined

more than one sort routine (e.g., a bubble sort, insertion sort, and a heap

sort) in the class array and named each one "sort." In this case, the sort

m hod sets would be named heap-sort-array, insertion-sort-array, and

bubole-sort-array. The feature definition in the class-inheritance diagram

would need an explicit dispatch containing the full name of the method set

to which it is being dispatched.

52



The key to understanding a method taxonomy diagram is to understand the

contracts associated with the method sets in the diagram. The boxes in a

method taxonomy diagram represent method sets. Method sets are

connected by arrows that point from a more general method set to more

specific ones. Thus, we can say that the arrows in a method taxonomy

diagram denote an additional contract. The additional contract
represented in the diagram may provide constraints that are either

conflicting or nonconflicting (see Figure 4-16).

C Additional Contract)

M odification toI  New and

Previous Independent
C onstraint(s) Constraint

Figure 4-16
Additional Contract

Conflicting constraints are those that specialize or redefine the contract of a
previous method set in some manner. In a CLOS program, this is

analogous to the definition of a new primary method that shadows any less-

specific methods. Nonconflicting constraints merely represent the addition

of constraints that do not shadow or are not affected by any of the so-called
inherited constraints. The nonconflicting constraints provide for the "pure"

notion of "additional contract" and are, as a rule, sets of pre- or post-

conditions that are expected to apply to a method in the primary method set.
The concept of pre- and post-conditions implies that methods in the New

method set would execute a primary method either preceded or followed by

some additional method. In the CLOS model, this behavior is accomplished
by before, after, around, and primary methods with an appropriate method-

combination strategy. With C++, one would explicitly call the before and

after methods to perform these operations or add the before and after

53



method capability to C++. Both techniques are well documented in C++
reference books.

The important point to note when designing or reading a method taxonomy

diagram is to first identify the behavior class of the diagram by which it is
named. This will provides the reader with a general understanding of

what is being illustrated and what is to be implemented. However, to fully

understand the relationships between the method sets in the diagram, it is

necessary to study the individual CDSs. For this reason, if the intent is to

shadow some or all the constraints in the more general method set, then

the CDS must contain a full and complete listing of the New method-set

constraints. Furthermore, a CDS should state whether the contracts

supersedes all preceding contracts or adds pre- and/or post-
(nonconflicting) conditions. The layout of the diagram itself will provide

only a general notion of an ordering from less specific method sets to more
specific method sets. The CDSs provide the actual relationships between

the method sets.

Caculate-area-for-parallel-sided-figure

Calculate-polygon-area

Calculate-area-for-triangle I
Figure 4-17

Area Method Taxonomy Diagram

Figure 4-17 illustrates a method taxonomy diagram for Area calculation

with additional, conflicting constraints. In this diagram, the constraint on

the method set Calculate-polygon-area could indicate that methods in this

method set will calculate the area of any object classified as a polygon.

However, both of the other method sets in the diagram represent

54



specializations of the constraints placed on the first. Calculate-area-for-

triangle will calculate the area only for polygons that are triangles; the

other method set represents those methods that will calculate the area only

for figures with parallel sides. In both cases, the new or additional

constraint supersedes or specializes the contract on the method set

Calculate-polygon-area, requiring a more restrictive or specialized type of

behavior.

Draw-filled-object-with-color

SDraw-object Redraw-object

Draw-filled-object-with-pattern

Figure 4-18

Pure Additional Contract

Figure 4-18 illustrates a Draw method taxonomy diagram. The figure
provides some insight as to the notion that the arrows in the diagram
represent additional contracts. Without examining the CDSs themselves,

one cannot be positive about the interpretation of the diagram. The
following would be found in the CDSs associated with the method sets.

Draw-object is a primary method which draws an object.

Draw-filled-object-with-color the post-condition, "Color the
object after it has been drawn," to the draw-object contract.

Redraw-object has the constraint (pre-condition) that "before
drawing the new object the old object must be erased."

Draw-filled-object-with-pattern has the contract (post-
condition) that "after drawing the object it is to be filled
with a pattern."

The CDSs reveal that the most specific method sets expect the more general

method set to execute either before or after they execute.

55



Method taxonomy diagrams have another application that is somewhat

removed from the design of an individual system. This application is as a

means of classifying and organizing method sets that perform operations

common across a wide variety of systems. They can provide a catalog of

previously coded methods. If a particular contract is very widely used and

studied (e.g., for sorting), the corresponding method set and its subsets may

form quite a complex taxonomy (see Figure 4-19). Such a taxonomy may

serve as a resource for the designer. Taxonomies of this level of complexity

also illustrate the relative independence of a method taxonomy from routine

class-inheritance.
~Insertionsort

~Order-n 2-sort

1Bubblesort

Radix-soryicDigra

gre 4 Exc ange-sort= ~~Selection-sort Hasr

Order-n-log-n-sort List-meresr
Mergesort

Figure 4-19

Sort Method Taxonomy Diagram

Figures 4-19 and 4-20 illustrate how method taxonomy diagrams are

referenced from other components of the design using explicit dispatch

mappings. Dispatch mappings must be explicitly defined when a routine-

class pair picks out more than one method set.

Figure 4-20(a) illustrates that in the class List, the routine Sort is redefined

and will be dispatched to the method set List-merge-sort. The term

"dispatched" refers to the way of indicating which method-set contract is

associated with the class-routine pair (see Section 4.6.) A comparison of

56



% Sort [sort]

Sequence

+ % ort+ % Sort [List-merge-sort]1

ArrayLs

(a)

% Sort

Sequence

+% Sort + % Sort [List-merge-sort]
% Listinsertionsort [Insertionsort]

ArrayLs

(b)

Figure 4-20
Refrenesto Method Taxonomy Diagram

57



Figure 4-20(b) and Figure 4-19 infers that the sort method taxonomy
diagram does not necessarily group the method sets in the same hierarchy
that the routines are grouped by a class-inheritance graph. Along with the
redefined sort routine, another routine, Listinsertionsort, is defined in List.
This routine is dispatched to Insertionsort. The ordering of the method sets
in the diagram of Figure 4-20(b) is not the same as that in the sort method

taxonomy diagram of Figure 4-19. Both Sort and Listinsertionsort are
legitimate routines, and both are dispatched (see Section 4.6) to method sets
in the same method taxonomy diagram.

Method taxonomy diagrams are also an important aid for the designer in
identifying opportunities for reuse of functionality in the design. Strong
indicators for the reuse of functionality are 1) the degree of fan-out in the
method taxonomy diagram, 2) the number of levels in the method taxonomy
diagram, and 3) the degree of similarity in the CDSs of methods. Method
taxonomy diagrams that exhibit a high degree of fan-out are a strong
indication that the introduction of more abstract classes may allow one to
increase the degree of reuse in the design. This is illustrated by the
diagram shown in Figure 4-21.

Erase Erase

Erase Erase Erase Erase Bit Erase by
Line Circle Rectangle Image Redraw

Figure 4-21
Polymorphism Evaluation with Method Taxonomy Diagrams

The method taxonomy diagram on the left side of Figure 4-21 would be
considered less desirable than the one on the right. This is because the

58



diagram on the left requires the implementation of three different sets of

methods for a simple graphical object erase. The design on the right, by

contrast, is more generic (i.e., it is based on a more abstract class). The

resolution of the erase routine is transferred to the draw method taxonomy

diagram which simply applies a draw function to the object using an

inverse color mapping. Considerably fewer method sets need be designed

as new graphic classes are introduced. For example, the addition of a new

class in the system described in Figure 4-21 would, worst case, require the

definition of a draw routine for the new class.

4.3 Type Diagrams

Initial exposure to object-oriented programming may lead one to believe

that the primary relations between object classes are those defined in the

inheritance lattice. However, many of the interesting relations, from an

application execution point of view, are established implicitly through the

values of the attribute features of the object classes. One of the primary

differences, noted by applications and database designers switching from

the functional and relational paradigms to the object-oriented paradigm, is

the lack of emphasis on the definition and management of keys and

referential-integrity problems. Because objects in an OOPL are uniquely

identified by their system-defined handle, access is generally structured

around roles that objects participate in relative to other object classes.

These roles are often established by the object class attributes. The design of

these roles is generally for the purpose of circumscribing a particular

behavior. Thus, the related object type is often a key constraint on the

appropriateness of an object assuming a particular role. Management of

this role-definition process is accomplished through IDEF4 type diagrams.

In the IDEF4 discipline, all attributes have a return type, defined as the

type of their return value. The type diagrams in IDEF4, a part of the class

submodel, provide graphical and textual notations to display the return

types of the attributes of the classes in the IDEF4 model.

59



4.3.1 Type Diagram Symbol Set

The purpose of type diagrams is to provide a visualization of the return type

for the class features that return a value. For this reason, the type

diagrams employ the class box of the inheritance diagram as shown in

Figure 4-22. However, in a type diagram, only features specified to be

attributes, functions, or slots are shown. Auxiliary feature symbols (&, +, !,

A, and *) and the export line are not used.

Features

? Attributes
$ Functions
@ Slots

Class Name

Figure 4-22

Class Box in a Type Diagram

A type diagram contains class boxes and type links. The type link serves

two purposes:

* highlight return types, and

* show inverses or partial inverses.

The type links between class boxes will always have at least one end that

extends into the class box, pointing toward one of the features in the class

box. This indicates that the feature adjacent to the type link that penetrates

the class box, returns values of the type of elements the class box on the

opposite end of the type link.

Links Without Inverses or Partial Inverses

1. The return type for a feature in one class may be an
instance of another class as shown in Figure 4-23. This is
indicated with a line that extends from the feature name
within the class box, through a dot on the outside of the

60



box, and to a dot on the outside of the class box of the
return type. For example, the diagram in Figure 4-23
illustrates that the return type of feature f in an instance
of class A is an instance of class B.

Figure 4-23
Return Type is an Instance of a Class

2. The return type for a feature may be composed of a
structured collection of a type. The link used to indicate
types that are structured collections is similar to the
simple type link in Figure 4-23, except that a "half
diamond" or crow's foot (>) is used on one end of the type
link. Figure 4-24 illustrates that the feature f of class A
returns values of some type that is constructed from class
B. For example, this symbol would be used if f
represented a list of objects of type B. A CDS or CIDS
would be used to supply the exact type of structure
represented by f.? f

A B

Figure 4-24
Return Type Constructed from Some Class

In the design of object-oriented systems that support persistence (i e., those

intended for ODBMS implementation), the decision relative to inverses and

partial inverses becomes important. The concepts of "inverses" and "partial

inverses" warrant illustration. In Figure 4-23, an instance of type A will

have a feature f that will return a value that is an instance of type B.

However, an instance of type B does not carry any information about which

(if any) instances of A it is associated with. This lack of an inverse function

associated with type B is indicated by the termination of the relation link at

the edge of the B class box. The same reasoning would apply to illustrations

of the type displayed in Figure 4-24, no inverse function is indicated.

61



Links With Inverses or Partial Inverses

1. Figure 4-25(a) illustrates how an inverse relationship
between instances of two types is displayed in a type
diagram. The diagram illustrates that there is a feature g
in type B connected to the link between A and B. This
indicates that the feature g of an instance of type B
contains a value that is an instance of type A and it is, in
fact, just that instance of A that has that instance of type B
as its f feature. Thus, we can think of the instances of type
B as having "where used" pointers to instances of type A.
Since there is no crow's foot on the end of this link, we
know this relationship to be functional in both directions;
hence, we refer to f of A as having an inverse g of B.
Similarly, we can refer to g of B as having f of A as its
inverse.

A i B 

(a)

Inst alJ Inst b

(b)

Figure 4-25
Inverse Relationship

2. Partial inverses are an issue when considering relations
other than one-to-one between types (see Figure 4-26).
Figure 4-26(a) illustrates that for an instance of A, the
feature f returns values of some type constructed from
instances of type B and the feature g of any of those
instances of B will return that instance of A. If we have
an instance a of type A, then f(a) is some structure of

62



objects constructed from instances of type B, and for any b
of type B that is an element used in constructing f(a),
g(b)=a.

?f L. ? g

(a)

f 9 g - 9

o

<Inst bl> <Inst b2> <Inst b

Figure 4-26
Partial Inverses

In a type diagram, every feature return type must be shown, but the
designer is free to use either a textual notation, a graphical link, or both.

Concatenating the attribute name followed by the feature return type
reduces the complexity of a diagram (see Figure 4-27). This alternative

syntax is used in larger diagrams to reduce the unnecessary clutter of the
diagram by eliminating a number of links. It can also be used by the

designer to de-emphasize certain relations and focus the attention of the
design reviewers on specific relations (i.e., those shown with a link).
Finally, this approach is often used for the more common data types such

as integer and Boolean. With these data types, the class boxes can be
omitted from the diagram, along with all graphical type links to them, thus
simplifying the diagram and avoiding unnecessary clutter.

63



@ name: String

Lock

Figure 4-27

Return Type Displayed Textuafly

4.32 Understanding Type Diagrams

Now that we have discussed the symbols used to construct a type diagram,
we will look at how these symbols are combined to form a completed

diagram. From a design management point of view, the type diagrams
provide a visual representation of the relations between classes implicit in

the definitions of the types of each feature. This information is not visible in

the inheritance lattice. Experience has shown, however, that management

of these interconnections is critical to the development of large object-

oriented systems. Through the use of the type diagrams, the programming

team can communicate intended relations. They can also use the type

diagrams to quickly review the impact of a proposed change.

$ Make-ordered-lock:
$ Make-ordered-null-lock:
$ Make-simple-lock:
$ Make-null-lock:

String

Figure 4-28

Class Box String

In Section 4.1.2, Figure 4-7 illustrated the class-inheritance diagrams

using a Network Manager System. We will continue with that theme in
this section on type diagrams. From that class-inheritance diagram, we

take the class String (see Figure 4-28). Each feature in this class is a

function that has a return type which is an instance of some other class.

64



Figure 4-29 indicates that the function make-ordered-lock returns an object

which is of type ordered-lock. The function Make-ordered-null-lock returns

an object which is of type Ordered-null-lock.

$ Make-ordered-lock:
$ Make-ordered-null-ock:
$ Make-simple-lock:
$ Make-null-lock:
String Ordered-null-lock

Figure 4-29

Simple Return Types

To show that the slot Requests is expected to contain a collection of objects of

type Print-request, the link would be drawn with the half diamond in the

class box by the feature Request (see Figure 4-30). Either the CIDS or CDS

must provide the information that the Print-request-queue may contain the

specifications for the type of structure. Figure 4-31 displays the completed

type diagram.

@ okRequests: 6 r

rint-request-queue P treuet

Figure 4-30
Return Type Constructed of Other Types

The situation may arise in which a routine may return one of two types.
For example, in Figure 4-32, the type diagram can show that the feature

Color returns an instance of the type Color. It is not possible to show that
the feature Color will either return the color of the triangle if it has a color

or NIL if there is no color. In other words, the graphical syntax of IDEF4
type diagrams (and protocol diagrams as well) will not allow the

illustration of multiple return types for the return value of a class feature.
If this situation occurs, the introduction of a more abstract class based on

65



the different return types is necessary. If it is not possible to define a more
abstract class, or if the extra types are only needed in exceptional
conditions, then the situation should be stated as a constraint in the CDS or
CIDS.

TyMake-ordered- g Ntelock:y
Make-simple-ock:
Make-null-lock :
String Ordered-null -lock

C heck-for-mylock:
O wner.

Simple-lock
@ Name : String

Null -lock

? Get-process-locks:>-l @ Requests: I

-- Foes Lock: eue -- I ue Print-requestl

ClassStnadoec

Figure 4.31

Type Diagram (Network Manager System)

4.4 Client Diagrams

In this section, we will cover the client diagram component of an IDEF4
model. Client diagrams, which are part of the method submodel, are used

66



for algorithmic decomposition. They are the only IDEF4 diagrams that
specify, however abstractly, the internal structure of methods.

? C olor 

or C olor 'I? Color 
Triangle 

rZ Triangle I iClrf

(a) Allowable (b) Not Allowable

Figure 4-32
Allowable/Not Allowable Type Diagrams

4.4.1 Client Diagram Symbol Set

Client diagrams employ two symbols--boxes and links. The client diagram
boxes represent features or feature-class pairs. The capitalized class name
appears first, followed by a colon; the feature name appears in lower-case
letters below it. The links that join these feature class boxes are referred to

as client links.

These client links are shown as arrows with double barbs at both ends
which point in the same direction (see Figure 4-33). The arrows point from

the supplier (the feature that is called or referenced) to the client (the
feature that calls or "makes a control reference"). The boxes themselves
represent features or feature-class pairs. Client diagrams are typically

small and center on a single focus routine (strictly a routine-class pair).

4.4.2 Understanding a Clieut Diagram

In a client diagram, the links between boxes represent control references or

the existence of programming-language "subroutine calls" from one
routine to another. Client diagrams specify the intended algorithmic

structure of a method.

67



Class name:

(Supplier) Feature
(feature that is called)

Client Link

Feature

(Client) (feature that calls)
Class name:

Figure 4.33
Client Diagram Symbols

To show what is intended by a client link, we will use the link from
Process:Process-wait to Simple-lock:seize as an example (see Figure 4-34).
For the routine-class pair Simple-lock:seize to appear as a client in a client
diagram (i.e., at the front of a client link), Simple-lock must be a class in
which seize is directly present (i.e., seize may not be virtual in simple-lock).
Recall from Section 3.2.3 that directly present features are those whose
names are displayed in the class box of a class. Directly present features

are either defined in the class or redefined in the class in which their name
appears. Therefore, the appearance of Simple-lock:seize as a client
indicates that the designer intends to provide a new or redefined method for
seize in Simple-lock (a method not provided in any Simple-lock
superclasses). It also specifies that implementations of the method set for
seize are intended to call the feature Process-wait, which is defined in the

class Process.

Note that the diagram defines that implementations for seize on the class

simple-lock will call the implemented routine process-wait directly, not
some generic routine for process-wait (i.e., the diagram shows that the
dispatching for this example may be performed statically). If the classes
associated with the routines have not been specified in the diagram, the

68



dispatching will occur at run time for any implementation. For an

implementation in C++, this would indicate the need for virtual functions.

Simple-lock: Process: I Generalized-variable:
check-for-my'lock L process-wait self-if

Simplelock'
seize

Print-request-queue: rint-request-queue:1 Lock:
enqueue-print-request dequeue-print-request with-lock

Figure 4-34

Client Diagram for Simple-Lock Seize

4.5 Protocol Diagrams

When a feature is activated, it is activated with respect to a particular object

which is an instance of some class in which that feature is present.

According to the terminology of some OOPLs (such as Smalltalk and Old

Flavors), the feature is a message which is sent to the object. In other

languages (such as New Flavors and CLOS), the feature is a generic

function which is called with the object as an argument. IDEF4 adopts this

69



function which is called with the object as an argument. IDEF4 adopts this
latter view, except that the term feature rather than generic function is

used. In IDEF4, a feature is considered a generic operator which is called
on at least one argument (the self argument). This concept naturally leads
to the consideration of the presence of other arguments. These other

arguments are referred to as secondary argument places or secondary

arguments. IDEF4 does not require a feature executed on an object to
return a value (not all features are attributes).

The IDEF4 type diagrams provide the return types of the attributes but do
not address the arguments to features or their types. The term protocol
refers to the specification of the interface of a feature with its inputs and

outputs. IDEF4 introduces protocol diagrams (part of the class submodel)
to represent this information. These small diagrams focus on the inputs

and outputs for the specified feature.

4.5.1 Protocol Diagram Symbol Set

The symbols used to create a protocol diagram are illustrated in Figure 4-
35. A simple box is used to denote the feature that is the focus of a

particular diagram. Round-cornered boxes denote the argument places of

the focus feature, modified class boxes for argument types, and type links

(see Figure 4-35).

The name of the focus feature appears in the center of the diagram in a

plain box. The focus of each diagram is a routine-class pair. In a
completed IDEF4 design model, each routine-class pair should have a
protocol diagram. The routine-class pair is the identifier for the diagram

and is used to order the diagrams within the documentation. Boxes with
rounded corners represent inputs and outputs. Input arguments are

placed above the focus feature box; output arguments appear below. The

general convention is to indicate the self argument as the first argument on
the left. To avoid unnecessary duplication of type links, only the root class
(in the entire inheritance submodel) of the feature is shown. If there is

more than one root class, all are shown with multiple type links connected

70



to the self-argument place. The arguments are connected to the focus

feature in the manner indicated in Figure 4-35. Argument types are

connected to the arguments (input and output) by type links. As stated

previously, IDEF4 does not allow more than one self argument. The

argument types are displayed as class boxes with only the class name

given.

Class Name

Type Link

Argument Place )

Focus Feature
Name

R esult)
Type Link

Class Name

Figure 4-35
Protocol Diagram Symbol Set

4.5.2 Understanding a Protocol Diagram

Now that we have examined the protocol diagram symbols, we will look at

how they are used to create a diagram. From the Network Manager System

example, we have the class Simple-lock as shown in Figure 4-36 with the

feature Check -for-mylock.

71



$ Check-for-mylock:
@ Owner:

Simple-lock

Figure 4-36

Class Box with Check-for-mylock Feature

The protocol diagram for the function Check-for-mylock as shown in Figure

4-37 would place this feature name in the focus feature box in the center of

the diagram. The diagram shows the protocol for the routine-class pair

Check-for-mylock: Simple Lock. In the diagram, the round-cornered boxes

specify the argument names. The word "self' to the left of the argument
name in the left-most argument box is a qualifier that indicates the

argument is a primary argument. The remaining arguments to Check-
for-mylock: Simple Lock appear to the right of this primary arguments.

The primary argument in the diagram is possibly-owned; it is of type

Simple-Lock. The one secondary argument, possible-owner, is of type

Process.

A protocol diagram by itself provides a summary of the intended input and

output characteristics of a feature. Protocol diagrams are also used to

create view diagrams which show other information about the argument

places and their types. Such view diagrams could not be created if protocol

diagrams were not available as ingredients. A common type of view

diagram could be created for the protocol diagram in Figure 4-37 by adding
inheritance links for all the subclasses of Simple-lock in which Check-for-

mylock is redefined (incidentally, there are none).

Usually, only routines are thought of as having more than one argument;

however, but our discussion of protocols applies to all features, including

slots. In fact, an attribute with only one argument and a return value can

have a protocol, even though it is not yet known whether it is to be a function

or a slot. The auxiliary feature symbol "!" (New taxonomic specification)

72



can be used to allow the feature to be redefined more specifically as a
function or a slot in a subclass, perhaps differently in different subclasses.

Simple-lock Process

(Self Possibly-owned ) Possible-owner

Check-for-mylock

I
Result

Boolean

Figure 4-37
Check-for-mylock: Simple-Lock Protocol Diagram

Normally, the protocol for a slot would only have the self argument and
would return whatever value was stored in that slot in the instance to
which it was applied. But it would be possible to imagine a slot that took
additional arguments. For example, a slot could store not a single value
but a database-like table of values. Such a slot, f, could be given a protocol
as a multi-argument attribute in a class, A, without requiring the designer
to commit himself as to fs status as a slot (except perhaps in some
subclass, B, of A). The additional arguments would be used as keys to find
the right line of the table from which to extract the appropriate return
value. The attribute f might be characterized as a function in another

73



subclass, C, of A, not doing table lookup but calculating its return value.
The distinction between slot and function need not be drawn in A at all.

4.6 Dispatch Mapping

Dispatch mapping, as interpreted in IDEF4, is similar to dispatching in an
OOPL. In general, more than one method will be associated with a generic
routine. In IDEF4, it is possible for a generic routine to have more than one
method in the same class. In an OOPL implementation, only one method
will be associated with each routine-class pair. In an OOPL, dispatching
refers to the process of finding the appropriate method for a particular call
to a generic function at compile time or run time. In IDEF4, a method set
characterizes a set of methods which would serve as an implementation.
IDEF4 adapts the term dispatch mapping or dispatching to refer to the
association between a routine, a class, and a contract for a set of methods

(or method set).

Recall that an IDEF4 model consists of a class submodel and a method
submodel (see Figure 4-38). These two submodels are connected via the
dispatch mapping. The dispatch mapping in an IDEF4 model is recorded
either explicitly or implicitly in the inheritance diagrams and method
taxonomy diagrams. When a diagram (inheritance or method taxonomy)
includes dispatching, it indicates which method-set contract would be used
to implement a particular routine-class pair.

Illustrating the dispatching using the two diagram types does not require
changes to the general syntax of either diagram. Each diagram is drawn
with the additional notation for the dispatching added. In a class-
inheritance diagram, the dispatching is indicated by placing the method set
name in brackets to the right of the routine name. In a method taxonomy
diagram, the dispatching is shown by placing the routine-class pair in
brackets below the name of the method set.

For example, consider the Network Manager System we have used
throughout our diagram discussions. Figures 4-39 (a) and (b) illustrate a

74



Lock class-inheritance diagram and a Seize method taxonomy diagram,
respectively. These diagrams can be used to show the mapping between the
routines in the class-inheritance diagram and the method sets of a method
taxonomy diagram. Figure 4-40 illustrates the class/routine/method-set
mapping in an inheritance diagram for the Seize routine. In Figure 4-41,
the same dispatching for the Seize routine is shown in the Seize method
taxonomy diagram.

Dispatching is indicated similarly in a method taxonomy diagram and an
inheritance diagram. However, because the focus of these diagrams is the
method sets, the name of the routine-class pair is listed in brackets beneath
the method set. Only the class in which the routine is directly present has
been indicated.

Class

Submodel

Inheritance

% 6 Diagrams

IDEF4 Dispatch

Model Mapping

Method
i $ 1Taxonomy

Metho ( ' Diagrams

Submodel

Figure 4-38
LDEF4 Model Components

75



% With-lock
+ % Describe
+ % Print-object

% Release
% Seize

Ordered-loc

~~~a Clasfr-yoc %schritanc

&Seize Meho Taxonomy b

&FgDrscribe
Partial Diagramsc

Orderd-lo 6

% With-lock
& % Describe
& % Print-object

% Release

% Seize [Seize-lock]

* Name

Lock

& % Release & % Release
& % Seize [Seize-simple-lock] & % Seize [Check-lock-seize]

$ Check-for-mylock & % Describe
@ Owner @ Level Null-lock

Simple-lock Ordered-lock-mixin

& % Seize [Seize-ordered-lock]

& % Describe & % Describe

Ordered-lock Ordered-null-lock

Figure 4-40
Inheritance Diagram with Seize Dispatch Mapping

4.7 IDEF4 Instantiation Language

The purpose of an instantiation language is to enable the development of

test case scenarios. Test case scenarios, in turn, are used to validate the
design and documentation of examples of intended design configurations.

77

Ultimately, this validation process aids the programmer in implementing

the design. The graphical projection of the instantiation language looks

much like an IDEF4 type diagram. The instantiation language uses a

round-cornered box to represent instances of a class which is analogous to

the IDEF4 class box. The value links used in the instantiation language are

similar to the IDEF4 type links, but without the filled circles on either side.

Seizelock
[Lock: Seize]

Seize-simple-lock Check-lock-seize
[Simple-lock: Seize] [Ordered-lock-mixin: Seize

[Ordered-lock: Seize]

Figure 441

Method Taxonomy Diagram

4.7.1 IDEF4 Instantiation Language Primitives

In IDEF4, an instance of a class is represented graphically as a round-

cornered box that is divided into two regions (see Figure 4-42). The field in

the bottom-most region is used to uniquely identify the instance. (An object

has state, behavior, and a unique identity.) The unique identifier is created

by concatenating the class name of the instance with the number of the

instance and enclosing them in angle brackets. For example, the

thirteenth instantiation of the class Vertex has <Vertex 13> as its unique

identifier.

78

Parent

Next

Previous
Vertex-no 1

<Vertex 13>

FIgure 4-42
IDEF4 Instance of the Vertex Class

The instance attributes (value-returning, possibly computation-initiating)

are listed in a column in the upper region of the IDEF4 instance box, just as
they are in the IDEF4 class box. The IDEF4 instantiation language

provides two ways to indicate the value assigned to or returned by the
attribute. This is done by using value links or typing the unique identifier
of the value instance to the right of the attribute. In the case of instances of
numeric types, it is acceptable to type the value. This allows one to use the
value 1 instead of <Integer 1> as a unique identifier for the integer 1. The
IDEF4 value links are similar to the IDEF4 type links in that they start
inside the IDEF4 instance box, next to thc attribute whose value is being

annotated, and end in an arrow pointing to the boundary of an instance box
as shown in Figure 4-44. The value link may be joined by several other
value links that are pointing to the same instance, as is the case of the link
from the parent attribute of the vertex instances depicted in Figure 4-44.

Figures 4-43 and 64 show a type diagram and instantiation diagram,
respectively, for a triangle with vertices. The vertices have the necessary
attributes for being part of a doubly linked list of vertices and an attribute for
pointing to a parent -- which in this case is an instance of Triangle. The
Triangle class has a Vertex-ring attribute that points to any instance on the

doubly linked list of vertices. The Vertex and Triangle class have a number
attribute whose type has been left unspecified in the type diagram as shown

in Figure 4-43.

79

Vertex-no 0- Vertex-ring
Paret 41Triangle-no

Vertex __ Triangle

Figure 4.43
Type Diagram for Triangle Instantiation Scenario

Vertex-ring

Triangle-no

<Trtinaatie ofT15gewt>Vrie

4.7. Par esig Va antPrn

Vfw erexono 1a obec- rtexdsnor a carex-oul cetilyhv

classes Engine and Body. The Engine class having an attribute My-body of

80

type Body and the Body having an attribute My-engine of type Engine is
shown in Figure 4-45. This design can easily and unambiguusly be
represented in IDEF4 by the type diagram shown in Figure 4-45.

@My-body low - @My-engine

Engine Body

Figure 4-45
Type Diagram for Enine and Body

If we were to specify an object design for the three vertices of a triangle
linked together in a circular, doubly linked list, it may not be so easy. The
type diagram for this design is shown in Figure 4-46. The problem is
remembering to define the constraints that specify that the previous vertex

of the first is the third, and the next vertex of the third vertex is the first
vertex. Specification problems can be discovered by designing primitive
instantiation scenarios for the vertices (see Figure 4-47). These scenarios

Vertex-no

Vertex

Figure 4-46

Type Diagram for Trangle Vertices

can be usee- to test whether the evolving design specification conveys what
we had intended. In Figure 4-47, the states (i.e., the slot values of <Vertex

1> and <Vertex 4>) are identical; thus, if the constraints on the
configuration of the circular, doubly linked list only referenced the attribute
values (i.e., the state of the Vertex instances) and there was no constraint

on the uniqueness of the Vertex-no attribute, then the system would be

81

unable to distinguish between <Vertex 1> and <Vertex 4>. Additionally, a

situation could arise for which the values pointed to by the Next and
Previous slots of the vertices are consistent with the specification, but are

used in a way that is inconsistent with the intended design specification

(see Figure 4-47).

Next Next Next Next
-Previous Previous Previous Previous
Vertex-no 1 Vertex-no 2 Vertex-no 3 Vertex-no 1

<Vertex 1> <Vertex 2> <Vertex 3> <Vertex 4>

Figure 4-47
Erroneous Instantiation, Consistent with Design

82

5.0 IDEF4 Design Development Procedure

The design process is the predominant activity early in the software system

development life-cycle. The design artifacts resulting from the design

activity are important to the implementation and the subsequent sustaining

activities. The notion of a design life-cycle is a convenient device often used

to help produce an understanding of the basic design processes,

particularly for administrative purposes. The design process from such a

view is assumed to begin at some point, to continue through maturity, and

eventually to stop. This view of design (as a series of incremental and

sequentially interdependent steps) is an attempt to order the steps of the

process such that each step can be looked on as an independent state, except

for its occurrence relative to the other states that surround it. Use of a

system often reveals problems that either are not addressed by the system or

are products of changes in the system environment.

Design strategies can be considered "meta-plans" for dealing with the

complexities of frequently occurring design situations. They can be viewed

as methodizations or organizations of primitive design activities identified

above. Three types of design strategies that can be considered.

1. External-constraint-driven Design - Design for situations
in which the software goals, intentions, and requirements
are not well-characterized, much less defined. These
situations often result when the designer is brought into
the product development process too early.

2. Characteristic-driven Design - Software design in a
closely controlled situation for which strict accountability
and proof of adequacy are rigidly enforced. These design
situations often involve potentially life-threatening
situations.

3. Carry-over-driven Design (Routine Design) - Changes to
existing, implemented designs or designs that are well
understood (e.g., sorting).

83

From an OOD point of view, the external-constraint-driven and carry-over-

driven strategies are the most common design situations. The design

development procedure, outlined in the following sections, is a distillation
of the experience and insights gained in building several IDEF4 designs for

different types of case studies.

5.1 Object-oriented Decomposition

IDEF4, as an OOD method, focuses on the description of the objects and
types of behavior required of a system. The focus on the types of behavior
(method sets) to be exhibited by the classes provides an appropriate means

of partitioning systems into small, easily understood pieces. These types of
behavior, paired with data types (as is done in OOD), provides for a more
modular design; this results in implementations that have the desirable
life-cycle characteristics for which object-oriented implementations are

known.

Figure 5-1 illustrates that partitioning a system according to classes and

their behavior provides modular composability by allowing functionality to
be associated with the data. Thus, the design focuses on defining the types

of behavior that the data types (classes) must exhibit.

Figure 5-2 illustrates the mapping between an IDEF4 Design and possible
implementations. Each IDEF4 routine-class pair selects an IDEF4 method

set. The IDEF4 class maps to an implemented class, and the IDEF4 routine
maps to generic methods or messages in the implementation. Each

class/generic method pair in the implementation selects a method in the
implementation. This method must satisfy the contract on the method set

selected by the IDEF4 routine-class pair associated with the implemented

class and generic method, respectively. Thus, the contracts on the method
sets and the class-invariant constraints on the. IDEF4 classes place
requirements on the implementation. The more restrictive these

requirements, the fewer programming decisions the implementor will
have to make, and consequently, the fewer possible implementations there

will be.

84

System Decomposed into Object
System before Decomposition Classes, Instances, Behavior

Classes and Methods

Object Classes, Instances, Method Sets, Relations

Features, and Behavior Classes. uAttributclass/SuperclasS

Constraints
Instance-of
Calls/Called-by

Figure 5-1

Object-oriented Decomposition

5.2 IDEF4 Design Development Activities

After the IDEF4 method has been implemented, the following activities are

used throughout the software design process.

1. Analyze evolving system requirements.

2. Develop class hierarchy (Inheritance Diagram).

3. Develop method taxonomy (Method Taxonomy Diagram).

4 Develop class composition structure (Type Diagram).

85

5. Develop protocols (Protocol Diagram).

6. Develop algorithmic decomposition (Client Diagram).

IDEF4 DESIGN IMPLEMENTATIONS

0 Generic

DE tod Set Generic

IDEF4 "Routines O" 0
Methods Methods

IDEF4 Classes Cllasses

Program i

Program j

Figure 5-2
Implementation of IDEF4 Design

The dependency relations between these generic activities that have been

discovered through the practice of IDEF4 are illustrated in Figure 5-3.
Method sets and classes most often follow directly from the requirements,
whereas the client diagrams are derived from the method sets and method

86

contracts. The following sections will explain each of these activities in

detail.

Link TypePrt o

Figure 5-3
Causal Relations Between IDEF4 Elements

5.2.1 Analyze Evolving System Requirements

The first step system design development is the analysis of the system
requirements. What will the system do and with what types of objects?
This analysis involves more than just the system requirements. If
functional, information, or process models are available, they can also be
used to provide input at this stage. The purpose of this early analysis is to
identify the intuitive classes and types of system behavior. In other words,
the designer is partitioning the system into sets of coarse-grained object
types, object compositions, and behaviors.

5.2.1.1 Identifying Initial Classes and Method Sets

In OOD, there is a tension between class decomposition, object composition,
algorithmic decomposition, and polymorphic decomposition. There has
been a void in current object design methods for supporting design trade-
offs among object, class, method, and algorithmic structure. IDEF4 not
only provides support for least-commitment modeling of each of these four
perspectives of an object design, but allows one to compare and contrast the
effects of design decisions in one perspective against the others. The least

87

commitment philosophy, used in IDEF4, allows one to refine the design

progressively, beginning with a coarse-grained initial design that satisfies

the requirements, and then using the existing design iteration with the

additional requirements as the requirements for the next design cycle, and

so on until the design reaches maturity. Each design iteration reduces the

number of possible implementations that would be consistent with the

design (design correct). If the design iterations are taken to their logical

conclusion, the design would have only one possible implementation (i.e.,

the design would be the implementation).

The requirements analysis should produce a list of initial classes and

method sets. For those unfamiliar with the domain of the target system,

the system requirements would be the major source for the initial classes

and method sets. These lists will undoubtedly be incomplete -- little more

than a listing of potential classes devoid of class features and inheritance

structure. The initial method sets will further specify the system and will

be based primarily on the system requirements. If a functional (IDEFO)

model of the TO-BE system is available, it may provide insights into desired

system behavior and, thus, the initial method sets.

The ease with which these initial lists of classes and method sets are

produced will be depend on two factors:

* the expertise of the designer(s) in the domain of the target
system, and

• the clarity and detail of the system requirements.

During this stage of development, the designer is primarily identifying

user/customer expectations of system capabilities and operation. Later, the

designer will determine class structures and design method sets that

provide the expected system behavior.

5.2.1.2 Using Other IDEF Methods in Analysis

The primary source to aid the analyst in understanding customer

expectations of the system is the system requirements. However, because

88

the customer cannot always be expected to have full knowledge of the true

nature of the problem involved, designers should not limit themselves to a

requirements docv ,nt alone. Quick and accurate identification of the

initial classes and method sets is critical to both the successful completion

of the design and a full understanding of the nature of the problem;

therefore, it is often advantageous to look to other sources of information on

the proposed system and its environment. These sources may include

functional, process, and information models as well as existing OODs. The

IDEF family includes methods for constructing each of these types of

models.

For functional modeling, IDEFO can be used to assist designers in

identifying concepts and activities that should be addressed by the system.

IDEF1 can be used by designers to develop an understanding of the

information the organization uses, and, therefore, must be maintained by

the system. IDEF3 provides for process flow and object state transition

descriptions that will assist designers in organizing their concepts of the

inner workings of 1) the existing system, 2) the proposed system, 3) user

interaction with the system, and 4) the state changes objects to be

manipulated by the system would undergo. Although these methods

provide much useful information, they are expensive and time consuming.

First, we examine functional modeling (in particular IDEFO) as an aid in

the IDEF4 design process. IDEFO is a method for modeling functions and

their associated concepts. However, since the primary emphasis in IDEFO
modeling is functional modeling, there may be serious consequences in

IDEF4 OOD. Although the functions that the projected system must

perform are important, IDEF4 is object-centered design and if too much

emphasis is placed on the system functions, the resulting system design

may be too functionally oriented rather than object-oriented. A system

organized around functional decomposition tends to consist of tightly

coupled modules that are difficult and costly to maintain, thus eliminating

a major advantage of the object-oriented paradigm. Minor changes can

mean major system rewrites requiring months of redesign and

89

programming. Even with these drawbacks, we do not discourage the use of

IDEFO as a useful tool to assist the designer of an object-oriented system,

but rather encourage its careful use. An IDEFO model developed with an

object-centered view provides valuable insight into initial classes and

routines that the system requires. Finally, IDEFO models are developed

along the lines of functional decomposition. IDEFO models that are

developed to just two or three levels of decomposition are the most useful.

Models with more detail tend to emphasize functional decomposition over

object-oriented decomposition.

The IDEF1 method for information modeling and IDEFlX for data

modeling provide input in the area of initial class identification and

relationships between classes. However, once again we emphasize that

care must be taken in their application. Both methods tend to be relational

in nature; as such, they do not fully provide for an object decomposition of

the system. With each of these methods, complete and fully detailed models

should not be necessary; in fact, they could actually be detrimental to the

development of an object-oriented system.

Perhaps the most useful IDEF method for the object-oriented designer is

IDEF3. IDEF3 provides the designer with a method for developing system

process flow descriptions and object-state transition descriptions.

Development and use of these descriptions from an object-centered

viewpoint can prove very helpful in class definition and initial behavior

identification.

As always, the interaction between the user and the system must be

acceptable if the implemented system is to be used. Object-oriented system

designers must consider the man-machine interface. From a software

development perspective IDEF3 is very useful in designing these usage

scenarios. If the object-center view is selected, the system behavior can be

partitioned into the common functions the objects must exhibit. All objects

in the system v ill have certain common operations performed on them.

For example, consider the deletion of a system object. An object-centered

IDEF3 would allow the description of delete functionality common to all

90

system objects. Finally, we look at IDEF3 object state-transition networks.

These will assist the designer in determining pre- and postconditions for

methods, design of transactions, and state changes in the system objects.

The usefulness of these methods to object-oriented design can be ranked as

follows: IDEF3, IDEFO, and finally, trailing far behind, IDEF1 and

IDEF1X. The following points should be noted by those using these

methods.

1. The models or descriptions should be developed with an
object-centered view.

2. For a small- to-medium-sized system, the methods would
be used if available, but it is unlikely that all types of
models would be developed unless the system is large.

3. Complete or fully developed models and descriptions are
generally not needed and may even be misleading.

5.2.2 Develop Class Hierarchy

The development of class hierarchies involves specifying classes, features,

inheritance lattices, and class-invariant constraints. The designers will

first partition the required system behavior into intuitive classes, then

systematically refine them.

Developing class hierarchies involves identifying classes, features, and the

inheritance relations among classes. This is most often performed in a

recursive series of steps which includes the following.

1. Partitioning classes into more specialized sets according
to like, behavior, and state.

2. Classifying classes against existing inheritance diagrams
or specifying them using features and class-invariant
constraints.

3. Assembling these classes into existing inheritance
diagrams (and type diagrams).

4. Rearranging inheritance lattices to simplify their
structure, possibly resulting in repartitioning.

91

5.2.3 Develop Method Taxonomy

The designers will initially partition the required system behavior into
intuitive method sets. For each initial method set, client diagrams should

be developed as necessary. The development of method taxonomy diagrams
requires identifying constraints on the methods and the processes that are
to occur in the completed system when different actions take place. This is

performed in a recursive series of steps which includes the following.

1. Partitioning method sets into more specialized sets.

2. Classifying method sets against existing taxonomies or
specifying them via new contracts.

3. Assembling these method sets and contracts into existing
method taxonomy diagrams.

4. Rearranging the method sets and contracts in the method
taxonomy diagrams to refine their structure, possibly
resulting in repartitioning.

To someone not involved in the process, these actions may seem to occur in
a very uncontrolled manner. In the design of a small system, recognition

of clearly defined process steps may be negligible. In the selection and
refinement of the initial methods, the designer is depending on the initial

constraints on the system (i.e., the requirements). As the design process

continues, the evolving method set specifications become additional
constraints on the design.

5.2.4 Develop Class Composition Structure (Type Diagram)

The type diagram is used to illustrate clustering of classes by the type links

between attributes (value-returning) and classes. For instance, the type
diagram can be used to describe that a car has an engine and four wheels,

and the engine has eight pistons with each attached to a crankshaft. The
type diagram may use input from information and data models such as
IDEF1 and IDEFlX on link types. Most of the information about the type
links will be in the contracts of method taxonomies and in the constraints
in CIDSs attached to inheritance diagrams.

92

5.2.5 Develop Protocols (Protocol Diagrams)

Protocol diagrams specify the valid input argument types and return value

types that must hold for a routine-class pair (method set). This information

may be derived from the class-invariant constraints, attached to a class

referencing the method set and CDSs, attached to the method set that is

selected by the routine-class pair. For example, on a draw routine-class

pair (method set), the input arguments must be a window object and a

graphic object, and the window object must be open for an image to be

created. This constraint may be formally defined as:

graphic(x)Awindow(y)Aopen(y)ADraw(x y)->create-image(z x).

It is trivial to deduce that the draw routine-class pair (method set) should

accept a graphic object and a window as arguments.

5.2.6 Develop Algorithmic Decomposition (Client Diagrams)

The client diagram illustrates the algorithmic or functional decomposition

of method sets. For example, the Redraw routine-class pair (method set)

calls the Erase routine then the Draw routine. Note that it is necessary to
specify the routine-class pair and thus, indirectly, the method set on the

client; however, only the routine need be specified on the supplier side.

How one recognizes an opportunity to apply algorithmic decomposition

comes from the observation that for a method set, the internal control logic

is being repeated for specification of other method sets in other method

taxonomies. In the Redraw example, we may notice that the flow of control

of the Erase method set is similar to that of the Draw method set. We could

actually specify Erase by calling to Draw. This would mean that Redraw

and Erase are generic method sets; that is, for each new class that needs

Redraw capability, only a Draw method would have to be specified.

5.3 IDEF4 Design Evolution Process

Development of any IDEF4 design involves the creation of 1) method

taxonomy diagrams, 2) inheritance diagrams, 3) type diagrams, 4) protocol

diagrams, 5) client diagrams, 6) CIDSs, and 7) CDSs. The CDS associated
with a method set in method taxonomy diagrams is, in fact, the

characteristic function of that method set. In other words, the method

must be defined when it is specified. The CIDS specifies behavior common
to all the instances of each class; thus, it is important to specify these

constraints early in the design of classes. Each component contributes to
the final design of the system. With the design process, as with any
recursive process, process termination criteria are important. It is not

possible to give precise criteria for the completion of design activities, only
that the rate of change of the design will decrease as the design reaches
completion. This occurs because each new constraint specified in the CDSs
and class-invariant constraints places more and more restrictive

requirements on the design.

The development of an IDEF4 design is a process of specifying the structure

and behavior of an object-oriented program or system. In the development

of the IDEF4 design, the following four general steps are applied
recursively.

1. Partition - Partition evolving requirements into smaller,
more manageable pieces.

2. Classify/Specify - Classify against existing definitions or
specify a new design object.

3. Assemble Incorporate design objects into existing
structures.

4. Rearrange - Rearrange existing structures to take
advantage of newly introduced design objects. This may
result in an adjustment in the design partitioning which
would cause another iteration in the design recursion.

The term "recursive application" implies that the same process of

specification is normally applied to each element of the partitioning of the
five diagram types as well as in the overall design development activity.

This recursion continues until the prototype classifications of the resulting
elements can be clearly established.

94

5.3.1 Partition

In system requirements analysis, designers partition the system into
intuitive classes and method sets. It is often useful at an early stage to

check whether generic algorithmic decomposition is possible, in order to

spot opportunities to reuse design structures. It must be stressed that

object-oriented or data decompositions are more stable over time than

functionally oriented decompositions; therefore, it is important that any

functional decompositions performed are generic with respect to the data

types that may be involved in the implementation of the algorithm. The

generic functional decomposition of Redraw is described in Figure 5-4.

Redrawable-object:
Redraw

Redrawable-object: Graphic-object,

Erase Text-object,
Triangle, Square,
Polygon:

Draw

Figure 5-4

Redraw Client Diagram

Generic functional (or algorithmic) partitioning of a design provides a

means for decreasing the amount of code duplication when the system is

implemented. In addition, it provides a vehicle for identifying portions of a

design that can be reused or used to identify possible sections in which code

from previous systems can be used in implementing the current design.

For example, in Figure 5-4, Redraw was an initially identified type of

behavior for a system. In the illustration, the link between the Redraw
method set and the other two method sets shows a component-of

relationship between the method sets Erase and Draw, and the method set

95

Redraw. Essentially, the designers are stating that the Erase and Draw

method sets must be written such that they can be used by the Redraw

method set. The purpose is to decrease the coding required by the Redraw
methods (i.e., generalizing Redraw) and provide reusability of the Erase

and Draw method sets. If the generic capability of Redraw was not

acknowledged a Redraw method set would have to be designed for almost
every class that used it. Essentially, the designers are stating in this
illustration that Redraw has generic functionality and it will use the Erase

and Draw method sets.

In the development of mixed diagram and the partitioning of the currently
identified method sets, specification of the CDSs attached to each method set

is extended. For example, in the discussion on Figure 5-4, the constraint on
the Redraw method set was that it would provide part of its functionality via

the Erase and Draw method sets. Furthermore, the Erase and Draw CDSs
were also modified with the constraint that they be accessible and usable by
the Redraw method set.

5.3.2 Classify/Specify

In the classification/specification phase, method sets and classes identified
in the partitioning phase are matched against existing method sets and

classes in order to classify them. If a method set or class cannot be
classified, a specification must be designed. The specification of a class
involves defining class-invariant constraints, protocol, and features; the

specification of methods involves specifying CDSs and client diagrams.

As this generic activity is revisited recursively, specification of the classes

and method sets will become more and more complete. Class and method
specifications in each cycle may be viewed as additional requirements in

the next design cycle.

5.3.3 Assemble

The classes and method sets that have been classified or specified must be

assembled into the organizational structures employed in IDEF4. Newly

96

classified/specified classes must be assembled into new or existing class-
inheritance lattices (inheritance diagrams) and class-composition lattices
(type diagrams). Newly classified/specified method sets must be assembled
into new or existing method taxonomy diagrams and client diagrams.

Mixed client/method taxonomy diagrams may be used to identify common

behavioral or generic functionality. In the design of large systems, the
assembly activity will likely occur in joint meetings between individuals
responsible for different aspects of the design.

5.3.4 Rearrange

In the rearrange-design step, the designers will look for similarities in the
structures, relating methods, or classes in order to identify opportunities
for reuse of design structure. The rearrangement may necessitate
alterations to the specifications of classes, methods, and their associated
organizing structure. The designers may, for example, combine method
sets and examine the CDSs associated with each to identify possible
refinements. These refinements take the form of moving constraints

up/down in the diagram without changing the behavior of either the super
structure or the substructure or causing conflict with any evolving system
requirements.

5.4 Organization of IDEF4 Design Documentation

A completed IDEF4 model will contain a class submodel and a method

submodel. These submodels will be divided into five types of diagrams, two
types of data sheets, and two types of dispatch mapping annotations.
Depending on the size of the system being developed, there may be

hundreds of pages of documentation. Navigating this documentation can
prove to be an impossible task without some systematic cataloging of the

diagrams, etc. In this section, we will describe the recommended

organization of IDEF4 design documentation.

The object-oriented paradigm does not lend itself to sequential navigation of

either a design or the associated program source code. Thus, the

97

organization to the design document must provide for nonsequential access

of the various design components. The navigation procedure should have

some characteristics of hypertext documents; that is, from any component

of the document it should be possible to get directly to any other component.

The basic organizing structure for the object-oriented paradigm is the

class; therefore, IDEF4 documentation is centered on the class and routine

names. The documentation is divided into two sections, the class submodel

and the method submodel. Briefly, documentation is organized in the

following framework.

1. Class Submodel

CIDS - CIDSs are the first components provided.
These are ordered alphabetically by class name.

* Inheritance Diagrams - The class inheritance
diagrams are numbered sequentially in order of
creation (e.g., 11, 12, . . ., In). Each inheritance
diagram should have a unique title.

" Dispatch Mappings on Inheritance Diagrams -
Each inheritance diagram will be zero or one
associated inheritance diagram that will show the
dispatch mapping.

" Type Diagrams - Type diagrams are placed after
the inheritance diagrams in the class submodel
and are numbered sequentially in order of
creation (e.g., T1, T2, . . ., Tn). Each type diagram
has a caption.

* Instantiation Diagrams - Zero, one, or more
associated instantiation diagrams will follow each
type diagram.

" Protocol Diagrams - Protocol Diagrams are placed
in the class submodel after the type diagrams in
alphabetical order by routine name (focus feature)
followed by the class name (routine-class pair)
with which they are associated.

2. Method Submodel

98

* CDSs - CDSs are ordered alphabetically by routine
name followed by the class name (routine-class
pair) with which they are associated. The
method-set name will appear on the sheet
following the routine-class pair name.

* Method Taxonomy Diagrams - The method
taxonomy diagrams are listed in alphabetical
order by the system routine for which they are
named.

* Dispatch Mappings on Method Taxonomy
diagrams - The associated method taxonomy
diagram that shows the dispatch mapping will
follow each method taxonomy diagram.

* Client Diagrams - Client diagrams are listed in
alphabetical order by routine name (focus feature)
followed by the class name (routine-class pair)
with which they are associated.

Using a class name, a routine name, or a routine and class name

combination as keys, any design component can be found directly -- with the

exception of the inheritance and type diagrams which must be referenced

via a CIDS. As seen in Figure 5-5, IDEF4 design documentation is

organized around the CIDS which are alphabetized by class name. Each

CIDS contains the numerical IDs of the inheritance diagram(s) and type

diagram(s) in which the class appears. The inheritance and type diagrams

are arranged numerically in order of creation. Each dispatch mapping

inheritance diagram is placed in the documentation behind the diagram

which it augments. The other components in the design are organized

alphabetically by the routine or routine-class pair with which they are

associated. Since the CIDS contains the list of all directly present features

in the class, any component in the design related to a particular class can

be easily located either directly in the case of the inheritance and type

diagrams or indirectly via the class routines.

In practice, the likely starting point for any examination of the design will

be the inheritance diagrams. The class and feature names that appear on

these inheritance diagrams provide direct links to all of the other design

99

components except the type diagrams, which can be reached by referring to

the CIDSs.

'l aInheritance Dispatch MappingsCIDS Diagrams

Class Nam m

Features Type

Routine- / .
class /
Pairs, -1 e

CDSClet
CDS Method DiagramsCDS II ITaxonomy Iall

Diagrams

Dilspatch Mapns

Figure 5-5

IDEF4 Document Organization

This organizational scheme allows the random perusal of a design,
regardless of the starting point. For example, in Figure 5-6, the starting

point is a method taxonomy diagram. Method taxonomy diagrams are
alphabetized by the associated routine name. Given a specific method
taxonomy in the documentation, the routine name is known (the name of
the method taxonomy diagram). The CDSs, client diagrams, and protocol

diagrams are associated with that routine are arranged alphabetically in
the documentation first by routine name and second by class name. Using
the routine name, one can easily assemble all the design components
related to a particular routine. Any of these documents will provide

pointers (class name) to the CIDS for the class of interest, which will

100

provide access to the inheritance and type diagrams that the class appears

in. Thus, it is possible to easily find the related components in a design.

By Routine By Routine-class By Routine-class

Method CCDS Client

Diagram
- L)

By Routine-class

Class ,Protocol

Nav g By Number Diagram

Inheritance
CIDS Diagram

Diagram

Figure 5-6

Navigating Documentation fhvm the Method Taxonomy Diagrams

101

6.0 Tips and Traps in IDEF4 Design Development

The first design created by this method will be the most difficult. The

designer and the person that implements the design will encounter many

difficulties which will decrease with experience. This section will,
hopefully, answer some of the questions the user will have when creating

and interpreting early OODs. In this last section, we restate some basic

characteristics of the IDEF4 object-oriented procedure and repeat some

earlier statements about creating an IDEF4 design of an object-oriented

system.

6.1 Fine-grained vs. Coarse-grained Methods and Classes

In the design of a system that is relatively small, initial classes may appear

to be at a low level of abstraction and method sets may appear to be very fine-
grained. Finer-grained detail in the initial method sets that are generated
may also be caused by 1) the skills of the designer in the development of

systems in this domain and 2) the clarity and simplicity of the system

requirements.

Another factor contributing to the production of finer-grained methods and

classes in the early stages of the design is in problem analysis. Designers
who have functional (IDEFO) and information (IDEF1) models of the

proposed system will find that their initial listing of classes and methods

will be much more complete and contain much more detail than those who

do not have this input.

6.2 Method Taxonomy Diagrams and Routines

Method taxonomy diagrams provide an illustration of the relationships

between the method-set contracts in the design. Each method set in the
taxonomy is paired with one routine-class pair. As a rule, the routine

paired with each method set in the taxonomy is the same; therefore, the

convention is to name method taxonomy diagrams with the nome of the

102

system routine they describe (e.g., the Sort method taxonomy diagram or

the Seize method taxonomy diagram).

Method taxonomy diagrams do not have to follow the class hierarchy. For

example, when a feature in any class in the system implements a routine,

the name of the feature is normally the name of the routine. However, this

does not have to be the case. It is entirely possible and perfectly acceptable

for the designer to specify two features in a class to perform the same

routine. An example of this is the illustration described previously of a

system in which the same class had two different sort routines defined.

When this occurs, the primary routine for sort has the feature name Sort

and the secondary routine was given some other name. The dispatching

inheritance diagram shows that the features dispatch to different method

sets but are in the same method taxonomy: Sort.

6.3 Routines and Routine class Pairs

Readers and users of IDEF4 tend to have some initial confusion regarding

the terms routine, generic routine, and uuoine-class pairs. A routine

refers to an IDEF4 feature that s computation initiating. A generic routine

refers to a generic operation or function that the system or a hierarchy of

classes is expected to provide. For example, the statement "The system is

expected to provide for the sorting of files by name and number, sorting of

lists of numbers, and sorting of lists of employee names" indicates that the

system must provide for sorting different types of objects. Therefore, we say

that the system will have a generic routine named Sort. When the meaning

is clear from the context, a routine may be used in place of generic routine.

A routine-class pair is an ordered pair that consists of the name of a

generic routine and the name of a class. A routine-class pair is used as an

index. If Sort is defined or redefined in the class List, the routine-class pair

is called the Sort:List routine-class pair.

In IDEF4, a generic routine name is used to reference a method taxonomy

diagram, which is a diagram of a particular type of system behavior. A

routine-class pair references a method set (method-set contract) which is

103

normally part of the method taxonomy diagram named for the generic
routine. For example, the Sort:List routine-class pair is associated with an

identically named method-set contract. That method-set contract will be
represented by one of the nodes in the Sort method taxonomy diagram.

6.4 Multiple Return Types for One Return Value

It is not uncommon for a designer to want to show that a function will

return a particular type for a successful execution and another type for an
unsuccessful execution of the function. For example, the designer may
want to indicate that the function Fill-object-with-color will return the color

of the object. However, if the function cannot do this, it will return a string
such as "No color possible." Neither the protocol diagrams nor the type
diagrams of IDEF4 allows this type of information to be displayed. This
information must be captured in either the CDS for the method set

associated with Fill-object-with-color or by making the requirement part of
the class-invariant where the feature is defined.

6.5 Characteristics of the Object,oriented Procedure

In the development of a design, designers begin with a coarse-grained

system design, then expand and refine this until the design is complete.
Experimentation with the IDEF4 design process has revealed several

characteristics of the object-oriented procedure that are worthy of mention.

1. Specification of Requirements - Clearly stated system
requirements will shorten development time by allowing
the initial classes and methods to be more specific. These
system requirements will be expanded and refined as the
design process continues.

2. Understanding of Requirements - A definite relationship
appears to exist between functional, information, process
flow, and IDEF4 models as shown in Figure 5-7. For
example:

The activities in a function model and the units of
behavior (UOB) in a process description provide
supporting evidence for method sets.

104

* The elaborations of a process flow description
provide constraints for the CDS and CIDSs.

* The object state transition networks (OSTN) of a
process description provide evidence of features,
classes, and class-invariant constraints.

* The concepts (inputs, outputs, controls, and
mechanisms) in a function model provide
evidence for features.

Information models provide evidence for object
classes via entity classes, compositions via link
classes, and features via attribute classes.

IDEF4 IDE

laethoad ets Incti ties

shoul produc l sMethod Contracts a t tat a

obvou fmeature ts

Elaboration u Classes in iDEF1

SInheritance Attribute Class

SComposi7ion] I in C a s

Figure 5-7

IDEF4 Relationship to IDEFO, IDEF1I, and IDEF3

3. Listings of Classes and Methods - Initial design phases
should produce listings of classes and mpthods that are
obvious from the requirements specification. No
conscious attempt should be made in initial design phases
to identify such things as attributes of the identified
classes nor the algorithms by which the methods may
execute.

105

4. Familiarity with System Type - If one or more of the
participants in the design process are familiar with the
type of system that is being designed, the design will likely
produce more class substructure and more fine-grained
method sets in the initial stages of design and will likely
require less time to develop. If the system designers are
not familiar with development of systems in the target
system domain, the most notable difference will be longer
design development time.

106

Reference List

Baneijee, J., Chou, H., Garza, J., & Kim, W. (1986). Data model issues
for object-oriented applicatiQns. (MCC Technical Report. No DB-099-86).
Austin, TX: Microelectronics and Computer Technology Corporation
(MCC).

Bobrow, D. G., Kahn, K., Kiczales, G., Masinter, L, Stefik, M., & Zdybel.
(1986). Merging LISP and object-oriented programming. In Proceedings of
QOPSLA (pp. 17-29). Salem, MA: ACM.

Coleman, D. S. (1989). A Framework for Characterizing the Methods
and Tools of an Integrated System Engineering Methodology (ISEM). Draft
2 Rev. 0. Santa Monica, CA. Pacific Information Management, Inc.

Gabriel, R. P., White, J. L., & Bobrow, D. G. (1991). CLOS : Integrating
object-oriented and functional programming. Communications of the
ACM. 34,(9). 29-38. Salem, MA: Communications of the ACM.

Goldberg, A. (1978). Smalltalk in the classroom. Palo Alto, CA: Xerox
Palo Alto Research Center.

Itagsca distributed object database management system [Technical
Summary]. (1990). Minneapolis, MN: Itasca Systems, Inc.

KEE software development system user's manual. (1985). Menlo, CA:
IntelliCorp.

Keene, S. E. (1989). Object-oriented programming in common LISP: A
programmer's guide to CLOS. Cambridge, MA: Addison-Wesley.

Kim, W., Bertino, El., & Garza, J. (1988). Composite objects revisited
(MCC Technical Report. No ACA-ST-387-88). Austin, TX: Microelectronics
and Computer Technology Corporation (MCC).

Knowledge Based Systems Laboratory. (1991). IDEF4 technical report
(KBSL-89-1004). College Statiou, TX: Department of Industrial
Engineering, Texas A&M University.

Korson, T. D. and Vaishnava, V. K. (1986). An empirical study of the
effects of modularity on program modifiability. E. Soloway & S. Iyengar,
(Eds.), Empirical studies of programmers. Ablex Publishers.

Macintosh programmer's workshop PASCAL 3.0 reference. (1989).
Cupertino, CA: Apple Computer.

107

MacLennan, B. J. (1982). Values and objects in programming
languages. SIGPLAN notices. 17(12), 70-79

Mayer, R. J., et al., (1987). Knowledge-based integrated information
systems development methodologies plan, (Vol. 2) (DTIC-A195851).

Mayer, R. J. (1991). Framework foundations research reoort [Final
Report]. Wright-Patterson Air Force Base, OH: AFHRL/LRA

Mayer, R. J., Menzel, C. P., and deWitte, P. S D. (1991). IDEF3
technical repot. WPAFB, OH: AUHRGA.

Meyer, B. (1988). Object-oriented software construction. Santa Barbara,
CA: Prentice-Hall.

Meyer, B. (1987). Reusability: The case for object -oriented design. IEEE
Software, 4(2), 50-64.

Object store technical overview. (1990). Burlington MA: Object Design,
Inc.

Orion Paners [Research Reports]. (1990). Minneapolis, MN: Itasca
Systems, Inc.

Pascoe, G. A. (1986). Elements of object-oriented programming. ByI
Magazine.

Soley, R. M. (1990). Object management architecture guide.
Farmingham, MA: Object Management Group.

Stefik, M., and Bobrow, D. (1986). Object-oriented programming:
Themes and Variations. The Al Magazine, 6(4), 40-62.

UNIX System V AT&T C++ language system. release 2.0 Product
reference manual. (1989). Murray Hill, NJ: AT&T Bell Laboratories.

Yourdon, E., and Constantine, L. L. (1979). Structured design:
Fundamentals of a discipline of computer program and systems design,
Englewood Cliffs, NJ: Prentice-Hall.

Zachman, J. (1987). A framework for information systems
architecture, IBM Systems Journal, 26(3), 276-292.

108

IDEF4 Glossary

Class In object-oriented development, attributes and
routines are identified with classes which
provide the basic mechanism for encapsulation.
The term "class" in the object-oriented world
refers conceptually to certain data types with
their associated operations which describe the
features and behavior of a category of run-time
computer program objects.

Class Submodel The IDEF4 Class Submodel contains Inheritance
Diagrams, Protocol Diagrams, and Type
Diagrams.

Client Diagram An algorithmic decomposition of a method set
that illustrates "clients" and "suppliers" of
method sets.

Contract A method set is specified by the contract it
fulfills. The contract is a declarative statement
of the intended effect of the methods in the
method set.

Client Diagram Illustrates the algorithmic or functional
decomposition of a method set by depicting
"suppliers" and "clients" of method sets.

Contract Data Sheet Specifies the contracts that methods in a method
set must satisfy.

DesignMethod A heuristic guide to thinking that applies a
certain philosophy of design (Design
Methodology).

Design Methodology A philosophy of design (see also Design Method).

Dispatch Mapping In IDEF4, the dispatch mapping connects the
Class and Method Submodels. It is expressed by
annotations on the Inheritance Diagrams and
the Method Taxonomy Diagrams.

Functional Method Returns a value and has no side effects.

109

Functional Method Set Specifies methods that return a value and have
no side effects.

Inheritance Diagram Illustrates the subclass/superclass relation
between classes.

Method An implementation satisfying the constraints
specified in a method set; uniquely identified by a
class/generic-function pair.

Method Set A set defined by a characteristic function called a
method contract, defined in a contract data
sheet. An IDEF4 method set is uniquely
identified by an IDEF4 class-routine pair.

Method Submodel The IDEF4 method submodel focuses on the
structure of methods and contains Method
Taxonomy Diagrams and Client Diagrams.

Method Taxonomy Classifies method types by behavior similarity
Diagram and links between class features and method

types.

Procedural Method Returns no value and has side effects.

Procedural Method Set Specifies methods that return no value and have
side effects.

Protocol Diagram Specifies the protocol for method invocation.

Routine A computation-initiating feature that may
return values and have side effects.

Type Diagram Illustrates composite relations among classes.

110

Index

Actors 12 Classes vs. Object 13
additional contract 29 Classify/Specify 96
algorithmic decomposition 87, 93, client diagram 48

95 client diagram 4, 8, 9, 32, 66, 67,
Assemble 96, 97 68,86,92,93,94,96,97,99,100
associated routine 100 client link 67, 68
attribute 51, 59, 60, 63, 70, 72, 73, CLOS, see Common Lisp Object

79, 80, 81, 92, 105 System

attribute class 105 Common Lisp 2
auxiliary feature 37 Common Lisp Object System
C++ 2, 12, 14, 17, 53, 54, 69, 108 (CLOS) 12, 17, 26, 40, 53, 69, 107
Carry-over-driven Design 83 component-of relationship 95
CDS 46, 48, 54, 58, 66, 94, 96, 97, 99, concept 105

100 constraint 3, 8, 9, 10, 15, 25, 26, 28,
Characteristic-driven Design 83 29, 30, 37, 41, 42, 44, 46, 47, 49, 50,
CIDS 10, 41, 42, 44, 66, 92, 94, 98 51, 52, 53, 54, 55, 59,66,81,84,91,
Class Box 14, 23, 34, 38, 60, 61, 65, 92,93,94,96,97

68 constraint-driven 84
class decomposition 87 constraint-driven Design 83
Class Feature 25, 26, 35, 42, 51, 60, contract 29, 30, 37, 46, 47, 48, 49,

65,88 50, 51, 52, 53, 54, 55,56, 74, 84, 87,
class name 100 92, 102, 103, 104
class submodel 97, 98 data sheet 4, 10, 15, 32, 41, 44, 46,
class-centric 11 97
Class-inheritance 15 data-driven 11, 12
Class-inheritance Diagram 32, 38, data-item perspective 13, 14

41,52 declaration type 12
Class-invariant 10 Design Evolution Process 93
class-invariant data sheet 5 Design Validation 80

class-invariant structure 29

111

Develop algorithmic generic operation 103

decomposition 86 generic routine 27
Develop class composition generic routine-class pair 27

structure 85, 92 IDEF1 89, 90, 91, 92, 102

Develop class hierarchy 85, 91 IDEFlX 90, 91, 92

Develop Method Taxonomy 92 IDEF3 89, 90, 91

Develop Protocol 93 IDEF4 78

directly present 23, 24, 33, 34, 41, IDEF4 Instantiation Language 77,

46, 68, 75 78, 79

dispatch mapping 56, 74, 97, 98, 99 IDEFO 88, 89, 90, 91, 102
Eiffel 14 information hiding 13, 18

elaborations 105 inheritance diagram 4, 5, 6, 10, 18,

encapsulation 13 32, 38, 42, 44, 48, 64, 74,91,92,93,

export line 33, 34, 38, 41, 60 97, 98, 99

feature inheritance 20, 21 instance 78, 79, 81, 92, 94
Feature Taxonomy 20 Instantiation Diagram 98
Feature Type 24 instantiation diagrams 4

feature-class pair 17, 29, 67 instantiation language 78
feature-class routine 26 inverse relationship 62
Feature/Class Taxonomy 23 KEE 17
Flavors 14, 17, 69 least-commitment modeling 87

FORTRAN 12 message passing 11

function 26, 28, 35, 37, 47, 52, 59, Message-centric 11, 12

60, 61, 62, 64, 65, 69, 70, 72, 73, 74, method set 27, 93, 95, 96
89, 90, 94, 103, 104 method submodel 3, 4, 8, 32, 46, 66,

function model 104 74, 97, 98
functional decomposition 89, 90, method taxonomy diagram 4, 8,

93, 95 29, 32, 46, 48, 50, 51, 52, 53, 54, 55,
functional decompositions 95 56, 58, 59, 74, 75, 92, 93, 94,97, 99,

functional modeling 89 100, 102, 103, 104, 109, 110

functionally oriented 89 method-set contract 9
functionally oriented method-set-combination contract

decompositions 95 17

generalized variables 21 methodical type 13

112

Multiple Return Type 104 return type 24, 59, 60, 61, 63, 64, 65,

New Method 37, 53, 54 66,70

New Taxonomic Specification 37, routine 46, 47, 48, 49, 51, 52, 56, 58,

72 59, 65, 67, 68, 72, 74, 75,84,90, 93,

object composition 87 98, 99, 100, 102, 103, 104

Object Pascal 2 Routine Design 83

object state transition network 105 routine name 98, 99, 100

Object-centric 12 routine-class pair 27, 42, 52, 56, 68,

Object-oriented Concept 11 70, 72, 74, 75, 84, 93, 98, 99, 102,

Object-oriented Decomposition 84, 103, 104

90 Self 12, 70, 71, 72, 73

Object-oriented Procedure 104 side - effecting 18

ODBMS 61 side-effecting 20, 47

operation-centric 11, 12 signature type 12

Organization of IDEF4 Design slot 19, 20, 21, 35, 37, 41, 60, 65, 72,

Documentation 97 73, 74, 81, 82

partial inverse 61, , Smaltalk 2, 12, 17, 69, 107

Partition 94, 95 software design process 85

Pascal 14 supplier 93

polymorphic decomposition 87 test case scenario 77

Polyrrorphism 87 Type Diagram 98

Print method set 29 Type Diagram Symbol Set 60

Print-object 29, 41 type diagrams 4

Print-object. 41 type link 25, 60, 61, 63, 70, 71, 78,

private feature 14, 33, 34, 37 79,92

procedure 26, 35, 47, 52, 83, 84, 98 unique identifier 78, 79

Prolog 12 value type 93

Protocol Diagram 98 value-returning 18, 19, 20, 24

Protocol Diagram Symbol Set 70 Virtual feature 33, 42

protocol diagrams 4

public feature 34, 38

Rearrange 97

representational type 12

113 .. Government Printing Office 1992 - 648-069/40280

