
Model-based dynamic QoS-driven service composition∗

Antinisca Di Marco
Computer Science Dept.

University of L’Aquila - Italy
antinisca.dimarco@univaq.it

Antonino Sabetta
CNR-ISTI, Pisa

Italy.
antonino.sabetta@isti.cnr.it

ABSTRACT
As a consequence of their ever increasing pervasiveness in
today’s systems, software services are expected to guaran-
tee their QoS even when operating in contexts whose oper-
ational conditions may continuously change. To cope with
such continuous change, services must evolve in a way that
is transparent to the end-user. This can be done by exploit-
ing sophisticated means to reason about Quality of Service
(QoS) and to drive service construction in a dynamic and
automated fashion. The paper tackles this challenging sce-
nario by proposing a model-based framework, called Smart,
that automatically constructs complex services with guaran-
teed QoS. Smart exploits rich service descriptions (in par-
ticular concerning QoS characterizations) to automate the
negotiation of Service Level Agreements (SLA) and to re-
alize SLA-driven automated service reconfiguration, when
the target QoS cannot be achieved by the current service
assembly. Finally, Smart addresses the case in which some
services involved in the composition do not support SLA
negotiation. In this case, monitoring is used to characterize
empirically (as opposed to “contractually”) the QoS offered
by such non-guaranteed services.

1. INTRODUCTION
Software services, provided by different organizations, adver-
tise and offer their functionalities while hiding heterogeneity
in the underlying hardware and software infrastructure.

As software services become more and more pervasive, they
are required to provide their functionalities guaranteeing a
certain level of quality, even when operating in environments
whose conditions may continuously change, as in the case of
ubiquitous and mobile computing systems.

Due to the high dynamicity and heterogeneity of software-

∗This work is partially supported by the EU-funded Con-
nect project (FP7–231167) and by the Italian PRIN d-
ASAP project.

oriented systems and of their execution environment, soft-
ware services must be capable of evolving in order to guar-
antee the QoS level stated in a Service Level Agreements
(SLA). Achieving this effectively is a challenging problem as
the service-oriented software is an “open” world, fully decen-
tralized, and typically no single organization is in control of
all the services involved in a system.

The problem of dynamic adaptation to maintain the level
of QoS at a desired level is the target of the research pre-
sented in this paper. We present a model-driven framework,
called Smart, whose aim is to realize dynamic QoS-driven
service composition, by building complex, resilient services
with guaranteed QoS, by composing simpler, pre-existing
services. The service composition occurs in an automatic
way by exploiting the SLA negotiation mechanism and SLA-
driven service reconfiguration.

The Smart framework aims to improve over the state of
the art in three directions. Firstly, it provides the required
service by composing services discovered in the network.
Whenever a perfect match between the demand and the sup-
ply does not exist with respect to QoS requirements, Smart
aims at providing one or more service alternatives for the re-
quest service by relaxing one or more QoS constraints that
the service consumer imposed initially.

Secondly, the Smart framework is meant to work both when
the QoS of all the services involved in the aggregation pro-
cess is guaranteed with a SLA, and in the case that at least
one simple service is not guaranteed by SLA. In the latter
case, monitoring is used to characterize empirically the QoS
offered by non-guaranteed service. From such characteri-
zation, Smart synthesizes the Service Level Specification
(SLS) that will make up for the lack of the SLA and will be
used as input for the QoS and trade-off analysis supporting
the SLA negotiation process of the composite service.

Finally, Smart supports monitoring of both individual sim-
ple services and the composed service, in order to verify that
the SLA of the simple and composed services are satisfied.
The monitoring mechanisms alert the framework when ei-
ther any simple service under a SLA does not respect the ne-
gotiated agreement; or the provided composed service shows
a worrying trend in its QoS that let suppose that violation of
its SLA, or the provided composed service does not satisfy
the SLA any more. In these cases, Smart activates reconfig-
uration mechanisms that evaluate if and how to reconfigure

in
ria

-0
05

36
73

5,
 v

er
si

on
 1

 -
16

 N
ov

 2
01

0
Author manuscript, published in "QUASOSS @ MODELS 2010 2nd International Workshop on the Quality of Service-Oriented

Software Systems (2010)"

http://hal.inria.fr/inria-00536735/fr/
http://hal.archives-ouvertes.fr

Consumer Smart Registry

WorkFlow

Specification
New Wf Spec

+ QoS Reqs

Service

Publication

Service

Request

Defintion

Service

Discovery

Service Description +

QoS Reqs

Empty list

Service Negotiation

Not Empty list

(smart in the list)

Services

Monitoring and

Reconfiguration

SLA

Service Composition

No agreement agreement

Figure 1: Smart high level operations.

the service, and will implement the selected reconfiguration
strategy. The reconfiguration is transparent to the user, as
long as the reconfiguration produces a new service having
QoS characteristics compatible with the initial SLA.

The remainder paper is structured as follows: Section 2 de-
scribes the main features and goals of Smart, whose real-
ization in a reference architecture is described in Section 3.
Section 4 gives pointers to some related work and positions
our contribution with respect to the existing literature. Fi-
nally, Section 5 concludes the paper.

2. SMART FEATURES AND GOALS
The key goal of Smart is to provide a framework for build-
ing complex services with guaranteed QoS, starting from
simple, pre-existing services. Service composition in Smart
occurs automatically, exploiting automatic SLA negotiation
capabilities.

In response to user requests, Smart selects, out of a pool of
candidates, a set of services that are composed to provide
the requested functionalities with the desired QoS level.

To this end, two alternative hypotheses can be formulated:
- All the services that are involved in the overall aggrega-
tion process provide a suitable support to the automatic SLA
negotiation; in other words the service providers supply the
information (functional and extra functional specification of
the service) to facilitate the automatic negotiation of QoS.
- At least one of the service that are candidates for the com-
position does not export a QoS specification and provides no
support to automatic negotiation of QoS level.
The Smart framework aims at operating under each of these
hypotheses. In order to achieve the latter one, Smart should
observe the actual behavior of the candidate services and de-
rive a QoS characterization for each of them empirically (as
opposed to contractually, as in the first hypothesis). Start-
ing from the results of this characterization, a SLS (Service
Level Specification) is synthesized. Such SLS, together with
the established SLA, are used as input to the analysis sup-
porting the service composition and all together form the
assumptions the monitor must check when the composed
service is activated.

Figure 1 shows the invocation of Smart described by means
of a UML Activity Diagram that specifies, throughout swim-
lanes, the responsibilities of the activities to be executed.
The system responsible of the activities in a swimlane is in-
dicated on top of it. We represent the data exchanged by
the activities by means of grey boxes, and complex activities
involving many actors throughout grey dashed-line ellipses
. A Consumer asks for a discovery service to the Registry.
The request specifies the service in terms of functional and
QoS requirements. The Registry returns a list of matching
services already published by some Providers. At this point
in time, two alternative situations may occur:

The returned list is empty: no existing services are dis-
covered. The Consumer formulates a detailed service re-
quest to the Smart framework. The request is composed
by the workflow specification, describing the service from a
functional point of view, and the QoS requirements the ser-
vice must satisfy during its execution. Smart dynamically
composes the required service by exploiting the on-line QoS
analysis techniques to check if it can provide a service with
the required QoS. Then, it publishes the new service on the
registry and proceeds to the service negotiation. In case the
on-line QoS analysis reported a positive response, the nego-
tiation phase is reduced in the SLA exchange. Whereas, in
case of a negative response, Smart proposes the consumer
several alternatives obtained by relaxing one or more QoS
requirements. During this phase, Smart could execute the
QoS analysis several times by exploiting the models built in
the composition phase. If the consumer does not accept any
proposed alternatives, the request is discarded.

The returned list contains Smart as provider of the
required service and Smart is selected from the con-
sumer: in this case the service composition is skipped, and
the consumer and the Smart framework directly proceed to
the negotiation process.

If the negotiation leads to an agreement, Smart sets the
monitoring infrastructure to monitor the negotiated SLA.
To this end, it monitors both the composed service provided
and the assumptions made by the QoS and trade-off anal-
ysis during the negotiation phase1. Whenever the monitor
observes some problems, Smart could decide to reconfigure
the service.

Smart must deal with several issues to reach its goals. Among
others, the service description is one of the main problems.
Smart must manage service description with the different
level of details depending on whether the service belongs
to the provider (internal) or not (external). In the former
case we have a complete model while, in the latter, the only
information that Smart considers coming from the service
monitoring (SLS) and from the SLA associated to service (if
it is a guaranteed one). The service reference model and the
devised notation used in Smart have to allow these different
levels of detail, making consistent the reasoning made at the
different level of details.

1Note that, such assumptions are the synthesized QoS char-
acterization (SLS) or the negotiated SLA of the simple ser-
vices Smart selected to implement the concrete service for
the input workflow

in
ria

-0
05

36
73

5,
 v

er
si

on
 1

 -
16

 N
ov

 2
01

0

Moreover, Smart signs with the consumer a SLA for the
composed service. The SLA must be satisfied during the ser-
vice execution. To this end, Smart exploits reconfiguration
mechanisms supported by QoS and trade-off analysis tech-
niques. QoS and trade-off analysis is executed both off-line
and on-line, to support reactive and proactive service recon-
figuration, respectively. Proactive reconfiguration is made
when Smart works to provide a better implementation of a
service already provided. In this case, the analysis is done
off-line with no real time constraints. Such analysis tech-
niques use complex models with high accuracy. Reactive
reconfiguration, instead, timely reconfigures the composed
service if the monitoring discovers that the negotiated SLA
is violated. Reactive reconfiguration exploits on-line analy-
sis to find the ”best” reconfiguration that overcomes quickly
the observed problem. On-line analysis works under real-
time constraints and uses more simple models. They pro-
duce quick estimations but with reduced accuracy. On-line
QoS and trade-off analysis is also used during the negotia-
tion phase when a (new) service request is formulated.

Finally, Smart is conceived to integrate with the infras-
tructure developed in the Connect project. Connect pur-
sues eternal interoperability by synthesizing on-the-fly the
connectors through which networked systems communicate.
The synthesis process is based on a formal foundation for
connectors, which allows learning, reasoning about and adapt-
ing the interaction behavior of networked systems at run-
time [6]. Smart relies on Connect in two respects. Firstly,
it reuses some components from Connect, such as the mon-
itoring infrastructure, which provides a generic framework
that can be easily adapted for monitoring service compo-
sitions, and the semantic discovery enabler. Secondly, the
semantic discovery component is hooked to more than just
a service repository. By exploiting the capabilities of Con-
nect, more candidates are added to the set of services avail-
able for composition; these candidates are actually Con-
nected systems2 whose functionalities are provided while
hiding protocol and data mismatches using connectors (i.e.,
protocol adapters and data converters) that are synthesized
and deployed automatically.

3. SMART REFERENCE ARCHITECTURE
Figure 2 depicts the main components of the Smart frame-
work and how they are connected to each other. In par-
ticular, it is composed by seven components for which we
outline the key elements in the following. Smart interacts
with the service Registry to discover simple services to com-
pose, and with the Providers of the simple services it selects
for the composition. It monitors the services it uses in the
composition and the composed service in order to observe
any SLA/SLS violation. Its input is the workflow specifica-
tion enriched by QoS requirements coming from a consumer
asking for a (new) service with guaranteed QoS.

Figure 3 shows how the Smart components interact dur-
ing the Service Composition Process. Service Composition
starts from the arrival of a new workflow specification for-
mulated from a consumer. The Service Composition Engine

2This term is used in the Connect project to indicate sys-
tems that are assembled by using a synthesized connector
to have two or more networked systems to interoperate.

Figure 2: Architecture overview

Service Composition

Engine

Semantic

Discovery

QoS & trade-off

Analysis Engine

QoS

Negotiator
QoS Constraints

Checker
Governance

Semantic

Search
Prepare QoS

& trade-off Models

Models Analysis

Simple Service

Negotiation

Contract

Formalization
Services with SLA

QoS Models

ServicesBinding

and Activation

Monitoring

Engine

Concrete

Service List

Definition of service

implementations

Service with SLA Service with SLS

service

implementation

decision

Analysis

Results

Checker

Instrumentation
Monitor

Activation

WorkFlow

Analysis

Simple Services

description

Wf Spec

Compostite Service

Negotiation

SLA

No agreement

Wf Spec+

QosReq.

Figure 3: Service Composition Process

analyzes the workflow specification to determine the descrip-
tion of the simple services needed to compose the required
assembly. After that, the simple services discovery and the
QoS and trade-off models generation for the workflow spec-
ification are executed in parallel. The list of the concrete
simple service discovered is sent to the QoS Negotatior for
the negotiation step. After having contacted the providers of
the discovered services, the negotiator returns two lists, the
first containing the concrete services for whom the negotia-
tor has been able to finalize a SLA, and the other containing
the remaining services. Such information is used by the Ser-
vice Composition Engine to define possible implementation
alternatives of the workflow specification that are passed to
the QoS and Trade-off Analysis Engine for evaluation. The
analysis results support the composition Engine to decide
which alternative to negotiate with the consumer. If the
negotiation of the proposed assembly is successful, several
actions are executed in parallel: the SLA for the simple ser-
vices involved in the composition and for the assembly are
formalized, the binding to the simple services is executed
and the composite service is activated, and the QoS Con-
straints Checker is set w.r.t. the SLA/SLS of the bound
concrete services. Finally, the Monitor Engine instruments
and activates the monitors.

Service Composition Engine and Semantic Discovery
The service composition engine takes in input a workflow
specification and formulates a service composition that real-
izes the workflow using services obtained from a repository
of available services. Such repository is a front-end to ac-
cess one or more service registries and to retrieve a set of

in
ria

-0
05

36
73

5,
 v

er
si

on
 1

 -
16

 N
ov

 2
01

0

service instances (referred to as concrete services) that offer
the functionalities as required by the workflow.

The registry used in Smart is actually more than just a
repository of services, as it wraps and leverages the seman-
tic discovery capabilities offered by the Connect infrastruc-
ture, and in particular by its discovery enabler. Therefore,
in certain circumstances (e.g., when a proper “conventional”
service is not available), the Smart registry may provide a
service that is actually a wrapper for a more complex sys-
tem, that is obtained by exploiting the ability of Connect
to synthesise and deploy mediators3 automatically and on-
the-fly.

The service composition engine is responsible for the dy-
namic reconfiguration of the service in order to guarantee
that the constraints of the negotiated SLA are respected.

The Service Composition Engine implements two types of
reconfiguration: i) Reactive, if it is executed in case of vio-
lation of the SLA; ii) Proactive, if executed as a consequence
of the observation of negative trends that could lead to the
violation of the SLA.

The service composition engine reasons about acceptable re-
configuration policies available in the service domain, taking
into account the constraints and the characteristics of the
composition that determine the applicability of the recon-
figuration actions (binding changes, migration of services on
execution hosts, service duplication, etc..).

The operation of the service composition engine relies on
the availability at runtime of a model of the composed ser-
vice. Such model is used to represent and reason about the
properties of the service while the system is in operation.
To this end, relevant modeling features are, among others,
the workflow specification and its realization via existing
services, the offered QoS of these services and of the over-
all service assembly, and the stipulated contracts (SLA), if
available.

QoS and Tradeoff Analysis Engine
Analysis techniques are used in Smart to assist both the
Service Composition Engine, in defining a service assembly
that matches the target QoS, and the Negotiator, during the
SLA negotiation of the composed service.

The QoS and Tradeoff Analysis Engine (in the following,
Analysis Engine) predicts the QoS that can be achieved by a
certain assembly and produces quality trade-offs models. We
follow the assume/guarantee paradigm [7] supported by the
modeling notations for the development of incremental and
compositional analyses, that are suitable for dynamically
evolving applications. The validation of this class of appli-
cations is performed continuously at runtime through a feed-
back loop between negotiation/reconfiguration and monitor-
ing mechanisms.

The Analysis Engine’s action can be distinguished into:
During the composition phase: the Analysis Engine

3Connectors, in Connect parlance. A Connector may be
used to address different types of mismatches; e.g., protocol
mismatches or data-format mismatches.

builds the Qos and trade-off models (one for each QoS at-
tribute of interest and one for the trade-off) of the workflow
specification provided by the Service Composition Engine.
These models are later parameterized by using the SLA and
SLS of the simple services provided by the Negotiator and
the Monitoring Engine, respectively.
During the service composition and SLA negotia-
tion phase: the Analysis Engine proceeds to the models
parametrization and analysis. Indeed, it produces a set
of parameterized analysis models for each implementation
alternative the Service Composition Engine defines. The
Analysis Engine hence proceeds with their evaluation and,
on the basis of the obtained results, the Service composi-
tion Engine decides which service implementation to offer
to the user. Moreover, if all the considered alternatives can-
not guarantee the quality levels as required by the user, this
Engine helps formalizing new proposals obtained by relax-
ing one or more initial QoS constraints.
During the service execution: the same models, fed with
monitored parameters, can be used to predict critical situ-
ations that can lead to contract defaults. In these cases,
Smart is alerted if a suspicious trend or a SLA violation is
observed. This mechanism allows the framework to bring
the service back to the contract terms.
During the reconfiguration phase: in this case the mod-
els, in addition to the modeling of the QoS of the new service
that would be obtained by the application of the reconfigu-
ration strategy, include the overhead required by the recon-
figuration. The evaluation of such models provides the infor-
mation on the basis of which the provider decides whether
to reconfigure the service or which reconfiguration strategy
to adopt.

QoS Negotiator
The QoS Negotiator deals with the process of SLA negoti-
ation. In Smart, the SLA negotiation is executed dynam-
ically when the user requests for the service. It holds the
negotiation of both the composed service and the simple
services discovered during the composition phase.

Simple service negotiation: the Negotiator receives a list
of concrete services, each associated with a service level re-
quest and the indication of the corresponding provider. The
service level request is formulate as a list of QoS attributes.
Each attribute has associated a range of values (in terms of
minimum and maximum) the QoS attribute may fluctuate
to be considered acceptable.
The aim of the Negotiator is to contact all the providers
and negotiate with them the required service level. In gen-
eral, the Negotiator initially asks for the best service, that is
the service having a high quality (by reducing the ranges in-
cluded in the requests). If the negotiation fails, it repeatedly
requires for a lesser performing service since the negotiation
is successful.
The output of the negotiation process is composed by two
lists containing the concrete service identifications and the
SLA the Negotiator contracted for them. Indeed, the first
list contains only and all the concrete services for which the
Negotiator has reached an agreement, highlighting the ones
conform to the request, while the second list contains the
remaining ones.

Composed service negotiation: The Negotiator receives
the service level request coming from a (new) consumer and

in
ria

-0
05

36
73

5,
 v

er
si

on
 1

 -
16

 N
ov

 2
01

0

it starts the negotiation process. To evaluate if Smart is
able to afford the new request, the Negotiator asks a pre-
diction to the Analysis Engine sending it the new workload
indicated in the request and the QoS attributes of interest.
The Analysis Engine, after having parameterized the anal-
ysis models with the new workload and with the parame-
ters coming from the monitor, reports its prediction to the
Negotiator and the QoS Constraints Checker. If the predic-
tion still satisfies the SLA already negotiated and the new
request, the Negotiator proceeds to the SLA formalization
otherwise it collaborates with the Analysis Engine and the
QoS Constraint Checker to formulate an affordable counter-
proposal to offer to the consumer. If the counterproposal is
accepted by the consumer, they proceed to the SLA formal-
ization, otherwise the request is discarded.

QoS Constraints Checker
The QoS Constraints Checker matches the end-users quality
expectations formalized in a SLA and expressed as application-
specific QoS metrics, with a monitoring infrastructure that is
able to observe properties defined in terms of those metrics.
In practice this requires a translation of high-level specifica-
tions of QoS objectives, defined in terms of business metrics,
into constraints that are expressed in terms of readily ob-
servable events and metrics. After having made the match-
ing and from the corresponding output, it instruments the
Monitoring Engine to allow the observation of the events
and the metrics identified. Finally, it checks that the final-
ized SLA are not violated by capturing all events generated
by the monitoring. In case it observes any violation, it alerts
the Service Composition Engine to evaluate the opportunity
of a service reconfiguration and the Governance to manage
the legal and the administrative aspects as stipulated in the
signed SLA.

Monitoring
Monitoring in Smart plays an important role both at the
service composition stage and, later on, when the services
that participate in the composition are observed to ensure
that the QoS goals are met.
The automatic composition of services is based on models
describing both the individual services that are candidates
for the aggregation and on models describing the result of
this aggregation, i.e., the composite service to which the
end user is directly interested. As these models are typi-
cally parametric, the monitoring is used to complete them
by providing measured values for their parameters.
In particular, the framework must be able to cope with sce-
narios in which the service providers do not provide models
of the operational characteristics of offered service or in gen-
eral do not support the automatic negotiation of SLAs. In
this case, a QoS model of the services to be composed models
is inferred by direct observation.

Concerning the phase when a service composition is estab-
lished and operational, and a SLA is reached, deviations
from the expected behaviour must be detected as soon as
possible. Actually, this is not only necessary to ensure that
SLAs are not violated, but also to carry out proactive adap-
tation by adopting a different configuration in order to pre-
vent violations that are considered likely to occur in the near
future. The key principle is that dynamic reconfiguration of
the aggregated service must happen in a transparent way to
the end user.

Figure 4: Connect monitoring infrastructure

The monitoring infrastructure used in Smart is borrowed
from the Connect Monitoring Framework, whose high-level
architecture is outlined in the following. The very vision of
Connect, i.e., achieving automated and eternal interoper-
ability puts on-line approaches, and therefore monitoring,
in a central position in the overall project. Monitoring in
Connect is involved in dependability assurance activities,
but it also contributes to bridging the gap between existing
approaches to behavioural learning and Connector synthe-
sis – originally conceived for off-line use – and the Connect
world, where everything happens dynamically and thus re-
quires approaches to work in an on-line fashion.

In Connect, monitoring is conceived as a common core ser-
vice offered to the other Enablers to implement feedback
loops whereby approaches to dependability analysis, Con-
nector synthesis, behaviour learning can be applied to an
on-line setting and can be enhanced to cope with change and
dynamism. Monitoring is performed alongside the function-
alities of the Connected System and is used to detect con-
ditions that are deemed relevant by its clients (i.e., the other
Connect Enablers). Upon detecting one such conditions,
the monitoring system alerts the interested client which, in
turn, triggers an update of the analysis, synthesis, learning
respectively. In this way, powerful but expensive techniques
are executed only when necessary.

The monitoring infrastructure in the Connect project is
realized as a generic, flexible infrastructure that decouples
business-level (or high-level) event specification from the un-
derlying observation and detection mechanisms. From a
technical viewpoint, this decoupling is achieved by exploiting
a message-oriented backbone, conforming to the JMS stan-
dard, to which probes push raw, low-level event occurrences.
These are then picked-up by a complex event recognizer (im-
plemented using the JBoss Drools Fusion rule engine [3])
to perform complex event processing (CEP [9]). High-level
events, once detected, are reported back to the interested
clients, again using the message-oriented JMS backbone.

Governance
The focus of Smart is on the technical support for auto-
mated service composition and QoS negotiation; however
the realization in practice of such a framework requires to
be grounded on a set of mechanisms, rules, policies, and
procedures that may relate to non-technical aspects. The
need for such mechanisms, which are generally referred to

in
ria

-0
05

36
73

5,
 v

er
si

on
 1

 -
16

 N
ov

 2
01

0

as “SOA governance”, is widely recognized in the service-
oriented community [14]. Smart itself relies on a governance
infrastructure, e.g., to ensure legal enforcement of contracts,
beyond their technical realization, however, a discussion of
these aspects is beyond the scope of this paper. The in-
terested reader is referred to [2] for an introduction to the
concepts underlying the notion of SOA governance.

4. RELATED WORK
In literature a lot of work can be found related to the single
aspects Smart integrates. Among others, interesting ap-
proaches to service composition or reconfiguration supported
by extra-functional analysis are defined in [4, 15] whereas [1,
10, 13, 16, 5] envision approaches to SLA monitoring, nego-
tiation and representation.

Although many contributions describe approaches for single
aspects in Smart, quite a few presents a thorough approach.
MUSIC project [8] developed a middleware managing the
service adaptation required by their mobility. It monitors
the context and the resources to catch their changes and
adapts the service to fulfill the users’ QoS requirements. The
approach uses QoS predictors and utility functions to sup-
port the adaptation process. The adaptation is based on the
concept of service plan, i.e. a platform-independent spec-
ification containing information on service configurations,
its dependencies on the environment and its QoS. Different
from our framework, MUSIC does not include negotiation
process and SLA management. Moreover, the service adap-
tation is executed since an experienced mobility caused the
change in the context and hence in the available resource.

The goal of the CASCOM project [11] is to create a coordi-
nation infrastructure that combines semantic service discov-
ery, intelligent context-aware agents, dynamic service com-
position and execution across both mobile and fixed peer-to-
peer overlay networks. Several points in the research agenda
of CASCOM are closely related to Smart, although the un-
derlying technical solutions may be very different. Also, the
emphasis of CASCOM is especially on artificial-intelligence
approaches and P2P networks, whereas a key idea of Smart
is model-driven SLA negotiation and proactive reconfigura-
tion to achieve the target QoS.

5. CONCLUSION
As service-oriented systems gain popularity and become more
and more pervasive, the need for ensuring that they provide
their functionalities within precise quality levels becomes
more and more important. The open-world assumption that
is entailed by the very service-oriented vision makes unpre-
dictable heterogeneity and continuous change two key chal-
lenges that must be addressed in order for service-oriented
systems to succeed in delivering the expected functionalities
with guaranteed QoS levels.

This paper presented a framework to tackle these challenges.
Smart leverages approaches investigated in the context of
the Connect project, from which, among other elements,
we borrow the capability of hiding protocol and data-format
mismatches through automated on-the-fly connector synthe-
sis. In order to ensure QoS in the face of changes, Smart
combines automated SLA negotiation, proactive reconfig-
uration of service compositions based on monitoring and

model-based reasoning, and dedicate online QoS analysis
techniques. We presented the overall framework, and ex-
plained the high-level responsibilities of each building block
in the architecture.

Although some of the building blocks of the framework are
already available (e.g., off-line QoS analysis tools [12]), and
some others are being developed (e.g., the Connect mon-
itoring infrastructure), the implementation of the overall
Smart framework is planned as a future work.

6. REFERENCES
[1] A. Bertolino, G. De Angelis, A. Sabetta, and S. G.

Elbaum. Scaling up SLA monitoring in pervasive
environments. In ESSPE, pages 65–68, 2007.

[2] Todd Biske. SOA Governance. Packt Publishing, 2008.

[3] P. Browne. JBoss Drools Business Rules. Packt
Publishing, 2009.

[4] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti,
and R. Mirandola. Qos-driven runtime adaptation of
service oriented architectures. In ESEC/SIGSOFT
FSE, pages 131–140, 2009.

[5] M. B. Chhetri, J. Lin, S. Goh, J. Y. Zhang,
R. Kowalczyk, and J. Yan. A coordinated architecture
for the agent-based service level agreement negotiation
ofweb service composition. In Proceedings of ASWEC,
pages 90–99, 2006.

[6] CONNECT Consortium. Connect: Description of
Work, 2009.

[7] O. Grumberg and D. E. Long. Model checking and
modular verification. ACM Trans. Program. Lang.
Syst., 16(3):843–871, 1994.

[8] IST-MUSIC Project. Middleware Support for
Self-Adaptation in Ubiquitous and Service-Oriented
Environments. http://www.ist-music.eu/.

[9] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[10] H. Ludwig, A. Dan, and R. Kearney. Cremona: An
architecture and library for creation and monitoring of
WS-agreents. In Proceedings of ICSOC 2004, New
York,USA, November 2004, pages 65–74. ACM.

[11] M. Schumacher, H. Helin, and H. Schuldt. CASCOM:
Intelligent Service Coordination in the Semantic Web.
Birkhäuser Basel, 2008.

[12] SEALAB-QOS Group of University of L’Aquila.
MOdel driven conStruction of QUeuIng neTwOrks.
http://sealabtools.di.univaq.it/MosquitoHome.html.

[13] J. Skene, D.D. Lamanna, and W. Emmerich. Precise
Service Level Agreements. In Proc. of ICSE 2004,
pages 179–188. IEEE Computer Society Press, 2004.

[14] P. J. Windley. SOA governance: Rules of the game. on
line at http://www.infoworld.com, Jannuary 2006.

[15] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms
for web services selection with end-to-end QoS
constraints. ACM Trans. Web, 1(1):6, 2007.

[16] F. Zulkernine, P. Martin, C. Craddock, and
K. Wilson. A policy-based middleware for web services
sla negotiation. In Proceedings of ICWS ’09, pages
1043–1050. IEEE Computer Society, 2009.

in
ria

-0
05

36
73

5,
 v

er
si

on
 1

 -
16

 N
ov

 2
01

0

