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EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATTf

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a, string, is of length bounded by a polynomial
in log n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property thatshort proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log n operations of a Turing machine
for any fixed

The proof system used for certifying primes is as follows.
AXIOM. (x, y, 1).
INFERENCE RULES.

R1 (p, x, a), q - (p, x, qa) provided xtp- 1)/q (mod p) and ql(P 1).

R2: (p,x,p- 1)p providedxp- ,___ (modp).

THEOREM 1. p is a theorem p is a prime.
THEOREM 2. p is a theorem p has a proof of [4 log p lines.

Key words, primes, membership, nondeterministic, proof, NP-complete, computational complexity

1. Proofs. We know of no efficient method that will reliably tell whether
a given number is prime or composite. By "efficient", we mean a method for which
the time is at most a polynomial in the length of the number written in positional
notation. Thus the cost of testing primes and composites is very high. In contrast,
the cost of selling composites (persuading a potential customer that you have one)
is very low--in every case, one multiplication suffices. The only catch is that the
salesman may need to work overtime to prepare his short sales pitch; the effort
is nevertheless rewarded when there are many customers.

At a meeting of the American Mathematical Society in 1903, Frank Cole
used this property of composites to add dramatic impact to the presentation of
his paper. His result was that 267 1 was composite, contradicting a two-centuries-
old conjecture of Mersenne. Although it had taken Cole "three years of Sundays"
to find the factors, once he had done so he could, in a few minutes and without
uttering a word, convince a large audience of his result simply by writing down
the arithmetic for evaluating 267 and 193707721 x 761838257287.

We now show that the primes are to a lesser extent similarly blessed; one
may certify p with a proof of at most [4 log2 p] lines, in a system each of whose
inference rules are readily applied in time O(log3 p). The method is based on the
Lucas-Lehmer heuristic (Lehmer (1927)) for testing primeness.

In the system to be described, theorems take one of two forms:
(i) "p", asserting.that p is prime, or
(ii) "(p, x, a)", asserting that we are making progress towards establishing

that p is a prime and that x is a primitive root (mod p); a is a progress indicator
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such that when it reaches p 1, we may establish these properties for p and x
in one more step.

The system is as follows.
AXIOM. (x, y, 1).
INFERENCE RULES.
RI: (p,x,a), q (p,x, qa) provided xp- 1)/q (mod p) and ql(p 1);

R2: (p, x, p 1) - p provided Xp- (mod p).

A certificate of p is then a proof in this system with. last line p.
Some familiar primes are given by the following proofs.

(1) (2, 1,1) Axiom;

(2) 2 (1), R2, 11 _= (mod 2);

(3) (3, 2, 1) Axiom

(4) (3,2, 2) (3), (2), R 21 2 (mod 3);

(5) 3 (4), Rz, 22 (mod 3).

No proof for 4 is possible because we would need to prove (4, x, 3) for some
x (mod 4) (by the condition ifl R2), which would contradict the condition in R 1.

(6) (5,2, 1)

(7) (5,2,2)

(8) (5,2, 4)

(9) 5

Axiom

(6), (2), R 1, 22 =_ 4 (mod 5);

(7), (2), R 22 _-- 4 (mod 5);

(8), R2 24 (mod 5).

No proof for 6 is possible because x (mod 6) for all x (mod 6).

(10) (11,2,1)

(11) (11,2,2)

(12) (11,2,10)

(13) 11

(14) (23, 5, 1)

(15) (23, 5,2)

(16) (23,5,22)

(17) 23

(18) (47,5,1)

(19) (47, 5,2)

(20) (47, 5,46)

(21) 47

Axiom

(10),(2), R1,25 _= 10(mod 11);

(11), (9), R1,22 _= 4(mod 11);

(12), R2,21 _= (mod 11);

Axiom;

(14), (2), R1,511 22 (mod 23);

(15),(13), R1,52 -= 2(mod 23);

(16),R2,2322 _= (mod 23);

Axiom;

(18), (2), R1,523 -= 46 (mod 47);

(19),(17), R1,52 25 (mod47);

(20), Rz, 546 =- (mod 47).
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Not counting the proof for 3, this (shortest) proof of 47 took 18 steps, not
too far from the promised bound of [4 log2 47] 22. The gap is mostly due to
the proof of 47 not using the proof of 3 that is counted in the bound [4 log2 p].
A much larger gap is exhibited by the proof of 474397531, which is 23 lines long;
here, [4 log/p] 116. This prime was constructed to show that our bound on
proof length is not always tight. Steps (1) to (9) are as above.

(10)

()

(12)

(13)

(14)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(251,6,1)

(251,6, 2)

(251,6, 10)

(251,6, 50)

(251,6,250)

251

(474397531,2, 1)

474397531,2,2)

474397531,2, 6)

474397531,2, 30)

474397531,2, 7530)

474397531,2, 1890030)

474397531,2,474397530)

474397531

Axiom;

(10), (2), R,
(11), (9), R1
(12), (9), R1
(13), (9), R1
(14), R2;

Axiom;

(16), (2), R
(17), (5), R1
(18), (9), R
(19), (15), R1
(20), (15), R
(21), (15), R1
(22), R2.

2. Metaproofs. We now prove soundness and completeness of our system.
THEOREM 1. p is a prime ifand only ifp is a theorem.
Proof If. No number has multiplicative order p (mod p) when p is not a

prime. If such a p is proved, it must be by application of R2 to (p, x, p 1) where
xp-x

___
(modp). Hence x (modp) for some j < p- 1. Now j]p- 1, so

xp 1)/q (mod p) for some prime q. But to prove(p, x, p 1), we had to build up
p as the product of primes q which satisfied x- 1)/q (mod p). Applying
the fundamental theorem of arithmetic then leads to a contradiction.

Only if. This part proceeds by induction on p. If p is prime, then p has a primi-
tive root (mod p), that is, a number whose multiplicative order (mod p) is p 1.
A proof of p may start with the axiom (p, x, 1) for such a primitive root x. By the
induction hypothesis, each of the prime factors of p is a theorem. Moreover,
for each such prime factor q, x- )/ (mod p); otherwise the order of x would
be less than p 1. Hence the proof system permits the inference of any theorem
(p, x, a), where a is a product of prime factors of p 1. In particular, (p, x, p 1)
may be inferred, and since x- (mod p), we may infer p.

We now establish the efficiency of our method.
THEOREM 2. Ifp is a theorem, then p has a proofof at most [4 log2 p lines.
Proof The construction given in the proof of Theorem yields such a proof.
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First prove 2 and 3 in five lines. (These primes p are special because p is not
composite.) We now assume as our induction hypothesis that by not counting
the proofs of 2 and 3, each prime p can be proved in at most 4 log2 p 4 lines.

For p 2 or 3, this follows directly from the identities 4 log2 2 4 0
and [4 log2 3] 4 2. For p > 3, let p pipE Pk, k >__ 2. Then the cost
of proving p is bounded above by

2 + k + , (14 log2 PiJ- 4)
<_i<_k

<__ [4 log2 PlP2 Pk)J 4

_<_ [4 log2 p 4,

(by the induction hypothesis)

(since k > 2)

(the desired answer).

Ifwe now count the 5 lines required to prove 2 and 3, the cost rises to [4 log2 p +
lines. For p > 2, log2 p will not be an integer, and so the cost is bounded by
[4 log2 p], a bound that is 4 when p 2 and is therefore applicable to all p. F]

Almost identical proofs may be used to show that no more than [3 log2 pJ
lines involve an exponentiation and [2 log2 pJ a multiplication, facts which we
will use in the next section.

3. Picturesque proofs. The reader should have little difficulty in seeing that all
the information in the proof that 5 is prime is contained in the following tree,
whose vertices are primes together with their primitive roots.

or, collapsing (5,2)(5,2) repeated vertices II
(2, 1) (2, 1) for brevity: (2, 1)

The proof tree for 474397531, when collapsed, becomes

(474397531,2)

1(251,6)
\ \ Ill (3,2)

(2, 1)

It is straightforward to check a proof tree without reconstructing the proof.
The "VELP" test (vertices, edges, leaves, products) is

(i) For each vertex (p, x), xp- 1 (mod p).
(ii) For each edge (p, x) down to (q, y), xtp- )/q (mod p) and q[p 1.

(iii) Each leaf is (2, 1).
(iv) For each vertex (p, x) with immediate descendants (pa, x,), ..., (Pk, Xk),

P PlPz Pk + 1.
The proof tree approach is more picturesque than the proof system, whose

raison d’etre is that it is more formally and compactly presented.

4. Computations. Returning to our customer, we find him dissatisfied with
the exponentiation he must carry out to check a line. He protests that the evalua-
tion of xb requires b multiplications, and also that the numbers produced
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along the way have O(b) digits, which he has neither time nor paper to write down
for large b.

The first protest is dealt with by the well-known trick of exponentiating by
repeated squaring, which yields xb with at most 21og2 bJ multiplications. This
method is an essential feature of the Lucas-Lehmer heuristic. The method may be
described recursively as:

xb" b-O- 1,

b odd - xxb- 1,

b even (x2)b/2

To eliminate the recursion and attendant waste of space, we translate this
algorithm into a "deterministic" system whose rules are

(u, v, w) - (u v/2 w) if v is even

(u, v, w) (u, v 1, uw) ifvisodd.

Now wu is an invariant of these rules, each of which reduces either the
number of significant bits (provided v : 0) or the number of l’s in v (expressed
in binary notation), but not both. Hence (x, b, 1) (y, O, xb) in a number of steps
exactly one less than the number of bits plus the number of l’s in b, which is at
most 2 [log2 (b + 1)] 1. By skipping the multiplication the first time w is multi-
plied by u, and beginning with (x, b, x), only 2 [log2 b multiplications are required.

The second protest is disposed ofby performing each multiplication modulo p
in the above algorithms when testing xb (mod p).

In any proof of p, each multiplication is performed modulo q for some prime
q _<_ p. Moreover, in testing xb, b < p. Hence each exponentiation requires at most
2 [log2 p multiplications of numbers smaller than p. At most [3 log2 p exponen-
tiations are required, whence no more than 61og22 p multiplications plus the
[2 log2 p multiplications from R are needed. Each multiplication may be carried
out in O(log p log log p) steps on a random access machine (RAM) (Sch6nhage
and Strassen, (1971)), and so O(log3 p log log p) steps suffice to check a proof of p
on a RAM. (A factor of log log log p creeps in for those who do the arithmetic
on paper (or on a Turing machine) due to time spent scanning and shuffling the
sheets !)

An item that might find a market among consumers of prime numbers would
be a pocket calculator with a predicate (x, b, p) that evaluates xtp- 1)/b 1 (mod p).
Only one bit of output is required, only integer arithmetic (multiple-precision) is
used, and so the unit should cost about $100 in quantity at today’s prices, assuming
that it handles integers ofup to several hundred bits. Users of the Hewlett Packard
HP-65 pocket computer with the appropriate program may find it suitable but
expensive. A proof using our method of, say, the smallest Mersenne prime yet
undiscovered would require a considerably more expensive unit, with perhaps
30,000-bit integers and sufficient parallelism to make the computation time
acceptably low.

5. Complexity. The families NP (P) of sets of strings accepted (recognized)
in time some polynomial function of their length by some nondeterministic
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(deterministic) Turing machine2 have recently engaged the attention of computa-
tational complexity theorists. The family P is of interest in that it includes all sets
that can be recognized reasonably quickly, a property that has become identified
to some extent with membership in P. The family NP is of interest (Cook (1971),
Karp (1972)) because it includes thirty or more operations-research-related sets
each with the astonishing property that if it belonged to P, then NP P, implying
that all of its fellow O.R. sets would be in P, along with other sets in NP (such as
{primes} as we showed above) not known at present to belong to P. In view of
the effort that has been expended in the past twenty years or so on trying to show
that any one of these sets is in P, it is widely conjectured that none is, that is,
NP : P. These peculiar sets are called NP-complete.

A family of sets that has only very recently attracted any attention is coNP
{SIS NP}. Of course, coP P, whence if NP P, then coNP NP. How-

ever, it is conceivable that NP - P but NP --coNP. It is straightforward to
show that NP coNP if and only if some NP-complete set is in coNP, just as
NP P if and only if some NP-complete set is in P, and it is conjectured that
NP 4: coNP.

If true, this implies that NP f) coNP contains no NP-complete problems.
One is tempted to speculate that NP f’) coNP P. After all, the families RE and R
of recursively enumerable and recursive sets, whose relationship resembles the
NP P relationship, satisfy RE f-) coRE R; and until recently, every known
member of NP coNP was known to be in P. Thus one could be forgiven for
wanting to conjecture that NP f’) coNP P.

An immediate corollary of 4 above is that the primes are in NP f’) coNP.
Provided NP 4: coNP, this settles in the negative a question raised by Cook as
to whether the composites are NP-complete. Conjecture aside, it gives us the first
known member of NP f-) coNP not known to be in P. Chvatal has recently ex-
hibited another set with this property, namely the set of pairs (linear programming
problem, optimal solution to it). No other such sets are known, although a plausible
candidate is the set of irreducible univariate polynomials over the integers.
Berlekamp (1967) has shown that over any finite field such a set is in P. A somewhat
less plausible candidate is the set of pairs of isomorphic graphs.

If the primes or the optimal-lp-solutions are not in P, it will not be because
they are NP-complete (still supposing NP - coNP) which is the usual reason.
One might therefore say that these problems were anomalously hard, although
any term for this phenomenon lacks the all-or-nothing significance of "NP-
completeness". The whole question of proving lower bounds on the complexity of
sets in NP is completely open, and any information about the structure of hard
problems would be welcome. In particular, the criterion that membership in
NP f’) coNP precludes NP-completeness, though based only on a conjecture, is
nonetheless a useful guide considering how few tools we have in the area.

6. Conclusion. We exhibited a simple system whose theorems are exactly the
set of all primes and whose proofs are very short. We inferred from this that the
primes are in NP coNP, giving us our first example of a member ofNP coNP
not known to be in P. We advocated membership in NP f’l coNP as a strong

That is, for each such set there is a polynomial and a Turing machine.
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reason for presuming non-NP-completeness, based on the plausible and moderately
popular conjecture that NP :/: coNP. We observed the striking paucity of sets
that are candidates for lying between P and NP-complete sets. It is interesting
to find the number theorists’ most famous set occupying a special position in
complexity theory.
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