Query By Humming: A Survey

Eugene Weinstein NYU and Google eugenew@cs.nyu.edu

Introduction

- Searching for music is cool...
 - ... but how to search for the tune stuck in your head?
 - Maybe type notes into your search engine?
- Humming is a natural way for humans to represent music
 - Music librarians/store clerks often act as query by humming engines

Problem Statement

- Given recording of hummed tune, identify song being hummed
- System needs to be robust to
 - Poor humming
 - Wrong pitch
 - Wrong note duration
 - Wrong key
 - Noise and distortion

Un-Motivation

- Pardo et al, '03: compare human to computer performance in recognizing hummed queries
- Bad news: Two humans with graduate degrees in music performance get <90% accuracy on *their own* recordings
- Average human accuracy: 66%

	Singer 1	Singer 2	Singer 3	Mean
Singer 1	96%	71%	79%	82%
Singer 2	50%	82%	46%	59%
Singer 3	71%	76%	89%	79%
Other2 Singers	61%	74%	63%	66%
String Matcher (Global)	29%	24%	39%	31%
String Matcher (Local)	36%	41%	71%	49%
HMM (Forward)	21%	35%	68%	41%
Ν	28	17	28	

Table 1. Human Performance vs. Machine Performance

One-slide Summary of Approaches

- Detect coarse melodic contour, retrieve by string search [Ghias *et al.*, 1995]
- Add rhythm information [McNab et al., 1996]
- Use beat information [Chai et al., 2002]
- Use HMMs to represent song database [Shiffrin et al., 2002]
- Dynamic Time Warping (DTW) based algorithm, match waveform directly [Zhu *et al.*, 2003]

Approach Classification: Features

- Features: almost all approaches try to detect pitch
 - Some add rhythm
 - Most eventually convert pitch to notes (or up-down sequences)
- Pitch detected by
 - Heuristics
 - Autocorrelation
 - Statistical methods (HMM)
- Some more recent approaches match directly to database of songs
 - Dynamic time warping (DTW)

Approach Classification: Retreival

- Matching recording to song database
 - Nearly all research uses MIDI files (note streams) as database
 - Formulate retrieval as matching task
 - Retrieval via
 - Approximate sequence matching algorithms [Ghias et al., 1995; many others]
 - Statistical models (HMMs) [Shifrin et al., 2002; Unal et al., 2004]
 - Direct comparison to waveform using Dynamic Time Warping (DTW) [Zhu et al., 2003]

Ghias et al, 1995 (Cornell)

- Focused on accurately tracking humming pitch, by
 - 1. Autocorrelation detecting audio amplitude peak frequency [Rabiner *et al.*, 1976]
 - Problem: aliasing, slow
 - 2. Maximum Likelihood pitch tracking [Wise *et al.*, 1976]
 - Problem: way too slow
 - 3. Cepstrum analysis [Oppenheim 1969]
 - Problem: not very accurate for humming

Ghias et al: String Matching

- Pitch transitions encoded as melodic contour: S=same note, U=up, D=down
 - E.g., Beethoven's 5th: S S D U S S D
 - This is known as Parsons code [Pasons, 1975]
- Use approximate string matching algorithm [R. Baeza-Yates *et al.*, 1992]
 - Find instances of pattern P in string T with at most k mismatches
 - If n=length(T) and m=length(P), Σ=size of alphabet, average-case runtime is

$$O\left(n\left(1+\frac{m}{\Sigma}\right)\right)$$

Ghias et al.: Evaluation

- Database: 183 MIDI songs
 - Use "a number of" heuristics to extract melody from MIDI tracks
- A number of humming recordings (don't say how many!)
 - All male voices
- Index 10-12 note n-grams
 - Sufficient to "discriminate 90% of the songs"
- Close to 100% accuracy under "ideal conditions"
 - Pause between each note pair, hit each note strongly

McNab, et al. 1996 (U. Waikato, NZ)

- Query by humming system called MELDEX
- Track pitch by detecting periodicity in time domain [Gold & Rabiner, 1969]
- Add rhythm information by analyzing note duration
- Use pitch, rhythm, updown contour (like Ghias)
- Only match the beginning of the song
- Retrieval by "dynamic programming" algorithm capable of exact or approximate matching.

Figure 1. Acoustic waveform of *ah*

McNab: Performance Experiment

- Ten subjects
 - Six with extensive performance experience
 - Four with little or no musical education
- Ten folk songs
- Conclusion: people have trouble with
 - Changes in key
 - Large differences between adjacent notes
- Easiest melodies: stepwise changes in small increments
- Accuracy best in people with amateur performance experience
 - Not much correlation with formal musical education

Song	Number of singers	Ending "in key"
Bridge Over Troubled Water	7	5
Hound Dog	8	8
King of the Road	8	3
Memory	10	8
Moon River	10	4
Pokare kare ana	10	7
Puff, The Magic Dragon	10	8
Summertime	9	4
Yankee Doodle	10	9
Yesterday	9	3

McNab et al: More experiments

- Experiment 1: With 9,600 songs, how many notes are needed to uniquely identify a song?
- Experiment 2: How does the number of notes needed vary with the database size?
- Line index (left to right)
 - exact interval and rhythm
 - exact contour and rhythm
 - exact interval
 - exact contour
 - approximate interval and rhythm
 - approximate contour and rhythm

13/35

Prechelt et al. 2001 (U. Karlsruhe)

- Tuneserver system: Query by whistling
 - Gender-independent
 - Much lower frequency range than humming or singing
- Approach: convert pitch transitions to U/D/S contour, as in Ghias, *et al*
- Identify pitch simply by detecting maximumenergy frequency
 - Works because whistling should contain only dominant frequency and overtones
- Match against song database by finding song with minimum edit distance from recording
 - Insertion/deletion/substitution weights trained to provide maximum empirical discrimination

Prechelt et al: Experiments

- Database: 10,370 classical music themes published in [Parsons, 1975]
- 24 subjects
 - 18 computer scientists, a few musicians
- Recordings made with laptop microphone
- 106 recordings
 - Two required songs, and two songs of the subject's choosing

Prechelt et al: Results

- Accuracy figures:
 - 77% of queries: correct song in top 40
 - 44% of queries: correct song is top match
 - 81% / 47% if you adjust for songs hummed so poorly that even the accurate U/D/S sequence is incorrect
- Most inaccuracies due to breathing
 - Recordings with no breathing: 86% / 59%

Chai et al, 2002 (MIT)

- Compute rough melodic contour
 - U/D/S but with five contour levels
- Algorithm: count number of equivalent transitions in each beat
 - Difference from previous work: take into account the beat structure of the songs
 - However, no rhythm information is used

Chai et al: Signal Processing

- Notes detected by amplitude-based note segmentation
 - Use amplitude thresholds to detect voicing onset, offset
- Pitch tracking by autocorrelation
- Beat information obtained by user input
 - Option 1: user inputs desired beat, hums to drum track
 - Option 2: user clicks mouse at each beat

Chai et al: Experiments

- Experimental setup:
 - Database of 8,000 MIDI songs
 - 5 test subjects
 - Some with, some without musical training
 - Each subject asked to hum 5-13 songs
 - 45 total recordings
- Compare
 - Two new algorithms (consider beat information)
 - Edit distance type algorithm for pitch only
- Subjects with musical training do better!
- Beat information helps (but interface is not that natural)

	New Algo 1	New Algo 2	ED type
Top match	53%	46%	44%
Тор 10	64%	51%	56%

Shiffrin et al, 2002 (U. Mich.)

- Subjects hum syllables (e.g., "la la la")
- Segment audio into 10ms frames
- Resolve each frame to pitch level using pitch tracker [Tolonen '00]
- Regions of pitch stability: notes
- Feature vector: [∆pitch, ∆time]
- Hummed song identified by HMMs

Shiffrin et al: HMM Representation

- States are note transitions
 - Unique state for each [Δ pitch, Δ time] tuple
- Traversing an arc represents moving between notes
- State, transition weights set according to counts in MIDI database of in-set songs
- Retrieval by HMM "forward" algorithm [Rabiner '89]
 - No search

Shiffrin et al: Experiments

- 277 MIDI songs in a variety of genres
- Extract 2,653 monophonic themes [Meek 2001]
- Subjects hum any "significant" part of the song
 - Hum six in-set songs each
 - Four subjects, two with grad degrees in music performance (24 test recordings total)
- Match against all themes by HMM forward, edit distance

System	НММ		String	Matcher
Rank of Correct Answer	Number of Cases	Cumulative Percentage	Number of Cases	Cumulative Percentage
1	10	41.7%	4	16.7%
2 to 5	4	58.3%	1	20.8%
6 to 10	0	58.3%	1	25.0%
11 to 25	3	70.8%	2	33.3%
26 to 50	1	75.0%	4	50.0%
51 to100	3	87.5%	4	66.7%
Over 100	3	100.0%	8	100.0%

Table 1: Number of cases by rank of correct answer

Zhu et al, 2003 (NYU)

- Problem #1: melodic contour approaches flawed
 - It's hard to detect notes in hummed tune
 - Contour does not identify a song uniquely
 - E.g., 330/2,697 tracks contain same six-note contour [Uitdenbogerd, 1998]
- Problem #2: people can't hum
 - Thus, cannot refine contour for better precision
 - Forcing people to hum with syllables (e.g., "da da da") is unnatural
- Proposal: treat hummed query as time series
 - Match audio directly against reference recording
 - No note detection

Zhu et al: Approach

- Treat reference and hummed melodies as time series
 - Segment audio into 10ms frames
 - Resolve each frame to pitch level using pitch tracker [Tolonen '00]
 - No note segmentation
- Match entire song subsequences (i.e., no partial tune matching)

Zhu et al: Time Series Retrieval

- Global tempo may be off by ±50%
 - Apply uniform time warping (UTW)
 - Basically, stretches or compresses recording
- But still might have local tempo variations
 - Apply local dynamic time warping (LDTW)
- Novel combination of UTW and LDTW

Zhu et al: DTW/UTW Overview

- Given sequences $x: x_1 \cdots x_n, y: y_1 \cdots y_m$
 - Let $x_{rest} = x_2 \cdots x_n$, $y_{rest} = y_2 \cdots y_n$
 - Then DTW distance between x and y is:

$$D_{DTW}^{2}(x,y) = D^{2}(x_{1},y_{1}) + \min \begin{cases} D_{DTW}^{2}(x,y_{rest}) \\ D_{DTW}^{2}(x_{rest},y) \\ D_{DTW}^{2}(x_{rest},y_{rest}) \end{cases}$$

- LDTW: Just limit the range of x_{rest} , y_{rest}
- UTW distance is:

$$D_{UTW}^2(x,y) = \frac{\sum_{i=1}^{mn} (x_{\lceil i/m \rceil} - y_{\lceil i/n \rceil})^2}{mn}$$

Algorithm: do global UTW and local LDTW 26/35

Zhu et al: Contour Envelope

- In practice, DTW is costly to compute
- Also, want to reduce signal dimensionality for ease of indexing
- Solution: approximate DTW by computing "envelope" around pitch contour
 - Define k-envelope upper and lower bounds

$$x_i^L = \min_{\substack{-k \le j \le k}} (x_{i+j})$$
$$x_i^H = \max_{\substack{-k \le j \le k}} (x_{i+j})$$

Use novel piecewise aggregate approximation (PAA) variant (see paper)

Zhu et al: Finally the algorithm!

- Build an index structure (e.g., R* tree) containing all songs
- For a test recording:
 - 1. Compute envelope and PAA-type approximation
 - 2. Make ε-range query on index structure, get back list of candidates
 - 3. Pick candidate with smallest DTW distance to test recording

Zhu et al: Experiments

- Fifty Beatles songs
 - Segment into 1,000 15-30 note melodies
 - Collect a number of humming recordings
 - Pick 20 melodies by "better singers"
- Compare time series approach vs. standard contour matching approaches
- Only 4/20 recordings of poor singers matched perfectly

Rank	Time Series Approach	Contour Approach
1	16	2
2-3	2	0
4-5	2	0
6-10	0	4
10	0	14

Unal et al, 2004 (USC)

- Use HMMs to segment recording into notes
 - HMM trained on actual humming data
 - Standard speech setup (GMM acoustic model, Baum-Welch training, Viterbi decoding)
- Then, detect pitch by autocorrelation
- Features:
 - Pitch change contour
 - Duration change contour

Figure 4. Segmented Notes and Labeling

Table	1. F	Pitch	and	Duration	Т	ranscription
-------	------	-------	-----	----------	---	--------------

	HN#1	HN#2	HN#3	HN#4
Pitch (Hz)	111.7	123.25	141.98	128.63
Duration (sec)	0.326	0.255	0.456	0.520
Pitch	0	1.703	2.449	-1.709
Transcription(PT)				
Duration	1	0.78	1.14	0.94
Transcription(DT)				

Unal et al: Indexing and Retrieval

- Identify regions of large and small pitch and duration change
- Fingerprint: two samples around landmark
- Compute similarity score
 - Difference between features of reference and test
- Rank results by similarity score

Table 2.1. F	P1: largest	pitch transition
--------------	-------------	------------------

PT	-4.62	-0.33	10.99	-2.21	-3.67
DT	0.48	0.86	2.42	0.94	1.06

Table 2.2. FP2: smallest pitch transition							
PT	-0.81	-4.79	0.07	2.44	-1.92		
DT	1.05	0.56	0.77	2.86	1.18		

Table 2.3. FP3: largest duration change

PT	-4.79	0.07	2.44	-1.92	6.54
DT	0.56	0.77	2.86	1.18	0.91

Table 2.4. FP4: smallest duration change

PT	-1.92	6.54	-1.82	-4.62	-0.35
DT	1.18	0.91	1.01	0.48	0.86

Unal et al: Experiments

- Database: 200
 MIDI files
- Test data: 250 humming pieces
 - Evenly split between trained, non-trained subjects

Table 4.1 Results for Non-Trained Subjects Size of 50 100 200 Database Top of Within Top Within Within Top of the of the the list first 5 first 5 first 5 list list %54 %92 %42 %86 %38 %80 K=1K=2%84 %100 %78 %90 %72 %88 K=3 %82 %80 %86 %72 %86 %100

Table 1.2 Desults for Trained Subjects

Table 4.2 Results for Trained Subjects						
Size of Database	50		100		200	
	Top of the list	Within first 5	Top of the list	Within first 5	Top of the list	Within first 5
K=1	%82	%96	%80	%94	%76	%88
K=2	%100	%100	%98	%100	%94	%100
K=3	%100	%100	%98	%100	%98	%100

Data Sets

- Only one publicly available corpus from USC [Unal *et al.*, 2003]
 - License is still being worked out
- Several small corpora collected for experiments...
 - ... but there are confidentiality issues
 - MIT Corpus [Chai et al., 2002] not available
 - NYU corpus [Zhu *et al.*, 2003] available, but missing metadata

Summary

- Fewer than ten query by humming systems have been published
- Accuracy okay in favorable conditions
 - But, rigorous evaluation is scarce
- Some interesting approaches, but insights are not tremendous
- For us, two big questions:
 - Can we do better?
 - Is there a good application for this technology?

References

- Humming-specific
 - A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. "Query by humming musical information retrieval in an audio database," In ACM Multimedia 95, 1995
 - R.J. McNab, L.A. Smith, I.H. Witten, C.L. Henderson and S.J. Cunningham, "Toward the digital music library: tune retrieval from acoustic input," Proc. ACM Digital Libraries, 1996, pp 11--18.
 - L. Prechelt and R. Typke, "An interface for melody input," ACM Trans. On Computer Human Interaction, 8, 2001.
 - W. Chai and B. Vercoe, "Melody Retrieval On The Web," Proceedings of ACM/SPIE Conference on Multimedia Computing and Networking, Jan. 2002.
 - J. Shifrin, B. Pardo, and W. Birmingham. "HMM-Based Musical Query Retrieval," in Joint Conference on Digital Libraries. 2002. Portland, Oregon
 - B. Pardo and W. Birmingham, "Query by Humming: How good can it get?," Workshop on Music Information Retrieval, SIGIR 2003, Toronto, Canada, July 28 - August 1, 2003.
 - E. Unal, S. S. Narayanan, H.-H. Shih, Elaine Chew, C.-C. J Kuo, "Creating Data Resources for Designing Usercentric Front-ends for Query by Humming Systems," in 2003 Multimedia Information Retrieval (ACM-MIR03), November 2003.
 - Y. Zhu and D. Shasha, "Warping Indexes with Envelope Transforms for Query by Humming," ACM SIGMOD 2003 International Conference on Management of Data, June 9-12, 2003, San Diego, California.
 - E. Unal, S. S. Narayanan, and E. Chew, "A Statistical Approach to Retrieval under User-dependent Uncertainty in Query-by-Humming Systems," in 2004 Multimedia Information Retrieval (ACM-MIR04), October 2004.
- Non-humming-specific
 - A. V. Oppenheim, "A speech analysis-synthesis system based on homomorphic filtering" J. Acoustical Society of America, 45:458-465, February 1969.
 - D. Parsons. The Directory of Tunes and Musical Themes. Spencer Brown, Cambridge, 1975.
 - L.R. Rabiner J.J. Dubnowski and R.W. Schafer. Realtime digital hardware pitch detector. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP- 24(1):2–8, Feb 1976.
 - J. D. Wise, J. R. Caprio, and T. W. Parks, "Maximum likelihood pitch estimation," IEEE Trans. Acoustics, Speech, Signal Processing, 24(5):418-423, October 1976.
 - R. A. Baeza-Yates and C. H. Perleberg, "Fast and practical approximate string matching," Combinatorial Pattern Matching, Third Annual Symposium, pages 185-192, 1992.
 - Mongeau, M. and Sankoff, D. (1990) "Comparison of musical sequences." Computers and the Humanities 24: 161–175.
 - Meek, C., Birmingham, W. Thematic Extractor, in Proceedings of ISMIR 2001 (Bloomington, IN, October 2001), 119-128.
 - Rabiner, L. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE. Vol. 77, No. 2, 1989, 257-286.