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Basic Introduction into-

MCMC (Markov Chain Monte Carlo)

*Considered to be one of the top 
ten most important algorithms 

ever



To see how great MCMC is, we will 
look at the motivation for sampling 
first, and then the methods used 

before its introduction



Motivation of sampling

• Many functions, 
equations, and 
distributions cannot 
be integrated 
analytically. For 
example: 

2x

Even such a simple function cannot be 
integrated, without numerical methods.

In the field of probability, 
integrals/summations 
(continuous/discrete respectively), are 
vital for calculating the expectation or 
expected values of distributions. 

And this is essentially what 
marginalisation is all about as well.



Motivation of sampling
• Drawing statistically consistent samples from a 

distribution- By drawing samples consistent to 
your distribution, you are effectively creating a 
simulation. Which can be useful for analyzing 
how fast the means, variances, etc, progress, 
and if the distribution’s samples are required as 
input into another distribution.

• We sample when the Cumulative Distribution 
Function (CDF) cannot be found analytically. 
Sampling from the CDF is how Matlab comes 
up with random samples for distributions like 
the Gaussian… Next slide 



Motivation of sampling
• With normalised 

distributions the 
integral=1, and 
sampling random 
numbers in [0,1] to 
then map them from 
the CDF y-axis to the 
CDF x-axis, gives us 
the point where a 
sample is chosen

Wikipedia

On the original distribution, where the height is larger the 
slope on the CDF is higher exposing it to greater chances 
of a random number getting chosen on the y-axis



Monte Carlo
• The most widely used place of Monte 

Carlo sampling is in Monte Carlo 
Integration

• Uses randomness to come up with a 
random variable estimates, similar to 
the gambling process in casinos, 
where the name derives.

• Defined domain along which we 
sample, uniformly (non-uniform is a 
prior harder to incorporate here), and 
since each point was taken with 
equal probability, the integral 
(expectation for random variables), is 
simply the average of the samples.

• Each sample is independently 
sampled

N random samples along 
the domain

Nxxx ,...,, 21

The average of the 
independent samples
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Monte Carlo

Cons

-Independent sampling may draw 
samples that ‘miss’ the most interesting 
parts of the domain

-Convergence tests are not as strong as 
those with dependent samples

-Does not extract statistically consistent 
samples

Pros

-Simple and easy to 
implement

-Exploration does not get 
‘stuck’ on local optima so 
easily as with dependent 
sampling

From the law of large numbers, as N increases the confidence in 
the estimate provide increases. And various measures exist to 
indicate the degree of convergence towards the true underlying 
values. 

Numerical methods that have deterministic policies uniformly over 
the domain provide more certainty for distributions that have erratic 
changes in values. But in high dimensional space this causes a 
problem.

Monte Carlo Integration has convergence of: N
1



Importance Sampling
• Importance sampling exists mainly to address 

one of the greatest problems with Monte Carlo 
sampling in that many samples are redundant 
by falling into regions containing very little 
value. Which does have a purpose in its own 
right to bring down the global value, but we 
don’t need tons of estimates to do that, if we 
know that the surrounding areas of what is of 
interest are values close to zero we can easily 
in one step recalculate the average value of 
high density regions over a wider domain.

• High density regions are more important to 
sample.



Importance Sampling
• This method focuses samples drawn according 

to a distribution we can sample from rather than 
a uniform distribution, to not exclude certain 
areas but drawn less samples from certain area
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The distribution we wish to sample is, 
f. 

The distribution we will use to draw 
samples from is q.

The distribution, q, is chosen to be 
one which can be sampled from, eg. 
Gaussian distribution. Its mean is 
placed to focus on the high density 
and variance to spread over the most 
important areas for f



Importance Sampling

• We use q to generate 
a series of 
independent samples Nxxx ,...,, 21

• Sample points are proportional to q(x) and 
importance weights are used to correct for the 
differences in q(x) and f(x):

In the case where q and f are unequal, w(x), acts 
as a correcting term to the number of times f(x) 
is sampled at that point.
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Importance Sampling
• We use the weights to 

recalibrate, eg. If w(x)=0.5 
then that means that q(x) is 
twice f(x) and will be 
generating twice as many 
samples as desired from this 
point, so multiplying all the 
samples of f(x) with w(x) 
corrects for the number of 
samples.

• To get the Monte Carlo 
expectation estimate from 
this method of sampling, we 
take the sum of the 
calibrated samples values 
divided by the sum of the 
weights as a normalisation 
for the weights to get the 
expected value
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Importance Sampling
Pros

-With good information 
on where the regions of 
high density for f(x) lie, 
q(x) can be placed 
suitably for effective 
sampling

-It can eliminate a large 
amount of the redundant 
samples and converge 
quickly

Cons

-Placing a suitable q(x) may 
not be possible and especially 
if the distribution, f(x) is 
multimodal

-Does not generate 
statistically consistent 
samples

Importance weights deviating strongly from 1 
indicate that q(x) is not optimal for sampling f(x)



Rejection Sampling
As with Importance sampling a new distribution 

q(x) is used to sample from f(x).
With Importance sampling each and every 

sample drawn from q(x) was used to calculate 
the expected value of f(x) with the weights, but 
here a fraction of the samples will be 
rejected/discarded.

!!The rejection rate is proportional to the to how 
much larger q(x) is than f(x)



Rejection Sampling
• The reason q(x) as a 

probabilistic 
distribution is greater 
that f(x) in general is 
because we need to 
multiply q(x) by a 
constant k so, 
k*q(x)>f(x)
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f=N(1.5,1)
As samples are drawn from 
q(x), they are accepted with 
the frequency:  
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Rejection Sampling
• Renormalisation is not required because the 

rejection rate incorporates it and the 
expectation is computed directly as an average

Cons

-Many samples are 
discarded wasting 
computing time

-The choice of the constant 
k may not always be 
possible in highly peaked 
distributions. And the 
acceptence probability may 
too sensitive to k

Pros

-Can generate statistically 
consistent samples according to 
the target distribution f(x)

-A good choice in q(x) and k can 
lead to fast convergence



Some Markov Chains Properties (Good to 
know)

Homogeneous: A Markov Chain is called homogeneous if the transition 
probabilities do not change in the progression of state transitions.

Ergodicity: As the number of iterations on the Markov Chain approach infinity

A distribution independent of the initial distribution is invariant to further 
simulation can be called the equilibrium distribution. An ergodic Markov chain 
can have only one equilibrium distribution.
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Most Important: Detailed Balance (property of being reversible)



Markov Chain Monte Carlo
• This approach combines all the desired features in 

one method that is simple
• It generates statistically consistent samples from 

the target distribution without the help of another 
distribution and rejecting samples

• The expectation is calculated with samples drawn 
more proportionally from higher density regions 
without another distribution and the problems 
arising from poor weights is avoided too.

• The samples drawn are dependent and follow a 
Markovian framework which allows more robust 
convergence diagnostics to be used 
autocorrelation function, Gelman-Rubin statistics, 
etc.



MCMC
• How can we sample 

the target distribution 
f(x) in a way to obtain 
all of these benefits?

• If there was a 
proposal mechanism 
on the distribution that 
would operate as a 
valid Markov Chain, 
all of the properties 
mentioned arise.
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Between the comma separated 
values the smallest is chose as 
the probability to transition from 
point, x to point x’



MCMC
• This transition acceptance probability satisfies 

detailed balance!
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We will change the notation here for a moment so that the concept 
at hand is evident; since f(x) is a probability distribution substitute it 
with p(x), and because the value of pi(x) is a free parameter that 
changes in the simulation, convergence occurs when it takes the 
value in proportion of the iteration as with the density at that point



MCMC
• A point to be made is that before we speak of 

proposal mechanisms, this is the most simple 
form that hold when the proposal distribution 
from an x to x’, is symmetric.

• Starting from a randomly chosen initial value in 
the domain, as the new values are accepted the 
subsequent samples become independent of 
the initial point



MCMC
• Clusters towards the high density areas but can 

explore multimodal distributions given enough 
transitions; the low density regions between the 
local optima make it more unlikely to happen 
unfortunately



MCMC
• The percentage of accepted moves is 

important. Conventionally accepted 
percentages range from 30% to 70% and 
indicate that the chain has good mixing.

• Less than 30% shows that the sampler is not 
exploring much of the space and that few points 
will represent much of the simulation

• More than 70% can imply that the proposals 
were made too close to the current value so 
that the ratio of densities in the acceptance 
function is close to 1



MCMC
• To remove the bias from the initially chosen 

starting point, we consider a certain number of 
the first iterations to be discarded as the Burnin
stage

• This number of iterations can be found in many 
ways, but the simplest is to use the 
autocorrelation function to see after how many 
samples does the correlation with the first 
samples decay to zero

• In the sample phase it is valid to tune 
parameters of the sampler (proposal 
distribution) since these samples will be 
discarded



MCMC
• Choosing a uniform interval whose mid point is set to 

the current value is one symmetric proposal 
mechanism

• The size of the interval is adapted (altered) during the 
burnin phase to a value that gives an acceptance 
percentage desired

• For distributions with boundaries eg. [0,inf) and the 
current value being 0.01 it is possible that the next 
proposed value falls on -0.49; then the value is simply 
reflected back onto the positive section. Reflection is 
used very frequently

• MCMC might not be suitable for parameter estimation 
in multimodal distributions



Hastings Ratio
• The proposal distribution may not be symmetric. The 

probability of being on a point x, and transitioning to x’
may not be the same as the probability of being on 
point x’ and transitioning back to x

• On a chess board if you have a king moving randomly 
(random walk), the boarder squares are visited less 
often. This is because those squares are not 
surrounded by as many squares as the ones in the 
center are. Eg. The corner square transitions into a 
non-border sq with p=1/3, where as the reverse move 
occurs with p=1/8.

• The same happens when proposing values from 
distributions like the dirichlet. Given the parameters 
and conditioning on the current value, the proposal 
probablities are not uniform



Hastings Ratio
• This ratio is used a factor for 

correcting for the bias in sampling 
of the proposal distribution, but it 
also has an active role. It can speed 
up convergence if proposals are 
made towards peak densities. 

• The increases in the target 
distribution densities will likely 
outweigh the Hastings ratio leading 
to accepted transitions. Since the 
stationary distribution of the Markov 
chain has not been changed, a 
good proposal distribution may be 
more useful than a uniform 
proposal.
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Metropolis-Hasting MCMC
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Model Selection
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Since the denominator is too large to compute, we use 
MCMC to produce/generate statistically valid samples 
which we average over for the posterior distribution

This holds for other parameters which we assumed have 
analytically been integrated out here, eg. Conjugate priors



Bayes Factors
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The higher the value of k, the stronger the 
evidence for supporting model 1.

There are motivations to make this 
equivalent to many frequentist
approaches, likelihood ration tests, t-tests, 
etc



Simulated Annealing
• Any number raised to the power of 0 is 1
• Any number raised to the power of 1 is itself
• Statistical physicists have been using models 

which interpret exponents on distributions for 
thermodynamics as temperatures

• Power 0 is hot, and power 1 is cold
• At power 0 the distribution is flat sitting at value 

1
• At power 1 the distribution has the original form



Simulated Annealing
• The temperature schedule is the progression of 

the exponents values 0,0.2,0.4…1
• The schedule does not have to be linear, some 

distributions will develop difficult local optima to 
traverse within a certain range of temperatures

• This is very helpful to use in the burnin period 
for very peaky distributions, and multimodal 
distributions to have samples begin on high 
density regions



Simulated Annealing

Gaussian distribution 
with mean 0 and var
0.5 and it is evident 
more steps in the 
interval [0,0.2] were 
needed
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Correspondence

• If you have any questions I would like to 
use my personal email address:
dog_of_thunder

@hotmail.com

mailto:dog_of_thunder@hotmail.com
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