
Adapting LMS architecture to the SOA: an Architectural Approach

Miguel Ángel Conde González, Francisco José
García Peñalvo

Universidad de Salamanca
Salamanca, España

{mconde,fgarcia}@usal.es

María José Casany Guerrero, Marc Alier Forment
Universitat Politècnica de Catalunya

Barcelona, España
{mjcasany,malier}@lsi.upc.edu

Abstract— Service oriented approaches (SOA) are currently
used to develop new software-as-a-service applications, but
they can also be used in the reengineering of existing legacy
systems, such as Learning Management Systems (LMS).

The introduction of a SOA to reengineer current LMS can
provide LMS with the ability to deliver internal functions as
services as well as the ability to integrate external applications
as services.

This paper presents an architectural approach to adapt the
Moodle LMS to the SOA and some important issues involved
in the adaptation are analyzed. Taking into account
interoperability specifications, all SOA to LMS adaptation
drawbacks are solved by the application of the new
architecture.

Keywords: SOA, Web Services, IMS LTI, OKI,
interoperability

I. INTRODUCTION
Service-oriented technologies and management have

gained attention in the past few years, promising a way to
create the basis for agility in business processes. Companies
can deliver new and more flexible business processes that
harness the value of the services approach from a customer’s
perspective. Service-oriented approaches are used to develop
software applications and software-as-a-service that can be
sourced as virtual hardware resources, including on-demand
and utility computing [1].

But the use of service-oriented approaches (SOA) is not
limited to the design and development of new software
systems. It can be used to support the reengineering of
existing legacy systems, such as Learning Management
Systems (LMS).

Current web based LMS are focused on meeting the
needs of the institution in providing a basic, common
educational platform. Most of universities worldwide have
successfully integrated the use of a LMS, where all the
academic information services, online contents and learning
application are centralized and managed. LMS are a
consolidated online learning environment already adopted by
learners, teachers and institutions.

Some of the problems of current LMS are:
• LMS often become close communities, leaving no

room for an inclusion of additional user preferred
features. Often learners are not even allowed to
upload additional content. Instead learners are forced
to use what has been allocated by tutors, with no
flexibility neither with respect to functionality, nor to
contents. In a world where the learning process is
becoming learning-on-demand many e-learning
systems are no longer appropriate.

• There are lots of learning applications, such as
mobile learning applications, living outside the LMS
ecosystems. Teachers willing to innovate are using
applications and technologies not supported by their
institution LMS, and by doing so they are taking
their students outside the virtual campus. Thus the
students need to go to several different sites (using
different usernames and passwords) in a scrambled
learning environment. This may cause confusion and
frustration to students.

There are several SOA applications to learning
environments. Most of them have some drawbacks like
unidirectional application, complex integration and
sometimes a LMS linkage, definition for a unique
application scenario, etc.

The purpose of architecture is to define an architecture
that allows the export of information from the LMS and the
inclusion of applications in the platform. This follows a set
of interoperability specifications to ensure integration into
different learning platforms. Also, in order to optimize and
test this architecture some application domains must be
defined.

In the next sections we will discuss some promising
standards that are being defined, some SOA initiatives and
its drawbacks. Finally will be exposed an architecture
proposal to adapt the open source LMS Moodle to the SOA.

II. LEARNING INTEROPERABILITY STANDARDS AND SOA
INITIATIVES

The problem of delivery of educational contents through
the Web has been addressed successfully in different ways,
as well as its integration in web based Learning Management
Systems. There was a clear interest for the industry to port all
the contents being created for CD-ROM to the online world.
Standards such as Advanced Distributed Learning (ADL
SCORM [2] have been widely implemented and adopted. So,

2009 Fourth International Conference on Internet and Web Applications and Services

978-0-7695-3613-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIW.2009.54

322

there are standards implemented to create, share, and use
educational contents.

One of the big challenges of e-learning systems is the
exchange of data between different systems. Current
approaches are file-based (i.e, copy files from one system to
another). To achieve a better compatibility, e-learning
standards and specifications have been developed. However,
too many standards already exist for one same problem [3].
Besides, education is not only about content, as the last
trends in online pedagogy models make explicit
connectivism [4], social constructionism [5]. For the
previous reasons, the service orientation approach is used to
deal with the interoperability problem between different e-
learning systems.

Thus the goals of the interoperability we seek are not
bound only to content interoperability, but to a wider scope
of features and services that the learning applications can
offer.

Interoperability is defined by IEEE as “the ability of two
or more systems, or components to exchange information
and to use the information that has been exchanged”[6]. The
IEEE definition for interoperability is 16 years old, and
nowadays software systems can do more things together than
just exchange information, for example share functionality.
So from the Open Knowledge Initiative (OKI) offers a new
definition for interoperability: “the measure of ease of
integration between two systems or software components to
achieve a functional goal. A highly interoperable integration
is one that can easily achieved by the individual who requires
the result”. According to this definition, interoperability is
about making the integration as simple and cost effective as
technologically possible [7].

The Service Oriented Architecture (SOA) is a software
engineering approach that provides a separation between the
interface of a service, and its underlying implementation. For
consumer applications of services, it does not matter how
services are implemented, how contents are stored and how
they are structured. There is not even exchange of contents
but just inclusion of services, so data synchronization
between systems and data exchange are not problems. In the
SOA approach consumer applications can interoperate across
the widest set of service providers (implementations), and
providers can easily be swapped on-the-fly without
modification to application code.

SOA preserves the investment in software development
as underlying technologies and mechanisms evolve and
allow enterprises to incorporate externally developed
application software without the cost of a porting effort to
achieve interoperability with an existing computing
infrastructure.

There have been several initiatives for the adaptation of
SOA services for LMS and to join LMS to other
applications. As an example some initiatives could be
considered:

• The adaptation of a part of LMS services to mobile
devices [8].

• The definition of service-oriented architectures for
the semantic search and retrieval of learning
information as the LUISA project [9].

• The integration between different learning tools and
systems.[10]

In any case, these initiatives are constrained by the
following problems:

• A defined application domain. Not all LMS services
are provided, only those which are useful to a
specific application domain.

• Unidirectional Interoperability. Architectures work
only in one sense, that is to say, provide information
from the LMS or integrate it with other tools. But is
not possible provide that information and integrate
tools in the LMS transparently to users.

• Interoperability Specifications. Definition of a
service structure that does not use specifications for
interoperability.

In any case, what is intended with this approach is to
solve these problems defining a flexible, open and
bidirectional architecture.

A. The Open Knowledge Initiative
The Open Knowledge Initiative (OKI) was born in 2003

with the purpose of creating a standard architecture of
common services that learning software systems need to
share, such as Authentication, Authorization, Logging [7].
The OKI project has developed and published a suite of
interfaces know as Open Service Interface Definitions
(OSIDs) whose design has been informed by a broad
architectural view. The OSIDs specifications provide
interoperability among applications across a varied base of
underlying and changing technologies. The OSIDs define
important components of a SOA as they provide general
software contracts between service consumers and service
providers. The OSIDs enable choice of end-user tools by
providing plug-in interoperability. OSIDs are software
contracts only and therefore are compatible with most other
technologies and specifications, such a SOAP, WSDL. They
can be used with existing technology, open source or vended
solutions.

Each OSID describes a logical service. They separate
program logic from underlying technology using software
interfaces. These interfaces represent a contract between a
software consumer and a software provider. The separation
between the software consumer and provider is done at the
application level to separate consumers from specific
protocols. This enables applications to be constructed
independently from any particular service environment, and
eases integration.

An OSID is a description of a logical service between a
server provider and a consumer, with independence from the
communication framework or data definition language.

For example, services such as authentication are common
functions required by many systems. Usually each
application has built this specific function. As a result the
authentication function is implemented in many ways and
this results in information being maintained in different
places and being unable to easily reuse. OKI would separate
the authentication function from the rest of the systems and
provide a central authentication service for all the
applications.

323

OKI describes with OSIDs the basic services already
available in e-learning platforms. Among others, these basic
services used by many e-learning platforms are described in
the following OKI OSIDs:

• The authentication OSID is used to register a new
user or to know if the user is connected to the
system. This is a basic service in any software
system.

• The authorization OSID is used to know if a user has
rights to access a service or function. This service is
necessary in any system using roles.

• The logging OSID is used to capture usage
information. It is useful to know how the system is
working for system diagnostics and performance.

• The internationalization OSID is used to change the
language of the application or add new languages.

• The configuration OSID is used to change
configuration parameters.

Thus using the OKI OSIDs has the following advantages:
• Ease to develop software. The organization only has

to concentrate in the part of the problem where they
can add value. There is no need to redo common
functions among most of the systems.

• Common service factoring. OKI provides a general
service factory so that services can be reused.

• Reduce integration cost. The current cost of
integration is so high that prevents new solutions
from being easily adopted. OSIDs are a neutral open
interface that provides well understood integration
points. This way there is no need to build a
dependency on a particular vendor.

Software usable across a wider range of environments,
because OKI is a SOA architecture.

But OKI still has a long way to go before becomes a de
facto standard of interoperability. Nowadays up to 75
projects have implemented the OSIDs and given feedback to
the OKI community process.

B. The IMS Global Learning Consortium initiatives for
interoperability in learning systems
The IMS Global Learning Consortium is also working

since 2005 in standards towards interoperability and
integration of learning services and systems.

The IMS Abstract Framework is set of (abstract)
specifications to build a generic e-learning framework, which
might be able to interoperate with other systems following
the IMS AF specifications. IMS AF describes a e-learning
system as the set of services that need to be offered. IMS AF
is a standard that can be complemented by the OKI OSIDs
because OKI provides more specific information about the
semantics of the services, how to use them and in what kind
of situations they could be used.

IMS also defines the IMS Learning Technologies for
Interoperability. While IMS AF and OKI work on the
exchange of information and services, IMS LTI developed
under supervision of Dr. Charles Severance, focuses on the
process on how a remote service is installed on a web based
learning system [11].

The OSIDs tells us how to exchange information
between the LMS and an external learning application, but
how will the teacher and the student reach the application
form the LMS? These kinds of proxy bindings are described
by the IMS LTI 1.0 and 2.0 standards.

C. IMS Learning Tools for Interoperability
The basic idea of IMS LTI is that the LMS has a proxy

tool that provides an endpoint for an externally hosted tool
and makes it appear if the externally hosted tool is running
within the LMS. In a sense this is kind of like a smart tool
that can host lots of different content.

The proxy tool provides the externally hosted with
information about the individual, course, tool placement, and
role within the course. In a sense the Proxy Tool allows a
single-sign-on behind the scenes using Web services and
allows an externally hosted tool to support many different
LMS’s with a single instance of the tool.

The IMS LTI 2.0 architecture focuses on the launch
phase of the LMS-to-tool interaction. The launch
accomplishes several things in a single Web service call:

• Establish the identity of the user (effectively like a
single sign-on).

• Provide directory information (First Name, Last
Name, and E-Mail address) for the user.

• Indicate the role of the current user whether the user
is an Administrator, Instructor, or Student.

• Provide information about the current course that the
Proxy tool is being executed from such as Course ID
and Course Title.

• Provide a unique key for the particular placement of
the Proxy Tool.

• Securely provide proof of the shared secret.
• Hints as to display size.
• An optional URL of a resource, which is stored in

the LMS – which is being provided to the external
tool as part of a launch.

III. A SERVICE-ORIENTED ARCHITECTURE FOR MOODLE:
DFWS ARCHITECTURE

The integration of a Service Oriented Architecture over a
LMS requires considering what are the elements to adapt.
Depending on the different kinds of LMS, modules and
functionalities can change. Instead of this, there are some
core functionalities shared between the learning platforms
that must be considered in first place. OKI OSIDs will
provide some of those common functionalities, but other
elements like basic information and basic interaction must be
provided. This information could be represented as activities
and resources in a LMS.

Moodle adaptation implies consider the different
modules in which functionalities and information are
distributed, the existing dependences between them and how
to adapt interaction.

324

A. Initial issues
In this case the adaption of a LMS (Moodle) to SOA

requires a process of refactoring. The usage of new
technologies introduces new problems in the maintenance
and reengineering of the systems developed using them,
requiring further new solutions to well face this evolution
[12]. In this particular case we meet not only a problem of
software engineering: open source community dynamics and
governance issues need to be addressed also. The resulting
solution needs to be valid for the whole community of users
and developers.

In a previous project the authors of this paper had
successfully refactored the Moodle LMS to SOA
implementing the OKI OSID and the IMS LTI standards
[13]. It is a good example of adaption of an LMS to an
interoperability standard involving a project of several
thousands of hours of software engineering. But this project
was only a third party contribution to the Moodle
community, since it is not part of the core distribution, it will
not be compatible with higher versions of Moodle.

Moodle needs a way to be easily extended and
customized in a way that the developments maintain
compatibility with new versions of the software that are
released periodically. Another important issue in the
refactoring of Moodle, is the selection of the services that
have to be accessible using SOA. Once these services have
been selected they can be used by a variety of applications
such as mobile applications to access the LMS.

The refactoring entails the solution of both a decision
problem for establishing what can be migrated from the
original legacy system, and of a technical problem
concerning how the migration can be executed. As to the
first problem, structured approaches to find candidates for a
Web Service are needed [14].

B. A layered approach
From the architectural point of view Moodle is based on

a model-view-controller controller. This pattern is common
in interactive applications that evolve rapidly. This
architecture is complemented by other patterns that provide
flexibility to the system.

The adoption of the SOA and its integration in Moodle
requires a deep knowledge of a system core library that, due
to an evolutive development is not particularly consistent.
The core system is structured in modules, each of them
providing a wide set of functions. Each module has a
connection and access policy based on roles. This policy has
to be considered in the design of the services.

The Moodle lead developer and founder Martin
Dougiamas, assigned in early 2008 to the team in UPC [15]
the task of developing a new API to access the services of
the Moodle core system, with independence of its
implementation, that may remain stable in the following
versions of Moodle. This task is described in the Moodle
tracker [16] and in Moodle Docs [17]. This API consists on
a set of Web services that encapsulate most of the services
that an external (and even internal) application shall need

from a Moodle server. In October 2008 this Web services
layer has been integrated in the Moodle standard
distribution for Moodle 1.9.3 and is going to be the standard
interoperability subsystem for the future versions of
Moodle.

This layer is intended to be useful for all developers who
want to build applications for Moodle, because this
development can lead to a documented and stable API to
hack into Moodle that should overcome new versions of
Moodle.

This API is the base to develop a set of Web services
served by Moodle: Moodle-DFWSs.

Moodle needs to be accessible using any transport
protocol present or future. So it cannot depend on a concrete
Web services protocol, name it XML-RCP, SOAP, REST
etc. Moodle-DFWSs be implemented in the present version
of Moodle (Moodle 1.9) and in the future versions as well
(appearing as a core feature in Moodle 2.0 expected early
2009).

Moodle-DFWSs architecture need to be extendable, so
each Moodle Module can be a service provider. The
proposed architecture consists in 3 layers described in Fig 1:

• Connectors Layer: Contains the connectors that
implement services to local or remote applications.

• Integration layer: This layer consists on The API
(being implemented) that provides a one-point
access to the Moodle plus contrib functionalities.

• Services Layer: Is where real things happen. The
API knows how to deal with the Moodle core, and in
future posts we will deal on how the activity
modules, course formats and plugins can offer their
services to the clients.

Figure 1. Moodle DFWS architecture.

325

The Connect layer can implement connectors adjusted,
without hacking inside Moodle and creating code that will
survive the new releases of Moodle for some years, to
behave according to different standards. One of these
connectors will be a Campus Gateway clone, so Moodle
will implement the OKI OSIDs v3 on 2009.

How could this components work together? It depends
on the finality of the use. Considering an use domain like a
mobile consumer, the mobile client would be connected to
the system by using the connector layer. After being
authenticated, the client must be authorized, and would be
able to use the part of the API proper to its role. This API
will provide the information and/or interaction required by
the client.

Other use of the architecture could be the integration of
an external application by using a proxy tool based on IMS
LTI.

C. Future work
The Moodle core team agreed that for the version 2.0 of

the system a refactoring of the core functionalities is
required, structuring a clean access layer to the core (Fig 2.
(2) Internal layer). This layer provides a clean interface
where a layer of SOA services can be provided to external
applications (Fig 2, 4)). It is a PHP API that can be wrapped
in custom connectors to implement different standards of
Web services and semantic behaviors like the OKI OSID’s.

The moodle internal API is an extension of the DFWS
architecture for Moodle 2.0

Figure 2. Moodle 2.0 core refactoring

IV. CONCLUSION
The architecture proposed for the Moodle LMS provides

the necessary technologies and development to adapt Moodle
to the SOA approach. This is a first step so that Moodle can
offer students and teachers services inside the LMS. These
services will provide access to the LMS system from the
Moodle interface. These services that provide access to the
Moodle core system can also be used from a variety of
external applications such as mobile-learning applications.
This may be a way to extend the LMS to the mobile
scenario.

Taking into account the existing shortcomings in other
SOA adaptation initiatives, the purposed architecture settles
them. To do this a layer architecture which considers
specifications is proposed. The use of OKI OSIDs and IMS
LTI guarantees the portability of the architecture and the
bidirectional work. LMS information could be used by
external applications, and external applications could be
integrated transparently to users.

REFERENCES
[1] H. Demirkan and R. J. Kauffman, J. A. Vayghan, HG. Fill, D.

Karagiannis, P. P. Maglio, “Service-oriented technology and
management: Perspectives on research and practice for the coming
decade”, Electronic Commerce Research and Applications, Volume
7, Issue 4, Winter 2008, Pages 356-376.

[2] ADL- Advanced Distributed Learning. ADL SCORM: Retrieved
February 20, 2009 from http://www.adlnet.gov/

[3] G. Vossen and P. Westerkamp, Why service-orientation could make
e-learning standards obsolete. In Int. J. Technology Enhanced
Learning, Volume. 1, Nos. 1/2, 2008, Pages 85-97.

[4] T. Arina, Learning Zeitgeist: The Future of Education is Just-in-Time,
Multidisciplinary, Experimental, In Masternewmedia. Retreived July,
20, 2008 from
http://www.masternewmedia.org/news/2008/02/13/learning_zeitgeist
_the_future_of.htm

[5] M. Alier, A social constructionist approach to learning communities:
Moodle. In Militiadis D. Lytras (Ed.), Open Source for Knowledge
Management: strategies beyond tools. Hersley: Idea Group
Publishing, pp. 369-381, 2008.

[6] IEEE standard computer dictionary : a compilation of IEEE standard
computer glossaries. IEEE Computer Society Press, New York, NY,
USA, January 1991

[7] J. Merriman, Redefining interoprability. The Open Knowledge
Initiative (OKI). Retrieved May 5, 2008, from
http://www.okiproject.org/view/html/node/2916

[8] S. Kurz, M. Podwyszynski and A. Schwab. A “Dynamically
Extensible, Service-Based Infrastructure for Mobile Applications”
Springer Berlin / Heidelberg Editors. Advances in Conceptual
Modeling – Challenges and Opportunities. Volume 5232/2008. 10 de
octubre de 2008. ISBN: 978-3-540-87990-9

[9] LUISA. Learning Content Management System Using Innovative
Semantic Web Services Architecture. Retrieved February 20, 2009
from http://luisa.atosorigin.es

[10] S. Pätzold, S. Rathmayer and S. Graf. “Proposal for the Design and
Implementation of a Modern System Architecture and integration
infrastructure in context of e-learning and exchange of relevant data”.
ILearning Forum 2008. European Institute For E-Learning. pp 82-90,
ISBN: 2-9524576-4-6.

[11] IMS Global Learning Consortium. IMS Tools Interoperability
Guidelines. (2006). Retrieved June 10, 2008 from
http://www.imsglobal.org/ti/index.html

326

[12] G. A. Di Lucca, N. Gold and G. Vesaggio, “Guest editor’s
introduction: 10th Conference on Software maintenance and
Reengineering, Journal of Systems and Software, Volumne 81, Issue
4, April 2008, Pages 461-462.

[13] Projecte Campus. Retrieved February 20, 2009 from
http://www.lafarga.org/campus/en/index.php

[14] G. Canfora, A.R. Fasolino, G. Frattolillo and P. Tramontana, “A
wrapping approach for migrating legacy system interactive
functionalities to Service Oriented Architectures”, Journal of Systems
and Software, Volume 81, Issue 4, April 2008, Pages 463-480.

[15] DFWikiLABS. Retrieved February 20, 2009 from
http://www.dfwikilabs.org/

[16] Moodle Tracker. Retrieved February 20, 2009 from
http://tracker.moodle.org/browse/MDL-12886

[17] Moodle Docs. Development: Web services. Retrieved February 20,
2009 from http://docs.moodle.org/en/Development:Web_services

327

