
Linux has a long and stormy rela-
tionship [1] with another Unix-
like operating system known as

Minix [2]. Noted author and computer
scientist Andrew S. Tanenbaum released
the first version of Minix in 1987 as a
tool for teaching students about operat-
ing systems, and this small and well-

documented system soon became popu-
lar with OS enthusiasts. In a post to the
Minix newsgroup, upstart Finnish under-
graduate Linus Torvalds announced his
own experimental system in 1991, and
many early Linux contributors came
from the ranks of the Minix community.

But Tanenbaum and Torvalds clashed
early over issues of design. Tanenbaum
has always favored the microkernel ar-
chitecture, a distinguishing feature of
Minix to this day (see the box titled
“Why Can’t Computers Just Work All
the Time?”). Linus, on the other hand,
built Linux with a monolithic kernel,
with filesystems, drivers, and other com-

ponents incorporated into the kernel. In
a famous post to the Minix group, the
Minix creator referred to Linux as “… a
giant step back to the 1970s,” and a con-
fident reply from young Torvalds to this
leading expert in the field of operating
systems is early evidence of his now-leg-
endary directness. Still, Linus has ac-
knowledged the importance of Tanen-
baum’s work to the formation of his own
ideas. In his autobiography Just for Fun
[3], Linus refers to Tanenbaum’s Operat-
ing Systems: Design and Implementation
as the book that changed his life.

The debate about micro- versus mono-
lithic kernels goes on to this day, and

Minix is often viewed as the spiritual predecessor of Linux, but these two unix cousins could never agree

on the kernel design. Now a new Minix with a BSD-style free license is poised to attract a new generation

of users. BY RÜDIGER WEIS

Minix 3 and the microkernel experience

SMART KERNEL

cova
d
o, Foto

lia
Minix 3RevIews

48 ISSUE 99 FEBRuARy 2009

Rüdiger Weis is a professor of system
programming at TFH Berlin. Between
2002 and 2005, he was involved in
post-doctorate research on secure op-
erating systems under Professor An-
drew S. Tanenbaum at the Vrije uni-
versiteit, Amsterdam.T

H
E

 A
U

T
H

O
R

just as Linux didn’t
fade away, neither
did Minix. Version
3 of the Minix oper-
ating system is de-
signed with the ob-
jective of creating a
system that is more
secure and reliable
than comparable
POSIX systems,
and a BSD-style
open source license
makes the latest
Minix a strong can-
didate for produc-
tion as well as edu-
cational uses.
Minix is even at-

tracting the attention of some major sponsors. The EU is now sponsoring the
project with several million Euros of funding, and Google has a number of
Minix projects in its “Summer of Code” program.

Minix 3 runs on 32-bit x86 CPUs, as well as on a number of virtual machines
including Qemu, Xen, and VMware. The operating system includes an X Win-
dow System (X11), a number of editors (Emacs and Vi), shells (including bash
and Zsh), GCC, script languages such as Python and Perl, and network tools
such as SSH. A small footprint and crash-resistant design make Minix a good
candidate for embedded systems, and its superior stability has led to a promis-
ing new role as a firewall system.

Insecure by Design
The security problems facing the current crop of operating systems, including
Windows, but also including Linux, are the result of design errors. The errors
were inherited for the most part from their predecessors of the 1960s. Most of
these problems can be attributed to the fact that developers aren’t perfect. Hu-
mans make mistakes. Of course, it would be nice to reduce the numbers and
mitigate the effects; however, designers have frequently been far too willing to
compromise security and a clean design for speed. Tanenbaum refers to this as
a “Faustian pact.”

In addition to the issues related to sheer size, monolithic designs are also
prone to inherent structural problems: Any error is capable of endangering the
whole system. A fundamental design error is that current operating systems do

NETWAYS OSDC

OPEN SOURCE DATA
CENTER CONFERENCE
29 & 30 April 2009 | Nuremberg

http://www.netways.de/osdc

Top IT professionals will meet, discuss,

learn and share their expertise on

Open Source solutions for large IT

infrastructures.

Break new ground on:

High Availability•	

Clustering•	

Load Balancing•	

Security Management | Firewalling•	

Large Scale Databases•	

Configuration Management•	

NETWAYS
®

OPEN SOURCE DATA
CENTER CONFERENCE

29. & 30. April | Nürnberg

presented by supported by

MAGAZIN

EARLY BIRD SPECIALS - BOOK NOW

AnzeigeV1.1_Englisch.indd 1 20.11.2008 16:35:28

Many developers and users disagree with Tanenbaum’s doctrine, which he has
maintained for over a decade, of being very cautious about introducing exten-
sions to the kernel. Tanenbaum’s measure of reasonable operating system com-
plexity is a system that can be taught in a single term. Modularity makes it possi-
ble to complete the development of a practically deployable solution in the scope
of a thesis. Examples of this are ports for various processor architectures, modifi-
cations to Minix for Xen virtualization, and security applications.

In his memoir [3], Linus Torvalds states his reason for rejecting the microkernel
architecture for Linux. “The theory behind the microkernel was that you split the
kernel into fifty independent parts, and each of the parts is a fiftieth of the com-
plexity. But everybody ignores the fact that the communication among the parts
is actually more complicated than the original system was – never mind the fact
that the parts are still not trivial.” A messy monolithic system can thus offer
some performance and scalability benefits, even if it lacks the stability of a micro-
kernel.

The Question of Extension

Figure 1: The Minix microkernel encapsulates many subsys-

tems in user space, including drivers, the filesystem, and the

network stack. The kernel just runs critical functions, such

as underlying I/​O, schedulers, and memory management.

Microkernel

Network Stack

Filesystem

Driver Driver Driver

Reincarnation Server

Program/
Server

Program/
Server

Ke
rn

el
 S

pa
ce

Us
er

 S
pa

ce

MMUI/O access Scheduler

not follow the Principle Of Least Author-
ity (POLA). To put this simply, POLA
states that developers should distribute
systems over a number of modules so an
error in one module will not compromise
the security and stability of other mod-
ules. They should also make sure that
each module only has the rights that it
actually needs to complete its assigned
tasks.

Continued operating system growth
comes with the integration of new driv-
ers. Monolithic systems build device
drivers into the kernel, which means
that a driver error can compromise the
stability of the whole system. Closed
source drivers in particular endanger
system security. According to Tanen-
baum, building a closed source driver
into the kernel is like accepting a sealed

package from a stranger and bringing it
into the cockpit of a plane.

Transparent Architecture
Minix is probably the most fully docu-
mented operating system around. The
Minix Book by Tanenbaum and Wood-
hull [4] is the primary reference. Numer-
ous publications on new features and
ongoing research are found on the Minix

Minix 3Reviews

50 ISSUE 99  FEBRuary 2009

	 Why Can’t Computers Just Work All the Time? By Andrew S. Tanenbaum

Computer users are changing. Ten years
ago, most computer users were young
people or professionals with lots of techni-
cal expertise. When things went wrong –
which they often did – they knew how to
fix things. Nowadays, the average user is
far less sophisticated, perhaps a 12-year-
old girl or a grandfather. Most of them
know about as much about fixing com-
puter problems as the average computer
nerd knows about repairing his car. What
they want more than anything else is a
computer that works all the time, with no
glitches and no failures.

Many users automatically compare their
computer to their television set. Both are
full of magical electronics and have big
screens. Most users have an implicit model
of a television set: (1) you buy the set; (2)
you plug it in; (3) it works perfectly without
any failures of any kind for the next 10
years. They expect that from the computer,
and when they do not get it, they get frus-
trated. When computer experts tell them:
“If God had wanted computers to work all
the time, He wouldn’t have invented
RESET buttons” they are not impressed.

For lack of a better definition of dependabil-
ity, let us adopt this one: A device is said to
be dependable if 99% of the users never ex-
perience any failures during the entire pe-
riod they own the device. By this definition,
virtually no computers are dependable,
whereas most TVs, iPods, digital cameras,
camcorders, etc. are. Techies are willing to
forgive a computer that crashes once or
twice a year; ordinary users are not.

Home users aren’t the only ones annoyed
by the poor dependability of computers.
Even in highly technical settings, the low
dependability of computers is a problem.
Companies like Google and Amazon, with
hundreds of thousands of servers, experi-
ence many failures every day. They have
learned to live with this, but they would re-
ally prefer systems that just worked all the
time. Unfortunately, current software fails
them.

The basic problem is that software con-
tains bugs, and the more software there is,

the more bugs there are. Various studies
have shown that the number of bugs per
thousand lines of code (KLoC) varies from
1 to 10 in large production systems. A re-
ally well-written piece of software might
have 2 bugs per KLoC over time, but not
fewer. An operating system with, say, 4
million lines of code is thus likely to have
at least 8000 bugs. Not all are fatal, but
some will be. A study at Stanford Univer-
sity showed that device drivers – which
make up 70% of the code base of a typical
operating system – have bug rates 3x to 7x
higher than the rest of the system. Device
drivers have higher bug rates because (1)
they are more complicated and (2) they are
inspected less. While many people study
the scheduler, few look at printer drivers.

The Solution: Smaller Kernels

The solution to this problem is to move
code out of the kernel, where it can do
maximal damage, and put it into user-
space processes, where bugs cannot cause
system crashes. This is how Minix 3 is de-
signed. The current Minix system is the
(second) successor to the original Minix,
which was originally launched in 1987 as
an educational operating system but has
since been radically revised into a highly
dependable, self-healing system. What fol-
lows is a brief description of the Minix ar-
chitecture; you can find more at http://​
www.​minix3.​org.

Minix 3 is designed to run as little code as
possible in kernel mode, where bugs can
easily be fatal. Instead of 3-4 million lines
of kernel code, Minix 3 has about 5000
lines of kernel code. Sometimes kernels
this small are called microkernels. They
handle low-level process management,
scheduling, interrupts, and the clock, and
they provide some low-level services to
user-space components.

The bulk of the operating system runs as a
collection of device drivers and servers,
each running as an ordinary user-space
process with restricted privileges. None of
these drivers and servers run as superuser
or equivalent. They cannot even access I/​O
devices or the MMU hardware directly.

They have to use kernel services to read
and write to the hardware. The layer of
processes running in user-mode directly
above the kernel consists of device drivers,
with the disk driver, the Ethernet driver,
and all the other drivers running as sepa-
rate processes protected by the MMU
hardware so they cannot execute any privi-
leged instructions and cannot read or write
any memory except their own.

Above the driver layer comes the server
layer, with a file server, a process server,
and other servers. The servers make use of
the drivers as well as kernel services. For
example, to read from a file, a user process
sends a message to the file server, which
then sends a message to the disk driver to
fetch the blocks needed. When the file sys-
tem has them in its buffer cache, it calls the
kernel to move them to the user’s address
space.

In addition to these servers, there is an-
other server called the reincarnation
server. The reincarnation server is the par-
ent of all the driver and server processes
and monitors their behavior. If it discovers
one process that is not responding to its
pings, it starts a fresh copy from disk (ex-
cept for the disk driver, which is shadowed
in RAM). The system has been designed so
that many (but not all) of the critical drivers
and servers can be replaced automatically,
while the system is operating, without dis-
turbing running user processes or even
notifying the user. In this way, the system
is self healing.

To test whether these ideas work in prac-
tice, we ran the following experiment. We
started a fault-injection process that over-
wrote 100 machine instructions in the run-
ning binary of the Ethernet driver to see
what would happen if one of them were
executed. If nothing happened for a few
seconds, another 100 were injected, and so
on. In all, we injected 800,000 faults into
each of three different Ethernet drivers and
caused 18,000 driver crashes. In all cases,
the driver was replaced automatically by
the reincarnation server. Despite injecting
2.4 million faults into the system, not once

3 homepage [2]. Minix is compliant with
the POSIX standard IEEE 1003.2-1996,
and developers have already ported
many Unix programs to Minix.

The Minix Difference
Minix 3 is on the syllabus of many uni-
versities, and many generations of stu-
dents have scrutinized the few thousand
lines of Minix code and fixed most er-

rors. The microkernel architecture imple-
ments drivers as separate user mode pro-
cesses that are not permitted to execute
privileged commands or I/​O operations
or write directly to memory. Instead,
these operations are performed by audit-
able kernel calls (see Figure 1).

Minix 3 uses fixed-length messages
for process communications. This de-
sign simplifies the code structure and
helps mitigate the danger of buffer over-
flows. The Minix filesystem runs as a
simple user process. Because it is made
up of around 8,200 lines of userspace
code, but no kernel code, it is easy to
debug.

An innovative component, the reincar-
nation server, enhances the reliability of
the Minix system by serving as the par-
ent of all servers and drivers. It detects
crashes very quickly and continually
monitors the function of critical pro-
cesses, re-starting fallen processes as
necessary to keep the system running.

Minix Firewall Project
Packet filters are an endangered system
component. Despite the excellent quality
of the Linux Netfilter implementation, a
number of security issues have surfaced
in the past. If a subsystem of this kind is
running on the Linux kernel, it will en-
danger system security. Building on
work by the Tanenbaum group, the
Technical University of Applied Science
Berlin ported the widespread Netfilter
framework to Minix 3 [5].

Here again, the stability of the micro-
kernel architecture delivers additional
benefits. In Linux, an attacker who suc-
ceeds in provoking a crash – for exam-
ple, by exploiting a buffer overflow in
the do_replace() function – can bring a

Linux firewall to its knees. In Minix 3, a
single user process could crash without
compromising system security. The rein-
carnation server would simply restart
the process.

The differences become even more ap-
parent if an attacker succeeds in execut-
ing code. In Minix, a hijacked user pro-
cess is still a problem, but the effect is far
less serious thanks to isolation.

Even Microsoft is exploring their own
microkernel system, named Singularity
[6]. Although Minix has played the mi-
crokernel game for many years now, its
biggest obstacle to becoming more wide-
spread has always been its non-free li-
cense. Now that Minix 3 is released

under the BSD open
source license and the
firewall extensions are
available under the
GPL [7]. Researchers
at the TFH Berlin are
also working on ex-
ploring Minix’s poten-
tial as a virtualized
firewall. Stability, a
small footprint, and a
new licensing model
give Minix 3 a strong
potential for growth,
especially in embed-
ded systems. n

Figure 2: Minix is very spartan on launching. This said, version

3.1.2a does include an X11 interface and developer tools.

ReviewsMinix 3

51ISSUE 99FEBRuary 2009

[1]	� Tanenbaum, Andrew S., “Some
Notes on the ‘Who wrote Linux’ Ker-
fuffle, Release 1.5,” 2004,
http://​www.​cs.​vu.​nl/​~ast/​brown/

[2]	� Minix Project:
http://​www.​minix3.​org

[3]	� Torvalds, Linus, and David Diamond.
Just for Fun. HarperBusiness, 2001

[4]	� Tanenbaum, Andrew S., and Albert
S. Woodhull. The Minix Book: Oper‑
ating System Design and Implemen‑
tation. Prentice-Hall, 2006

[5]	� Weis, Rüdiger, “Linux is obsolete
2.0,” presented at Chaos Communi-
cation Camp 2007, http://​public.​
tfh‑berlin.​de/​~rweis/​vorlesungen/​
ComputerSicherheit/​
WeisLinuxIsObsolete2.​pdf

[6]	� Microsoft Singularity:
http://​www.​codeplex.​com/​
singularity

[7]	� Minixwall: http://wiki.tfh-berlin.
de/~minixwall

INFO

	 Why Can’t Computers Just Work All the Time? By Andrew S. Tanenbaum

did the operating system crash. Needless
to say, if a fatal error occurs in a Linux or
Windows driver running in the kernel, the
entire operating system will crash in-
stantly.

Is there a downside to this approach? Yes.
There is a performance hit. We have not
measured it extensively, but the research
group at Karlsruhe [University of
Karlsruhe, Germany], which has devel-
oped its own microkernel, L4, and then
run Linux on top of it as a single user pro-
cess, has been able to get the perfor-
mance hit down to 5%. We believe that, if
we put some effort into it, we could get
the overhead down to the 5–10% range,
too. Performance has not been a priority
for us, as most users reading their e-mail
or looking at Facebook pages are not lim-
ited by CPU performance. What they do
want, however, is a system that just works
all the time.

If Microkernels Are So Dependable, Why
Doesn’t Anyone Use Them?

Actually, they do. Probably you run many
of them. Your mobile phone, for example,
is a small but otherwise normal computer,
and there is a good chance it runs L4 or
Symbian, another microkernel. Cisco’s
high-performance router uses one. In the
military and aerospace markets, where
dependability is paramount, Green Hills
Integrity, another microkernel, is widely
used. PikeOS and QNX are also microker-
nels widely used in industrial and embed-
ded systems. In other words, when it re-
ally matters that the system “just works all
the time” people turn to microkernels. For
more on this topic, see www.​cs.​vu.​nl/​~ast/​
reliable‑os/.

In conclusion, it is our belief, based on
many conversations with nontechnical
users, that what they want above all else
is a system that works perfectly all the
time. They have a very low tolerance for
unreliable systems but currently have no
choice. We believe that microkernel-based
systems can lead the way to more de-
pendable systems.

