Towards a New Model of Abstraction in Software Engineering

Gregor Kiczales

Published in proceedings of the IMSA'92 Workshop on Reflection and Meta-level Architectures, 1992.

© Copyright 1992 Xerox Corporation. All rights reserved.

Appearsin IMSA 92 Proceedings (Workshop on Reflection and Meta-level Architectures).
Towardsa New Model of Abstraction in the Engineering of Software

Gregor Kiczales
Xerox Palo Alto Research Center*

We now come to the decisive step of mathematical abstraction: we forget about what the symbols stand for...
[The mathematician] need not be idle; there are many operations he can carry out with these symbols, without

ever having to look at the things they stand for.

Hermann Weyl, “ The Mathematical Way of Thinking”

(This appears at the beginning of the Building Abstractions With Data chapter of “ Structure and Interpretation
of Computer Programs” by Harold Abelson and Gerald Jay Sussman.)

Thisis an abridged version of a longer paper in preparation. The
eventual goal is to present, to those outside of the reflection and
meta-level architecturescommunity, theintuitions surroundingopen
implementations and the use of meta-level architectures, particu-
larly metaobject protocols, to achieve them.

Theview of abstraction onwhich software engineeringisbased does
not support the reality of practice: it suggeststhat abstractions hide
their implementation, whereasthe evidenceis that thisis not gener-
ally possible. Thisdiscrepancy between our basic conceptual foun-
dations and practice appearsto be at the heart of anumber of porta-
bility and complexity problems.

Work on metaobject protocols suggests a new view, in which ab-
stractions do expose their implementations, but do so in away that
makes a principled division between the functionality they provide
and the underlying implementation. By resolving the discrepancy
with practice, this new view appearsto lead to simpler programs.
It also has the potential to resolve important outstanding problems
surround reuse, software building blocks, and high-level program-
ming languages.

Abstraction In Action

| want to start by talking about the current view of abstraction in
software engineering: how we use it, what the principles are, what
the terminology is and what it does for us. Rather than attempting
any sort of formal definition, | will just use an example. | will talk
about the implementation of afamiliar system, using familiar terms
of abstraction, with the goal of getting the terminology | am going
to use out on the table.

Consider the display portion of a spreadsheet application. In
practice, the implementation would be based on “layers of abstrac-
tion” asshownin Figure 1. The spreadsheet would beimplemented
on top of awindow system, which would in turn be implemented
on top of an operating system and so on down (not very far) to the
machine.

Thehorizontal linesin the figure are commonly called “ abstrac-
tion barriers,” “abstractions” or “interfaces.” Each provides useful

*3333 Coyote Hill Rd., Pao Alto, CA 94304,
Gregor @parc.xerox.com.

(415)812-4888;

©1992 Xerox Corporation. All Rights Reserved.

Spreadsheet
Application

Window System

Operating System

Figure 1: The layers of abstraction in the display portion of a
spreadsheet application.

functionality while hiding “implementation details’ from the client
above.! To the degree that an abstraction provides powerful, com-
posable functionality, and is free of implementation issues, we call
it“clean” or “elegant.” Inthe particular caseof the window system,
the abstraction would provide the ability to make windows, arrange
them onthe screen, display inthem, track themouseetc. 1ssuessuch
as how the windows are represented in memory and how the mouse
is tracked would be hidden asimplementation details.

There seemto be (at least) three basic principles underlying our
view of abstraction:

¢ Thefirst, and most important, hasto do with management of
complexity. In this sense, abstraction is aprimary conceptin
all engineering disciplinesand s, in fact, a basic property of
how people approach the world. We simply can’'t cope with
the full complexity of what goes on around us, so we have
to find models or approximationsthat capture the salient fea-
tureswe need to addressat agiventime, and glossover issues
not of immediate concern.

e Second, is a convention that a primary place to draw an ab-
straction boundary is between those aspects of a system’sbe-
havior that are particular to a particular implementation vs.

! In this paper, the terms client and application are used to refer to a piece of soft-
ware that makes use of somelower-level software; i.e. the spreadsheetis aclient of the
window system.

for i =1 to 100
for j =1 to 100
nmkwi ndow(100, 100, i*100, j*100)
end
end

Figure 2: A spreadsheet looks like arectangular array of cells. The simplest way to implement it is to use one window for each cell.

those aspects of its behavior that common across all imple-
mentations.

¢ Third, isasensethat not only isthekind of abstraction bound-
ary that arisesfrom the secondprinciple useful, itisin fact the
only oneit appropriateto giveto clients. That is, we believe
that issuesof aninterface’simplementation are not of concern
to, and should be completely hidden from, clients.

(Note that the first of theseis so basic that it rarely, at least in
our field, gets explicit attention. But arguably, what our informal
notions of elegance, cleanliness, and orthogonality are about is the
degree to which an abstraction includes those issueswhich are im-
portant without including any that are not.)

Layered on top of these three principles are our goals of porta-
bility, reusability and in fact the whole concept of system software.
Theideahasbeenthat by taking commonly useful, “ basement-level,”
functionality — memory allocators, file systems, window systems,
databases, programming languagesetc. — givingit ageneral-purpose
interface, andisolating the client from theimplementation, we could
make it possible for a wide range of clients to use the abstraction
without caring about the implementation. Portability stemsin par-
ticular from isolating the client from implementation details; this
makesit possible to have other implementations of the abstraction
which the client code can be ported to. Reuse stems in particular
from making the abstraction general-purpose; the more general it
is, the wider avariety of clients that can useit.

In line with this story, it should be an easy matter to implement
a spreadsheet on top of aclean, powerful window system. What is
neededisjust arectangular array of cells; we need to be ableto dis-
play andtypein each cell independently; and we need to know when
themouseis clicked over acell. Sincethisisexactly thefunctional-
ity awindow system provides, the simplest way to code the spread-
sheet is to use one window for each cell. This takes advantage of
the high-level window system abstraction to cleanly express what
is desired, and makesmaximal reuse of the existing window system
code. A program written in this fashion is shown in Figure 2.

Thisis abstraction at its best. The codeis simple, clear, and we
can read it without having to know anything about the inner work-
ings of the underlying implementation. Abstraction here is doing
just what our small minds need: making it possible for usto think
about important properties of our program — its behavior — with-
out having to think about the entirety of the machinationsthe under-
lying hardware is having to perform to get it to run.

Aswonderful asthis may sound, few experienced programmers
would be surprised if this code didn’t quite work. That is, it might
work, but its performance might be so bad as to render it, in any
practical sense, worthless. This can happen if the window system

implementation is not tuned for this kind of use. As part of writ-
ing thewindow system, the implementor is faced with anumber of
tradeoffs, in the face of which they must make decisions. No matter
what they do, the window systemwill end up tuned for some appli-
cationsand against others. In this case, theimplementor might have
assumed that 25 to 50 windows was a more typical number for an
applicationto usethan 10, 000. They might also have assumed that
thetypical configuration of windowswould haveanirregular, rather
than highly-regularized, geometry. Implementation decisionsbased
on these assumptions, once made, become locked away behind the
abstraction barrier asimplementation details.

We areall familiar with this sort of situation, and probably have
a good sense of how we would respond. But, stepping back and
looking through it carefully is fruitful. There are several points to
notice: (i) While the simple program in Figure 2 may not perform
adequately, its intended behavior is perfectly clear. In other words,
the window system abstraction itself is adequatefor expressing the
behavior the client programmer is after. (ii) The fact that the im-
plementation will fail to provide adequate performance is nowhere
evident in the client code. That is, the window system abstraction
isnot, in and of itself, betraying these properties of the implemen-
tation. (It's aso likely to be the casethat this performance property
can’t be gleaned from reading the window system documentation.)
(iii) So, predicting and/or understanding the performance properties
of this program can only bedonewith knowledgeof internal aspects
of the window system implementation — the so-called “ hiddenim-
plementation details.” (iii) Finaly, it is relatively easy to imagine
an implementation of the window system in which this code would
perform adequately. Moreover, such an implementation might not
be all that different from the existing one.”

What is clear then is that there is a basic discrepancy between
our existing view of abstraction and the reality of day-to-day pro-
gramming. We say that we design clean, powerful abstractionsthat
hide their implementation, and then use those abstractions, without
thinking about their implementation, to build higher-level function-
ality. But, the redlity is that the implementation cannot always be
hidden, its performance characteristics can show through in impor-
tant ways. In fact, the client programmer is well aware of them, and
islimited by them just asthey are by the abstraction itself.

L ooking ahead, the idea underlying the new abstraction frame-

2The issue is whether awindow is a large structure, which locally caches derived
properties, or whether it is a small structure, which continually recomputes derived
propertiesfromits parent (i.e. doesawindow know its position, or doesit have to ask
its parent). In the latter approach, a great deal of memory could be saved on the cell
windows. Each could be as small asaword, or even take up no storage at all in more
radical architectures. In addition to saving memory, certain operations could be sup-
ported more efficiently. For example, to tell which cell the mouse was over, the main
window could, because of theregular geometry of the cells, do simplearithmetic rather
than using the more general mechanism of polling al the cell windows.

work will be to try and preserve what is good and essential about
our existing abstraction framework — essentially the first two bul-
leted principles— while seeking to addressthe conflict between the
third basic principle and the reality of practice. In doing this, the
strategy will be to try and take advantage of the fact that very of-
ten, asin this example, our abstractions themselves are sufficiently
expressive and our implementations may only be deficientin small
ways. What we will end up doing is “opening up the implemen-
tation,” but doing so in a principled way, so that the client doesn’t
haveto be confronted with implementation issues all the time, and,
moreover, can address some implementation issues without having
to addressthem all.

Outline of the Paper

Therest of this paper expandsthis basic argument for open imple-
mentations. First, the consequences of the deficiency in our cur-
rent abstraction framework are discussed, using both the window
system example and an example from high-level programming lan-
guages. The application of metaobject protocol technology to these
problemsis discussed, and the new model of abstraction, drawn out
from the intuitions underlying the metaobject protocol work, is pre-
sented. Given the new model, it is possibleto identify awiderange
of other work in the software engineering community which not only
seemsto confirm theintuition that the old model of abstractionisin-
valid but which in fact seemsto be headed in the same direction as
the framework presented in this paper. Finally thereis adiscussion
of what future work might be required as part of continuing to de-
velop this new abstraction framework.

The Origins of Complexity and Portability Problems

Caseslikethe spreadsheet application, where an abstractionitself is
adequatefor the client’s needsbut theimplementation showsthrough
and is in some way deficient are common. The machinations the
client programmer is forced into by these situations maketheir code
more complex and less portable. These machinationsfall into two
general categories: (i) Reimplementation of the required function-
ality, in the application itself, with more appropriate performance
tradeoffs; and (ii) coding “ between the lines.”

Reimplementation of functionality is what would mostly likely
happen in this case. The spreadsheet programmer would end up
writing their own “little window system,” that could draw boxes
on the screen, display in them, and handle mouse events. Reimple-
menting thisway would allow the the programmer to ensurethat the
performance properties met their particular needs. Assuggested by
Figure 3, reimplementing part of the underlying functionality this
way increases the size of the application, and, therefore, the total
amount of code the programmer must be responsiblefor.

In additionto making the application strictly larger, reimplemen-
tation of underlying functionality can also causethe rest of the ap-
plication — the codethat simply usesthe reimplemented function-
lity — to become more complex. This happensif for some reason
the newly implemented functionality cannot be used aselegantly as
the original underlying functionality. Thisin turn can happenif, for
any reason, the programmer cannout manage to slide the new im-
plementation in under the old interface.

Oncethe programmer is forced away from being able to usethe
oldinterface, andinto the problem of designing oneof their own, its
quitelikely they won’t do asgood ajob. Simply put, the application
programmer doesn’t havethetime (evenif they do havetheinterest)
to design the new interface as cleanly as might be nice.

(Asan aside, its worth point out that even if the interface ends
up being just as (or more) elegant, one of the primary purposes of

Spreadsheet o
Application application has
/}_,lts own miniature
window system

Window System

Operating System

Figure 3: The spreadsheet application after being revised around
the performance problems of the window system. The reimple-
mentation of functionality which could not be reused from the win-
dow system appearsas a‘hematoma’ in the application. Each such
hematomaincreasesthe size of the application. In addition, therest
of the application can get more complex when it is rewritten to use
the new functionality.

high-level standardization — to be able to easily read each other’s
code — has been defeated.)

Coding between the lines is happenswhen the application pro-
grammer writes their code in a particularly contorted way in order
to get better performance. A classic exampleisin the useof virtual
memory. In aprogram that allocates a number of objects, thereis
often aorder to allocating those objectsthat is “natural” to the pro-
gram. But, if there get to bealot of objects, and paging behavior be-
comes critical, peoplewill often rewrite the application to “alocate
the objects closeto each other” and thereby get better performance.
Thisis coding between the lines because although the documented
virtual memory abstraction makes no mention about the physical
locality of objects, the programmer manages to contort their code
enough to “speak to” the inside of the implementation and get the
performance they want.

When programmers are forced into these situations, their appli-
cations become unduly complex and, more importantly, even less
portable. It iseasiest to see how this happensby starting with a hy-
pothetical prototype implementation, coded on a machine that was
fast enough that the programmer was not forced into these sins, and
then looking at what happensasthe applicationismoved to adeliv-
ery platform. (In reality, codeisusually “ optimized” whenit isfirst
written, but this simpler case makes what happens more clear.)

Theoriginal implementationissimple, clear and makesthe great-
est re-use of the underlying abstractions(i.e. the simple spreadsheet
implementation). But, whenit comestime to moveit to the delivery
platform, anumber of performance problems come up that must be
solved. A wizard is brought in, and through tricks like those men-
tioned above, managesto improve the performance of the applica-
tion. Effectively, thewizard convolvesthe original simple codewith
their knowledge of inner workings of the delivery platform.® (The
term convolvesis chosen to suggest that, as aresult of the convolu-
tion, properties of the code which had been well localized become
duplicated and spread out.) In the process, the code becomes more
complex and implicitly conformant to the delivery platform. When
it comestime to move it to another platform, the code is more dif-

3Note that putting it this way explains why the informal term “wizard” refers to
someonewho not only is good at workingwith agiven abstraction (i.e. awindow sys-
tem), but who is aso intimately familiar with the inner workings of the implementa-
tion. Simply put, the wizard is someone who specializes at doing what our traditional
abstraction story says should never happen.

larger, more

. complex code ?
original wizard implicitly conforms :
simple E—— to platform A —_—
code

development
platform

delivery

platform A

delivery
platform B

Figure 4: When an application is originally written on a fast machine, the code can start out being simple. To port the code to a delivery
platform awizard — someonewho understandsthe inner workings of the delivery platform — is brought in to tune the code. The application
gets larger and more complex, and above all it becomesimplicitly adapted to the delivery platform. It is then even more difficult to move it

to another platform.

ficult to work with, and because of the implicit conformance, it is
difficult to tell just why things are the way they are. Thisis shown
in Figure 4.

High-Level Languages

| found alarge number of programs perform poorly
because of the language’stendency to hide “what is
going on” with the misguided intention of “not
bothering the programmer with details.”

N. Wirth, “ On the Design of Programming
Languages,” [Wr74]

| want to look next at the domain of high-level programming
languages, where the reflection and meta-level architectures com-
munity has done alot of work to address these kinds of problems.
First, | will show, using the Common Lisp Object System (CLOS)
[Kee89, Ste90], how the same sorts of problems can comeup. | will
then show how those problems are addressed by the CLOS Metaob-
ject Protocol (CLOSMOP) [BKK* 86, Kic92, KARB91]. Fromthere,
it will be possible to generalize and present the new model of ab-
straction.

Consider the following CLOS class definitions:

(defclass position ()

(x'y))

(defcl ass person ()
(nane age address ...))

The class posi t i on might be part of a graphics application,
where the instances are used to represent the position of the mouse
asit moves. The classdefinestwo slots, x andy.* The behavior of
the application is such that there will be a very large number of in-
stances, both slotswill be used in every instance and accessto those
slots should be asfast as possible.

The second definition, per son, might comefrom aknowledge
representation system, wheretheinstancesare being used asframes.
In this case, the class definesa thousand slots, correspondingto the
many properties of peoplewhich might beknown. Aswith theclass
posi ti on, thebehavior of the application meansthat a couple of
things are known: there will be a very large number of instances;
but in any given instance only a few slotswill actually be used.

*Yot isthe CLOS term for thefields of an instance.

Clearly, the ideal instance implementation strategy is different
for the two classes. For posi ti on, an array-like strategy would
beideal; it provides compact storage of instances, and rapid access
tothex andy slots. For per son, ahash-table like strategy would
be more appropriate, sinceit isn’'t worth allocating space for a slot
until itis known that it will be used. This makes accessslower, but
it isaworthwhile tradeoff given alarge number of instances.

What ismost likely to bethe case, in arun-of-the-mill CLOSim-
plementation sans MOP?” is that the implementor will have chosen
the array-like strategy. The prospective author of theper son class
will find themselvesin asituation very much like that of the spread-
sheetimplementor above: While the CL OS language abstraction it-
self is perfectly adequate to express the behavior they desire, sup-
posedly hidden properties of theimplementation— theinstancerep-
resentation strategy — are critically getting in the way.

Metaobject Protocols

In this abridged version of the paper, this sectionis elided, since it
would be redundant for IMSA’ 92 Workshop attendees.

For the eventual audience of this paper, the goal of this section
will beto sketch the mechanicsof metaobject protocols, and to show
how, by careful design, a metaobject protocol can be used to allow
the user to control critical aspects of the language implementation
strategy, without overwhelming them with what truely are imple-
mentation details.

Thissectionwill also discuss, morebriefly, how metaobjectspro-
tocols can be used to providethe user control over the semantics, or
behavior of a language.

In addition to the CLOS Metaobject Protocol, other MOPs and
reflectivelanguageswhich might be discussedin thissectioninclude
TELOS[Pad92], ABCL/R2[MWY91], 3-KRY Mae87], Anibus[Rod91,
Rod92], Sartor [Ash92] and Ploy [Vah92].

A New Model of Abstraction

In the metaobject protocol approach, the client ends up writing two
programs:. abase-languageprogram and an (optional) meta-language
program. The base-languageprogram expresses, the desired behav-
ior of the client program, in terms of the functionality provided by
the underlying system. The meta-language program can customize

At this point all CLOS vendors| know of haveplans to provide a metaobject pro-
tocol. So, aCLOSimplementationsansMOP is moreof arhetorical tool than areality.

Traditional
Interface

Adjustment

/ Interface
l
-

Figure 5: The dual-interface framework supports the notion of an
open implementation. The client first writes a base-program, and
then, if necessary, writes ameta-program to customize the underly-
ing implementation to meet the base-program’s needs. The curved
arrow under the meta-level interfaceisintended to remind usthat it
provides accessto what havetraditionally been internal properties
of the implementation.

N

Open
Implementation

particular aspectsof the underlying system’simplementation so that
it better meets the needs of the base-language program.

What begins to emerge is a “ dual-interface” picture something
likethat showninFigure5. A high-level system(i.e. CLOS) presents
two coupled interfaces. base- and meta-level. The base-level in-
terface looks like the traditional interface any such system would
present. It providesaccessto the system’sfunctionality inaway that
the application programmer can make productive use of and which
does not betray implementation issues. The client programmer can
work with it without having to think about the underlying imple-
mentation details.

But, for those caseswhere the underlying implementation is not
adequate, the client has amore reasonablerecourse. The meta-level
interface provides them with the control they need to step in and
customize the implementation to better suit their needs. That is, by
owning up to the fact that users needs accessto implementation is-
sues (i.e. instance implementation strategy), and providing an ex-
plicit interface for doing so, the metaobject protocol approach man-
agesto retain what is good about the first two principles of abstrac-
tion.

It ismuch too early to attempt to provide a complete account of
dual interface abstractions, how to design them, how to use them
or what technologies can be used to support them. But, based on
experiencewith metaobject protocolsand other recent refl ectiveand
meta-level architectures, some basic comments can be made.

First off, it appearsthat the design of base-level interfaces can
bedone using existing skills. Asmentioned above, we havebecome
quite good at designing interfaces that do not themselvesbetray the
implementation. We should be able to make base-level interfaces
even more clean because we will now have a principled place to
put implementation issuesthat the client must have accessto — the
meta-level interface.

Mastering the design of meta-level interfaces, and, importantly,
the coupling between base- and meta-level interfacesis goingto take
a great deal more work. But we can enumerate four preliminary,
and closely interrelated, design principles: scope control, concep-
tual separation, incrementality and robustness.

e Scopecontrol meansthat whenthe programmer usesthe meta-
level interface to customize the implementation, they should
be given appropriate control over the scope of the specializa-
tion. One can imagine variouskinds of scope control. In the
CLOS example above, the programmer wants to be able to
say both that they only want to affect the instancerepresenta-
tion strategy, and that only want certain classes(i.e. per son)
to be affected. Other classes, particularly classesthat are part

of other applications, should not be affected. The window
system case is analogous; some windows should use the im-
plementation tuned for spreadsheets whereas others should
use the default implementation.

e Conceptual separationmeansthat it should be possibleto use
the meta-level interface to customize particular aspectsof the
implementation without having to understand the entire meta-
level interface. So, for example, the client programmer who

wantsto customizetheinstanceimplementation strategy shouldn’t

also have to be concerned with the method dispatch mecha-
nism. This of courseis difficult, since implementation issues
can sometimeshavesurprisingly far-reaching effects. Thechal-
lenge, as discussed in [LKRR92], isto come up with a suffi-
ciently fine-grained model of the implementation.

¢ Incrementality meansthat the client who decidesto customize
some aspect of the implementation tradeoffs wants to do just
that: customize those properties. They don’'t want to haveto
taketotal responsibility for theimplementation andthey don’t
want to end up having to write a whole new implementation
from scratch. It must be possible for them to say just what it
isthey want to havebe different, and then automatically reuse
the rest of the implementation. Thisis the salient difference
between the more recent refl ective systems (CommonL oops,
3-KRS and beyond) and the original 3-Lisp work: by using
object-oriented techniques, it hasbeen possibleto support the
incremental definition of new implementations (interpreters,
runtimes etc.) using subclass specialization. (More is said
about object-oriented techniques later in the paper.)

¢ Robustness® simply meansthat bugsin aclient’s meta-program

should haveappropriately limited effect ontherest of thesys-
tem. To date, much of the work in the reflection and metaob-
ject protocols community has provided only limited robust-
ness, either by checking the results of functional protocols, or
absorbing it from the underlying runtime in imperative” pro-
tocols. But these approaches significantly restrict the power
of the protocol. In more recent work, we are beginning to ex-
plore the use of more declarative protocols, combined with
partial evaluation techniquesto recover the performanceloss
[Ash92]. Thisremains a major open problem.

These four principles are not entirely orthogonal. Take for ex-
ample, support for defining a new instance implementation strat-
egy in the CLOS MOP. While it is easy to say that it doeswell on
each of thefirst three, it is difficult to point to particular parts of the
CLOS Metaobject Protocol design and say “ Scope control comes
from here and incrementality comes from here.” Instead, they all
seem to be intertwined; they all have to do with various kinds of
“locality.”

In fact, much of the recent work on reflective systems can be
seenasexperimentswith locality. Group-widereflection, onemetaob-
ject per object languages, metaobjects on a per-class basis, reify-
ing the generic function rather than letting the class handle method
dispatch — all of these provide different kinds of locality control
[Coi87, IMWY 91,1091, Mae87, MWY 91, WY 90, WY 91] (aswell
as many of the other papers appearing in this workshop). What is
clear is that there is no one right or most elegant metaobject struc-
ture, each hasrelative costs and advantages, and we need to keep ex-
perimenting to learn about how to handle locality this way. (There
ismoreto say about the subject of locality as the paper progresses.)

SThisterm is somewhat problematic, asit has particular technical meaningin some
communities. Later in the paper, it will becomeclear that what is needed is a term that
in some sense spans (at least) al of safety, reliability and security.

7In [KdRB91] we used the term procedural instead of imperative.

It is also possible to make a basic comment about the way the
designer of adual-interface abstraction— or any openimplementa-
tion — works: iteratively. They start with a traditional abstraction
(i.e. awindow system or CLOS), and gradually add a meta-level
interface as it becomes clear what kinds of waysa close implemen-
tation can cause problems for the users. Moreover, it isn't a good
ideato try and make thefirst version of anew kind of system open
in this sense. Opening the implementation critically dependson un-
derstanding not just one implementation the clients might want, but
also the various kinds of variability around that point they might
want. In this mode of working, user bug-reports and complaints
about previous versions of the system take on an important value.
We can look for places where users complained that they wanted
to do X, but the implementation didn’t support it; the ideaisto add
enough control inthe meta-level interface to makeit possibleto cus-
tomize the implementation enough to make X viable. (In fact, in
work onthe CLOSM etaobject Protocol, wespent alot of time think-
ing about these kinds of bug reports.)

Another way of thinking about the design of meta-level inter-
faces can be found in a 1980 paper by Mary Shaw and Wm. Wulf
[SW80], in which they present an interesting (and prescient) intu-
ition about the situation: “Traditionally, the designers and imple-
mentors of programming languages have made a number of deci-
sionsabout the natureand representation of languagefeaturesthat. ..
are unnecessarily preemptive.” By preemptive, they mean a deci-
sion, on the part of theimplementor (or thelanguage designer), that
preempts the programmer from being able to use alanguage feature
in a way that otherwise appears natural. (A specific example they
give has to do with the choice of representation of arrays.) Their
paper is focused primarily on programming language implementa-
tions, but the notion of preemption is a powerful one to work with
when thinking about any kind of meta-level interface. It suggests
that anytime wefind ourselvessaying “well, I'll implement this fea-
tureaparticular way becausel think most userswill doX,” weshould
immediately think about the other users, the oneswhose optionswe
areaboutto preempt, and how, using ameta-level interface, wemight
allow them to customize things so they can do other than X.

A Recap

At this point, it is possible to give a capsule summary of the argu-
ment so far:

In practice, high-level abstractions often cannot hide
their implementations — the performance characteris-
ticsshow through, the user is aware of them, and would
bewell-served by being ableto control them. This hap-
pensbecausemaking any concreteimplementation of a
high-level system requirescomingto termswith anum-
ber of tradeoffs. It simply isn’t possible to provide a
single, fixed, closed implementation of such a system
that is“ good enough” that all prospectiveuserswill be
happy withit. In other words, thethird principle of ab-
straction presented above appearsto beinvalid, at least
in actual practice.

Work on metaobject protocols and other meta-level ar-
chitectures suggestsa new abstraction framework that
better addressesthe need for openimplementations. Un-
der this framework the abstraction presented by a sys-
tem is divided into two parts: one that provides func-
tionality in atraditional way and another that provides
control over theinternal implementation strategies sup-
porting that functionality. Thisapproachretainsthefirst

two principles of the old abstraction framework, drop-
ping only the third.

Looking At Other Work

With this summarization in mind, it becomes possible to look for
other areaswhere open implementations and dual interface abstrac-
tions could be particularly advantageous. In doing so, what we are
trying to assessis how much of the argument presented above ap-
pliesin domainsother than high-level programming languages. Clearly
we would expect the basic argument for open implementations to
move across — after all, we started with a window-system not a
programming language. On the other hand, we may or may not ex-
pect the concept of metaobject protocols (or at least our current no-
tion of them) to move to memory systems or schedulers. And in
between those two levels are the crucial intermediary notions of lo-
cality, reflection, meta, and object-oriented programming. By look-
ing at other examples, we hope to get a better sense of the overall
picture and where each of these important conceptsfitsin it.

We are looking for systems of more than modest functionality,
yet where performance is an issue. The whole category of system
software — operating systems, window systems, database systems,
RPC mechanisms etc. — is a natural place to look. The abstrac-
tions have been well-honed over the years, there is tremendous un-
derstanding of the different kinds of implementation strategies that
can be useful and, because these systems underlie everything else
we build, the potential payoff of increased understanding of their
natureis large.

It turns out that not only doeswork in these areas appear to sup-
port the basic argument for open implementations, but in fact there
appearsto bealot of work already going onthat isdriving in similar
directions.

Programming Languages

A number of programming language projects have discovered that
attempting to give their users a black-box abstraction with asingle
fixed implementation does not work. In some sense, compiler prag-
mas were thefirst example of this— they can be thought of asopen
implementationswith a“declarative” meta-level interface.

In Hermes[Hermesbook], several of the built-in datastructures
come with a small collection of different implementations. This,
like pragmas, is a step in the direction of open implementations —
several implementations is after all more than one, and letting the
user chooseis a step in the direction of openness. But, it does not
completely solve the problem becausethere is no reason to believe
that some prospective users will not want an implementation that
is different from any of the ones provided. The designers of Her-
mes are aware of this limitation, it is just that their concern for ro-
bustness(safety in particular) hassofar prevented them from adopt-
ing the more powerful reflective or metaobject protocol techniques
[Yemeni, private conversation]. One possibility might beto add an
internal metaobject protocol, which the designerscould useto quickly
provide clients with newly requested implementations, but which
would not be documented to normal users.

As discussed by Rodriguez [Rod92], the same sort of situation
can be seen in languages for parallel programming. A key prob-
lemin this domain is that acompiler that attempts to automatically
choose program’s parallelization is often unable to do so optimally.
Having recognized this problem, this community has developed ar-
chitectures that allow the programmer to step in, in various ways,
anddirect theparallelization [Ber90, CiCL 88, Hoa85, LR91, Luc87,
YiC90]. These systemsbear varying degreesof resemblanceto ex-
plicit meta-level architectures, with one key difference being that

they have not (yet) adopted the use of object-oriented techniquesto
organize the meta-level.

At least one language has gone farther, to have what is clearly
ametaobject protocol, the only difference being that they don't use
the terminology we do. Joshuais arule-based inference system de-
veloped at Symbolics[RSC87]. BecauseJoshuaissuchahigh-level
language, its default implementation can perform quite poorly on
some examples. By allowing the client to step in and customize
the inference mechanism to better suit the particular example, they
sometimes get substantial performanceimprovements[Shrobe, pri-
vate conversation).

Operating Systems

The operating system community long ago beganto pushup against
the boundaries of the traditional black-box abstraction framework.
Very early on, virtual memory systems provided limited meta-level
interfaces that allowed clients to influence what page-replacement
strategy was used (i.e. the Unix madvi se facility). Morerecently,
there has been amove, starting with systemslike the Mach external
pager, from the declarative approach to an approach more like that
of metaobject protocols. Specifically, they are using object-oriented
and imperative techniquesto organize the meta-level.

Using this more powerful imperative approach, there has been
similar work opening up thread packagesand |oad-balancing mech-
anisms [ALL89]. In fact, people associated with this work have,
more recently, been explicitly questioning the validity of the tra-
ditional closed-implementation notion of system software in many
of the same ways discussed in this paper.[Anderson, talk at PARC]
(Within the reflection community, there is of course the Muse work
at Sony, which has been explicitly addressing theseissuesfor some
time[YTT89].)

In the operating system community, where there is a great deal
of emphasison reliability, the architectures have been interestingly
different than in the metaobject protocol community. They have
done a much better job of achieving robustness. The various ef-
forts at reducing the size of the kernel are largely driven by adesire
to make as much of the traditional operating system functionality
user-replaceable. On the other hand, even though there is no appar-
ent tradeoff between robustnessand incrementality, they have done
much lesswell at providing incrementality.

Other Systems

Looking at other kinds of systems software turns up similar kinds
of work, although perhaps not as aggressively open as in the op-
erating system community. There are interesting things to be said
about databases, RPC mechanisms and document processing sys-
tems. In fact, the spreadsheet example presented in this paper was
drawn from work at PARC which explicitly addressed the applica-
bility of metaobject protocol ideas to the window system domain
[Ra090, Rao91].

Future Work

Changing something as fundamental as our underlying conception
of abstraction is not going to be asmall task. All of our current de-
sign principles, conventions, tools, techniques, documentation prin-
ciples, programming languages and more rest on the more funda-
mental notion of abstraction. Thissection providesashort sampling
of what might need to be done, ranging from the relatively straight-
forward — assuring ourselves that the need for open implementa-
tions and a corresponding revision of our abstraction framework is
in fact genuine— to the more far reaching — working out the ram-
ifications of thisrevision, and what it will take to get it to work.

Much of what needsto be done involves looking at basic con-
cepts in software engineering practice, to see how they depend on
the old model of abstraction and how they might need to be revised.
This includes issues like portability, software building blocks and
top-down programming.

Complexity and Portability Revisited

A primary issueto be addressedhasto do with what the consequences
of the open implementation argument is for portability and com-
plexity. One of the comments | often hear, when | talk about the
metaobject protocol work, is that opening up implementations in
thisway will causeclient codeto be morecomplex and create porta-
bility problems. The goal is of course very much the opposite: to
make code simpler and improve portability. But, theseideas makes
peoplenervous; itisimportant that the meta-level architecturescom-
munity be able to addresstheir concerns carefully.

Thecriticism from skepticsis: (i) You areallowing the client to
muck with implementation issuesthat used to be hidden. (ii) This
will resultin codethat is more complex, and wedded to features spe-
cific to theimplementation. (iii) Thiswill make the code more dif-
ficult to work with and less portable.

The counterargumentis: (i) Clients already are aware of theim-
plementationissues, it isjust that we havebeentrying to pretend that
wasn’'t the case. That is the whole thrust of thefirst part of the pa-
per. (ii) We believe that client codewill be simpler, becauseit will
be able to reuse more of the underlying functionality. There won’t
be hematomas and other complexitiesthat currently result from per-
formance problemsin the library functionality. It is also important
to understand that the meta-level interface is not implementation-
specific. It appliesto all implementations of the system. What is
implementation-specificis thedefaultimplementation. So, themeta-
program, sinceit is a customization of the default implementation,
may end up depending on properties of theimplementation for which
it iswritten but: (a) programs already are implementation-specific;
(b) inthe new framework this dependencewill bemoreexplicit since
it will be isolated to the meta-program; and (c) if there is less code
to work with it will be easier to work with no matter what.

Higher-Level Building Blocks

The concept of open implementations has significant ramifications
on our concepts of what kinds of building blocksit might be possi-
ble to work with in the future. Learning how to make clean, pow-
erful open implementations should result in being able to build and
work with higher-level building blocks, which should in turn result
in simpler application programs. This expectation is based on the
belief that what haskept usfrom being able to successfully develop
very high level libraries has been our inability to provide (closed)
implementations that pleased enough users.

The programming language domain is perhaps the place where
it ismost clear that alarge part of what haskept usat alow-level is
the closed implementation framework. High-level languages have
enjoyed limited successin large part due to performance problems.
Wehaven't been ableto get good enough performanceout of higher-
level languages because we haven’t been able to write compilers
that are “smart enough” to satisfy all the users. But, the open im-
plementation idea fundamentally acknowledgesthat if a language
is more than modestly high-level, it simply isn't possible to build
aclosed compiler that is smart enough. We must instead open the
compiler up so that the programmer, who knows a great deal about
how they want their program to be compiled, can step in and help.

Thisrestraining force on high-level languagesis particularly ev-
ident in the earlier quote from Wirth. Essentially, his argument is

that since it isn’t possible to properly implement high-level func-
tionality (using a closed implementation), the language should be
restricted to providing only low-level functionality. The question
now iswhether openimplementations and the dual interface abstrac-
tion framework makeit possibleto make truly high-level languages
with good performance. Experimentsneedto bedonewith avariety
of such languages.

Top Down Programming vs. Reuse

In the previously mentioned paper by Shaw & Wulf they make the
claim that top-down programming is fundamentally at odds with
reusablecodelibrariesand eventhe notion of system software. Their
argument, as | understand it, is that a reusable library essentially
blocks, at the abstraction boundary, the downward flow of design
decisions, preventing those decisionsfrom leaking into thelibrary’s
implementation as we would like.

Their argument is essentially compatible with the one presented
in this paper. From the dual interface abstraction point of view, the
conflict is not between top-down programming and reusable code;
it is between top down programming and closed implementations
of reusable code. This leadsto another way of thinking about open
implementations, complementary to the dual interface model. The
ideaisthat reusable code should be like a sponge: It provides basic
functionality (the base-level interface), basic structure (the default
implementation) but also allowsthe user to “ pour in” important cus-
tomizations from aboveto “firm it up.”

Work needs to be done to go back and look at top-down pro-
gramming and the conflict Shaw & Wulf mention to see how it in-
formsthe openimplementation and dual interface abstraction frame-
works.

Multiple Open Layers

Thisview of top-down programming makesit clear that opening an
implementation only to the client immediately aboveis not enough.
We needto do better thanthat; all layers needto beopento all layers
abovethem. So, for example, when an application is written on top
of a high-level language, which itself sits on top of a virtual mem-
ory system, the application code needsto be able to control not just
how the language usesthe memory it is allocated, but also how that
virtual memory system allocates that memory.

Work needsto be doneto devel opthis ability to pushdown, through

multiple levels of abstraction this way.

Open Behavior

Thediscussionin this paper beginsto provide an explanation of part
of the problem metaobject protocols are solving — specifically, the
need for openimplementations. But aclear lessonfrom the metaob-
ject protocol work is that users can also take productive advantage
of being able to customize the semantics (or behavior) of systems
they are building on top of.

Work needsto be done to integrate the need for open behavior,
and the way that meta-level architectures provide it, into the argu-
ment presented in this paper and into any new abstraction frame-
work that is developed.

Mastering Locality

The dual interface framework is similar to the way in which one
might expect the conversation between the human provider and client
of asystemto talk. Much of the time they would just talk about the
functionality that would be provided. At other timesthey would*“go

meta’ and talk about how the functionality was going to be used and
crucial performanceissues.

And it is by making this analogy with the discussion between
humansthat we can get someinsight into the problems that we will
faceinreally trying to get thisto work: very often, the conceptsthat
are most natural to use at the meta-level cross-cut those provided at
the base-level. What it seems we want to be able to do isto alow
the user to use natural base-level concepts and natural meta-level
concepts— asiif they were the z and y axes of aplane — to get at
just what it isin the implementation they want to affect. The prob-
lemis that the “points’ in the plane spanned by these two axes are
not necessarily easy to localizein an implementation.

Take, asan example, the user of aLisp-likelanguagewhowants
to control the tagging strategy for certain objects within a certain
part of their program. It's quite natural for them to say something
like: “Use immediate tagging for fixnums and positions, tag rect-
anglesand lines in the pointer, and tag everything elsein the actual
object representations.” But, it would be surprising to find an ex-
isting compiler in which making this change was easy, much less
onethat could be persuadedto havejust part of a program work this
way. (Getting such acompiler architecture is the thrust of the work
reported in [LKRR92].)

Weare, in essence, trying to find away to providetwo effective®
views of asystem through cross-cutting “localities.” Getting thisto
work, in the general case, appears to be quite difficult; aside from
crystallizing it as a problem, there isn't much to say about it at this
time.

Onestrategy — the onethat hasbeen prevalent in existing meta-
level architectures— isto make the problem easier by delaying the
implementation of strategy selection until run-time or thereabouts.
So, for exampl e, the existing metaobject protocol saddressonly those
issues which do not need to be handled in a compile-time fashion.
Thevarioussystemsthat addressdistribution, concurrency and real-
time [other papersin this proceedings] are also addressing problems
which are amenable to architectures with runtime dispatch.

Animportant point is that this problem, of havingto handletwo
cross-cutting localities, isn’t dueto the dual-interface framework. It
isafundamental problem, it hasalwaysbeenthereand it will always
bethere. The structure of complex systemsissuch that it is natural
for people to make this jump from one locality to another, and we
haveto find away to support that. All the dual-interface framework
doesis: (i) makeit more clear that this problem needsto be solved,
and (i), give one particular organization to the relation between the
two different localities. Of course, looking at the problem this way
makesit clear that we may well want more than two, cross-cutting,
effectiveinterfacesto asystem— thedual interface framework may
quickly become the multi-interface framework.

Summary

It runs deep in our field that we consider ourselvesto be based on
mathematics. Thisleadsusto try and take many of our basic notions
from mathematics. Thefact that Abelsonand Sussmanwould quote
Weyl the way they dois evidence of this.

But, while this appeal to mathematics for conceptual founda-
tionsmay beattractive, itis, at |east in the case of abstraction, risky.
Thereisadeep difference betweenwhat we do and what mathemati-
ciansdo. The*“abstractions’ we manipulate are not, in point of fact,
abstract. They are backed by real pieces of code, running on real
machines, consuming real energy and taking up real space. To at-
tempt to completely ignore the underlying implementation is like

8 Effective meansessentially the samething that “ causally connected” didin Smith’s
earlier work.

trying to completely ignore the laws of physics; it may be tempting
but it won't get us very far.

Instead, what is possibleis to temporarily set aside concern for
some (or even al) of the laws of physics. Thisis what the dual in-
terface model does: In the base-level interface we set physicsaside,
and focus on what behavior we want to build; in the meta-level in-
terface we respect physics by making sure that the underlying im-
plementation efficiently supports what we are doing. Because the
two are separate, we can work with one without the other, in accor-
dancewith the primary purpose of abstraction, whichisto giveusa
handleon complexity. But, becausethetwo are coupled, wehavean
effective handle on theunderlying implementation whenwe needit.
I like to call thiskind of abstraction, in which we sometimes elide,
but never ignore the underlying implementation “ physically correct
computing.”

Thisis also like what the mechanical engineers call modeling,
where they take multiple independent models of a system, each of
which highlights certain properties and sets others aside. Of course
amechanical engineer’smodelsaren’t effective, and we would like
ours to be — that is a fundamental difference in what we do and
iswhy we can’t borrow directly from them. But, it is the case that
we are engineers not mathematicians. We would do better to look
to other engineering disciplines, and not solely to mathematics, for
our principles of abstraction.

Thisis, | think, thereal contribution of the argument in this pa-
per: Because we are engineers, not mathematicians, we must re-
spect the laws of physics — we cannot hope to completely ignore
the underlying implementation. The particular details of the dua
interface model, the notion that two interfaces are enough, the role
of object-oriented programming, the notion of meta; all of these are
inherently approximate. What will remain, in the long term, is the
intuition of physically correct computing and the requirement that
we build open implementations.

Acknowledgments

I would liketo thank Hal Abelson, J. Michael Ashley, Alan Bawden,
Danny Bobrow, John Seely Brown, Jim des Riviéeres, Mike Dixon,
John Lamping, Ramana Rao, Jonathan Rees, L uis Rodriguez, Erik
Ruf, Brian Cantwell Smith, Marvin Theimer and Brent Welch for
countless hours of discussion working out the ideasin this paper.

For their comments and feedback on earlier drafts of this paper
itself, | would like to thank J. Michael Ashley, Danny Bobrow, Jim
des Riviéres, Mike Dixon, John Lamping and L uis Rodriguez.

References
[ALL89] T. Anderson, E. Lazowska, and H. Levy. The perfor-
manceimplications of thread management alternatives
for shared memory multiprocessors. In |EEE Transac-
tions on Computers, 38(12), pages 1631-1644. |EEE,

1989.
[Ash92] J. Michael Ashley. Open compilers. To appear inforth-
coming PARC Technical Report., August 1992.
[Bero0] Andrew Berlin. Partial evaluation applied to numeri-

cal computation. In Lisp and Functional Programming
Conference, pages 139150, 1990.

[BKK'86] D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter,
M. Stefik, and F. Zdybel. Commonloops: Merging
Lisp and object-oriented programming. In OOPSLA
'86 Conference Proceedings, Sgplan Notices 21(11).
ACM, Nov 1986.

[CiCL88]

[Coi87]

[Hoa8s5]

[IMWY91]

[1091]

[KdRB91]

[Kees9]

[Kic92]

[LKRR92]

[LRO1]

[Luc87]

[Mae87]

[MWY91]

[Pad92]

Marina Chen, Young il Choo, and Jingke Li. Com-
piling parallel programs by optimizing performance.
The Journal of Supercomputing, 2(2):171-207, Octo-
ber 1988.

Pierre Cointe. Metaclasses are first class: The Ob-
jVlisp model. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), Orlando, FL,
pages 156167, 1987.

C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

Yuuji Ichisugi, Satoshi Matsuoka, Takuo Watanabe,
and Akinori Yonezawa. An object-oriented concurrent
reflective architecture for distributed computing envi-
ronment. In 8th Conference Proceedings, Japan So-
ciety for Software Science and Technology, September
1991. (in Japanese).

Yutaka Ishikawa and Hideaki Okamura. A new re-
flective architecture: AL—1 approach. In Proceedings
of the OOPSLA Wor kshop on Reflection and Metal evel
Architecturesin Object-Oriented Programming, 1991.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol. MIT Press,
1991.

Sonya E. Keene. Object-Oriented Programming
in Common Lisp: A Programmer’s Guide to CLOS,
Addison-Wesley, 1989.

Gregor Kiczales. Metaobject protocols — why we
want them and what else they can do. In Andreas
Paepcke, editor, Object-Oriented Programming: The
CLOS Perspective. MIT Press, 1992.

JohnLamping, Gregor Kiczales, LuisH. Rodriguez Jr.,
and Erik Ruf. An architecture for an open compiler.
In Proceedingsof the IMSA’ 92 Wor kshop on Reflection
and Meta-level Architectures, 1992. Also to appear in
forthcoming PARC Technical Report.

Monica S. Lam and Martin C. Rinard. Coarse-grain
parallel programmingin Jade. In Third ACM SIGPLAN
Symposiumon Principlesand Practiceof Parallel Pro-
gramming, pages 94105, 1991.

John M. Lucassen. Types and effects: Towards
the integration of functional and imperative program-
ming. Technical Report MIT/LCS/TR-408, MIT, Au-
gust 1987.

Pattie Maes. Concepts and experiments in computa-
tional reflection. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 147-155,
1987.

Satoshi Matsuoka, Takuo Watanabe, and Aki-
nori Yonezawa. Hybrid group reflective architecture
for object-oriented concurrent refl ective programming.
In European Conferenceon Object Oriented Program-
ming, pages 231-250, 1991.

The EuLisp Definition, April 1992. Draft.

[Ra090]

[Rao91]

[Rod91]

[Rod92]

[RSC87]

[Ste90]

[SW80]

[Vaho2]

[Wir74]

[WY90]

[WY91]

[YiCo0]

[YTT89]

Ramana Rao. Implementational reflection in Sil-
ica. InInformal Proceedingsof ECOOP/OOPSLA 90
Workshopon Reflection and Metalevel Architecturesin
Object-Oriented Programming, October 1990.

RamanaRao. Implementational reflectionin Silica. In
Pierre America, editor, Proceedingsof European Con-
ference on Object-Oriented Programming (ECOOP),
volume 512 of Lecture Notes in Computer Science,
pages 251-267. Springer-Verlag, 1991.

LuisH. Rodriguez Jr. Coarse-grainedparallelismusing
metaobject protocols. Master’'s thesis, Massachusetts
Institute of Technology, 1991.

LuisH. Rodriguez Jr. Towards a better understanding
of compile-time mops for parallelizing compilers. In
Proceedings of the IMSA’'92 Workshop on Reflection
and Meta-level Architectures, 1992. Also to appear in
forthcoming PARC Technical Report.

Steve Rowley, Howard Shrobe, and Robert Cassels.
Joshua: Uniform access to heterogeneous knowledge
structures or Why Joshua is better than conniving or
planning. In Proceedings of the Sixth National Con-
ferenceon Artificial Intelligence, pages48-58, 1987.

Guy L. Steele. Common Lisp: The Language (second
edition). Digital Press, 1990.

Mary Shaw and Wm. A. Wulf. Towards relaxing as-
sumptionsin languages and their implementations. In
SIGPLAN Notices 15, 3, pages45-51, 1980.

Amin Vahdat. The design of a metaobject protocol
controlling the behavior of aschemeinterpreter. To ap-
pear in forthcoming PARC Technical Report., August
1992.

Niklaus Wirth. On the design of programming lan-
guages. In Information Processing 74, 1974.

Takuo Watanabe and Akinori Yonezawa. An actor-
based metalevel architecture for group-wide reflec-
tion. In Informal Proceedingsof ECOOP/OOPSLA’ 90
Workshopon Reflection and Metalevel Architecturesin
Object-Oriented Programming, October 1990. (Ex-
tended Abstract of [WY 91]).

Takuo

Watanabeand Akinori Yonezawa. An actor-based met-
alevel architecture for group-wide reflection. InJ. W.
deBakker, W. P. de Roever, and G. Rozenberg, editors,
Proceedingsof REX School/Mbrkshop on Foundations
of Object-Oriented Languages (REX/FOOL), Noord-
wijkerhout, the Netherlands, May, 1990, number 489
in LectureNotesin Computer Science, pages405-425.
Springer Verlag, 1991.

J.Allen Yang and Young il Choo. Meta-crystal —amet-
alanguage for parallel-program optimization. Tech-
nical Report YALEU/DCS/TR-786, Yale University,
April 1990.

Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro.
A reflective architecture for an object-oriented dis-
tributed operating system. In Proceedings of Eu-
ropean Conference on Object-Oriented Programming

(ECOOP), July 1989. (also available as atechnical re-
port SCSL-TR-89-001, Sony Computer Science Labo-
ratory Inc.).

