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ABSTRACT

Daily European station series (1901–99) of surface air temperature and precipitation from the European Climate
Assessment dataset are statistically tested with respect to homogeneity. A two-step approach is followed. First, four
homogeneity tests are applied to evaluate the daily series. The testing variables used are (1) the annual mean of the
diurnal temperature range, (2) the annual mean of the absolute day-to-day differences of the diurnal temperature range
and (3) the wet day count (threshold 1 mm). Second, the results of the different tests are condensed into three classes:
‘useful’, ‘doubtful’ and ‘suspect’. A qualitative interpretation of this classification is given, as well as recommendations
for the use of these labelled series in trend analysis and variability analysis of weather extremes. In the period 1901–99,
94% of the temperature series and 25% of the precipitation series are labelled ‘doubtful’ or ‘suspect’. In the sub-period
1946–99, 61% of the temperature series and 13% of the precipitation series are assigned to these classes. The seemingly
favourable scores for precipitation can be attributed to the high standard deviation of the testing variable, and hence the
inherent restricted possibilities for detecting inhomogeneities. About 65% of the statistically detected inhomogeneities in
the temperature series labelled ‘doubtful’ or ‘suspect’ in the period 1946–99 can be attributed to observational changes
that are documented in the metadata. For precipitation this percentage is 90%. Copyright  2003 Royal Meteorological
Society.
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1. INTRODUCTION

Within the framework of the European Climate Assessment (ECA) project, a dataset of daily observations
of temperature (mean, minimum and maximum) and precipitation was compiled (Klein Tank et al., 2002).
The dataset covers the period 1901–99, and is meant to analyse trends and variability in weather extremes
in the 20th century climate of Europe and the Middle East (Klein Tank and Können, 2003). Clearly, this
type of analysis is limited by the degree of inhomogeneity of the data. Inhomogeneities in station data
records are often caused by changes in observational routines, among which are station relocations, changes
in measuring techniques and changes in observing practices. Exploiting datasets like those in the ECA requires
a continuous monitoring of their quality with a well-defined methodology to support the credibility of the
conclusions gained from them.

Numerous methods are in use to evaluate the homogeneity of monthly to annual-resolution climatic
time series. Peterson et al. (1998) gives a comprehensive overview. Szalai (1997) and Szalai et al. (1999)
summarize the application of different methods that are used in European countries. Generally, a combination
of statistical methods and methods relying on metadata information is considered to be most effective to track
down inhomogeneities.
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In contrast to monthly or annual-resolution series, well-established statistical methods for testing the
homogeneity of daily resolution series are lacking. Given this situation, we developed a hybrid method
by compiling from the daily set an annual resolution set of variables representing important characteristics of
variation at the daily scale, and then applying to these testing variables an appropriate selection of traditional
tests developed for monthly and annual series. The power of this hybrid method in detecting inhomogeneities
that originate from the short time scales depends critically on the choice of the testing variables.

In general, it is recommended (e.g. Peterson et al., 1998) to apply homogeneity tests relatively, i.e. testing
with respect to a neighbouring station that is supposedly homogeneous. If the two series are sufficiently
correlated, relative tests are considered to be more powerful than absolute tests, which use only the single
station series. Inhomogeneities are thus more easily distinguished from real climate variations. Although
relative tests are not able to deal with simultaneous changes in the observational routines of both the test and
reference station, relative testing is often the first option. However, for the ECA dataset, relative testing is
not appropriate, given the sparse spatial density of the station network. Therefore, we currently restrict the
homogeneity analysis to absolute tests, having the additional advantage of being able to deal with simultaneous
changes in observational routines.

In the current assessment of the homogeneity of the daily temperature and precipitation series, a two-step
approach is followed. First, the hybrid method using four established statistical tests of partly complementary
properties is applied to the ECA dataset to identify potential inhomogeneities in annual resolution testing
variables that are representative for the daily resolution series. For temperature, two variables related to the
diurnal cycle are tested; for precipitation, the wet day count (threshold 1 mm) is tested. Second, the results
of the tests for a given series (temperature or precipitation) are grouped in an overall classification of the
reliability of that series. Historic metadata information is used to find supporting evidence of changes in
observational routines that may have triggered the inhomogeneities detected. We believe that the current
evaluation provides insight into the potential of the series. The overall classification forms a fair basis to
select series appropriate for trend analysis and variability analysis. The need remains to revisit the series at
a later stage with tests dedicated to daily resolution series.

2. STATISTICAL METHODS

The four test methods selected to test the departure of homogeneity in the time series are: the standard normal
homogeneity test (SNHT) for a single break (Alexandersson, 1986), the Buishand range test (Buishand, 1982),
the Pettitt test (Pettitt, 1979), and the Von Neumann ratio test (Von Neumann, 1941).

All four tests suppose under the null hypothesis that the annual values Yi of the testing variable Y are
independent and identically distributed. Under the alternative hypothesis, the SNHT, the Buishand range and
the Pettitt test assume that a step-wise shift in the mean (a break) is present. These three tests are capable
of locating the year where a break is likely. In this paper these three tests are referred to as location-specific
tests. The fourth test, the Von Neumann ratio test, assumes under the alternative hypothesis that the series is
not randomly distributed. This test is not location specific, which means that it does not give information on
the year of the break.

Although the three location-specific tests have many characteristics in common, they are also different. The
SNHT detects breaks near the beginning and the end of a series relatively easily, whereas the Buishand range
and the Pettitt test are more sensitive to breaks in the middle of a time series (Hawkins, 1977). The SNHT
and the Buishand range test assume that the Yi values are normally distributed, but the Pettitt test does not.
The reason that the Pettitt test does not require such an assumption is that this test is based on the ranks of
the elements of a series rather than on the values themselves. The ranking approach of the Pettitt test also
implies that it is less sensitive to outliers than the other tests. The non-location-specific Von Neumann ratio
test is complementary to the other three tests because of its sensitivity to departures of homogeneity that
are of a nature other than strict step-wise shifts (Buishand, 1981, 1982). Appendix A gives the mathematical
formulation of the four tests and tables with critical values for their test statistics.
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3. OVERALL CLASSIFICATION AND ITS QUALITATIVE INTERPRETATION

The second step in the homogeneity assessment of the ECA dataset is an overall evaluation of the four tests.
The outcomes of the four tests for each temperature and precipitation series are grouped together. As in
Schönwiese and Rapp (1997), a classification is made depending on the number of tests rejecting the null
hypothesis. The following categories are distinguished:

Class 1: ‘useful’ — one or zero tests reject the null hypothesis at the 1% level.
Class 2: ‘doubtful’ — two tests reject the null hypothesis at the 1% level.
Class 3: ‘suspect’ — three or four tests reject the null hypothesis at the 1% level.

For temperature, where two variables are tested, the two categories are calculated separately for each variable.
If the results are different, then the highest of the two category values (hence the least favourable) is assigned
to the temperature series of the station.

The qualitative interpretation of the categories is as follows:

Class 1: ‘useful’. No clear signal of an inhomogeneity in the series is apparent. Hence, inhomogeneities
that may be present in the series are sufficiently small with respect to the inter-annual standard deviation
of the testing variable series that they will largely escape detection. The series seems to be sufficiently
homogeneous for trend analysis and variability analysis.
Class 2: ‘doubtful’. Indications are present of an inhomogeneity of a magnitude that exceeds the level
expressed by the inter-annual standard deviation of the testing variable series. The results of trend analysis
and variability analysis should be regarded very critically from the perspective of the existence of possible
inhomogeneities.
Class 3: ‘suspect’. It is likely that an inhomogeneity is present that exceeds the level expressed by the
inter-annual standard deviation of the testing variable series. Marginal results of trend and variability
analysis should be regarded as spurious. Only very large trends may be related to a climatic signal.

It is clear that series labelled class 3 ‘suspect’ lack credibility. These series should not be used in the
analysis of trend and variability analysis. Only in exceptional cases, where it is plausible that a real climatic
signal rather than an artificial break triggered the test results (see the example in Section 6.3), can the original
station series be used in further analysis.

One strategy to improve the classification of a series is to analyse the metadata in order to correct for
documented breaks. In our analysis of trends in temperature and precipitation extremes over Europe (Klein
Tank and Können, 2003) we did not elaborate upon this strategy, but adopted an alternative strategy instead,
i.e. straightforwardly excluding from the analysis all series labelled ‘suspect’.

4. ECA TEST PERIOD AND TESTING VARIABLES

The period of analysis is the complete period of the ECA dataset: 1901–99. However, as the station coverage
increases with time (Klein Tank et al., 2002), test results are also presented for the sub-period 1946–99. Three
testing variable series are selected and derived from the daily ECA series, each consisting of annual values.
For temperature, the testing variables are two characteristics of the diurnal temperature range (DTR): its
annual mean (mDTR) and its annual mean of the absolute day-to-day differences (vDTR). For precipitation,
the annual number of wet days (threshold 1 mm) is considered.

The motivation for choosing mDTR and vDTR, rather than the underlying annual means of minimum and
maximum temperature, is that the DTR variables are often more sensitive to the homogeneity tests. A reason is
that breaks due to station relocations and changes in measuring techniques are usually radiation-related, with
different effects on minimum and maximum temperature. Consequently, a break that appears clearly in the
DTR-based testing variable series may be only weakly apparent in the minimum and maximum temperature
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series, and might even be totally masked in the annual mean temperature series (see also Sparks (1972) and
Heino et al. (1999)).

The choice of DTR variables as testing variables instead of minimum, maximum or mean temperature
causes our absolute testing to exhibit to a certain extent the properties inherent to relative testing. This
includes the improved power of relative testing and its capacity to discriminate between real and spurious
climate variations, as well as the well-known weakness of relative tests for simultaneous changes in the
observational routines.

In addition to the annual mean DTR (mDTR), we also introduced the annual mean of the absolute day-to-day
differences of the DTR (vDTR) as the testing variable for temperature. The motivation is that inhomogeneities
may manifest themselves more strongly in a break in a higher order statistical moment, e.g. the standard
deviation, than in a break in the mean. We did not use the standard deviation of the DTR as the testing
variable but instead chose to use the annual mean of absolute day-to-day differences of the DTR. The latter
is preferred because it is less influenced by low-frequency variability than the standard deviation (Karl et al.,
1995), and because day-to-day temperature differences are particularly sensitive to inhomogeneities (Moberg
et al., 2000). Note that vDTR itself is a testing variable whose nature is linked to the daily character of the
underlying series. The precise definition of vDTR is

vDTR = 1

M − 1

M∑

i=2

|DTRi − DTRi−1|

where DTRi is the diurnal temperature range for day i in a specific year, and M is the number of days in
that year.

The inherently high variability of precipitation makes detection of breaks in precipitation series possible
only if the breaks are relatively large. The higher the standard deviation of the testing variable, then
the more inhomogeneities will escape detection. However, the other side of the coin is that trends
(and long-term variations) in series become harder to detect in more variable signals. In that sense, the
outcomes of the homogeneity tests remain consistent with the capabilities of trend detection in such
series.

As the testing variable for precipitation, the annual precipitation amount and the number of wet days
in a year are potential candidates, whereas the day-to-day variability is not suitable because of the large
number of dry days in any series. In the present study, we chose the number of wet days as the
testing variable for precipitation, rather than the annual amounts. Wet day counts generally have a lower
variability than series of annual amounts, particularly in areas with a large contribution from convective
precipitation. As a result, inhomogeneities are easier to detect in wet day count series than annual amount
series.

In the present study, a wet day is defined as a day with precipitation above 1 mm. Wet day count series
based on threshold values higher than 1 mm usually have a higher variability from year-to-year than wet
days with a threshold of 1 mm. On the other hand, thresholds lower than 1 mm can lead to a dominance
of inhomogeneities caused solely by errors in measuring very low amounts, including dew. Over-detection
of such inhomogeneities should be avoided, as they hardly affect the homogeneity of other aspects of the
precipitation series, like extremes or series of cumulative precipitation. This is the reason for our choice of
the 1 mm threshold in the definition of wet days as the testing variable for the precipitation series in the ECA.

5. ILLUSTRATION OF THE TEST APPLICATION

5.1. Temperature series of Eelde (The Netherlands)

To illustrate the capacity of the homogeneity tests for temperature series, the results of the four tests applied
to the ECA station series of Eelde (The Netherlands) are discussed.

Figure 1 shows the annual mean temperature and mDTR at station Eelde. Three well-documented changes
in observational routine contaminate the homogeneity of this station series during the last century: the

Copyright  2003 Royal Meteorological Society Int. J. Climatol. 23: 679–692 (2003)



HOMOGENEITY OF EUROPEAN CLIMATE SERIES 683

Figure 1. Black: annual mean of the diurnal temperature range (mDTR) at station Eelde (The Netherlands). Grey: annual mean
temperature of the station. The smoothed curves are calculated using the Loess smoother (Cleveland, 1979) with a time span of

15 years. Station changes that are documented in the station history are indicated by the vertical dashed lines

introduction of a ventilated observation hut in 1948, a station relocation from the city to the nearby airport
in 1951, and a change in sensor height from 2.2 m to 1.5 m in 1959. Figure 1 shows that the contaminations
are hardly visible in the annual mean temperature series, whereas they lead to a 1 °C increase of the mDTR
in the 1950s.

In Figure 2, the results of the SNHT, the Buishand range and the Pettitt tests applied to the mDTR of
Eelde are shown. The test statistic of the SNHT passes an extreme in 1950, indicative of a break around
that year. This maximum causes a rejection of the null hypothesis clearly significant at the 1% level. Hence,
the alternative hypothesis, which assumes a break, becomes likely. The same conclusion is drawn from
the minima in the graphs of the Buishand range and Pettitt test statistics, both having extremes in 1950.
The value of the Von Neumann ratio test, 0.55, also clearly indicates an inhomogeneity at the 1% level.
Since all four tests reject the null hypothesis at the 1% level, the temperature series of Eelde is assigned

Figure 2. Test results of the SNHT (left), Buishand range (middle) and Pettitt test (right) applied to the mDTR series of station Eelde
(The Netherlands). Dashed lines give 1% critical values; dotted lines give 5% critical values

Copyright  2003 Royal Meteorological Society Int. J. Climatol. 23: 679–692 (2003)
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Figure 3. Test results of the SNHT applied to the annual mean (left), maximum (middle) and minimum (right) temperature series of
station Eelde (The Netherlands). Dashed lines gives 1% critical values; dotted lines give 5% critical values. The results of the Buishand

range test and the Pettitt test (not shown) are similar

to class 3 ‘suspect’. Similar results are obtained from the vDTR, also indicating that the temperature series
of Eelde receives the label ‘suspect’. Note that the three changes as documented in the metadata are not
separately traced in the three location-specific tests. Since these changes are so close to each other, only
the most prominent one is detected. When the 1906–47 sub-period before the documented breaks and the
1960–99 sub-period after the documented breaks are tested separately, no significant breaks are detected
(not shown). This is consistent with the metadata, which do not indicate any major changes in these sub-
periods.

Figure 3 shows the results of the SNHT test applied to the annual mean, minimum and maximum
temperature series of Eelde instead of the DTR testing variable series. The results of the other two
location-specific tests are similar. Contrary to the mDTR and vDTR and minimum temperature series,
there are hardly any indications for a break around 1950 in the annual series of mean or maximum
temperature. Despite the fact that the mean temperature passes the tests successfully in this period, the
failure of mDTR and vDTR to pass the tests reminds one to remain suspicious, even with respect to the
homogeneity of the daily mean temperatures. This is of particular importance if trends in daily extremes are
studied.

Figure 3 shows that the SNHT indicates a homogeneity break in the mean and maximum temperature series
around 1987, which is not apparent from the DTR testing variables (Figure 2). This break lacks documentation
from the station history and is likely to be unrelated to changes in observational routines. This result, combined
with the fact that the homogeneity tests of other Dutch stations show the same feature, indicates that a climate
variation rather than homogeneity break triggered the tests.

Summarizing, the Eelde example illustrates two main advantages of the DTR testing variables, namely
their power to detect inhomogeneities as indicated by the metadata of the station and their discriminating
power between real climate variations and breaks, which is especially important given the strong warming in
Europe in the 1990s.

5.2. Precipitation series of Putten (The Netherlands)

Figure 4 shows the annual precipitation amount and the number of wet days (threshold 1 mm) at station
Putten (the Netherlands) and Figure 5 shows the results of the Buishand range test applied to the precipitation
testing variable: number of wet days. In Figure 5, three definitions of a wet day are used: threshold 0.1, 1
and 10 mm.

In 1950, the height of the Putten gauge was lowered from 1.50 m to 0.40 m. This change is not clearly
visible from the annual amounts and the wet day counts (threshold 1 mm) in Figure 4. However, the Buishand
range test results for the latter variable (Figure 5, middle panel) clearly detect an inhomogeneity at the 1%
level around 1950. As the results for the other three tests are also significant at the 1% level, the series would
be labelled ‘suspect’. For the 0.1 and 10 mm threshold values, all four tests also indicate inhomogeneity at
the 1% level. For all these threshold values, the three location-specific tests point to the correct year for
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Figure 4. Black: wet day (threshold 1 mm) count at station Putten (The Netherlands). Grey: annual precipitation amount at the station.
The smoothed curves are calculated using the Loess smoother (Cleveland, 1979) with a time span of 15 years. The 1950 change in

height from 1.50 m to 0.40 m is indicated with the vertical dashed line

Figure 5. Test results of the Buishand range test applied to the annual wet day count series at station Putten, The Netherlands, with
thresholds of 0.1 (left), 1 (middle) and 10 mm (right). Dashed lines give 1% critical values; dotted lines give 5% critical values

the break, i.e. 1950. As Figure 5 (left panel) shows, the 0.1 mm threshold counts point towards a possible
second inhomogeneity in 1930, which is hardly visible for the other thresholds. This second inhomogeneity
is likely to be caused by changes in how precisely very low amounts of precipitation are measured. As the
main purpose of the present study is to assess the quality of the ECA precipitation data for investigating
trends in wet extremes, day counts over the threshold of 0.1 mm are less suitable as a testing variable, being
oversensitive to breaks in the low amounts. On the other hand, a 10 mm threshold seems too high, as it
decreases the sensitivity of the tests (see Figure 5, right panel) because of the increased rarity of such days.
In conclusion, the 1 mm threshold is a good compromise for detecting breaks in the ECA precipitation series,
as illustrated in the Putten example.

Copyright  2003 Royal Meteorological Society Int. J. Climatol. 23: 679–692 (2003)
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6. TEST RESULTS FOR THE ECA SET

6.1. ECA temperature series

Figure 6 shows, separately for the mDTR and the vDTR testing variables, for each ECA station the number
of tests that rejected the null hypothesis at the 1% level for the period 1901–99 and its sub-period 1946–99.
The figure shows that the breaks in mDTR (left) are not always accompanied by breaks in vDTR (right)
or vice versa. In the 1946–99 (1901–99) period 20% (65%) of the series are classified ‘suspect’ (at least
three tests significant) on the basis of both the mDTR and vDTR, whereas 23% (17%) of the series are
classified ‘suspect’ only on the basis of the mDTR and 11% (10%) of the series are classified ‘suspect’ only
on the basis of the vDTR. The series with detected breaks are from stations scattered all over Europe, but
for mDTR a concentration in central Europe is apparent. Table I summarizes the statistical results according
to the classification system outlined in Section 3, in which mDTR and vDTR results are merged. The full
1901–99 period shows a very high percentage of ‘suspect’ station series, but for the 1946–99 sub-period the
situation improves. Both in the full period and the sub-period, only a few series are assigned to the ‘doubtful’
class. Apparently, the four tests agree on the class in most cases. Agreement also exists on the year of the
break for the three location-specific tests. For 73% (79%) of the ‘suspect’ series the year of the detected break
is within three (six) years (not shown).

Figure 6. Test results for the ECA temperature series. Station dots are scaled with the number of tests that detected breaks in temperature
series at the 1% significance level. The four tests applied to the mDTR series (left) and the vDTR (right) are: the SNHT, the Buishand
range, the Pettitt, and the Von Neumann ratio test. The classification is indicated in the legend. Top: 1901–99 (stations with at least 79

observation years). Bottom: 1946–99 (stations with at least 43 observation years)
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Table I. Number of temperature series (percentage) in the ECA set in the categories ‘useful’, ‘doubtful’ and ‘suspect’.
This classification is based on four tests, applied for the period 1901–99 (stations with at least 79 observation years)
and the sub-period 1946–99 (stations with at least 43 observation years). If the test results are different for the two
temperature testing variables (mDTR and vDTR), then the highest of the two categories is assigned to the daily series.
This applies to 28% and 41% of the cases respectively for the 1901–99 and 1946–99 periods. For more details see

Section 3

Period Class 1 ‘useful’ Class 2 ‘doubtful’ Class 3 ‘suspect’ Total number of
station series

1901–99 4 (6%) 1 (2%) 55 (92%) 60 (100%)
1946–99 61 (39%) 12 (7%) 85 (54%) 158 (100%)

6.2. ECA precipitation series

Figure 7 shows the test results for precipitation. In both test periods, only for Eastern Europe does a
considerable part of the station series suffer from significant breaks. These breaks are mostly detected by all
four tests and are mainly located around 1950 and 1965. Making a distinction between the different seasons
(not shown), it appears that the winter season is more strongly affected by breaks. Regarding Europe in its
entirety, Table II shows that the majority of precipitation series are labelled ‘useful’. Like temperature, the
highest number of precipitation series labelled ‘suspect’ appear in the full period. Consistent with the higher
year-to-year variability of the precipitation testing variable, the percentage of stations labelled ‘suspect’ is
much smaller for precipitation than for temperature. For 59% (69%) of the precipitation series, the year of
the break detected by the location-specific tests agrees within three (six) years.

Figure 7. Test results for the ECA precipitation series. Station dots are scaled with the number of tests that detected breaks in precipitation
series at the 1% significance level. The four tests applied to the annual number of wet days (threshold 1 mm) are the SNHT, the Buishand
range, the Pettitt, and the Von Neumann ratio test. The classification is indicated in the legend. Left: 1901–99 (stations with at least 79

observation years). Right: 1946–99 (stations with at least 43 observation years)

Table II. As Table I, but for precipitation. The testing variable is the wet day count (threshold 1 mm)

Period Class 1
‘useful’

Class 2
‘doubtful’

Class 3
‘suspect’

Total number of
station series

1901–99 66 (75%) 10 (11%) 12 (14%) 88 (100%)
1946–99 156 (87%) 7 (4%) 17 (9%) 180 (100%)
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6.3. Comparison with metadata

For temperature, the cause of about 65% of the breaks detected in station series labelled class 2 ‘doubtful’
or class 3 ‘suspect’ in the period 1946–99 can be traced back from historic metadata information. About 15%
of the breaks appear to be related to known climate variations, whereas the remaining 20% of the breaks
could not be explained from metadata or climate variations.

The most frequent change in observational routine documented in the metadata is station relocation, but
changes in observing practice and measuring technique (including changing instrument exposure) do occur
as well. Although we did not include these series in our first analysis (Klein Tank and Können, 2003), they
are good candidates for correction and hence promotion to a more reliable category.

The breaks that are triggered by true local climate variations, rather than by inhomogeneities, are identified
on the basis of the expert judgment of the participants in the ECA project (Klein Tank et al., 2002). These series
can be considered for studying trends and variability in weather extremes, despite their poor classification. A
prominent example is the temperature series of the coastal station Oksøy-Fyr in Norway, which was assigned
to the class ‘suspect’ (all four tests agreed at the 1% level for the mDTR), even though this station was not
subject to any change in observational routine. The temperature series of this station is very sensitive to the
statistical tests because of its very low temperature variability. Another example refers to the clustering of
stations labelled ‘suspect’ in central Europe, an effect that is likely caused by a real regional climate variation
in that area (e.g. Brázdil et al. (1996)).

For precipitation, about 90% of the breaks detected in station series labelled class 2 or 3 in the period
1946–99 can be traced back from historic information. No explanation could be found for the remaining
10%. The breaks detected around 1950 and 1965 in the station series of the eastern part of Europe can
be understood from the analysis of the metadata of these stations as performed by Groisman et al. (1991).
The most important observational changes in the former Soviet Union station series they mention is the
introduction of a new wind shield around 1950 and a change in ‘wetting’ correction in 1966–67. Consistent
with their findings, we find that the series are more strongly affected in the winter season than in the summer
season, as solid precipitation gives rise to larger inhomogeneities than liquid precipitation.

7. DISCUSSION

We were able to detect inhomogeneities in the ECA daily temperature and precipitation series effectively
by testing series of two DTR variables and of the number of wet days (threshold 1 mm). The test results
were then condensed in a three-class system with categories termed ‘useful’, ‘doubtful’ and ‘suspect’. So
far, for the series labelled ‘doubtful’ or ‘suspect’, about 65% of the statistically detected inhomogeneities in
the temperature series and about 90% in the precipitation series could be explained by metadata. Although
the hybrid test method described in this paper may not account for all kinds of inhomogeneities, the most
severe step-wise discontinuities in the temperature series are recognized. Nevertheless, care has to be taken
when doing trend analysis on station series that are prone to urbanization effects, i.e. gradual changes due
to non-climatic causes. For precipitation, with its higher variability, fewer breaks can be detected. In trend
studies, this shortcoming is compensated by the fact that possibilities for trend detection in these series are
also reduced.

Because of the sparse density of the ECA station network, absolute tests were applied rather than relative
tests, i.e. testing station series relative to neighbouring baseline series. For the precipitation series, this seems
a good choice, given the fact that the detected inhomogeneities are mostly caused by simultaneous changes
in the observational network for which relative tests are insensitive. For the temperature series, absolute tests
are less preferable as they tend not to discriminate breaks from climate variations. We found that we could
overcome this problem by choosing DTR-related parameters as testing variables rather than mean temperature.
However, when more station series become available in the ECA dataset, relative tests should then be able
to play an increasingly important role in the homogeneity evaluation as an intermediate step towards the
application of methods developed for testing daily resolution temperature and precipitation series.
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The most frequently encountered causes for the breaks detected in the temperature series were station or
instrument relocations, changing observing practices and measuring techniques. Our station example shows
that such discontinuities are difficult to detect in the annual means of temperature. It was found that the DTR
variables are capable of detecting these inhomogeneities in temperature series. For precipitation, the main
causes of the breaks detected are simultaneous changes in the measuring technique. Our method, with testing
variable the wet day count (threshold 1 mm), effectively detected these breaks. The choice of the threshold
value could be the subject of debate. We adopted the 1 mm value since (a) within the main ECA goal of
studying wet extremes, detection of inhomogeneities due to very low daily amounts is not pursued, and (b) a
threshold much higher than 1 mm results in a testing variable series having too few annual counts.

Making adjustments to inhomogeneous series could be a method of improving the series in the ECA dataset.
However, we did not try to adjust the daily series for the inhomogeneities detected. Adjusting on a daily
basis is not straightforward, and needs a very careful approach. The development of adjustment techniques,
as well as robust homogeneity tests for daily series, is still in its infancy. Promising techniques may include
information from parallel measurements and other weather variables, such as cloud cover and wind data
(Brandsma, 2001). All these efforts should be carefully evaluated when considered as part of the future work
following our explorative study.

Historic metadata support is essential for evaluating the breaks detected and for any future attempt to
correct series for these breaks. Unfortunately, these metadata are not always readily available. Effort should
be put into constructing an extensive metadata file to enhance further the usefulness of the ECA dataset and
similar datasets for climate research. This file should at least comprise the most important information on
observational changes. In fact, responsible national institutes are increasingly coming to realize that conserving
and disclosing the practices of observation are very important in climate research.

Although the need for high-quality meteorological observations for climate analysis is increasingly being
recognized, the quality of the recent observations in the ECA series is not superior to the early observations.
Tuomenvirta (2001) even reported in Nordic series as many breaks in recent decades as in earlier ones. Given
the introduction of automated weather stations throughout Europe, it is likely that the Nordic situation is typical
of other European countries. This implies that continuing efforts are necessary to maintain and improve the
operation of observational networks and that care has to be taken with automation of observations with respect
to time series homogeneity (WMO, 2002).
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APPENDIX A

Yi (i is the year from 1 to n) is the annual series to be tested, Y is the mean and s the standard deviation.

Standard normal homogeneity test

Alexandersson (1986) describes a statistic T (k) to compare the mean of the first k years of the record with
that of the last n − k years:

T (k) = kz2
1 + (n − k)z2

2 k = 1, . . . , n

where

z1 = 1

k

k∑

i=1

(Yi − Y )/s and z2 = 1

n − k

n∑

i=k+1

(Yi − Y )/s
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If a break is located at the year K , then T (k) reaches a maximum near the year k = K . The T (k) is depicted
in the graphs representing the results of this test. The test statistic T0 is defined as:

T0 = max
1≤k<n

T (k)

The test has further been studied by Jarušková (1994). The relationship between her test statistic T (n) and
T0 is

T0 = n(T (n))2

n − 2 + (T (n))2

The null hypothesis will be rejected if T0 is above a certain level, which is dependent on the sample size.
Critical values are given in Table III.

Buishand range test

In this test, the adjusted partial sums are defined as

S∗
0 = 0 and S∗

k =
k∑

i=1

(Yi − Y) k = 1, . . . , n

When a series is homogeneous the values of S∗
k will fluctuate around zero, because no systematic deviations

of the Yi values with respect to their mean will appear. If a break is present in year K , then S∗
k reaches a

maximum (negative shift) or minimum (positive shift) near the year k = K . The (S∗
k/s)/

√
n is depicted in

the graphs representing the results of this test. The significance of the shift can be tested with the ‘rescaled
adjusted range’ R, which is the difference between the maximum and the minimum of the S∗

k values scaled
by the sample standard deviation:

R = ( max
0≤k≤n

S∗
k − min

0≤k≤n
S∗

k )/s

Buishand (1982) gives critical values for R/
√

n (see Table IV).

Pettitt test

This test is a non-parametric rank test. The ranks r1, . . . , rn of the Y1, . . . , Yn are used to calculate
the statistics:

Xk = 2
k∑

i=1

ri − k(n + 1) k = 1, . . . , n

The Xk is depicted in the graphs representing the results of this test.
If a break occurs in year E, then the statistic is maximal or minimal near the year k = E:

XE = max
1≤k≤n

|Xk|

The significance level is given by Pettitt (1979). Critical values for XE are given in Table V.

Von Neumann ratio

The von Neumann ratio N is defined as the ratio of the mean square successive (year to year) difference
to the variance (Von Neumann, 1941):

N =
n−1∑

i=1

(Yi − Yi+1)
2/

n∑

i=1

(Yi − Y)2
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Table III. 1% critical values for the statistic T0 of the single shift SNHT as a function of n (calculated from the simulations
carried out by Jarušková (1994)) and the 5% critical value (Alexandersson and Moberg, 1997)

n 20 30 40 50 70 100

1% 9.56 10.45 11.01 11.38 11.89 12.32
5% 6.95 7.65 8.10 8.45 8.80 9.15

Table IV. 1% and 5% critical values forR/
√

n of the Buishand range test as a function of n (Buishand, 1982); the value
of n = 70 is simulated

n 20 30 40 50 70 100

1% 1.60 1.70 1.74 1.78 1.81 1.86
5% 1.43 1.50 1.53 1.55 1.59 1.62

Table V. 1% and 5% critical values for XE of the Pettitt test as a function of n; values are based on simulation

n 20 30 40 50 70 100

1% 71 133 208 293 488 841
5% 57 107 167 235 393 677

Table VI. 1% and 5% critical values for N of the Von Neumann ratio test as a function of n. For n ≤ 50 these values
are taken from Owen (1962); for n = 70 and n = 100 the critical values are based on the asymptotic normal distribution

of N (Buishand, 1981)

n 20 30 40 50 70 100

1% 1.04 1.20 1.29 1.36 1.45 1.54
5% 1.30 1.42 1.49 1.54 1.61 1.67

When the sample is homogeneous the expected value is N = 2. If the sample contains a break, then the value
of N tends to be lower than this expected value (Buishand, 1981). If the sample has rapid variations in the
mean, then values of N may rise above two (Bingham and Nelson, 1981). This test gives no information
about the location of the shift. Table VI gives critical values for N .
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