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Abstract. This paper presents compiler technology that targets gen-
eral purpose microprocessors augmented with SIMD execution units for
exploiting data level parallelism. Numerical applications are accelerated
by automatically vectorizing blocks of straight line code to be run on
processors featuring two-way short vector SIMD extensions like Intel’s
SSE 2 on Pentium 4, SSE 3 on Intel Prescott, AMD’s 3DNow! , and IBM’s
SIMD operations implemented on the new processors of the BlueGene/L
supercomputer.
The paper introduces a special compiler backend for Intel P4’s SSE 2
and AMD’s 3DNow! which is able (i) to exploit particular properties of
FFT code, (ii) to generate optimized address computation, and (iii) to
perform specialized register allocation and instruction scheduling.
Experiments show that the automatic SIMD vectorization techniques of
this paper enable performance of hand optimized code for key bench-
marks. The newly developed methods have been integrated into the
codelet generator of Fftw and successfully vectorized complicated code
like real-to-halfcomplex non-power of two FFT kernels. The floating-
point performance of Fftw’s scalar version has been more than doubled,
resulting in the fastest FFT implementation to date.

1 Introduction

Major vendors of general purpose microprocessors have included short vector
single instruction multiple data (SIMD) extensions into their instruction set
architecture to improve the performance of multimedia applications by exploiting
data level parallelism. The newly introduced instructions have the potential for
outstanding speed-up, but they are difficult to utilize using standard algorithms
and general purpose compilers.

Recently, a new software paradigm emerged in which optimized code for
numerical computation is generated automatically [4,9]. For example, Fftw
has become the de facto standard for high performance FFT computation. The
current version of Fftw includes the techniques presented in this paper to utilize
SIMD extensions.
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This paper presents compiler technology for automatically vectorizing numer-
ical computation blocks as generated by automatic performance tuning systems
like Fftw, Spiral, and Atlas. The blocks to be vectorized may contain load
and store operations, index computation, as well as arithmetic operations.

In particular, the paper introduces a special compiler backend which gener-
ates assembly code optimized for short vector SIMD hardware. This backend is
able to exploit special features of straight-line FFT code, generates optimized
address computation, and applies additional performance boosting optimization.

The newly developed methods have been integrated into Fftw’s codelet gen-
erator yielding Fftw-Gel [6], a short vector SIMD version of Fftw featuring
outstanding floating-point performance (see Section 5).

Related Work. Established vectorization techniques mainly focus on loop-
constructs. For instance, Intel’s C++ compiler and Codeplay’s VectorC com-
piler are able to vectorize loop code for both integer and floating-point short
vector extensions.

An upgrading to the SUIF compiler that vectorizes loop code for MMX is
described in [11].

A Spiral based approach to portably vectorize discrete linear transforms
utilizing structural knowledge is presented in [2].

A vectorizing compiler exploiting superword level parallelism (i. e., SIMD
style parallelism) has been introduced in [8]. IBM’s XL C compiler for Blue-
Gene/L [13] utilizes this vectorization technique.

Intel’s math kernel library (MKL) and performance primitives (IPP) both
support SSE and SSE 2 available on Pentium III and 4 processors and the
Itanium processor family, as well as the new SSE 3 on Intel Prescott.

A backend for straight-line code targeting MIPS processors is presented in [5].

2 FFTW for Short Vector Extensions: FFTW-GEL

Fftw-Gel 1 is an extended version of Fftw that supports two-way short vector
SIMD extensions (see Fig. 1).

FFTW is an automatic FFT code generator based on a recursive implemen-
tation of the Cooley-Tukey FFT algorithm. Fftw uses dynamic programming
with measured run times as cost function to find a fast implementation for a
given problem size on a given machine.

Fftw consists of the following parts: Planner and executor provide for the
adaptation of the FFT computation to the target machine at runtime while
the actual computation is done within routines called codelets. Codelets are
generated by the codelet generator genfft, a special purpose compiler.

Within the codelets a variety of FFT algorithms is used, including the Cooley-
Tukey algorithm, the split radix algorithm, the prime factor algorithm, and the
Rader algorithm.
1 available from http://www.fftw.org/˜skral
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The compiler techniques presented in this paper were used to extend Fftw’s
codelet generator to produce vectorized codelets. These vectorized codelets are
compatible with Fftw’s framework and thus can be used instead of the original
codelets on machines featuring two-way short vector SIMD extensions. That way
Fftw’s core routines are sped up while all features of standard Fftw remain
supported.

Short Vector SIMD Extensions. Examples of two-way short vector SIMD
extensions supporting both integer and floating-point operations include Intel’s
streaming SIMD extensions SSE 2 and SSE 3, AMD’s 3DNow! family, as well as
IBM’s PowerPC 440d processors in BlueGene/L supercomputers.

Double-precision short vector SIMD extensions paved the way to high per-
formance scientific computing. However, special code is needed as conventional
scalar code running on machines featuring these extensions utilizes only a small
fraction of the potential performance.

Short vector SIMD extensions are advanced architectural features which are
not easily utilized for producing high performance codes. Currently, two ap-
proaches are commonly used to utilize SIMD instructions.
Vectorizing Compilers. The application of compiler vectorization is restricted to
loop-level parallelism and requires special loop structures and data alignment.
Whenever the compiler cannot prove that a loop can be vectorized optimally
using short vector SIMD instructions, it has to resort to either emitting scalar
code or to introducing additional code to handle special cases.
Hand-Coding. Compiler vendors provide extensions to the C language (data
types and intrinsic or built-in interfaces) to enable the direct use of short vector
SIMD extensions from within C programs. Of course, assembly level hand-coding
is unavoidable if there is no compiler support.

2.1 FFTW-GEL

Both vectorizing compilers and hand-coding are not directly applicable to gen-
erate vectorized Fftw codelets to replace the standard codelets. Due to its
internal structure, Fftw cannot be vectorized using compilers focusing on loop
vectorization. Fftw automatically generates code consisting of up to thousands
of lines of numerical straight-line code. Accordingly, such basic blocks have to
be vectorized rather than loops.

Besides, large codelets are favored over smaller codelets used in loop bodies in
the creation of Fftw plans as they feature less reorder operations. Therefore, the
automatic vectorization of large basic blocks is an important task. Vectorizing
them by hand is generally unfeasible as the instruction counts in Fig. 2 illustrate.

Fftw-Gel comprises an extended, architecture-specific version of Fftw’s
genfft, supporting two-way short vector SIMD extensions. Moreover, it includes
a special compiler backend for x86 architectures which generates assembly code
optimized for short vector SIMD hardware. This backend is able to exploit special
features of straight-line FFT code, generates optimized address computation,
and applies additional performance boosting optimization.
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Fig. 1. FFTW-GEL’s Ar-
chitecture. Automatically
generated FFT DAGs are
vectorized and optimized.

FFTW-GEL’s Architecture. Fig. 1 illustrates
the various levels of optimization performed by
Fftw-Gel.

Vectorization of Scalar Straight-Line Code. Within
the context of Fftw, codelets do the bulk of the
computation. The challenge addressed by the vec-
torizer is to extract parallelism out of of this se-
quences of scalar instructions while maintaining
data locality and utilizing special features of 2-way
short vector SIMD extensions.

Optimization of Vectorized Code. Optimizer I com-
prises a local rewriting system using a set of rules
to optimize the DAG of SIMD instructions obtained
from the vectorizer.

Assembly Backend for Straight-Line Code. The
backend uses (i) efficient methods to compute effec-
tive addresses, (ii) a register allocator, (iii) an in-
struction scheduler, (iv) an optimizer for in-memory
operands, (v) a register reallocator, and (vi) address
generation interlock (AGI) prevention for code size
reduction.

The register reallocator, the direct use of in-
memory operands, and other optimization tech-
niques and methods, are executed in a feedback
driven optimization loop to further improve the op-
timization effect.

3 Vectorization of Scalar Straight-Line Code

This section introduces Fftw-Gel [7], a vectorizer that automatically extracts
2-way SIMD parallelism out of a sequence of operations from static single as-
signment (SSA) straight-line code while maintaining data locality and utilizing
special features of short vector SIMD extensions.

Fftw-Gel produces vectorized code either (i) via a source-to-source trans-
formation delivering macros compliant with the portable SIMD API [14] and
additionally providing support for FMA instructions, or (ii) via a source-to-
assembly transformation utilizing the Fftw-Gel backend of Section 5.

3.1 The Vectorization Approach

The vectorizer aims at vectorizing straight-line code containing arithmetic op-
erations, array access operations and index computations. Such codes cannot be
handled by established vectorizing compilers mainly focussing on loop vector-
ization [15]. Even standard methods for vectorizing straight-line code [8] fail in
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producing high performance vector code as well. Fftw-Gel’s vectorizer uses a
backtracking search engine to automatically extract 2-way SIMD parallelism out
of scalar code blocks by fusing pairs of scalar temporary variables into SIMD
variables, and by replacing the corresponding scalar instructions by vector in-
structions as illustrated by Table 1.

Table 1. 2-way Vectorization.
Two scalar add instructions are
transformed into a vector vadd in-
struction. The result of the vector
addition of the fusions AD and BE is
stored in CF.

⇒

add(A,B,C) ⇒ vadd(AD,BE,CF)
add(D,E,F)

Tuples of scalar variables, i. e., fusions, are
declared such that every scalar variable ap-
pears in exactly one of them. Each fusion is
assigned one SIMD variable.

On the set of SIMD variables, SIMD in-
structions have to perform exactly the same
computation as the originally given scalar in-
structions do on the scalar variables. This is
achieved by rules specifying how each pair of
scalar instructions is replaced by a sequence
of semantically identical SIMD instructions
operating on the corresponding SIMD vari-
ables.

Rules for pairs of scalar binary instruc-
tions allow up to three different, semantically
equivalent ways to do so. Locally, this allows vectorizations of different efficiency.
Globally, it widens the search space of the vectorizer’s backtracking search en-
gine.

The vectorizer’s goal is to yield an optimal utilization of SIMD resources.
This target and the fact that the backtracking engine uses a pick first result
strategy to minimize vectorization runtime does not necessarily lead to the best
possible vectorization in terms of an overall minimum of SIMD instructions but
allows the vectorization of large Fftw codelets (see Table 2).
Fftw-Gel’s vectorizer utilizes an automatic fallback to different vectorization
levels in its vectorization process. Each level provides a set of pairing rules with
different pairing restrictions. Thus, more restrictive rules are just applied to
highly parallel codes resulting either in efficient vectorization or no vectorization
at all. Less restrictive rules address a broader range of codes but result in less
efficient vectorization.

This concept assists the searching for good vectorizations needing a minimum
of data reorganization, provided such vectorizations exist. The fallback to a less
restrictive vectorization level allows to vectorize even codes featuring less parallel
parts to some extent.

Virtual Machine Models. To keep the amount of hardware specific details
needed in the vectorization as small as possible, virtual machine models are
introduced.

The virtual machine models used in the vectorizer are abstractions of scalar
as well as 2-way SIMD architectures, i. e., the vectorizer transforms virtual scalar
to virtual 2-way SIMD instructions. These are rewritten into 2-way SIMD in-
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structions actually available in a specific architecture’s instruction set in an
optimization process, directly following the vectorization.

3.2 The Vectorization Engine

The input of the vectorization engine is a scalar DAG representing straight-line
code of virtual scalar instructions in SSA form. In the vectorization engine all
virtual scalar instructions are replaced by virtual SIMD instructions.

The vectorization algorithm described in the next section utilizes the infras-
tructure provided by Fftw-Gel’s vectorization engine. To describe the concepts
of the vectorization engine, some definitions and explanations are provided.

Pairing. Pairing rules specify ways of transforming pairs of scalar instructions
into a single SIMD instruction or a sequence of semantically equivalent SIMD
instructions. A pairing rule often provides several alternatives to do so. The rules
used in the vectorizer are classified according to the type of the scalar instruction
pair: unary (i. e., multiplication by a constant), binary (i. e., addition and sub-
traction), and memory access type (i. e., load and store instructions). Pairings of
the following instruction combinations are supported: (i) consecutive load/load,
(ii) arbitrary load/load, (iii) consecutive store/store, (iv) arbitrary store/store,
(v) unary/unary, (vi) binary/binary, (vii) unary/binary, (viii) unary/load, and
(ix) load/binary. Not all of the above pairing combination allow for an optimal
utilization of SIMD resources.

A pairing ruleset comprises various pairing rules. At the moment, the pairing
ruleset does not comprise a rule for vectorizing an odd number of scalar store
instructions.

Two scalar instructions are vectorized, i. e., paired, if and only if neither of
them is already paired and the instruction types are matching a pairing rule
from the utilized pairing rule set.

Fusion. Two scalar operands S and T are assigned together, i. e., fused, to form
a SIMD variable of layout ST = (S,T) or TS = (T,S) if and only if they are
the corresponding operands of instructions considered for pairing and neither of
them is already involved in another fusion. The position of the scalar variables
S and T inside a SIMD variable (either as its lower or its higher part) strictly
defines the fusion, i. e., ST �= TS. A special fusion, i. e., TT = (T,T), is needed
for some types of code partly containing non-parallel program flow.

An instruction pairing rule forces the fusion layout for the corresponding
scalar operands. For two scalar binary instructions, three substantially different
layouts for assigning the four operands to two SIMD variables exist, namely
(i) accumulate (ii) parallel 1, and (iii) parallel 2.

A fusion X12 = (X1,X2) is compatible to another fusion Y12 = (Y1,Y2) if
and only if X12 = Y12 or X1 = Y2 and X2 = Y1. In the second case, a swap oper-
ation is required as and additional “special transformation” to use Y12 whenever
X12 is needed. The number of special transformations is minimized in a separate
optimization step to minimize the runtime of the vectorization process. Section 4
describes this along other optimization techniques in more detail.
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Vectorization Levels. A vectorization level embodies a subset of rules from the
overall set of pairing rules. Different subsets belonging to different levels comprise
pairing rules of different versatility. Generally, more versatile rule sets lead to less
efficient vectorization but allow to operate on codes featuring less parallelism. In
contrast, less versatile rule sets are more restrictive in their application and are
thus only usable for highly parallel codes. They assure that if a good solution
exists at all, it is found resulting in highly performant code.

The vectorization engine utilizes three levels of vectorization in its search
process as follows: First, a vectorization is sought that utilizes the most restric-
tive level, i. e., full vectorization. This vectorization level only provides pairing
rules for instructions of the same type and allows quadword memory access op-
erations exclusively. If full vectorization is not obtainable, a fallback to a less
restrictive vectorization level, i. e., semi vectorization, is made. This level pro-
vides versatile pairing rules for instructions of mixed type and allows doubleword
memory access operations. In the worst case, if neither semi vectorization nor
full vectorization is feasible, a fallback is made to a vector implementation of
scalar code, i. e., null vectorization is applied. Null vectorization rules allow to
vectorize any code by leaving half of each SIMD instruction’s capacity unused.
Even null vectorization results in better performance than using legacy x87 code.
Besides, null vectorization is used as default, without trying full and semi vec-
torization, when it is known in advance that vectorization is impossible because,
e. g., of an odd number of scalar store instructions, etc.

3.3 The Vectorization Algorithm

Fftw-Gel’s vectorization algorithm implements a depth first search with
chronological backtracking. The search space is given by appying rules given
by the current vectorization level in an arbitrary order. Depending on how ver-
satile/restrictive the utilized pairing rule set is, there can be many, one or no
possible solution at all.

The vectorization algorithm performs the following steps:

Step 1: Initially, no scalar variables are fused and no scalar instructions are
paired. The process starts by pairing two arbitrary store instructions and fus-
ing the corresponding source operands. Should the algorithm backtrack without
success, it tries possible pairings of store instructions, one after the other.

Step 2: Pick an existing fusion on the vectorization path currently being pro-
cessed, whose two writing instructions have not yet been paired. As the scalar
code is assumed to be in SSA form, there is exactly one instruction that uses
each of the fusion’s scalar variables as its destination operand. According to the
vectorization level and the type of these instructions, an applicable pairing rule
is chosen. If all existing fusions have already been processed, i. e., the dependency
path has been successfully vectorized from the stores to all affected loads, start
the vectorization of another dependency path by choosing two remaining stores.
If all stores have been paired and no fusions are left to be processed, a solution
has been found and the algorithm terminates.
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Step 3: According to the chosen pairing rule, fuse the source operands of the
scalar instructions if possible (i. e., none of them is already part of another fusion)
or, if a compatible fusion exists use it instead.

Step 4: Pair the chosen instructions, i. e., substitute them by one or more ac-
cording SIMD instructions.

Step 5: If a fusion or pairing alternative does not lead to a valid vectorization,
choose another pairing rule. If none of the applicable rules leads to a solution,
fail and backtrack to the most recent vectorization step.

Steps 2 to 5 are iterated until all scalar instructions are vectorized, possibly
requiring new initialization carried out by Step 1 during the search process. If
the search process terminates without having found a result, a fallback to the
next more general vectorization level is tried, leading to null vectorization in the
worst case.

If a given rule set is capable of delivering more than one valid solution, the order
in which the pairing rules are tested is relevant for the result. This is used to
favor specific kinds of instruction sequences by ranking the corresponding rules
before the others. For instance, the vectorization engine is forced first to look
for instructions implementing operation semantics directly supported by a given
architecture, thus minimizing the number of extracted virtual instructions that
have to be rewritten in the optimization step.

Table 2 shows runtimes of the vectorization algorithm for some representative
Fftw codelets. Even large codelet, e. g., n = 256, can be vectorized in a few
seconds.

Table 2. Vectorization Runtimes. The table shows instruction counts as well as
vectorization runtimes in seconds for various twiddle complex-to-complex, no-twiddle
complex-to-complex, and real-to-halfcomplex Fftw codelets. The vectorization algo-
rithm has been implemented in Objective Caml. The runtimes have been determined
using Objective Caml v3.06 with native-code compilation on an 800 MHz AMD K7
processor.

Code Name Loads/Stores Adds+Subs Muls Vectorization Runtime
frc 32 32/32 156 42 <.1s
frc 30 30/30 158 56 5.6s
ftw 17 66/34 328 180 <.1s
fn 128 256/256 2164 660 0.7s
fn 256 512/512 5008 1656 2.2s

4 Optimization of Vectorized Code

After the vectorizer terminates successfully by delivering a vectorization of the
scalar DAG, Optimizer I performs several simple improvements to the resulting
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code. For that purpose, a rewriting system is used to simplify combinations of
virtual SIMD instructions, also with regard to target architecture specifications.

The first group of rewriting rules that is applied aims at (i) minimizing the
number of instructions, (ii) eliminating redundancies and dead code, (iii) re-
ducing the number of source operands (copy propagation), and (iv) performing
constant folding. The critical path length of the DAG is shortened by exploiting
specific properties of the target instruction set. Finally, the number of source
operands necessary to perform an operation is reduced, thus minimizing register
pressure.

The second group of rules is used to rewrite virtual instructions into combina-
tions of (still virtual) instructions actually supported by the target architecture.

In a third and last step the Optimizer I schedules and topologically sorts
the instructions of the vectorized DAG. The scheduling algorithm minimizes
the lifespan of variables by improving the locality of variable accesses. It is an
extension of Fftw 2.1.3’s scheduler.

The code output by Optimizer I consists of instructions out of a subset of
the virtual SIMD instruction set that corresponds to the target architecture.

5 Assembly Backend for Straight-Line Code

The Fftw-Gel backend [7] introduced in this section generates assembly code
optimized for short vector SIMD hardware. It is able to exploit special features
of automatically generated straight-line codes. The backend currently supports
assembly code for x86 with 3DNow! or SSE2.

The automatically generated codes to be translated are large blocks of SSA
code with the following properties: (i) there is no program control flow except the
basic block’s single point of entry and exit, (ii) there is full knowledge of future
temporary variable usage, (iii) there are indexed memory accesses possibly with
a stride as runtime parameter, and (iv) loads from and stores to data vector
elements are performed only once.

Standard backends fail to compile such blocks of SSA code to performant
machine code as they are targeted at a broad range of structurally different
hand-written codes lacking the necessary domain specific meta information men-
tioned above. Thus, standard backends fail in register allocation when too many
temporary variables are to be assigned to a small number of registers and they
also have trouble with efficient calculation of effective addresses.

5.1 Optimization Techniques Used In FFTW-GEL

The Fftw-Gel backend performs optimization in both an architecture specific
and a processor specific way.

In particular, (i) register allocation, (ii) computation of effective addresses,
(iii) usage of in-memory operands, and (iv) the register reallocator are optimiza-
tions with respect to an architecture’s instruction set. (v) Instruction scheduling
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and (vi) AGI prevention is done specifically for the target processor in the last
optimization step.

Architecture specific optimization takes into account very general properties
of the target processor family. These are (i) the number of available physical
registers, and (ii) instruction set specific properties, e. g., x86 instruction forms,
and special x86 instructions, e. g., lea.

Processor families, all of whose members support one and the same instruc-
tion set, may still have different instruction latencies and throughput. Therefore,
processor specific optimization has to take the execution properties of any spe-
cific processor into account. These properties are provided by processor-specific
execution models specifying (i) how many instructions can be issued per clock
cycle, (ii) the latency of each instruction, (iii) the execution resources required
by each instruction, and (iv) the overall available resources.

5.2 One-Time Optimization

Register allocation, computation of effective addresses, and avoidance of address
generation interlocks are optimization techniques performed only once.

Register Allocation for Straight-Line Code. The register allocator’s input
code contains vector computation as well as its integer address computation
accessing input and output arrays in memory. Thus, registers have to be allocated
for both register types assuming two different target register files.

The codes are in SSA form and thus only one textual definition of a variable
exists. There is no control flow either. As a consequence of these properties, it
is possible to evaluate the effective live span of each temporary variable, and
thus, a farthest first algorithm [12] can be used as a spilling scheme that tries
to find a spill victim in the following order: (i) take a fresh physical register
if available, (ii) choose among the dead registers the one which has been dead
for the longest time, and finally if no register of any other kind is available,
(iii) choose the register whose usage is ahead furthermost.

General purpose compilers cannot apply the farthest first algorithm in their
spilling schemes as they also address codes possibly containing complex control
flow structures not allowing to precisely determine the life span of each tempo-
rary variable.

Optimized Index Computation. Fftw codelets operate on arrays of
input and output data not necessarily stored contiguously in memory.
Thus, access to element in[i] may result in a memory access at address
in + i*sizeof(in)*stride. Both in and stride are parameters passed from
the calling function.

All integer instructions, except the few ones used for parameter passing, are
used for calculating effective addresses. For a codelet of size N , the elements
in[i] with i = 0, 1, . . . , N − 1 are accessed exactly once. Still, the quality of
code dealing with address computation is crucial for achieving a satisfactory
performance.
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Instead of using general integer multiplication instructions (imull, etc.), it
has been demonstrated to be advantageous to utilize (i) equivalent sequences of
simpler instructions (add, sub, shift) which can be decoded faster, have shorter
latencies, and are all fully pipelined, and (ii) instructions with implicit integer
computation, like the lea instruction. Moreover, (iii) reusing the content of
integer registers using the integer register file is beneficial to avoid costly integer
multiplications as far as possible.

The Load Effective Address Instruction. The generation of code sequences
for calculating effective addresses is intertwined with the register allocation pro-
cess. On x86 compatible hardware architectures, the basic idea to achieve an
efficient computation of effective array addresses is to use the powerful lea in-
struction which combines up to two adds and one shift operation in one in-
struction: base + index*scale + displacement. This operation can be used
to quickly calculate addresses of array elements and therefore is a cheap alter-
native to general multiplication instructions.

Whenever the register allocator needs to emit code for the calculation of an
effective address, the (locally) shortest possible sequence of lea instructions is
determined by depth-first iterative deepening (DFID) with a target architecture
specific depth limit (e. g., 3 for the AMD K7). As the shortest sequences tend to
eagerly reuse already calculated contents of the integer register file, a replacement
policy based on the least recently used (LRU) heuristic is employed for integer
registers.

The generation of code sequences for calculating effective addresses is inter-
twined with the register allocation process.

Example 1 (Efficient Computation of 17*stride). The lea instruction is used to
compute 17*stride from the current entries of the integer register file. In this
example all required operands already reside in the register file providing three
different ways of computing the result. The entries in the register file and the
respective lea instructions are displayed below.

Integer Register File
eax stride*3 ebx stride*5
edx stride*1 esp stride*4
esi stride*9 edi stride*-1

LEA Instructions
lea ecx, [ebx + 4*eax]
lea ecx, [edi + 2*esi]
lea ecx, [edx + 4*esp]

Result
(5 + 4 ∗ 3) ∗ stride
(−1 + 2 ∗ 9) ∗ stride
(1 + 4 ∗ 4) ∗ stride

Avoiding Address Generation Interlocks. Memory access operations do
not have WAW dependencies in the straight-line FFT codes of this paper as writ-
ing to a specific memory location happens only once. Thus, any order of memory
instructions obeys the given program semantics. This enables the Fftw-Gel
backend to reorder store instructions to resolve address generation interlocks
(AGIs). AGIs occur whenever a memory operation involving some expensive ef-
fective address calculation directly precedes a memory operation involving inex-
pensive address calculation or no address calculation at all. Generally, as there is
no knowledge whether there are WAW dependencies between memory accessing
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instructions or not in the codes, the second access is stalled by the computation
of the first access’ effective address. Example 2 illustrates the prevention of an
AGI.

Example 2 (Address Generation Interlock). A write operation to out[17] is di-
rectly preceding a write operation to out[0] in the assumed code. As hardware
requires an in-order memory access, writing to out[0] requires a completed writ-
ing to out[17] and thus the computation of the effective address of out[17].
Both would stall write to out[0]. By knowing that there are no WAW depen-
dencies between out[0] and out[17], these operations are swapped. The write
to out[0] is done concurrently to computing the effective address of out[17]
and thus its writing is not stalled.

addr = 17 ∗ stride; addr = 17 ∗ stride;
out[addr] = temp0; −→ out[0] = temp1;
out[0] = temp1; out[addr] = temp1;

AGI prevention is performed as Fftw-Gel’s last optimization after the feedback
driven optimization loop.

5.3 Feedback Driven Optimization

Instruction scheduling, direct use of in-memory operands, and register realloca-
tion are executed in a feedback driven optimization loop to further improve the
optimization effect. The instruction scheduler serves as a basis for estimating
the runtime of the entire basic block. As long as the code’s estimated execution
time can be improved, the feedback driven optimizations are executed.

Basic Block Instruction Scheduling. The instruction scheduler of the
Fftw-Gel backend aims at single basic blocks. It uses a standard list schedul-
ing algorithm [10,12]. The processor’s execution behavior (latencies, etc.) and
resources (issue slots, execution units, ports) are taken into account. These prop-
erties are provided by externally specified processor execution models, currently
available for Intel’s Pentium 4 and AMD’s K6 and K7.

Direct Usage Of In-Memory Operands. The Fftw-Gel backend enables
the usage of an in-memory operand instead of registers for an instruction’s source
operand. This is possible as many CISC instruction sets, e. g., x86, allow one
source operand of an instruction to reside in memory. It enables a reduction of
register pressure and a reduction of the total number of instructions by merging
one load and one use instruction into one load-and-use instruction.

Fftw-Gel directly applies in-memory operands if and only if the data is
accessed by only one instruction. This prevents register files from not being fully
utilized and the superfluous loading of data.

This optimization is performed intertwined with the instruction scheduler
and a postprocessing register reallocator.

Register Reallocation. Register allocation and instruction scheduling have
conflicting goals. As the register allocator tries to minimize the number of reg-
ister spills, it prefers introducing a false dependency on a dead logical register
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over spilling a live logical register. The instruction scheduler, however, aims at
the maximization of the pipeline usage of the processor, by spreading out the
dependent parts of code sequences according to the latencies of the respective
instructions.

As Fftw-Gel performs register allocation before doing instruction schedul-
ing, it is clear that the false dependencies introduced by the register allocator
severely reduce the number of possible choices of the instruction scheduler.

To address this problem, the register reallocator tries to lift some (too restric-
tive) data dependencies introduced by the register allocator (or by a previous
pass of register reallocation), enabling a following pass of the instruction sched-
uler to do a better job. The register reallocator renames all logical SIMD registers
using a least-recently-used (LRU) heuristic.

6 Experimental Results

Numerical experiments were carried out to demonstrate the applicability and
the performance boosting effects of the newly developed compiler techniques [7].

Fftw-Gel was investigated on two IA-32 compatible machines: (i) An Intel
Pentium 4 featuring SSE 2 two-way double-precision SIMD extensions [7], and
(ii) an AMD Athlon XP featuring 3DNow! professional two-way single-precision
SIMD extensions (see Fig. 2).
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Fig. 2. Floating-point performance of the newly developed K7/Fftw-Gel (3DNow!)
compared to Fftpack and Fftw 2.1.3 on a 1.53 GHz AMD Athlon XP 1800+ carrying
out complex-to-complex FFTs in single-precision. Performance data are displayed in
pseudo-Gflop/s, i. e., 5N log N/T .

Fig. 2 shows the performance of Fftpack, Fftw 2.1.3, and K7/Fftw-Gel
on the Athlon XP in single-precision. The runtimes displayed refer to powers
of two complex-to-complex FFTs whose data sets fit into L2 cache. The newly
developed K7/Fftw-Gel utilizes the enhanced 3DNow! extensions which pro-
vide two-way single-precision SIMD operations. Fftw-Gel is about twice as
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fast as Fftw 2.1.3, which demonstrates that the performance boosting effect of
vectorization and backend optimization is outstanding.

Very recently, experiments were carried out on a prototype of IBM’s Blue-
Gene/L (BG/L) top performance supercomputer. Fig. 3 shows the relative per-
formance of Fftw 2.5.1 no-twiddle codelets.

IBM’s XLC compiler for BlueGene/L using code generation with SIMD vec-
torization and with FMA extraction (using the compiler techniques [8]) some-
times accelerates the code slightly but also slows down the code in some cases.
Fftw-Gel’s vectorization yields speed-up values up to 1.8 for sizes where the
XLC compiler’s register allocator generates reasonable code. For codes with more
than 1000 lines (size 16, 32, 64) the performance degrades because of the lack of
a good register allocation.

XLC
XLC Vectorizer FMA

Fftw-Gel Vectorizer FMA

Speed-up

Vector Length

64321615141312111098765432

2

1

0

Fig. 3. Speed-up of (i) the newly developed BlueGene/L Fftw-Gel vectorizer with
FMA extraction (but without backend optimizations) and (ii) Fftw codelets vector-
ized by XLC with FMA extraction compared to (iii) scalar Fftw codelets using XLC
without FMAs, and without vectorization. The experiment has been carried out running
no-twiddle codelets.

Conclusion

This paper presents a set of compilation techniques for automatically vectorizing
numerical straight-line code. As straight-line code is in the center of all current
numerical performance tuning software, the newly developed techniques are of
particular importance in scientific computing.

Impressive performance results demonstrate the usefulness of the newly de-
veloped techniques which can even vectorize the complicated code of real-to-
halfcomplex FFTs for non-powers of two.
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