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Aperiodic Dynamical
Systems
Krystyna Kuperberg

S
ince the work of Poincaré it has been
known that on every smooth closed man-
ifold M of Euler characteristic zero there
is a nonsingular smooth vector field. The
Euler characteristic equals the alternating

sum of the Betti numbers of M , and it is zero for
all closed odd-dimensional manifolds by a duality
argument. The existence of a nonsingular vector
field implies that there is a fixed-point-free map
homotopic to the identity. Then by the Lefschetz
fixed point formula, the Euler characteristic is
zero. Even-dimensional spheres have Euler char-
acteristic two. Thus no even-dimensional sphere
admits a nonsingular vector field, which in di-
mension two is popularly known as the “hairy-
ball theorem”. It is easy to find specific examples
of nonsingular vector fields on the 3-dimensional
sphere S3. One of the most readily recognized is
a vector field tangent to the fibers of the Hopf fi-
bration, which decomposes S3 into copies of S1.
In Figure 1, S3 is the union of two solid tori D2 × S1

with the boundaries identified, and each of the tori
can be foliated by circles compatibly on the com-
mon boundary of the tori.

Integrating a C1 vector field gives a dynamical
system, or a flow, on a closed manifold M , i.e., an
R-action, where R is the additive group of the
reals. Equivalently, a dynamical system on M is a

map Φ : R×M →M satisfying the following con-
ditions:
1. Φ(0, p) = p ,
2. Φ(t + s, p) = Φ(s,Φ(t, p)).

The map Φ is in general of the same degree of
differentiability as the vector field, although locally
on each trajectory the differentiability increases by
one. The image of each fiber R× {p} is called a tra-
jectory or an orbit. The parameter t is often inter-
preted as time, and the above two conditions
emerge as very natural. The first condition states
that the flow starts from the identity on M at time
t = 0, and the second condition, easily following
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from the integration, is the additive property of
time.

A compact orbit is also called periodic, and it is
either a fixed point or a simple closed curve, a
closed orbit. If the orbit is not compact, then it is
a one-to-one image of R and its topological closure
is the union of orbits; i.e., it is invariant. A dy-
namical system, respectively a vector field, with no
periodic orbits is called aperiodic. For example, the
so-called “irrational flow” on the n -torus
S1 × · · · × S1 , n ≥ 2, has every orbit dense in the
torus, and thus it is aperiodic. A nonempty com-
pact invariant set is minimal if it contains no non-
empty compact invariant proper subset. A minimal
set always exists: it may be a single point, a sim-
ple closed curve, or quite a large set. A dynamical
system is minimal if the only minimal set is the
whole underlying space.

The orbits of the vector field tangent to the
fibers of the Hopf fibration are the fibers them-
selves, and all are periodic. A small tilt of the vec-
tors can easily change the vector field so that there
is only one compact orbit. In 1950 H. Seifert proved
that if V is a C1 vector field on S3 and the angles
between the vectors of V and the circles of the
Hopf fibration are sufficiently small, then there is
at least one periodic orbit.

Seifert’s theorem produced a natural question
as to whether every dynamical system on S3 must
possess a compact orbit. An affirmative answer to
this question became known as the Seifert Con-
jecture, and it was believed until a truly beautiful
counterexample given in 1974 by P. A. Schweitzer

[9]. Schweitzer’s construction of an aperiodic dy-
namical system on S3 is based on the existence of
an aperiodic C1 vector field on the torus S1 × S1

that is not minimal, known as a Denjoy vector
field. There are two minimal sets in Schweitzer’s
vector field on S3: two copies of the Denjoy set,
each embedded in a C∞ punctured torus
(S1 × S1)−D2. It is known that such a vector field
cannot be C2. However, a clever modification by
J. Harrison [2] in 1988, not requiring that the min-
imal sets be embedded in a smooth surface, yields
a C2+δ counterexample to the Seifert Conjecture.
The method used by Harrison puts a natural re-
striction on the differentiability of her example—
it cannot be C3. Neither Schweitzer’s nor Harrison’s
examples resolve a stronger conjecture, the Mod-
ified Seifert Conjecture stated in [9] and [10], as-
serting that: Every dynamical system on S3 has a
minimal set of dimension1 one or zero. The di-
mension of the Denjoy minimal set equals one.

A different approach, explored in [7], launched
another series of aperiodic examples. As in the ex-
amples of Schweitzer and Harrison, a basic build-
ing element is a plug. In a rather intuitive de-
scription, a Cr plug P, r ≤ ∞, is a nonsingular
vector field on the Cartesian product of an (n− 1)-
dimensional compact connected manifold F and
the interval I = [0,1]. It is assumed that F × I can
be embedded in Rn so that all I-fibers {f} × I are
straight segments and are parallel. Thus when
n = 3, F can be any orientable compact surface
with nonempty boundary. It is also required that
1. In a neighborhood of the boundary ∂(F × I), P

is tangent to the fiber I.
2. The interior of F × I can be identified with a

chart U in an n-manifold furnished with a non-
singular vector field V , to replace V on U
with a vector field conjugate to P, in such a
way that the resulting vector field W on M sat-
isfies the following two conditions:

a. (Matched ends) If a segment A of a tra-
jectory of W is a subset of U and joins two
points on the boundary of U, then A replaces
a segment of a trajectory of V .

b. (Trapped orbit) At least one trajectory
of W enters U at some point and does not
leave U at a later time.

Variations of this definition yield other types of
plugs such as Cω (real analytic) or PL (piecewise
linear).

A dynamical system without fixed points is lo-
cally conjugate to a flow on Rn generated by a con-
stant nonzero vector field. As illustrated in Figure
2, a plug can replace V|U with a more complicated
vector field P. This procedure, called an insertion,
can be performed in any desired category: Cr , Cω,

1The dimension is the covering dimension or, equiva-
lently, the inductive dimension. It is different from the
Hausdorff dimension, which plays a significant role in the
differentiability restrictions in Harrison’s example.

Figure 2. An insertion.
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or PL. An insertion alters the flow locally, but the
geometry of the trajectories is changed globally.
Condition 2 gives good control over the configu-
ration of trajectories. In particular, if the plug is
aperiodic, the insertion does not create new peri-
odic trajectories.

Plugs were first defined by F. W. Wilson in [10]
and used to prove that every C∞ closed n-mani-
fold of Euler characteristic zero admits a C∞ dy-
namical system with finitely many minimal sets;
each of the minimal sets is an (n− 2) -torus
S1 × · · · × S1 , every trajectory originates and lim-
its on one of these tori, and the flow on each of
the tori is minimal. Starting with a nonsingular vec-
tor field, he inserted copies of a plug, which he con-
structed, to capture every orbit so that the only
minimal sets are those inside the plugs. Wilson’s
theorem resolves the Seifert Conjecture for spheres
of dimension higher than three, but it does not set-
tle the Modified Seifert Conjecture: all minimal
sets are of codimension two. In dimension three
the theorem gives the existence of vector fields on
closed manifolds with finitely many periodic or-
bits. Wilson’s construction is valid in the Cω case,
although originally it was claimed only to be valid
for C∞.

Similar methods are used in [8] to demonstrate
the existence of a flow on R3 with uniformly
bounded orbits and to answer a question posed by
S. Ulam: If the diameter of the set of the iterations
of a point under a continuous map of a manifold
into itself is sufficiently small, does there always
exist a fixed point? The time 1 map of the dy-
namical system on R3 answers Ulam’s question by
a counterexample.

Having only finitely many compact trajectories,
one can break each one of them with an aperiodic
plug matching a segment of the orbit with an orbit
trapped in a plug; see Figure 3. This removes the
periodicity. The first aperiodic plug and the idea
of applying it to break a closed orbit are important
contributions due to Schweitzer [9].

It is worth mentioning that for plug insertion,
S3 is a good representative of all orientable closed
3-manifolds. It is also the most intriguing. By the
Wallace-Lickorish theorem any closed orientable
3-manifold M can be obtained from any other
closed orientable 3-manifold by an integral surgery
on a finite link of tori S1 ×D2. A surgery removes
a solid torus S1 ×D2 from M and puts it back
with a twist. The nonorientable manifolds can be
treated in a similar fashion. A twisted plug is de-
fined analogously to a plug with one change: Con-
dition 1 is relaxed on the side boundary (∂F )× I
to assume only that P is tangent to the boundary.
Unlike an inserted plug, in which the trajectories
go straight up along the side boundary, a twisted
plug also has orbits going around the side bound-
ary, as in Figure 4. In [5] G. Kuperberg constructs
a Cω twisted plug and a volume-preserving C∞

twisted plug, each with two periodic orbits. The
plugs are used for surgery compatible with a given
vector field. These methods yield an alternate
proof of Wilson’s theorem and similar results re-

Figure 3. Breaking an orbit.

Figure 4. A twisted plug.
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Figure 5. A plug with two closed orbits.
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lated to measure. The author proves that every

closed 3-manifold admits a volume-preserving C∞

nonsingular vector field with at most two periodic

orbits. He also constructs a volume-preserving

aperiodic C1 plug, modifying Schweitzer’s exam-

ple, and obtains volume-preserving counterexam-

ples to the Seifert Conjecture. As remarked by S.

Stefanov, these volume-preserving flows are er-

godic. The main theorem of [5] states:

Theorem 1. Every closed 3-manifold possesses a C1

volume-preserving dynamical system with no com-
pact trajectories.

The above paper contains the only existing ap-
plications of plugs designed to alter the topolog-
ical type of the manifold. Consequently, a
dynamical system can be transferred by means of
twisted-plug surgery from one 3-manifold onto
another exporting some of its properties. For ex-
ample, a minimal, volume-preserving, dynamical
system on the 3-torus S1 × S1 × S1 transforms to
any closed orientable 3-manifold M so as to be a
volume-preserving dynamical system with almost
every trajectory dense; i.e., the set of dense tra-
jectories is nonempty and open. The question
might be, Which manifolds admit a minimal flow,
a dynamical system with every trajectory dense?
The still open Gottschalk Conjecture asserts that
there is no minimal dynamical system on S3. It is
unlikely that the plug method will yield a solution
to the Gottschalk Conjecture; there is always a
minimal set inside the plug. However, an analogous
problem for diffeomorphisms has been solved. In
the early 1990s A. Fathi and M. Herman proved that
there is a diffeomorphism τ : S3 → S3 such that for
each point the set of iterations {p,τ(p), τ2(p), . . . }
is dense in S3.

Paper [8] contains a simplification of Wilson’s
plug, a vector field on the Cartesian product of a
planar annulus and the interval. Another slight
change makes the trajectories nicely layered on
concentric 2-dimensional cylinders; see Figure 5.
This plug with two periodic orbits is a starting el-
ement for the smooth aperiodic construction given
in [7]. The trajectories entering the cylinder un-
derneath the periodic orbit are trapped; they limit
on the periodic orbit.

An operation called a self-insertion similar to a
plug insertion breaks the two periodic orbits with
the plug itself; see Figures 6 and 7. Each of the two
closed trajectories is matched to a trajectory
trapped in the cylinder. The 90-degree turn of each
of the inserted parts is to match the vertical vec-
tors on the bottom to the horizontal vectors on the
periodic trajectories. The entering trajectories
might be broken and take a detour finitely many
times, or they might continue this process indef-
initely. If a roundabout orbit returns to its old
path after deviating several times, it returns to it-
self at a later time without forming a simple closed
curve, and no periodicity is added. This is guar-
anteed, since each detour is taken on a different
outside cylinder.

The trajectories that reenter infinitely many
times are those trapped inside the plug. There are
in fact many such trajectories, many more than one
would expect from following the path of the orbits
winding on one of the two original periodic orbits.
This unintended occurrence prevents the dynam-
ical system from being volume preserving. In fact,
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Figure 7. An aperiodic plug.
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Figure 6. Preparation for a two-part self-insertion.
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if such a construction is C1, then it does not pre-
serve measure. Figure 8 illustrates this phenome-
non. It shows the relation of the position of the or-
bits on the rectangular vertical cross-section of
Figure 5 to the points of reentry on the bottom
curved part. As the orbits approach the circular
orbit, indicated here by a large dot, the distance
between the reentering points gets smaller. For the
trajectory not to be trapped, it is necessary to skip
over the insertion, which would then need to be
very narrow and sharp, contradicting differentia-
bility.

The reentering trajectories bind the previously
periodic (and now broken) orbits in one huge, usu-
ally 2-dimensional, minimal set. Thus the main re-
sult of [6] is the following:

Theorem 2. There is a Cω 3-dimensional plug with
exactly one minimal set of dimension two and with
no other minimal set.

Following Schweitzer, one can insert the plug in
any 3-manifold with a nonsingular vector field
with finitely many closed orbits. In fact, only one
plug weaving through the manifold is needed to
break all periodic orbits. W. P. Thurston pointed
out to the authors of [6] that because of the Mor-
rey-Grauert theorem stating that there is only one
real analytic structure on S3, the methods give a
Cω counterexample to the Seifert Conjecture, in-
cluding the stronger modified version.

The examples of Schweitzer [9] and Harrison [2]
and the one just described all have natural gener-
alizations to higher dimensions. In particular, the
following holds (see [6]):

Theorem 3. If M is a C∞, Cω, or PL closed mani-
fold of dimension ≥ 3 admitting a fixed-point-free
dynamical system in the same smoothness cate-
gory, then there exists an aperiodic dynamical sys-
tem on M in the same smoothness category that has
exactly one minimal set of codimension one and no
other minimal set.

With the just described methods it is more dif-
ficult to obtain an aperiodic plug with one mini-
mal set and that of dimension one. The only such
example is a PL plug described in [6]. The minimal

set is locally homeomorphic to a Denjoy set, but
globally it has a totally different topological struc-
ture; for example, it does not embed in a 2-
dimensional surface. There is also a similar PL
construction in dimension three with the minimal
set of dimension two obtained by breaking annuli
of trajectories instead of single orbits. The last gives
an interesting generalization in [6] for PL flows, i.e.,
directed 1-foliations, which by definition have no
fixed points.

Theorem 4. Let M be a closed PL manifold of di-
mension n ≥ 3, and let 1 ≤ k ≤ n− 1. A PL-directed
1-foliation of M can be modified in a PL fashion so
that there are no circular leaves and there is exactly
one k-dimensional minimal set and no other mini-
mal set.

The flexibility of the described self-insertions
allows the construction of aperiodic dynamical
systems with topologically diverse minimal sets.
The simple condition that a trajectory reenters at
a different cylinder does not impose many con-
straints. The self-insertions may be performed in
several places and will not destroy aperiodicity
provided the simple radius inequality condition of
[7] or some equivalent is met. Adjusting the
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Figure 8. A section of a self-insertion.

Table 1. Examples of dynamical systems on S3 .
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self-insertion in the direction of the radius results
in topologically different flows. (In Figure 8 it
would be the horizontal direction.) A complete
classification of the minimal sets in these con-
structions, similar to the classification of the Den-
joy sets or the solenoids, is unlikely. Even though
examples of aperiodic dynamical systems on S3 are
plentiful, it is difficult to tell at this moment what
properties can be achieved. For instance, no ape-
riodic C3 dynamical system on S3 with all mini-
mal sets of dimension one is known.

Suppose that M is a 3-manifold with a volume-
preserving dynamical system Φ with no fixed
points. Then the total space of the line bundle tan-
gent to Φ has a symplectic structure, and Φ is
Hamiltonian with respect to this structure. The
volume-preserving dynamical system of [5] gives
in this sense a counterexample to the Hamilton-
ian Seifert Conjecture. However, the classical Hamil-
tonian Seifert Conjecture for S3 embedded in R4

is still unsolved.
By far the strongest result in the direction of

proving the existence of a periodic trajectory for
a dynamical system on S3 belongs to H. Hofer [3],
who proved the Seifert conjecture for the so-called
Reeb vector fields. The book [4] titled Symplectic
Invariants and Hamiltonian Dynamics, by H. Hofer
and E. Zehnder, is an excellent source for learning
more about this field.

There are examples of aperiodic Hamiltonian
systems in higher dimensions, and some of the con-
structions involve plugs. The nicest one is V. L.
Ginzburg’s example of a Hamiltonian on R6 , a
counterexample to the Hamiltonian Seifert Con-
jecture for S5. In [1] Ginzburg gives a very good
survey of the existing counterexamples to the
Seifert Conjecture in dimension three and higher,
concentrating on Hamiltonian flows.
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