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Abstract

In this paper we use a General Galerkin (G2) method to simulate
drag crisis for a sphere, where the unresolved turbulent boundary layer
is modeled as a decreasing skin friction.

1 Introduction

A major challenge of turbulence simulation is the excessive number of de-
grees of freedom needed to represent the velocity scales of the flow in space
and time, which may be estimated to be of the order Re3, with the Reynolds
number defined by Re = UL/ν, where U and L are characteristic scales of
velocity and length, and ν is the viscosity. Many turbulent flows of interest
have Re > 106, and thus representation of all scales in the flow is impossible
using any computer of today, or tomorrow.

Fortunately it appears that many quantities of interest are less dependent
of the Reynolds number, typically various mean values of the flow variables.
An example of such a quantity is the total dissipation of energy in fully
developed turbulence, for example in a turbulent wake behind a moving
object, for which there is both experimental and computational evidence
[2, 1] supporting a Law of finite energy dissipation. Thus for sufficiently
high Reynolds number the total energy dissipation would be constant, irre-
spectively of on what scale the actual viscous dissipation takes place. Other
examples are drag and lift for a body in a flow, which appear only weakly
dependent on the Reynolds number in certain regimes. Here it appears that
the main dependence of the Reynolds number is through the separation of
the flow, corresponding to different sizes of the turbulent wake attached to
the rear of the body.
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Separation of the flow is determined by the flow in the boundary layer
at the surface of the body, with separation if the flow momentum in the
streamwise direction near the surface is reduced to zero by an adverse pres-
sure gradient and the loss of kinetic energy in the boundary layer. The en-
ergy dissipation in the boundary layer is related to the skin friction, which
is proportional to Re0.5 or Re0.2 in a laminar and a turbulent boundary
layer respectively (for a flat plate), according to boundary layer theory and
experimental observations [13].

Thus for a high Reynolds number turbulent flow, it appears that the
dependence of the Reynolds number for certain quantities of interest, such
as drag, is restricted to the energy dissipation in the boundary layer, which
is given by the skin friction of the boundary layer. This is apparent when
studying the turbulent flow past a circular cylinder or a sphere, where the
separation of the flow is more or less constant in the range Re = 103

− 105,
corresponding to a similarly more or less constant drag. Near Re = 105

the laminar boundary layer undergoes transition to turbulence, leading to
increased momentum near the boundary resulting in a delayed separation,
corresponding to a smaller wake and lower drag, referred to as drag crisis
[13]. As the Reynolds number is further increased the skin friction decreases
and separation is further delayed. Although for the cylinder when increasing
the Reynolds number, the small wake is not stable and starts to oscillate,
corresponding to a higher drag [4, 11].

A question is then if it is possible to model high Reynolds number turbu-
lent flow solely by modeling the turbulent boundary layer as a skin friction?
In [4] drag crisis is modeled for a circular cylinder using a General Galerkin
(G2) method [2, 8, 3, 5, 6] with a friction boundary condition, and in this
paper we address the problem of modeling drag crisis for sphere, for which
we present some preliminary results.

2 General Galerkin Methods

In [2, 8] a new framework for computation of mean value output in turbulent
flow is presented, based on stabilized Galerkin finite element methods with
adaptive mesh refinement based on a posteriori output error estimates using
duality, which we refer to as General Galerkin methods, or G2 methods. In
G2 we compute approximate weak solutions [7] to the Navier-Stokes (NS)
equations directly, and we do not apply any filter to obtain averaged NS
equations as in RANS or LES [12]. G2 was first used to compute drag of a
surface mounted cube and a square cylinder [2, 8], and was then extended to
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flow past a circular cylinder, a sphere, and a cylinder rolling along ground
[3, 5, 6].

3 Friction Boundary Conditions

For the square shapes the separation is given by the geometry, but for the
circular shapes the separation depend on the Reynolds number. For the
problems in [3, 5, 6] the Reynolds number is sub-critical, corresponding to
laminar boundary layer separation, where the laminar boundary layer is
resolved by the adaptive mesh refinement. Although, a turbulent boundary
layer is too expensive to resolve, and therefore alternative strategies are
needed.

Various types of wall models are proposed in the literature, see [12] for
an overview. Typically a wall model corresponds to solving a simplified NS
equation for the boundary layer which is then coupled to the rest of the flow
in some way.

In [4] we propose a very simple wall model based on a friction boundary
condition on a part of the boundary Γslfr with normal n and two orthogonal
tangential vectors τ1, τ2:

u · n + α nT σn = 0, (1)

u · τk + β−1nT στk = 0, k = 1, 2, (2)

for a solution û = (u, p) with velocity u and pressure p, and with the stress
tensor σ = σ(û), and where we use matrix notation with all vectors v being
column vectors and the corresponding row vector is denoted vT .

Here α is a penetration parameter and β is a friction parameter, both
positive functions defined on the boundary. In principle, (α, β) → (0,∞)
corresponds to a penalty imposition of a no slip boundary condition, and
(α, β) → (0, 0) corresponds to a penalty imposition of a slip boundary con-
dition. By increasing β we increase the resistance at the boundary, and by
increasing α we increase the penetration of the boundary.

The idea here is to model the influence on the global flow of the unre-
solved turbulent boundary layer as a skin friction given by the function β
acting as a friction parameter.

This wall model is partly inspired by the work in [9, 10], where such a
boundary condition is used to study reattachment of a low Reynolds number
flow past a surface mounted cube.
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Figure 1: Section of the computational mesh.

4 Flow Past a Sphere

Drag crisis for a sphere occurs near Re = 105, and thus we may drop the
viscous term from the discrete equations since it is dominated by the numer-
ical dissipation of G2 in the form of a weighted least squares stabilization of
the residual. We assume the boundary to be non-penetrable so that α = 0,
and we are thus left with a model containing only the friction parameter β
and the discretization parameter h (with h the local mesh size).

Using the locally refined mesh in Fig. 1, with mesh size h = h(x) for x in
the computational domain Ω ⊂ R

3, we let β vary linearly from the constant
value 0.1 to 0 on a time interval I = [0, 10].

We find that the drag coefficient cD drops linearly as a function of β
until reaching a value cD ≈ 0.2 at β ≈ 0.02, which is stable until β is below
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Figure 2: Vorticity for the sphere corresponding to β = 0.1, 0.025, 0.01.

0.01, as cD drops linearly towards 0 as β → 0.
The reduction of cD for β in the interval [0.1, 0.01] corresponds to the

scenario of drag crisis, whereas the scenario for cD corresponding to β lower
than β0 = 0.01 is unknown experimentally to the knowledge of the author.
Preliminary results indicate that value for β0 depend on the mesh resolu-
tion, with a finer resolution corresponding to a smaller β0, and thus that
the results corresponding to β < β0 may be non-physical corresponding to
insufficient mesh resolution.

In Fig. 2 we show snapshots of the vorticity for 3 different values of β,
where we find that as β is reduced, separation is delayed and the turbulent
wake seems to approach a configuration with 4 tubes of streamwise vorticity
attached to the rear of the sphere.

In Fig. 3 we show snapshots of the velocity field in a section just down-
stream the sphere, where we can follow the development of the 4 vorticity
tubes. In particular, we find that the stable value of cD ≈ 0.2 corresponds
to the fully developed configuration of 4 tubes of streamwise vorticity.

5 Discussion and Future Directions

Using a G2 method and friction boundary conditions, we have simulated
drag crisis for a sphere. We noted that since the viscosity parameter is
small for the high Reynolds numbers corresponding to drag crisis, we may
drop the viscous term from the discrete G2 equations, and thus the only
dissipation in G2 is due to the least squares stabilization of the residual and
the friction boundary conditions. In particular, the only parameters left in
the model are the discretization parameter h and the friction parameter β.

We found that as β is reduced we are able to follow the scenario of drag
crisis for the sphere corresponding to a drop in the drag coefficient of more
than 50%. We also found that for β less than a value β0, the computa-
tional results appear to be non-physical judging from available experiments,
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Figure 3: Section of the velocity field just downstream the sphere, for friction
parameters β = 0.082, 0.032, 0.022, 0.018, 0.013, 0.012, 0.011, 0.0097, corre-
sponding to drag coefficients cD = 0.5, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.1.
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possibly due to insufficient mesh resolution as β0 is a function of h.
We plan to further investigate simulation of flows with turbulent bound-

ary layers using G2 with friction boundary conditions, and in particular to
study the dependence of the mesh resolution.
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