Distributed Data Flow Language for Multi-Party Protocols

Krzysztof Ostrowski
Cornell University
Ithaca, NY 14853, USA
krzys@cs.cornell.edu

ABSTRACT

This paper presents a new object-oriented (OO) approachdeln
ing the semantics of distributed multi-party protocolstsas leader
election, distributed locks or reliable multicast, and agpamming
language that supports it. The approach extendfvaudistributed
objects(LO) model with the new concept oftastributed flow(DF),
a stream of events that flow concurrently at multiple loagsidDFs
correspond to local variables, private fields,and methodrpaters
in Java-like languages; they're means by which one storesam-
municates state. Protocol instances correspond to Jasetshihey
consume and output flows; their internal states are encapsuas
internal flows, and their internal logic is represented asrajons
on flows. Our language provides a new type of concern separati
the semantic structure of protocols is decoupled from impleta-
tion details such as construction and maintenance of gxticees,
and other structures used for scalability. These can be geukeby
the compiler or at deployment time. This can be done diffiyén
different parts of the network, to match the local environine

Categories and Subject Descriptors

D.1.3 [Programming Techniqueg: Concurrent Programming—
Distributed ProgrammingD.1.5 [Programming Techniqueg: Object-
Oriented Programming; D.3.®fogramming Language$: Lan-
guage Constructs and Features

General Terms
Design, Languages, Reliability, Theory

Keywords

Distributed Data Flows, Distributed Multi-Party ProtogplLive
Distributed Objects, Monotonic Aggregation

1. INTRODUCTION

The premise of this work is thaistributed multi-party protocols
(DMPs) such as virtual synchrony (VS), two-phase commiQQgP
and Paxos are becoming increasingly important and are weed p
vasively, and that growing popularity of cloud and edge cotimg
will require that developers be able to design their own DMPs

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PLOS’09 Big Sky, MT, USA

Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Ken Birman
Cornell University
Ithaca, NY 14853, USA
ken@cs.cornell.edu

Danny Dolev
Hebrew University
Jerusalem, 91904, Israel
dolev@cs.huiji.ac.il

Our goal is to provide a simple, expressive DMP definition lan
guage that allows developers to express semantics conaiséig
high-level constructs, and such that the flow of state antsibes
can be readily understood from the code, not obfuscatectesnial
details such as sending individual network messages ftdmB.

Programming DMPs is hard, but it could be simplified with &ol
that promote a separation of concerns. Developers shoultlbéo
specify the semantics ahagical control flow without having to ex-
plicitly handlephysicalaspects, such as failures, timeouts, network
topology, and organizing nodes into trees, rings, or othafable
structures. The latter can and should be treated as ortabgoach
as compiler optimizations in C are orthogonal to code seitgant
To enable this, we need a set of programming abstractionsitba
powerful enough to model common DMPs, but leave enough flexi-
bility for the compiler to generate scalable code. This ieheten-
sion between expressiveness and compiler flexibility has lee
main factor that shaped our approach and our design desjsiod
that distinguishes this work from the existing protocoldaages.

Before going further, let's comment on some of the pointsenad
earlier. First, we stated that DMPs are getting increagiimgpor-
tant and used pervasively. In the past, DMPs have been usstymo
in data centers (DCs), financial institutions or militarytisegs, e.g,
to replicate services and data, for load-balancing or-fmidtrance,
or to coordinate configuration changes and synchronizesadce
services [5]. In these senarios, DMPs run among servers s, DC
whereas the larger Web has remained predominantly clemes
home user’s machines don’'t communicate with one-another. |
prior work [23], we argued that this trend is bound to charideme
computers, equipped with ever-increasing amounts of myara
multi-core CPUs, are getting faster, whereas web contenigers
stumble over scalability as their users bases expand. Maeg of
dynamic, interactive, short-lived content (collaboratwork, inter-
actions in virtual worlds) are hard to cache and index andbzan
hard to scale by adding more servers. It's only natural teaztl
servers by pushing data out of data centers, and toward&ehésc
Technologies based on this idea already exist. Inliver distri-
buted object4LO) platform [1], visual elements on an interactive
web page — chat windows, video streams, and shared documents
— can be individually powered by DMPs; their contents doa+ r
side on servers; they are replicated among the clients ireatpe
peer fashion. The DMP that runs among the clients ensurealtha
replicas stay in syrc The creators of Smalltalk [16] used similar
approach as a basis of their Croquet [27] platform; 3D objétt
their virtual space are replicated with a variant of 2PC .K3tar
[28] and a few other [7] projects also fall into this categoBach
leads to a pervasive deployment of the associated DMPs.

!We encourage the reader to watch videos orLikie Distributed
Objectsproject website [1] to build intuition behind our approach.

The second premise of our work is that programmers will want
to create their own DMPs. Distributed computing forces titem
choose between reliability, scalability, performance paidistence,
and different applications require a different balance.dxample,
the version of reliable multicast DMP used for databasdcafibn
in a financial institution would require a consensus seroanbut
would not need to scale to thousands of nodes, whereas tla@tvar
of reliable multicast used to synchronize players in annenfulti-
player game (MMORPG), or clients watching a streaming movie
would require excellent scalability at the cost of weakenaetics.

In other work [23], we pointed out that even for a seemingtyie
task such as collaborative editing, there exists a sungrigariety
of different approaches that rely on different ways of lockirec-
onciliation, and flavors of multicast, often fine-tuned te fartic-
ular application domain. The analogy to Java and .NET ctitlas
seems appropriate: even though many applications dornd ces
tom collections and can be built using the small set of hnitines,
such as lists, arrays, and hash tables, those who buildgedbs+-
mance or scalable systems often design their own custoraceoll
tions optimized for their specific applications. Compareddllec-
tions, DMPs and their tradeoffs are even more complex aretskv

Designing DMPs in Java-like languages is hard; populakitsol
like Ensemble [13], Spread [2], and Appia [22] have 25,008ed
of code. Systems such as MACE [17] can reduce the programming
burden, but programmers still have to reason at the leveiatés,
transitions, and network messages sent between pairs e$nibils
may be easy for loosely-coupled systems such as distrithaehl
tables (DHTSs), but it can be hard for DMPs. One way to simplify
the process is by composing pre-existing reusable protagets
in DMP composition toolkits such as Ensemble, Spread, Appia
BAST [11]. This approach is convenient, but there are litiotss.
First, to achieve a high degree of flexibility, one needs gdarum-
ber of thin and simple protocol layers: Ensemble has 50. Evem,
flexibility is limited, for only certain combinations of la&ys make
sense. Flexibility in these systems generally amountsdiaidting
(or not) certain functional layers, e.g., ordering. To ughferent
ordering scheme, one generally has to write a custom laydavia,
which requires familiarity with the given DMP compositiaotkit
and its API. Finally, while the DMP toolkits can separatedtional
layers from one-another, their functionality is often tiglcoupled
to implementation; e.g., a layer that handles recoveryerimd, or
stability may be hard-wired to aggregate its information jpartic-
ular manner, such as by using a leadealbto-all communication,
and may be unable to easily switch to gossip, trees, or tdkes.r
The latter is also a weakness of MACE and other systems tha fo
programmers to work at the level of state transitions and/owt
messages; code that builds distributed structures getsmirtgled
with and inseparable from core semantics and logical cbfitn.

In this paper, we advocate a different approach: we proptese a
simple generic abstractions that can be easily composeptess
semantics as diverse as distributed agreement and lead¢ion|
that can be stacked hierarchically to express scalablarcigcal
protocols, and that can themselves be implemented in atyarie
ways, such as by using token rings, trees, gossip, or IP castti
Protocols in our language are compact and easy to reasot) gbbu
at the same time they leave the runtime a high degree of flgxibi
in mapping language constructs to an executable code.

Our approach is based on four fundamental concelgributed
data flows(DFs) as a way to model state and semantics, distributed
monotonic aggregatio(MA) as a means of coordinating DMP par-
ticipants, the use afet arithmetic§SA) to model batched process-
ing, and the use afecursionin the language to express hierarchi-
cal distributed structures maintained for scalability.eDa limited

components A;, A,, Az implement the s_,oftware on node X3
functionality of object A (proxies of A) i
k (N object (layer) A

eventejoccurs Lol ool L
:: :‘"';:"i t; {[AL] [A2] [As] gi;stribfrted
T Ser - .dataflow
; . .--ll"’ =11 I " (set of events)
time T €6 '
b eD:: { dea LEs (,‘ t events
i N T* V‘ Ye, i (asynchronous
tifi-€s-es | it e, ‘ {7 method calls
H P ! from object A
t; e; ;% ‘11 * v into object B)
b f £2 1 4 . t e .ll """ | """ i ntet:facg expgsed
tl.-e B *. by object
Nt B [(Ba] [Ba]
X1 X2 X3 C I T .y -’ \"‘t:omponents
location (node) .7 S S By, By, and B,
S| Ol kO implement the
software that ...~ functionality
runs on node x; nodex; nodex, nodexs of object B

Figure 1: A distributed data flow(DF) is defined as a set of events
exchanged between two protocol layers. Each DF is distribed
in space (the events can appear on different nodes), and imtie
(new events flow over time). Each protocol layer involves a se
of components (such asl;, A2, A3) across a set of nodes; each
group of such components is called kve distributed objec{LO).
Elements of the group are callecproxies Here, layer Aisan LO
that consists of three proxiesA;, A2, and As. One can think of
each LO (each protocol layer) as transforming some set of ing
flowsinto some set obutputflows (for more detail, consult [25]).

space, this paper discusses only aggregation and batdfiedDF
concept, and the underlying theory for how strong relibirop-
erties can be expressed through monotonic aggregatioa,deen
discussed in our past work [25], and a brief discussion ainston
can be found in our tech report [24]. The latter includes glmage
grammar and more protocol examples (omitted here for lyjevit

2. LANGUAGE

Each program in our language implements a DMP (for an exam-
ple of a distributed locking code, see Figure 2). A runrimgance
of such program is an instance of a DMP running on a set of nodes
across the network; we refer to the latter diva distributed object
(LO), or simply arobject[23]. A single instance of a software com-
ponent that encapsulates a DMP stack and runs on a singlésode
called aproxy. Eachobjectcomprises of @et of proxiesand spans
a portion of the network. Its proxies interact with the apation
instances on the nodes on which it runs. The object can bglthou
of as a medium over which those application instances oareifit
nodes communicate with one-another and coordinate theamac

We also use the terwbject(LO) to refer to individual functional
layers within an instance of a complex DMP. For example, ia rel
able multicast object may consist of an unreliable multicégect
composed with a loss recovery object, and the latter maynaliy
use membership and transport objects. In general, thedbjeat
can refer to any set of software components that run acrosisad s
networked nodes, are functionally related, and exposéaifPIs.

The API exposed by each LO proxy is modeled as a seveft
queuegEQ); each event represents a single method call, a response
to such call, or a callback. Each proxy of the LO exposes theesa
set of EQs. Each EQ transfers a single type of events, in aae-di
tion. For example, each proxy of a reliable multicast objeatild
expose two EQs: one feendcalls, the other foreceivecallbacks.

The set of events that appear on some set of EQs is called a
tributed data flow(DF); we assume that all these EQs carry events
of the same type and in the same direction: into the objecthode
calls), out of the object (callbacks), or internally in tHgext (e.g.,
events stored inwnerEQs within the proxies dbck on Figure 3).
Accordingly, one can classify DFs agput, output or internal with
respect to the object. For example, a reliable multicagtailvyould
have a single input flosendand a single output floweceive The
sendflow would consist of all invocations of theendmethod ex-
posed by instances of the DMP stack. Note that a DF includis ca
that may occur at different nodes and at different timesginegal,

a DF isdistributedin both of these dimensions (Figure 1).

Within the model introduced above, one can think of eachaibje
(each running DMP instance, and each functional layer wishich
instance) as distributedfunction that transforms some set of input
DFs into a set of output DFs; e.g., an instance of a reliabléicast
DMP can be thought of as a distributed function that tramsgothe
sendinput DF into thereceiveDF. We think of this function adis-
tributedbecause the transformation doesn’t happen synchronously,
and it does not occur at a single location: a sirggadevent may
trigger a set ofeceiveevents at other nodes running the DMP. This
last factor explains why LO and DF are defined as distributteely
need to be such for us to be able to capture a distributed s@sian

The functional nature of our model motivates the syntax: &DM
is expressed in a way similar to an ordinary function, wigmiame
followed by a list of input DFs in parentheses, a colon, andtaf
output DFs; e.g., the locking protocdb¢k on Figure 2) transforms
an input DF namevantsinto an output DF nameldolds(line 01).
The types of events in the DFs are denoted similarly to thesyjd
arguments in C; ihock, both the input and output DFs are Boolean.
Each event flowing intdock represents a single request to acquire
(when the event is carryingtaue value) or release the lock (when
the even is carrying talsevalue) by the local application instance
that has generated the event. The receipt of such event Eahg
proxy of lock at which the event arrives to coordinate with proxies
of lock on other machines, to determine the course of action. When
a decision is made, proxies lack relay it to their local application
instances by issuing evewants again, theérue value in such event
means that the lock is granted, gatkeconfirms it's been revoked.
The reason why different classes of requests (such as aaaird
releasing locks) are carried by events in the same flow (gant9
is that this enables us to express decisions in output floa$unc-
tional manner, as expressions computed over values in flguus.

When compiled, a program in our language yields the exetaitab
code of a single proxy; e.g., code on Figure 2 compiles toustr
ture shown on Figure 3. Each input or output flow is translaieal
a single EQ within the proxy; these EQs constitute the poRAPI.
Each internal flow (declared as in line 02 on Figure 2) is tieted
into an EQ encapsulated within the proxy; this is used in amaan
similar to a local variable in Java (note the B@neron Figure 3).
Program body consists dependenciethat express flows in terms
of other flows. Each dependency is translated to a code thatsno
and translates events between EQs (within and across tkiegyo
For example, the dependency in line 05 (Figure 2) pulls evieam
EQswants owner, andid (id is a built-in internal EQ that provides
each proxy with its globally unique identifier), applies ogersA
and=, and pushes the result into the lotaldsEQ. Whenever a
new value appears iantsor in owner (id is a constant flow), the
expression is recalculated and a new event appears hottsEQ.

While similar, our programs differ from Java functions iveel
respects. First, the code does not execute just once, pnodoiat-
put synchronously from input; rather, values in input flowes @on-
tinuously fed into the dependencies, and these continyqlate

01: object lock (bool wants) : bool holds { // intput & output flows

02: int owner; // an internal flow

03: where (wants) // this determines who runs the code in line 04
04: owner := stable_elect(id); // an embedded leader election
05: holds :=wants A (owner = id); } // flow dependency

Figure 2: Distributed locking in our language: an object named
lock consumes a Boolean flowwants, and generates a Boolean
flow holds (line 01). An internal flow owner (line 02) stores the
identifier of the node that holds the lock. All nodes that woudl
like to acquire the lock (line 03) fetch identifiers to the emled-
ded objectstable_elect (line 04; for the code consult Figure 4).
The lock is held if local id matches that of the leader (line Ok
The result of election remains stable until the owner leaveg4].

____________ proxy of
stable_elect

-partofa
data flow
dependency

candidate.-.......
(EQ)

Figure 3. Dependency in line 04 in Figure 2 embeds proxies
of stable_elect in proxies of lock, binds stable_elect’s input to
flow id, and routes its output into owner. Values in holds are
generated from those inid, wants, and owner (line 05). Values
in wants activate or deactivate the connection tatable_elect.

01: object stable_elect (int candidate) : int leader {

02: intelected :=0;

03: where (fresh elected A elected < candidate) // guard

04: elected := min candidate; // distrib. monotonic aggregation
05: leader := elected; }

Figure 4: A simple version of the leader election protocol. @n-
didates with identifiers larger than the one of the elected lader
(line 03) select among themselves the one with the smalledt i
(line 04). Result can change only if the leader leaves [24].aD-
didates with ids smaller than the leader abstain from electin
until existing members quit, causing aggregation to reboof24].

: stable_elect; st._elect, :
H H
s : s
i |elected v :
H N :
H H
H H
s o s
¢ [candi- leader 1
i |date ™ :

Figure 5: A group of proxies computing aggregation in the pro
tocol from Figure 4. In each aggregation round, sets of valugv;
that appear in flow candidate are aggregated into a single value
v = mini<;<n v; (line 04) that emerges at the ring leader node.
The result is disseminated to all proxies. Proxies self-oanize
into a token ring with the help of a built-in membership service

new events in the output flows. Secondly, the order of depesiee
is irrelevant; they all execute concurrently. Finally, thecution is
not always local; sometimes it is coordinated among proxies
The universal mechanism for coordinated execution in outeho
is monotonic aggregatio(MA), expressed as in line 04 (Figure 4),
by applying an operator such asn, max sum U, or N (and others)
to a single argument. This type of dependency causes vahrasf
given EQ €andidateEQ in this case), from group of proxies, to be
aggregated using the respective operator (h@ng, and the result
disseminated back to all proxies and placed in the targetHege(
we place the result irlectedEQs). This is illustrated on Figure 5.
By default, aggregation has certain important propertias make
it possible to build strong semantics. The MA concept isuised
at length in our past work [25]. Due to limited space, here iwit|
ourselves to pointing out that MA could be translated to grto-
ken ring that self-organizes using an external membersrijpce,
but it can also be translated into a scalable, hierarchichitecture
[25]. MAis a very simple, lightweight and scalable absti@tthat
can be composed to express a great variety of complex DMPRs wit
strong semantics such as atomic delivery or consensusecoess
arguments fofock andstable_elecare given in a tech report [24].
Like most languages, ours also supports a conditional éxecu

Thewhere clause locally activates the embedded code whenever a

true value flows in the EQ corresponding to the condition in paren-
theses, and deactivates it wHaiseflows in it; e.g., code in line 04
(Figure 2) is active only during times when the last value tiias
placed in the localvantsEQ istrue; otherwise, line 04 is disabled
on the particular proxy. For an aggregation, being disabiedns
that the proxy doesn't contribute values to aggregatias;hil be
the case whenevetrésh electedh elected< candidat¢ evaluates
tofalsein line 03 on Figure 4 (expressidresh electedstruewhen
the proxy knows that it has the latest aggregated valeteoted in
token ring protocols this is easy to determine; for detai® [24]).
Unlike in Java or C, our conditional statement does not chdas
tween two execution paths, but ratlexpandsor shrinksthe set of
proxies that participate in the given part of distributechpaitation.

The last important feature used in tliek example is the refer-
ence tostable_electn line 04 (Figure 2). This type of dependency
embeds proxies of the referenced protostdlle_elegtin proxies
of the DMP being defineddck), as shown on Figure 3. Each EQ
for an input or output DF of the embedded proxystdible_elects
now also an internal EQ in the proxy lofck. Events from EQs cor-
responding to flows passed as argumeidfsand resultsqwner) of
the assignment are pushed back and forth between EQs ttigstab
communication between the proxies (consult Figure 3) rihatis of
the embedded proxy aftable_electre obscured ttock. Hence,
this pattern implements the OO encapsulation principle.

In the examples discussed so far, all flows were carrying leimp
scalar Boolean and integer values. To express batchedgsinge
we equipped our language with support for set arithmetidairto
that in SETL [26]. The most common use of this feature is to ex-
press within a single event a set of identifiers of networksages
for which a certain property holds; e.qg., in tstabilizeprotocol on
Figure 6, each value in theceivedDF represents a set afls of
messages that are being reported as locally received. Bydamg
a set of identifiers within a single set value, the applicatising
stabilize(in this case, the “application” is a reliable multicastentij
that usesstabilizeto determine when it can safely deliver its mes-
sages) can report a number of application events (messegjpt®
within a single operation (a single event flow). Furthermoeeeiv-
ing information in this compressed forstabilizecan also process
events in parallel: when it calculates a set intersectiorabfes re-
ceived by different proxies (line 043tabilizecan identify multiple

01: object stabilize ({int} received) : {int} stable {

02: {int} received_by all := &;

03: where (fresh received_by_all A received_by_all C received)
04: received_by_all := N received;

05: stable :=received_by_all; }

Figure 6: Code that determines which packets arestable i.e.,
received by everyone in the system; this computation is an es
sential component of many reliable multicast protocols.

.:' oo s oo d
{ [stabilize; stabilize, | . Q)

. : appears in
appgarzm : eceived at
received. R o) T Seeeeee et
attimet; @ 1,3..8} X - 2

packet ,------ Hﬁj ----------------- (.t..-.-... ..

withid 2 _:|mc, |id=1 mcy [id=1
got lost ™} (1)lid=3 @)[id=2]}-... paclfets
earlier | id=4 id=3 ~-..received
: !d: packets t 10= earlier

packet | :dig with id .2
withid 9 ! @ id;7 4,6,7,8 .. packets
gotlost | |ljgog| BOtIOSt il oy > amriving
no“N | sy | f (lost) .-~ at ttlme

(unreliable net _[119=97)
o o

Figure 7: Batched processing with set arithmetic instabilize:
(1) before timet;, node 1 received messages wittls 1 and 3,
and is caching them in its local proxymc: of the multicast ob-
ject; message withid = 2 never arrived; (2) at time ¢, a batch
of packets withids from 4 to 8 is received; (3) proxymc; now
reports its status to the local proxy ofstabilize; an event with
a single set value{1, 3..8} flows at that node at time¢; and is
placed in thereceived EQ in stabilize; (4..6) a similar scenario
on node 2 results in{1..3, 5,9} being put into the received EQ.

network messages as “stable” in a single aggregation rolimd.is
done by intersecting the respective set values (a messaialite”

if it's been received everywhere in the group; the intergien of
everywherén our model has been discussed in our past work [25]).
In our simulations [25], token ring aggregation at a few ds/s
made commit and abort decisions for thousands of transetso
by using set arithmetic. We've also used this approach sstaky

in our hand-coded high-performance scalable multicastqrtas.

3. RELATED WORK

Most of the existing protocol-modeling languages are based
thefinite state machin@SM) model: every protocol participant (a
proxyin our terminology) is represented as a finite automatorh wit
transitions triggered by timeouts, the receipt of netwodseages,
or application requests. A programmer defines all statesrandi-
tions, and the compiler translates the high-level FSM s$jpation
to executable code, automating aspects such as socketiopsya
serialization, logging, and verification. MACE [17] and Gef 2]
are prominent examples of this approach in the context afdlye
coupled distributed systems. Most of the prior work in thategory
targeted point-to-point protocols such as TCP (for thedise [24]).

Besides translation to code, FSM has also been used forgmmogr
analysis: high-level specifications in Promela [14] and T[1A]
can be translated to FSMs for model checking. TLA is suffityen
expressive to accurately capture strong semantics sudstebut
ted consensus . SOA and WS-* standards for describing peer-t
peer interactions, such as WSCL [3], are also founded on FSM.

Researchers argued [17] that FSM-based languages araliatur
work with: the FSM logic resembles a well-written Java codielev
being more concise. However, MACE-like systems have beed us
mostly for loosely-coupled systems, such as DHTSs or overl&x-
pressing DMPs such as reliable multicast or agreement atasst
transitions and point-to-point messages can be difficylt 8 15].
Also, as noted earlier, core semantics (making decisieesnfigu-
ration, and state recovery) is mixed with code that buildgitiuted
structures for dissemination or aggregation. For the Sabocern
separation we postulated, a higher-level language is deede

P2 [20] is a higher-level model: it replaces explicit paiatpoint
communication with rules in Datalog that create dependsnice-
tween local variables at different nodes; point-to-poorhenunica-
tion is then generated automatically. This results in carhpade,
but operating at this level, without tools such as conststggre-
gations or membership that are built into our language, itldo
be hard or impossible to achieve stronger semantics; inde2d
has been used primarily with overlays, DHTs, and routinge Th
same is true for languages based on process calculi; theytan
express strong semantics [10]. In contrast to all thesecappes,
our language supports aggregation, recursion, batchedgsing,
and essential object-oriented (OO) features, such as suicion.

There’s been much research on embedding group-like distrib
ted abstractions in higher-level languages such as ML [d8Pava
[8]; surveys can be found elsewhere [4, 23]. Unlike our |agy
these weren't designed to construct protocols, but rathentbed
entire existing protocols in strongly typed or OO langua@®@sST
[11] goes further, in that it supports extensibility by initence, but
BAST protocols are coded in Java, much as in other DMP taolkit
Spread [2], Ensemble [13], and Appia [22]. The reasons why we
prefer a dedicated language have been articulated earlier.

Our DF semantics is functional in spirit; in this sense, oarkis
inspired by 1/0 automata (IOA) [21]. However, IOA is a spezfi
tion language, and doesn'’t yield executable code. In coispato
I0A, our work is also less focused on individual endpointd treir
state, and more on data flows. This creates flexibility thatlma
exploited to achieve the concern separation we postulatedtan
deploy the same protocol over different aggregation, digsation,
batching mechanisms, or differently constructed hieri@asch

Data flows in the sense of asynchronous, massively panaitbel;
lined processing, have a long tradition in areas such as \AEBVS,
and aggregation has been extensively studied in the cooftegn-
sor networks; a discussion of the relevant prior work candoed
elsewhere [24], [25]. The key difference is that data flowthimse
systems are natistributedin the same sense as in our model: they
are point-to-point event streams, transformations on taentocal,
and they lack the sort of strong semantics needed to expid&sD

Many specific solutions we employed have been inspired loy pri
research: set arithmetics in SETL [26], event-driven cotimguin
SEDA [29] and rule-based computing in Réte [9], to name a few.

4. CONCLUSIONS

We proposed a new type of a programming language for distribu
ted computing that abstracts away low-level details sughoas-
to-point communication, while retaining sufficient exgiesness
to model complex DMPs such as distributed locking, agreémen
election, or reliable multicast. Focusing on data flowsijrthenc-
tional dependencies, and distributed constructs such rasistent
aggregation, and moving away from endpoint-centric aspaoth
as states and transitions, allows us to separate semanatinie-
tails such as methods of aggregation, construction orfuleyanain-
tenance. Our distributed flow concept promotes concise aode
can facilitate formal reasoning about global system befravi

5. REFERENCES
[1] Live Distributed Objectshttp://liveobjects.cs.cornell.edu/

[2] Y. Amir and J. Stanton. The Spread wide area group
communication systend. Hopkins Univ. Tech Report998.

[3] A.Baneriji et al. Web Services Conversation Language.
http://iwww.w3.org/TR/wscl10/

[4] J. Briot, R. Guerraoui, and K. Lohr. Concurrency and
distribution in object-oriented programmingSUR 1998.

[5] M. Burrows. The Chubby lock service for loosely-coupled
distributed system$SD|, 2006.

[6] G. Chockler, I. Keidar, and W. Vitenberg. Group communi-
cation specifications: A comprehensive studgUR 2001.

[7] S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera.
Enabling massively multiplayer online gaming applicasion
on a P2P architecturéCIA, 2005.

[8] P. Eugster, R. Guerraoui, and J. Sventek. Distributed
asynchronous collections: abstractions for publish/stiibs
interaction. ECOOR, 2000.

[9] C. Forgy. On the efficient implementation of production
systemsPh.D. thesis, CMUJ1979.

[10] R. Fuzzati and U. Nestmann. Much ado about nothing?
http://www.brics.dk/NS/05/31995.

[11] B. Garbinato and R. Guerraoui. Using the strategy patie
compose reliable distributed protocoOOTS 1997.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded syster®4.DI, 2003.

[13] J. Hickey, N. Lynch, and R. van Renesse. Specificatioas a
proofs for Ensemble layer§ACAS 1999.

[14] G. Holzmann. The model checker spirSE 1997.

[15] D. Karr. Specification, composition, and automatedfica-
tion of layered communication protocoRh.D. Thesis

[16] A. Kay. The early history of smalltalkdOPL, 1993.

[17] C.Killian, J. Anderson, R. Braud, R. Jhala, and A. Vahda
Mace: language support for building distr. systeRIsDI'07.

[18] C. Krumvieda. Distributed ml: Abstractions for effioieand
fault-tolerant prgrammingCornell Univ. Tech Reportl993.

[19] L. Lamport. The temporal logic of actionSOPLAS 1994.

[20] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscand
I. Stoica. Implementing declarative overlagSP 2005.

[21] N. Lynch and M. Tuttle. Hierarchical correctness pofur
distributed algorithmsPODC, 1987.

[22] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible
protocol kernel supporting multiple coordinated channels
ICDCS 2001.

[23] K. Ostrowski.Live Distributed ObjectsPh.D. Dissertation,
Cornell University, 2008. http://hdl.handle.net/181B381.

[24] K. Ostrowski, K. Birman, and D. Dolev. Programming Live
Distributed Objects with Distributed Data FlowSornell
Univ. Tech Report2009. http://hdl.handle.net/1813/12766.

[25] K. Ostrowski, K. Birman, D. Dolev, and C. Sakoda.
Implementing reliable event streams in large systems via
distributed data flows and recursive delegatibBBS 2009.

[26] J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg.
Programming with sets: An introduction to setl. 1986.

[27] D. Smith, A. Kay, A. Raab, and D. Reed. Croquet: a
collaboration system architectu@5, 2003.

[28] J. Strohm. Managing player awareness in Darkstar.
http://www.projectdarkstar.con2007.

[29] M. Welsh, D. Culler, and E. Brewer. Seda: an architexfor
well-conditioned, scalable internet servicBOSP 2001.

