
PRELIMINARY MAR09

 1

Atomic Authorization

Jacob Dilles

George Mason University

2009

 Abstract
This document details one solution to the problem of atomic authorization. The focus of

this paper is on a document standard called the Authorization Proof; it’s anatomy and

function, and a method by which this Authorization Proof may be utilized to provide a

cryptographically strong, portable, scalable, securely federated authorization service.

PRELIMINARY MAR09

 2

Table of Contents
Abstract ...1

Authorization as a Service Introduction ...3

The Authorization Proof ... 4

Proof Distinguished Name ..5
Proof Identifier... 6
Not Before, Next Available, Not After ... 6
User Digest List .. 7
Validation ...8

Authorization Infrastructure .. 9

Federation ..9
General Implementation Recommendations ... 10

Administration Interface... 11
Authorization Authority .. 12
Authorization Application .. 14
Application Logic.. 14

Comparison of Alternatives.. 16
Advantages ... 16
Disadvantages ... 16

Appendix A – Authorization Proof Specification ..17

Appendix B – Glossary .. 20
Appendix C – References ... 21

Works Cited ...21

PRELIMINARY MAR09

 3

Authorization as a Service, Introduction

Certificate-based PKI credentials provide a scalable, decentralized, cryptographically

secure mechanism to insure the authenticity of a computerized transaction. They are

rapidly spanning many sectors: Over one million certificates issued to SSL enabled

websites handle billions of secure sessions daily; The United States Department of

Defense has issued over 17 million Common Access Cards (CAC) to enlisted and civilian

personnel - each holding one or more X.509 certificates which control access to computer

networks, enable users to sign documents electronically, and enter controlled facilities;

An estimated 60 million ePassports, each with an identity certificate, were in circulation

around the world in 2007, with millions more issued each year. Incorporating these

credentials into existing systems significantly increases the assurance and security of n-

factor authentication1.

It is now possible for applications to implement strong authorization using identity

authentication certificates that are already in place. However, beyond ownership, or

possession, of the credential, a certificate contains no information on the credential

holder’s authority to engage in a transaction, so the challenge is making sure these

applications can securely differentiate authorization rights between users. Lack of an

authorization-information standard has led to proliferation of non-interoperable

proprietary technologies; application-specific solutions usually involve a database

lookup, for example the OPM CVS, or attributes for RBAC mechanisms like Microsoft

Active Directory. Many of these implementations are significantly less secure than the

credentials with which they authorize. In order to consistently and repeatability secure

application authorizations in a way comparable to strong authentication, rights must be

published and secured independently of the applications that rely upon them. This

approach is called atomic authorization.

1 The terms authentication and authorization are frequently confused: Since the first time-sharing multi-
user computer systems were developed in the 1960’s, access control authorization has been integrated into
to user authentication, and the model has remained essentially unchanged. This has lead many to the
assumption that the problem of authentication is identical to that of authorization. For many new
applications, the problems are distinct and independent.

PRELIMINARY MAR09

 4

 The Authorization Proof
 The Authorization Proof one solution to the

problem of atomic authorization. It is based on an

ASN1 specification initially drafted in 2006 (Russell,

Braceland and Lloyd). While they are not identical,

Proofs share many qualities and attributes with the

X.509 Certificate standard (RFC-2459)– including

DER encoding2 – and the process of implementing an

encoder-decoder is analogous. A Proof contains five

basic sections: identification, validity, references,

credentials, and a signature. This is an overview of

the key elements and their function.

Proof Identification Section

The Proof Identification Section is fairly straightforward; all components have

counterparts in the X.509 certificate. This section consists of:

⇒ Version – The version number of the Proof standard. V1009a.

⇒ Proof Name – The Distinguished Name of the Proof.

⇒ Issuer Information – The distinguished name, Proof ID, and a key identifier of the

Proof Authority which issued the proof

⇒ Serial number – a unique identifier which does not change between publications

The information within this section is hashed to form the Proof ID, a globally unique

resource identifier.

Valid Duration Section

The Validity Section consists of three dates, which are (in chronological order):

2 A complete specification in the ASN1 annotation style may be found in Appendix A.

PRELIMINARY MAR09

 5

⇒ Not Before - The Proof should not be accepted before this date

⇒ Next Available - The next Proof should be published on this date

⇒ Not After - The Proof expires after this date

References

The References section allows for federation across multiple groups, agencies,

organizations, or priorities levels:

⇒ Peer References

⇒ Subordinate References

User Digest List

The User Digest List holds hashes of user credentials, and is used to determine

authorization status.

Signature

Like a certificate, Proofs are digitally signed to give them cryptographic authority

and ensure data integrity. See validation.

Proof Distinguished Name
 The Proof’s Distinguished Name (DN) serves to identify the resource for which

the credentials within the proof are authorized to access, and it designates the directory in

which the Proof should be stored. The DN is tokenized as a directory name:

Like a certificate, the DN is not authoritative, but it is a convenient way to access

Figure 0 - Authorization Proof Distinguished Name, in XML notation

<DistinguishedName>

ou=Gate A Access, ou=Access, ou=Security, dc=Blue, dc=Corp

</DistinguishedName>

PRELIMINARY MAR09

 6

and store proofs. The XML-compliant DN in Figure 2 refers to a Proof that authorizes

access to “Gate A” for the “Blue” corporation.

 Proof Identifier
 The Proof Identifier (PID) is the globally unique hash value that is used to specify

a Proof in the context of an authorization. Selecting a hash function with sufficient key

length (i.e. SHA-256) will reduce the chance of a collision, and when paired with the

Proof Name in a request, the probability is statistically insignificant. A useful collision

would be needed for a rouge Proof Authority to conduct a redirection attack.

The PID is a binary value. In persistent storage, or where it may have to read by a

human, it should be encoded in hexadecimal. With whitespace and line breaks ignored,

the preferred format is groups of 16 bit words, with a space between each bit, and two

spaces between bytes. During RPC transactions, Base64 encoding is sufficient, so long as

it is converted to HEX when the transaction is logged.

 Not Before, Next Available, Not After
A certificate has an optimistically long validity period before it expires, and relies

on the Certificate Revocation List (CRL) infrastructure to distribute information about

certificates that should be prematurely revoked. Recognizing this method’s flaws in

scalability, reliability, and speed, the Authorization Proof takes an entirely different, pro-

active approach.

Figure 0 - Sample Proof ID, in XML notation

<ProofID>

30 7e 04 16 04 14 96 55 2a 76 37 ae ed 17 0b 07

9a 56 3a 2d 5a 55 3a c1 f9 2a 30 61 31 23 30 21

06 03 55 04 0b 13 1a 4d 61 73 74 65 72 20 41 75
74 68 6f 72 69 7a 61 74 69 6f 6e 20 47 72 6f 75

70 31 0e 30 0c 06 03 55 04 0b 13 05 4f 7a 6f 6e

65 31 14 30 12 06 0a 09 92 26 89 93 f2 2c 64 01

19 13 04 42 6c 75 65 31 14 30 12 06 0a 09 92 26

89 93 f2 2c 64 01 19 13 04 43 6f 72 70 02 01 15

</ProofID>

PRELIMINARY MAR09

 7

A publishing schedule, determined during the planning phase of Atomic

Authorization implementation, dictates the time between the Not Before and Next

Available dates. Every publication cycle produces a new Proof with the same Proof ID as

the last, but with Next Available and Not After dates in the future. This schedule is

designed in such a way that extremely sensitive privileges may be published frequently –

i.e. every two minutes. Less important Proofs can have a much longer validity period, on

the order of months to years. The time between Next Available and Not After is forms a

grace period that allows authorizations to continue during communications malfunction

or a denial of service (D.o.S.) attack.

The ratio of cycle duration to grace period in typical applications will be close to

1:1. Where the situation dictates “Fail-Open” behavior (nuclear reactor shutdown

authorization) the Not After date may be set many years in advance.

 User Digest List
A list of credentials for authorized users is at the heart of any authorization system. In

an Authorization Proof, credentials are stored as digests rather than their original form for

a number of reasons:

1. Anonymity – Storing entire credentials, certificates for example, may connect

otherwise inert information in a sensitive way.

2. Size – Size matters for scalability, and when using credentials other than

certificates

3. Speed – Searching for a hash of data in a sorted list is much faster than searching

raw data.

4. Security – Using collisions to forge a digital signature on a useable document is

much more difficult with fixed-length hash-value content, especially if the digests

are of digitally signed documents (i.e. certificates).

PRELIMINARY MAR09

 8

5. Versatility - Any digital data may be used as credentials (Biometrics, signed

plaintext, passwords, hardware keys, etc…) interchangeably without affecting the

process. The algorithm particulars are specified using a conventional OID, and

may be specified according to need. The standard in digesting algorithms for

security, speed, and low collision probability is SHA-512.

 Validation

There are a number of ways that a Proof must be validated before accepting it:

1. Signature validation. A key, signature, and algorithm are provided in the Proof.

Re-signing the data in the Proof with the specified algorithm must produce the

same signature, the same way signatures are verified in X.509 certificates.

2. Signature authentication. A pre-shared trust list removes dependence on existing

certificate infrastructure. The key provided must be authenticated to a trusted

authority.

3. ID conformation. The indicated PID must match the calculated and expected

(either configured or referenced) PID

When these three conditions are met, the Authorization Proof has been successfully

validated, and it’s contents may be regarded as genuine. The entire process is very quick

thanks to the efficiency of hashing algorithms.

Figure 0 - Sample Credential Element in XML notation, encoded using Base64, before digesting.

<Credential type=”X509Certificate”>

MIICVzCCAcCgAwIBAgIBCTANBgkqhkiG9w0BAQUFADASMRAwDgYDVQQDEwdCbHVlIENBMB4XDTA4MTExNDE4ND
UwNloXDTEzMTExNDE4NDUwNlowVDEUMBIGCgmSJomT8ixkARkWBGNvcnAxFDASBgoJkiaJk/IsZAEZFgRibHVl
MQ8wDQYDVQQLEwZwZW9wbGUxFTATBgNVBAMTDEJsdWUgQWRtaW4gMTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgY
kCgYEAtJev1JSNZs7+/qmbkLGaqpiMjOv3jQWMOhhlUXXr0vjWNtiVpzUkYLHGfF5tLs1Zp0e3zQ4enO0txdSR
ZU0ZhhTgHQRQNxS9Lqxhrh9A4EKU0MEVuapSHlLUBiT/IX1MrIv1bG7VQguGZnipH3aRsvHSsYx+lklvu80HJo
tymQ0CAwEAAaN7MHkwOgYDVR0jBDMwMYAUoflje9N/BGpeca5bQmnrnAIIxeKhFqQUMBIxEDAOBgNVBAMTB0Js
dWUgQ0GCAQEwHQYDVR0OBBYEFBg9t7mGcUde44Nh2SLRio/p0FGUMAwGA1UdEwEB/wQCMAAwDgYDVR0PAQH/BA
QDAgP4MA0GCSqGSIb3DQEBBQUAA4GBACkznMnjzyRjauPYBRo1LSdamzndwaILn9u6YHz0dQdamr94IY7ly4tz
aodbo3PYogEyC7ilU8Yr35pfdcjyhOJDRLK3kp2zGqwebl9iYbELhqpQUYSsTnb8Gajx+VMMDUJHcWRgz4J/Vc
MtaIh7+YWzWdsuIa39OpP2Nl7Sv5MW

</Credential>

PRELIMINARY MAR09

Authorization Infrastructure
Like a certificate, the Authorization Proof alone is of little value. A support

infrastructure of some sort is required to realize it’s potential. This infrastructure consists

of four primary components:

1. Administration Interface – To allow configuration of Authorization Proof

publishing and authorization of credentials

2. Authorization Authority – To publish the Authorization Proof on a regular

schedule, and to host these proofs for retrieval

3. Authorization-enabled application – To retrieve Authorization Proofs from the

Authority

4. Local Interface – To accept credentials from a user and take action based on their

status

The first and second component may be integrated when physical access to the

authority is possible. This may not always be the case, such as a drop box directory server

working from inside a vault. The third and fourth component may be integrated in some

cases, such as a web application, however they will be discreet components for physical

systems like gate access controls.

Federation
One of the Authorization Proof’s greatest strengths is federation. It has the ability to

include reference to other Proofs and information on where to obtain them. This allows

decentralized administration by enabling trust relationships between organizations. For

example, in a fictional Green and Blue corporation:

1. Green’s staff needs access to Blue’s systems, so both establish a policy in which

Blue trusts Green to properly vet employees who request access to specific

information. Both organizations implement a proof-based authorization scheme.

2. To create the trust link between the two organizations, the Blue administrators

PRELIMINARY MAR09

insert a reference to the Green Proof into their Blue-Proof. The Blue

administrators do not need nor want any know knowledge of the Green employees

in the Green Proof; They are all managed by the Green administrators

3. When the Green user accesses the Blue application, the Blue server is queried to

determine if the user is authorized.

4. The Blue server looks up the application proof on Blue’s directory server and

checks for a reference to the user. When the user is not found, it sees that the

proof contains a reference allowing Green to issue authorizations through the use

of a third party proof.

5. Knowing that Green can issue authorizations, the Blue server checks the Green

directory server for a valid proof. It checks to see if the user is listed on it for an

access role.

Since the Proofs of both Green and Blue may be fetched eagerly and cached, the

entire series of transactions is fast and efficient. Federation works across branches in one

organization, across multiple organizations, and across countries and continents. The

Authorization Proof structure does not limit the number or depth of references (although

the implementation should set it by policy).

General Implementation Recommendations
• Secure logging – all authorizations, publications, transfers, and Proof updates

should be securely recorded in a manner that facilitates simple and accurate

auditing.

• Speed – Implementation should be scale well, use a minimum of resources, and

be reasonably fast.

• Resilient – Failure to find a newer Authorization Proof should not prevent the

system from possessing authorizing requests

• Encapsulation – An implementation should be encapsulated to discrete and

independent components and connected using open interface standards to provide

PRELIMINARY MAR09

maximum security and upgradability.

• Bandwidth – The application that parses proofs must retrieve copies as seldom as

prudently possible to reduce bandwidth loads, similarly the directory server

should be capable of handling the transfer of Proofs.

• Security boundary – Developers should consider the security boundary

surrounding each component. For instance, the Proof Authority should not be

readily accessed from outside the boundary

• Ease of integration – The implementation should easily integrate with current

applications, preferably with canned APIs.

Administration Interface
The administration interface used to add, select, and remove the certificates that are

hashed into proofs. To avoid a “chicken and egg” scenario, some root credentials must be

built into the system, however it is preferable that they should only be used to establish

primary administrative credentials, after which the root credentials should be

permanently disabled or escrowed. All administrative actions through this interface

should require at least two-factor (ownership and knowledge) authentication.

Basic controls include:

• Add, remove, update a user certificate in the System

• Create or remove a Proof from the System

• Add or remove a user from in a Proof

• Add or remove a reference to a Proof in a Proof

• Set the publication policy in a Proof

• Export the attributes of a proof (it’s DN, ID, etc…) for use in an application

However there is potential for sophisticated functions such as:

PRELIMINARY MAR09

• Group management of Proofs and Users

• Acquisition and import of certificates from external sources

• Integration with existing identity providers

• Actions with option to require the approval of more than one administrator

The simplest implementation of an administration interface is one integrated into the

Authorization Authority, and accessed on the physical machine. This is not a viable

option where the organization’s security policy makes physical access to the Authority

impractical, in which case the interface would be a separate software application run

outside of the Authority security boundary. The remote interface must carry secure

communication with the Authority, and must be immune to DOS, Replay, and

impersonation attacks.

 Authorization Authority
The Authorization Authority is responsible for holding certificate credentials in a secure

manner, publishing Proofs, and placing published Proofs into a publicly accessible

directory. The back end implementation of the Authority is irrelevant as long as it is

tamper evident and encrypted, flat files, directories, and databases can meet these criteria.

It runs in a similar form and fashion to a Certificate Authority, and should take the same

precautions:

• Check for data integrity frequently

• Synchronize with network time, and ensure it moves forward only

• Log all transactions, modifications, and publications in a cryptographically

verifiable format

• Proof directory should be read-only, with no write access except for the

authority.

Optional features may include:

PRELIMINARY MAR09

• Use of cryptographic hardware for encryption and signing

• Tracking identity certificates which may be re-issued for change of rank, address,

marital status, etc…

• Ability to load share between Authorities

PRELIMINARY MAR09

 Authorization Application
The authorization Application is the most common component in the Authorization Proof

system, like the certificate validater is the most common component in the X.500 system.

It may be incorporated with the application that desires authorization information, or it

may be a separate component integrated through a published interface. In either case, the

logic for parsing a Proof is the same.

 Application Logic
An Authorization-Enabled application has two phases: maintenance and authorization.

Phase A: Maintenance. Maintain set of current authorization data:

1. Maintain a list of trusted directories, and their public keys

2. Maintain a list of Authorization Proofs and their Proof IDs

3. At the next-available time (specified within the Proof), retrieve the newly

published Proof from the appropriate directory

4. Decode the new Proof ASN1 data

5. Ensure it was signed by a trusted authority

6. Verify the Proof ID

7. Traverse any peer references specified within the proof, repeating steps 4-7

8. Store the newest copies of the Proof data

Phase B: Authorization. To authorize a credential to a resource:

1. Look up the appropriate Proof in the data store

2. Hash the credential according to the specified hash algorithm

3. Search the Proof for the hash value. If found, the credential is authorized

4. If not found, recursively traverse all peers in the tree, repeating steps 2 and 3

PRELIMINARY MAR09

5. If still not found, credential is not authorized

 A dedicated Authorization Server would enable securely federated authorizations

while isolating the developer’s application from the Authorization Proof and it’s

semantics. The first requirement is a published interface defining the transaction between

the “client” application and the Authorization “server”. There are several options for this

interface, such as a lightweight would be to use an XML based RPC protocol such as

SOAP, or the more complex standard SAML. In the SAML case, the Authorization

Server would take the form of an Identity Provider.

XML

PID

Credentials

Signature

PID

Authorization Code

Authorization
Response

Signature

Figure 0 - The authorization sequence

PRELIMINARY MAR09

 Comparison of Alternatives
As noted above, the Authorization Proof is just one solution that provides Atomic

Authorization. It has both advantages and disadvantages when compared with other

solutions.

 Advantages Disadvantages
Attribute Certificates

 ACs are digitally signed, and therefore
meet the standard of atomic
authorization.

 Can be managed separately from the
entity credential resolving some card
management issues.

 Requires central management of
authorizations.

 Requires complicated policy framework
to work in a large environment.

 No products readily available to either
manage attribute certificates or
process them.

 Require many certificates per user,
exceeding limits of embedded devices.

 No contract between transportation
method for ACs and the application
owner.

Certificate Extensions

 X.509 certificates and their extensions
are signed, therefore they provide
atomic authorization.

 Most Certification Authorities are
already designed to manage policy
identifiers which can be used for
authorization.

 Every change to an entity certificate
requires changes to the users
credentials, creating a distribution
nightmare

 Application owners have to divest their
authorization management to identity
providers.

 List what each user is authorized to do,
can connect privileges in a sensitive
way.

Authorization Proof

 Proofs digitally signed, and therefore meet
the standard for atomic authorization.

 Can be managed securely in a distributed
mixed security environment.

 Administration and management can be
delegated to application owners, across
organizations, and between countries.

 Proofs carry no extractable information
about authorized certificates, maintaining
anonymity.

 Systematic publication eliminates
possibility for repudiation.

 Integrates with existing technologies such
as LDAP, SOAP, SAML, etc.

 Requires authorization policy to be defined
in advance, which can be a challenge.

 Although integrates with mixed
environment, is not directly compatible with
existing applications

PRELIMINARY MAR09

Conclusion
Using the Authorization Proof to publish authorization information independently of

identity providers and the applications themselves, developers can implement

transactional atomic authorizations that are as strong as their authentications, using

identity authentication certificates that are already in place. The Authorization Proof may

be applied to physical access, network applications, and computer protocols, and is the

next step in securing the digital age.

JSD

PRELIMINARY MAR09

Appendix A – Authorization Proof Specification
 --Internal Version: 1.009a

AuthorizationProofV1

 { iso(1) identified-organization(3) dod(6) internet(1) private(4)

 enterprise(1) mag(26135) prod(1) ozone(1) proofv1(1) }

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

 -- EXPORTS All

 -- The types and values defined in this module are exported for use

 -- in the other ASN.1 modules. Other applications may use them for

 -- their own purposes.

 IMPORTS

 -- Imports from PKIXImplicit88

 DistributionPointName, KeyIdentifier

 FROM PKIX1Implicit88

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-pkix1-implicit-88(2)}

 -- Imports from RFC 3280 [PROFILE], Appendix A.1

 AlgorithmIdentifier, Certificate, Name, Extensions

 FROM PKIX1Explicit88

 { iso(1) identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) pkix(7)

 mod(0) pkix1-explicit(18) }

 -- Imports from RFC 3852 [PROFILE]

 SubjectKeyIdentifier, Digest

 FROM CryptographicMessageSyntax2004

 { iso(1) member-body(2) us(840) rsadsi(113549)

 pkcs(1) pkcs-9(9) smime(16) modules(0)

 cms-2004(24) };

 -- Authorization Proof Definition

 AuthorizationProof ::= SEQUENCE {

 tbsAuthorizationProof TBSAuthorizationProof,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

 TBSAuthorizationProof ::= SEQUENCE {

PRELIMINARY MAR09

 version INTEGER,

 issuer ProofReference, -- Root Authority reference

 subject ProofReference, -- reference to self

 validityPeriod ValidityPeriod,

 references ReferenceMap, -- peer and subordinate references]

 entityDigestList[0] DigestList OPTIONAL,

 extensions [1] Extensions OPTIONAL

 }

 ValidityPeriod ::= SEQUENCE {

 notBefore GeneralizedTime,

 nextAvailable GeneralizedTime,

 notAfter GeneralizedTime

 }

 ProofIdentifier ::= SEQUENCE {

 authorityKeyIdentifier KeyIdentifier, -- OCTET STRING, Unsure could be DB Generated or set in a
file

 issuerDN Name, -- Proof's issuerDN

 serialNumber INTEGER } -- serialNumber of Proof (remains the same for each
issue)

 ReferenceMap ::= SEQUENCE {

 superior AuthorizationReference, -- Parent node in authorization path

 peer [0] SET OF AuthorizationReference OPTIONAL, -- sibling/cousin or external node

 subordinate [1] SET OF AuthorizationReference OPTIONAL -- Child node in authorization path

 }

 ProofDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPointName

 ProofReference ::= SEQUENCE {

 referenceDN Name, -- X.500 naming

 proofID ProofIdentifier,

 signedProofID BIT STRING,

 distributionPoint ProofDistributionPoints, -- Follows certificate distribution point format

 certificate [0] Certificate OPTIONAL } -- Added only for Assertion and Root Authority
proofs

 AuthorizationReference ::= SEQUENCE {

 subject ProofReference,

 issuer ProofReference }

 DigestList ::= SEQUENCE {

 digestAlgorithm AlgorithmIdentifier , --The algorithm used to digest the object in ObjectReference.
By default it is SHA256

 digests SET OF ObjectReference}

 ObjectReference ::= SEQUENCE {

 subjectKeyIdentifier [0] SubjectKeyIdentifier OPTIONAL,

 objectDigest Digest }

END

PRELIMINARY MAR09

 Appendix B – Glossary
Pending Review

PRELIMINARY MAR09

 Appendix C – References

Works Cited
108th Congress. "Intelligence Reform and Terrorism Prevention Act of 2004."

Intelligence Reform and Terrorism Prevention Act of 2004. Washington: United States of

America, 17 December 2004.

Dillaman, K. Implementation of Centralized Clearance Database. Notice. Washington,

DC: U.S. Office of Personnel Management , 2006.

Housley, Russ and Tim Polk. Planning for PKI. New York: Wiley Computer Publishing,

2001.

RFC-2459. "Internet X.509 Public Key Infrastructure Certificate and CRL Profile."

January 1999. Network Working Group Standards Track. Ed. R. Housley, et al. The

Internet Society. January 2008 <http://www.ietf.org/rfc/rfc2459.txt>.

Russell, William C., et al. Systems, Devices and Methods for Managing Cryptographic

Authorizations. Ed. LLP. Crowell & Moring. US: Patent 12101363. 11 April 2008.

